MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS 1963
Let \(f \) be a continuously differentiable \((C^1) \) map from a compact rectangular region \(Q \) in the \(n \)-dimensional Euclidean space \(\mathbb{R}^n \) into \(\mathbb{R}^n \). Gale and Nikaido showed that if all the principal minors of the Jacobian of \(f: Q \rightarrow \mathbb{R}^n \) are positive everywhere in \(Q \) then \(f \) is univalent (one-to-one) on \(Q \). This result was recently strengthened and extended to a general case where \(f \) is defined on a compact convex polyhedron \(P \subset \mathbb{R}^n \) with nonempty interior by Mas-Colell and others. In this paper, we deal with a special case where \(f \) is separable with respect to a subset of variables, i.e.,

\[
 f(x) = \sum_{i=1}^{m} f_i(x_1) + f_{m+1}(x_{m+1}, \ldots, x_n)
\]

for all \(x = (x_1, \ldots, x_n) \in P = P_1 \times P_2 \).

Here \(P_1 \) is a compact rectangular region in \(\mathbb{R}_m \), \(P_2 \) a compact polyhedron in \(\mathbb{R}^{n-m} \), \(f_1 \) a \(C^1 \)-map from an interval of the real line into \(\mathbb{R}^n \) and \(f_{m+1}: P_2 \rightarrow \mathbb{R}^n \) a \(C^1 \)-map. We show that the sufficient condition given by Mas-Colell for a \(C^1 \)-map \(f:P \rightarrow \mathbb{R}^n \) to be univalent can be weakened in this case.

AMS(MOS) Subject Classification - 65H10, 57D50, 57D35

Key Words: Jacobian Matrix, Global Univalence, Homeomorphism, Separable Maps, Systems of Equations

Work Unit No. 5 - Mathematical Programming and Operations Research

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024. This material is based upon work supported by the National Science Foundation under Grant No. MCS78-09525.
SIGNIFICANCE AND EXPLANATION

When solving one equation in one unknown, \(f(x) = q \), it is obvious geometrically that if \(f(x) \) is continuously differentiable and \(f'(x) \neq 0 \) for all \(x \), then for each \(q \) the equation has at most one solution (\(f \) is then said to be univalent). Of course the univalence of \(f \) does not ensure the existence of a solution, for example, \(e^x = 0 \).

When solving a system of \(n \) equations in \(n \) unknowns,
\[
f_i(x_1, \ldots, x_n) = q_i (i = 1, \ldots, n),
\]
the analogue of \(f'(x) \) is the \(n \times n \) Jacobian matrix \(\frac{\partial f}{\partial x} \). It is interesting to investigate conditions on the Jacobian matrix which will ensure the univalence of the left hand of \((*) \). Such conditions are of practical importance if they are combined with conditions which ensure the existence of solutions because if \((*) \) has a solution and if the left hand of \((*) \) is univalent then the solution is unique.

In this paper we deal with the case where \(f_i(x_1, \ldots, x_n) \) can be written in the form
\[
f_i(x_1, \ldots, x_n) = \sum_{j=1}^{m} f_{ij}(x_j) + f_i^{m+1}(x_{m+1}, \ldots, x_n) \quad (i = 1, \ldots, n),
\]
and give a condition on the Jacobian matrix which ensures the univalence. As a special case, it is shown that if \(m = n-1 \) and if the determinant of the Jacobian matrix \(\frac{\partial f}{\partial x} \) is nonzero for all \((x_1, \ldots, x_n) \) then the left hand of \((*) \) is univalent.
GLOBALLY UNIVALENT C¹-MAPS WITH SEPARABILITY
Masakazu Kojima and Michael J. Todd

1. Introduction

Let \mathbb{R}^n denote the n-dimensional Euclidean space. We say that a subset Q of \mathbb{R}^n is a rectangular region if

$$Q = \{ x = (x_1, \ldots, x_n) \in \mathbb{R}^n : a_i \leq x_i \leq b_i \ (i = 1, \ldots, n) \},$$

where $-\infty \leq a_i < b_i \leq +\infty \ (i = 1, \ldots, n)$. We call a rectangular region in the real line \mathbb{R} an interval. More than a decade ago Gale and Nikaido [1] showed that if all the principal minors of the Jacobian of a continuously differentiable (C^1) map f from a rectangular region Q in \mathbb{R}^n into \mathbb{R}^n are positive everywhere in Q then f is univalent (one-to-one) on Q. Recently, this result was strengthened and generalized by Garcia and Zangwill [2] and Mas-Colell [4]. This paper has a close relation with Mas-Colell's generalization [4].

