JAMES RIVER BASIN

Name of Dam: Sugar Hollow
Location: Albemarle County, State of Virginia
Inventory Number: VA 00303

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

PREPARED FOR
NORFOLK DISTRICT CORPS OF ENGINEERS
803 FRONT STREET
NORFOLK, VIRGINIA 23510

PREPARED BY
MICHAEL BAKER, JR., INC.
BEAVER, PENNSYLVANIA 15009

SEPTEMBER 1978
| **1. TITLE (and Subtitle)** | Phase I Inspection Report
National Dam Safety Program, James River Basin
Sugar Hollow (Inventory Number VA 00303) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2. REPORT NUMBER</td>
<td>VA 00303</td>
</tr>
<tr>
<td>3. TYPE OF REPORT & PERIOD COVERED</td>
<td>Final Report</td>
</tr>
</tbody>
</table>
| **4. AUTHOR** | Michael Baker, Jr.
Michael Baker, III |
| **5. PERFORMING ORG. REPORT NUMBER** | DACW 65-78-D-9016 |
| **6. CONTRACT OR GRANT NUMBER(S)** | - |
| **7. PERFORMING ORGANIZATION NAME AND ADDRESS** | U.S. Army Engineering District, Norfolk
803 Front Street
Norfolk, VA 23510 |
| **8. NUMBER OF PAGES** | 63 |
| **9. CONTROLLING OFFICE NAME AND ADDRESS** | U.S. Army Engineering District, Norfolk
803 Front Street
Norfolk, VA 23510 |
| **10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS** | - |
| **11. REPORT DATE** | Sep 1978 |
| **12. SECURITY CLASS. (OF THIS REPORT)** | Unclassified |
| **13. DISTRIBUTION STATEMENT (OF THE REPORT)** | Approved for public release; distribution unlimited |
| **14. DISTRIBUTION STATEMENT (OF THIS REPORT)** | - |
| **15. SUPPLEMENTARY NOTES** | Copies are obtainable from National Technical Information Service, Springfield, Virginia 22151 |
| **16. KEY WORDS** (Continue on reverse side if necessary and identify by block number) | Dams - VA
National Dam Safety Program Phase I
Dam Safety
Dam Inspection |
| **17. ABSTRACT** (Continue on reverse side if necessary and identify by block number) | (See reverse side) |
| **18. BIBLIOGRAPHIC ENTRY** | - |
| **19. ILLUSTRATIONS** | - |
| **20. REFERENCES** | - |

(See reverse side)
20. Abstract

Pursuant to Public Law 92-367, Phase I Inspection Reports are prepared under guidance contained in the recommended guidelines for safety inspection of dams, published by the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general conditions of the dam is based upon available data and visual inspections. Detailed investigation and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

Based upon the field conditions at the time of the field inspection and all available engineering data, the Phase I report addresses the hydraulic, hydrologic, geologic, geotechnic, and structural aspects of the dam. The engineering techniques employed give a reasonably accurate assessment of the conditions of the dam. It should be realized that certain engineering aspects cannot be fully analyzed during a Phase I inspection. Assessment and remedial measures in the report include the requirements of additional indepth study when necessary.

Phase I reports include project information of the dam and appurtenances, all existing engineering data, operational procedures, hydraulic/hydrologic data of the watershed, dam stability, visual inspection report and an assessment including required remedial measures.
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

CONTENTS

<table>
<thead>
<tr>
<th>Brief Assessment of Dam.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall View of Dam.</td>
<td>3</td>
</tr>
<tr>
<td>Section 1: Project Information</td>
<td>5</td>
</tr>
<tr>
<td>Section 2: Engineering Data</td>
<td>9</td>
</tr>
<tr>
<td>Section 3: Visual Inspection</td>
<td>11</td>
</tr>
<tr>
<td>Section 4: Operational Procedures</td>
<td>15</td>
</tr>
<tr>
<td>Section 5: Hydraulic/Hydrologic Data</td>
<td>17</td>
</tr>
<tr>
<td>Section 6: Dam Stability</td>
<td>23</td>
</tr>
<tr>
<td>Section 7: Assessment/Remedial Measures</td>
<td>25</td>
</tr>
</tbody>
</table>

ApPENDICES

I. Plates
II. Photographs
III. Check List - Visual Inspection
IV. Check List - Engineering Data
V. Boring Logs and Locations
VI. Stability Analyses

NAME OF DAM: SUGAR HOLLOW
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

Name of Dam: Sugar Hollow
State: Virginia
County: Albemarle
Stream: Moormans River
Date of Inspection: 25 July 1978

BRIEF ASSESSMENT OF DAM

Sugar Hollow Dam is a gated concrete gravity structure, approximately 77 feet high and 480 feet long. The dam is owned and operated by the Rivanna Water and Sewer Authority for the water supply of the City of Charlottesville.