We say that a convex set $C \subset \mathbb{R}^n$ spans a subspace L of \mathbb{R}^n if

$$L = \{ \lambda (x-x^0) : \lambda \in \mathbb{R}, x \in C \}$$

for some relative interior point x^0 of C. It should be noted that the set

$$\{ \lambda (x-x^0) : \lambda \in \mathbb{R}, x \in C \}$$

does not depend on the choice of an interior point x^0 of C.

Let L be a nonempty subspace of \mathbb{R}^n. We denote the orthogonal projection map from \mathbb{R}^n onto L by $\Pi_L : \mathbb{R}^n \rightarrow L$, that is, $\Pi_L (x) \in L$ and $\| x - \Pi_L (x) \| = \min \{ \| x - y \| : y \in L \}$ for every $x \in \mathbb{R}^n$. Let M be an $n \times n$ matrix. Then the composite map $\Pi_L \circ M : L \rightarrow L$ is linear. Suppose $\dim L = k$ and that the set of the columns of an $n \times k$ matrix A forms a basis of L. Then we can write

$$\Pi_L (x) = A (A^T A)^{-1} A^T x \quad \text{for every} \ x \in \mathbb{R}^n,$$

where A^T denotes the transpose of the matrix A. It is easily verified that the linear map $\Pi_L \circ M : L \rightarrow L$ has a positive (or negative) determinant if and only if the $k \times k$ matrix $A^T MA$ has a positive (or negative) determinant. The positivity (or negativity) of the determinant of the linear map $\Pi_L \circ M : L \rightarrow L$ does not depend on the choice of a basis of L. We denote the Jacobian matrix of a C^1-map f from a subset of \mathbb{R}^n into \mathbb{R}^m by $Df(x)$.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024. This material is based upon work supported by the National Science Foundation under Grant No. MCS78-09525.
Theorem 1 (Theorem 1 in Mas-Colell [4]): Let P be a compact convex polyhedron in \mathbb{R}^n with nonempty interior, and $f: P \rightarrow \mathbb{R}^n$ be a C^1-map. Assume that for every $x \in P$ and subspace $L \subset \mathbb{R}^n$ spanned by a face σ of P which includes x, the linear map $\Pi_L \circ Df(x): L \rightarrow L$ has a positive determinant. Then f is univalent on P.

We consider a special case where a C^1-map $f: P \rightarrow \mathbb{R}^n$ is separable with respect to some of the variables and show that the assumption of Theorem 1 can be weakened in this case.

Theorem 2: Let $P_1 \subset \mathbb{R}^m$ be a compact rectangular region and $P_2 \subset \mathbb{R}^{n-m}$ a compact convex polyhedron with nonempty interior. Let $f: P_1 \times P_2 \rightarrow \mathbb{R}^n$ be a C^1-map such that

$$f(x) = \sum_{i=1}^{m} f^i(x_1) + f^i(x_{m+1}, \ldots, x_n)$$

for every $x = (x_1, \ldots, x_n) \in P_1 \times P_2$, where f^i is a C^1-map from an interval of \mathbb{R} into \mathbb{R}^n and f^i is a C^1-map from P_2 into \mathbb{R}^{n-m}. Assume that for every face τ_2 of P_2 and every $x \in P_1 \times \tau_2$, the linear map $\Pi_L \circ Df(x): L \rightarrow L$ has a positive determinant, where L is the subspace spanned by $P_1 \times \tau_2$. Then f is univalent on $P_1 \times P_2$.

We will derive Theorem 2 from Theorem 1 in Section 2. When $m = 0$, Theorems 1 and 2 are equivalent. Suppose $m \geq 1$. Note that each face of $P_1 \times P_2$ is of the form $\tau_1 \times \tau_2$, with τ_i a face of P_i ($i=1,2$); we do not require that $\Pi_L \circ Df(x): L \rightarrow L$ have a positive determinant if the subspace L is spanned by a face $\tau_1 \times \tau_2$, $\tau_1 \neq P_1$. Hence the hypothesis of Theorem 2 is weaker than that of Theorem 1.

It is well-known that the positivity of a C^1-map $f: P \rightarrow \mathbb{R}^n$ does not necessarily ensure the univalence of f. For example, the map $f: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ defined by

$$f_1(x_1, x_2) = (\exp x_1)(\sin x_2)$$
$$f_2(x_1, x_2) = - (\exp x_1)(\cos x_2)$$

has a positive Jacobian at every $x = (x_1, x_2) \in \mathbb{R}^2$, but it is not univalent. When the dimension n is equal to 1 or $f: P \rightarrow \mathbb{R}^n$ is affine, however, the positivity of the Jacobian at every $x \in P$ implies the univalence. These two exceptional cases are unified by the following result.