The gated spillway will pass 18 percent of the Probable Maximum Flood when closed, 62 percent of the Probable Maximum Flood when opened, and 80 percent of the Probable Maximum Flood with the gates removed. Therefore, the spillway is inadequate. Structural calculations indicate that the dam meets the stability requirements of the Recommended Guidelines for Safety Inspection of Dams with respect to overturning and sliding for the Probable Maximum Flood and normal pool conditions.

The owner should immediately conduct a detailed assessment of spillway capacity to pass the Probable Maximum Flood. This assessment should include the possibility of removing the spillway gates as well as other measures. Remedial work that can be performed as part of the annual maintenance program should include: monitoring clear minor seepage areas during higher reservoir levels, cleaning mud and debris from the drainage gallery, clearing plugged foundation drains, operating the lift gates to check for proper functioning, and repairing erosion on the left upstream shoreline.

Original signed by
MICHAE L BAKER, JR., INC.
Michael Baker, III, P.E.
Chairman of the Board and
Chief Executive Officer

JAMES A. WALSH
Chief, Design Branch

ZANE M. GOODWIN
Chair, Engineering

Douglas L. Haller
Colonel, Corps of Engineers
District Engineer

Date: SEP 28 1978

SUGAR HOLLOW
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM
NAME OF DAM: SUGAR HOLLOW ID# VA 00303

SECTION 1 - PROJECT INFORMATION

1.1 General

1.1.1 Authority: Public Law 92-367, 8 August 1972 authorized the Secretary of the Army, through the Corps of Engineers to initiate a national program of safety inspections of dams throughout the United States. The Norfolk District has been assigned the responsibility of supervising the inspection of dams in the Commonwealth of Virginia.

1.1.2 Purpose of Inspection: The purpose is to conduct a Phase I inspection according to the Recommended Guidelines for Safety Inspection of Dams. The main responsibility is to expeditiously identify those dams which may be a potential hazard to human life or property.

1.2 Description of Project

1.2.1 Description of Dam and Appurtenances: Sugar Hollow Dam, also known as Moormans River Storage Dam, is a concrete gravity structure 480 feet long, as measured along the upstream arc. The 480 feet length consists of a 225 feet spillway, a 100.5 feet south bulkhead, and a 154.5 feet north bulkhead (see Plates 1 and 2). The maximum height of the dam is 77 feet. A drainage gallery extends from abutment to abutment with 3.5 inch diameter pipe foundation drains spaced at regular intervals throughout the gallery. The drains were observed during the inspection (see Plate 3).

A stilling pool located at the toe of the dam is impounded by a seven feet high concrete overflow dam (see Photo 3).

To the left of the stilling pool at the toe of the dam is a 30 inch diameter blow off pipe and a 24 inch diameter water supply main which exits from the gallery tunnel and traverses the left bank of the downstream channel (see Plate 5).
The spillway is of the gated crest type with eight gates approximately 25 feet long and five feet high. The individual gates are raised or lowered by a single electric motor driven gate hoist. The hoist is mounted on rails extending across the entire length of the spillway to permit access to each gate.

The intake tower is located adjacent to the left end of the spillway.

1.2.2 Location: Sugar Hollow Dam is located on Moormans River approximately five miles upstream from the Town of Whitehall, Virginia (population 55) and approximately 18.2 miles northwest of Charlottesville, Virginia (population 32,000). Camp Sugar Hollow, a summer camp for girl scouts, is located approximately 1.1 miles downstream from the dam and is occupied on a seasonal basis. The operator's residence for this dam is located several hundred feet downstream. A Location Plan is included in this report.

1.2.3 Size Classification: The maximum height of the dam is 77 feet. The reservoir volume to the gated spillway crest is 1667 acre-feet. Therefore, the dam is in the "intermediate" size category as defined by the Recommended Guidelines for Safety Inspection of Dams.