Corollary: Let $Q \subset \mathbb{R}^n$ be a rectangular region and $f: Q \rightarrow \mathbb{R}^n$ a C^1-map such that

$$f(x) = \sum_{i=1}^{m} f^i(x_1)$$

for all $x \in Q$, where f^i is a C^1-map from an interval of \mathbb{R} into \mathbb{R}^n. Assume that the Jacobian of the
map \(f \) is nonzero at every \(x \in \Omega \). Then \(f \) is univalent on \(P \).

Proof. Let \(x^0 \in \Omega \). Then \(f: \Omega \to \mathbb{R}^n \) is univalent if and only if the map \(g: \Omega \to \mathbb{R}^n \)
defined by

\[
g(x) = Df(x^0) f(x) \quad \text{for all } x \in \Omega
\]
is univalent. Obviously \(g: \Omega \to \mathbb{R}^n \) is separable with respect to all the variables and
\(\det Dg(x) > 0 \) for all \(x \in \Omega \). By Theorem 2, we see that \(g \) is univalent on every
compact rectangular region contained in \(\Omega \). This implies \(g \) is univalent on \(\Omega \).

Q. E. D.
2. Proof of Theorem 2.

Throughout this section \(e^i \) denotes the \(i \)-th unit vector in \(\mathbb{R}^n \), and \(I \) the identity matrix of appropriate dimension. For simplicity of notation, we assume that \(0 \in \mathbb{R}^n \) is a vertex of \(P_1 \times P_2 \). Let \(M = Df(0) \). We partition the \(n \times n \) matrix \(M \) such that

\[
M = \begin{bmatrix}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{bmatrix}
\]

Let \(E \) denote the \(n \times m \) matrix \([e^1, \ldots, e^m]\). Since \(0 \in \mathbb{R}^n \) lies in a face \(P_1 \times \{0\} \) of \(P_1 \times P_2 \) and the set of the columns of \(E \) forms a basis of the subspace \(\mathbb{R}^m \times \{0\} \subset \mathbb{R}^n \) spanned by \(P_1 \times \{0\} \), we have

\[
\det M_{11} = \det E^T Df(0) E > 0
\]

Define the \(n \times n \) matrix

\[
N = \begin{bmatrix}
-M_{11}^{-1} & 0 \\
-M_{11}^{-1} M_{12} & -M_{11}^{-1} M_{21} & I
\end{bmatrix}
\]

and the map \(g : P_1 \times P_2 \to \mathbb{R}^n \) by

\[
g(x) = N f(x) \quad \text{for all } x \in P_1 \times P_2.
\]

Obviously \(g : P_1 \times P_2 \to \mathbb{R}^n \) is also separable with respect to the variables \(x_1, \ldots, x_m \).

That is, we can write

\[
g(x) = \sum_{i=1}^{m} g_i(x_i) + g^*(x_{m+1}, \ldots, x_n) \quad \text{for all } x \in P_1 \times P_2,
\]

where \(g_i (i = 1, \ldots, m) \) and \(g^* \) are \(C^1 \)-maps. Since the \(n \times n \) matrix \(N \) is nonsingular, \(f \) is univalent on \(P_1 \times P_2 \) if and only if \(g \) is univalent on \(P_1 \times P_2 \). We shall establish that \(g \) is univalent on \(P_1 \times P_2 \).

In view of Theorem 1, it suffices to show that for every \(x \in P_1 \times P_2 \) and subspace \(L \subset \mathbb{R}^n \) spanned by a \((k+1)\)-dimensional face \(\tau_1 \times \tau_2 \) of \(P_1 \times P_2 \) which includes \(x \) and for an \(n \times (k+1) \) matrix \(A \) whose columns form a basis of \(L \), the determinant of \(A^T Dg(x) A \) is positive. Assume that \(\tau_1 \) and \(\tau_2 \) have dimensions \(k \) and \(\ell \) respectively. Since \(\tau_1 \) is a face of the compact rectangular region \(P_1 \subset \mathbb{R}^m \), we can choose \(k \) vectors...
from the m unit vectors e_1, \ldots, e_m in \mathbb{R}^n for a basis of the subspace L_1 spanned by $\tau_1 \times \{0\} \subset \mathbb{R}^n$. For simplicity of notation, we assume that the last k unit vectors e_{m-k+1}, \ldots, e_m form a basis of the subspace L_1. Choose a set of ℓ vectors u_1, \ldots, u_ℓ for a basis of the linear subspace spanned by $\{0\} \times \tau_2 \subset \mathbb{R}^n$. Define the $n \times (k+\ell)$ matrix

$$A = [e_{m-k+1}, \ldots, e_m, u_1, \ldots, u_\ell].$$

By the construction, the set of the columns of the $n \times (k+\ell)$ matrix forms a basis of the subspace L. The purpose of the remainder of the proof is to show