1.2.4 Hazard Classification: Due to the proximity of the Town of Whitehall, Virginia with a population of 55, the Girl Scout camp 1.1 miles downstream, and the dam operator's residence; many lives could be lost in the event of failure of the dam. Therefore the dam is considered in the "high" hazard category as defined by Section 2.1.2 of the Recommended Guidelines for Safety Inspection of Dams. The hazard classification used to categorize dams is a function of location only and has nothing to do with its stability or probability of failure.

1.2.5 Ownership: The Sugar Hollow Dam is owned by the Rivanna Water and Sewer Authority, Charlottesville, Virginia.

1.2.6 Purpose of Dam: The dam is used for water supply to the City of Charlottesville, Virginia. There is also limited recreational fishing on the reservoir.
1.2.7 Design and Construction History: The existing facility was designed for the owner by Mr. Edward W. Saunders, Consulting Engineer, Charlottesville, Virginia in January 1946. The core borings were made in December 1944 and January 1945 by Mott Drilling Company, Huntingdon, West Virginia. The construction was done by Faulconer Construction Co. in 1950. No known construction has been undertaken since the dam was built.

1.2.8 Normal Operational Procedures: The reservoir is normally operated with pool level at the top of the spillway crest gates, elevation 975.0. Two 18 inch diameter intake pipes with invert elevations of 936.22 and 962.72 are located on the upstream face of the intake tower. Intakes connect to a 24 inch diameter waterline with invert elevation 913.79 which supplies the City of Charlottesville. A 30 inch diameter blow off line is located within the intake tower and has an invert elevation of 913.17.

There is no formal maintenance schedule at the dam site. However, there is a resident dam operator.

1.3 Pertinent Data

1.3.1 Drainage Area: The drainage area of Sugar Hollow Dam is approximately 17.2 square miles.

1.3.2 Discharge at Dam Site: The maximum flood at the dam site is not known.

Gated Spillway

<table>
<thead>
<tr>
<th>Pool level at top of dam</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gates closed</td>
<td>5288 c.f.s.</td>
</tr>
<tr>
<td>Gates opened</td>
<td>17,928 c.f.s.</td>
</tr>
<tr>
<td>Gates removed</td>
<td>23,240 c.f.s.</td>
</tr>
</tbody>
</table>

1.3.3 Dam and Reservoir Data: Pertinent data on the dam and reservoir are shown in the following table:

NAME OF DAM: SUGAR HOLLOW
TABLE 1.1 DAM AND RESERVOIR DATA

<table>
<thead>
<tr>
<th>Item</th>
<th>Elevation feet M.S.L.</th>
<th>Area acres (a)</th>
<th>Acre-feet (a)</th>
<th>Watershed inches (b)</th>
<th>Length feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top of dam</td>
<td>980.0</td>
<td>53</td>
<td>1590</td>
<td>1.7</td>
<td>-</td>
</tr>
<tr>
<td>Gated spillway crest (c)</td>
<td>970.0</td>
<td>45</td>
<td>1105</td>
<td>1.2</td>
<td>2600</td>
</tr>
<tr>
<td>(d) 975.0</td>
<td></td>
<td>48</td>
<td>1320</td>
<td>1.4</td>
<td>-</td>
</tr>
<tr>
<td>Streambed at center-line of dam</td>
<td>915±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(a) Total area and storage.
(b) Based on 17.2 square miles.
(c) Crest gates opened.
(d) Crest gates closed.
SECTION 2 - ENGINEERING DATA

2.1 Design: The design data reviewed included the following:

1) Photocopies of the design plans prepared by Saunders and Wheeler Consulting Engineers in 1946 and furnished by the Rivanna Water and Sewer Authority (Plates 1 through 5).

2) Core borings performed by Mott Core Drilling Company in 1944 and 1945 (Appendix V).

3) Storage graphs were prepared by Polglaze and Basenberg Engineers, 1959.

No structural design calculations were available.

2.2 Construction: The construction of the dam was completed by Faulconer Construction Co. in 1950. Construction photos were taken and are available at the Rivanna Water and Sewer Authority's office.

2.3 Operation: The dam is operated and maintained by the Rivanna Water and Sewer Authority as part of its water supply system. There is a full time dam operator; however, no formal records of operation were available.

2.4 Evaluation

2.4.1 Design: The drawings provided by the Rivanna Water and Sewer Authority were adequate to review the design of the Sugar Hollow Dam. Although structural design calculations were not available, the layout and general dimensions of the dam did not indicate any obvious design deficiencies.