$$\det A^T A > 0.$$

Let $y = (0, \ldots, 0, x_{m-k+1}, \ldots, x_n) \in \mathbb{R}^n$. Then y lies in a face $P_1 \times \tau_2$ of $P_1 \times P_2$, and the columns of the $n \times (m+\ell)$ matrix

$$\tilde{A} = [e^1, \ldots, e^m, u^1, \ldots, u^\ell]$$

form a basis of the subspace \tilde{L} spanned by $P_1 \times \tau_2$. By assumption, we have

$$\det \tilde{A}^T A = 0.$$

By the construction of $g: P_1 \times P_2 \rightarrow \mathbb{R}^n$, we see

$$Dg(0) = NDf(0) =
\begin{bmatrix}
I & M^{-1}M_{12} \\
-M_{11}^{-1}M_{12} + M_{11}^{-1} & 0
\end{bmatrix}.$$

Hence it follows from the separability of the map $g: P_1 \times P_2 \rightarrow \mathbb{R}^n$ that

$$Dg^i(0) = e^i \quad (i = 1, 2, \ldots, m).$$

Let B denote the $n \times (m-k)$ matrix $[e^1, \ldots, e^{m-k}]$. Then

$$Dg(y) = [B, Dg_{m-k+1}(x_{m-k+1}), \ldots, Dg_m(x_m), Dg_{m+1}(x_{m+1}), \ldots, x_n],$$

and

$$\tilde{A}^T Dg(y) \tilde{A} =
\begin{bmatrix}
B^T Dg(y) B & B^T Dg(y) A \\
A^T Dg(y) B & A^T Dg(y) A
\end{bmatrix}.$$

It is easily verified that $B^T Dg(y) B = I$, $A^T Dg(y) B = 0$ and $A^T Dg(y) A = A^T Dg(x) A$. Hence

$$\det \tilde{A}^T Dg(x) A = \det \tilde{A}^T Dg(y) \tilde{A}.$$

If we write the $n \times (m+\ell)$ matrix \tilde{A} as

$$-5-$$
\[\bar{A} = \begin{bmatrix} 1 & 0 \\ 0 & A_{22} \end{bmatrix}, \]

where \(A_{22} \) is an \((n-m) \times l\) matrix, then we see

\[\bar{A}^T \text{Dg}(y) \bar{A} = A^T \text{Ndf}(y) A \]

\[= \begin{bmatrix} M_{11}^{-1} & 0 \\ -A_{22}^T M_{21} M_{11}^{-1} & I \end{bmatrix}^{T} A^T \text{df}(y) \bar{A}. \]

Recalling that \(\det M_{11} > 0 \), we consequently obtain \(\det A^T \text{Dg}(x) A = \det \bar{A}^T \text{Dg}(y) \bar{A} = (\det M_{11}^{-1}) \det A^T \text{df}(y) \bar{A} > 0 \).

Q.E.D.
3. Concluding Remark.

Recently, Kojima and Saijai extended Theorem 1 to the case where the map $f: P \rightarrow \mathbb{R}^N$ is piecewise continuously differentiable ([Theorem 4.3, 3]). Theorem 2 can be also extended to a piecewise continuously differentiable case. The same proof as we have given in Section 2 is valid for the extension if we use Theorem 4.3 of [3] instead of Theorem 1.
REFERENCES

Globally Univalent C^1 -Maps with Separability

Let f be a continuously differentiable (C^1) map from a compact rectangular region Q in the n-dimensional Euclidean space \mathbb{R}^n into \mathbb{R}^n. Gale and Nikaido showed that if all the principal minors of the Jacobian of $f: Q \to \mathbb{R}^n$ are positive everywhere in Q then f is univalent (one-to-one) on Q. This result was recently strengthened and extended to a general case where f is defined on a compact convex polyhedron $P \subset \mathbb{R}^n$ with nonempty interior by Mas-Colell and others. In this paper, we deal with a special case where f is separable with respect to a subset of variables, i.e.,
Abstract (continued)

\[f(x) = \sum_{i=1}^{m} f_i(x_i) + f_{m+1}(x_{m+1}, \ldots, x_n) \]

for all \(x = (x_1, \ldots, x_n) \in P = P_1 \times P_2 \).

Here \(P_1 \) is a compact rectangular region in \(R^m \), \(P_2 \) a compact polyhedron in \(R^{n-m} \), \(f^i \) a \(C^1 \)-map from an interval of the real line into \(R^n \) and \(f^{m+1} : P_2 \rightarrow R^n \) a \(C^1 \)-map. We show that the sufficient condition given by Mas-Colell for a \(C^1 \)-map \(f : P \rightarrow R^n \) to be univalent can be weakened in this case.