2.4.2 Construction: There were no as-built plans or concrete cylinder test results provided to adequately assess the quality of work performed. The design drawings were checked against the as-built conditions, and there appeared to be little or no deviation between the two.

2.4.3 Operation: Based on the visual inspection and the review of the design plans, the operation of the water supply facility by full time personnel is adequate.

NAME OF DAM: SUGAR HOLLOW
SECTION 3 - VISUAL INSPECTION

3.1 Findings

3.1.1 General: The dam and its appurtenant structures were found to be in good overall condition at the time of the inspection. The problems noted during the visual inspection of the dam do not require immediate remedial treatment but should be corrected as a part of a regular maintenance schedule. Noteworthy deficiencies are described briefly in the following paragraphs. A complete visual inspection check list is given in Appendix III.

3.1.2 Dam: Generally, all concrete structures appeared to be in good condition. However, minor spalling of the spillway beneath the main overflow section was observed.

Evidence of spalling, cracking and seepage was observed on the downstream face of the left non-overflow section. Clear seepage was observed at the construction joints. Vegetation was observed to be growing on the downstream face of the left non-overflow section.

The original intake dam which is now being used to impound the stilling basin is in fair condition. Spalled and cracked areas were noted sporadically along the crest of the small dam. Eroded areas in the concrete face were also noted with flow present in these areas (see Photo 3).

Although the dam was grouted during construction, active seepage is present in the left abutment area near the toe of the dam adjacent to the 24 inch water supply line for a distance of approximately 40 feet in the downstream direction. Drainage was present from a four inch terra-cotta drain. Drainage and clear seepage amounted to approximately three g.p.m., two-thirds of which was drainage from the terra-cotta pipe.

Within the gallery that extends through the dam, 3.5 inch foundation drains were present at regular intervals. The drains were full of water at the time of inspection. Water from the drains is collected by an overflow trough that extends the entire length of the

NAME OF DAM: SUGAR HOLLOW

11
gallery. Water was present in the overflow trough (see Plate 3). Part of the drainage system appeared to be functioning properly. Some of the drains in the right end of the gallery were covered with mud and debris, and were not functioning.

Within the gallery, spalling was evident at construction joints along with moisture and calcite deposits. This was typical for all construction joints.

3.1.3 Appurtenant Structures: Some minor spalling and surface cracks were present on the intake tower and the walkway along the crest of the dam. Neoprene sealant had been "squeezed" out of the expansion joints along the crest; approximately one-fourth to one-half of an inch of expansion material is remaining. The crest gates were in good condition with no leakage present. It was reported during the time of inspection that the gates were not regularly operated. This was verified by the fact that the tracked gate hoist had a light coating of rust on the tracks and the hoist.

3.1.4 Reservoir Area: Evidence of erosion in the left abutment area upstream of the dam was observed at the time of inspection. No other areas of erosion were observed. Minor sedimentation of the reservoir was present in the upstream end.

3.1.5 Downstream Channel: The streambed of the downstream channel consists of boulders, cobbles and sandy gravel. Some granite is also exposed. The stream channel is heavily overgrown with ground cover, and the presence of small trees two to three years old was evident at the time of inspection.

3.2 Evaluation

3.2.1 Dam: The concrete in the spillway and right non-overflow area is in good condition and requires no further investigation. The concrete in the left non-overflow area adjacent to the main spillway shows evidence of clear seepage. The Rivanna Water and Sewer Authority should monitor these seepage areas.

NAME OF DAM: SUGAR HOLLOW
The foundation drains in the gallery which have been plugged with mud and debris should be cleaned to prevent hydrostatic pressure build-up in the foundation.

The entrance to the gallery in the right non-overflow area allows infiltration of mud and debris. To prevent future accumulations of mud and debris, a drainage ditch should be built to channel the runoff and mud away from this entrance. The gallery should also be cleaned.

The clear seepage at the toe of the dam in the right non-overflow area (three g.p.m.) and at the left abutment area (one g.p.m.) does not appear to be a serious problem at the present time. However, the Rivanna Water and Sewer Authority should also continue to monitor these seepage areas.

The outlet of the four inch terra-cotta drain should be uncovered, and a channel should be provided for flow. Also, the heavy growth should be cut.

3.2.2 Appurtenant Structures: The small original intake dam that is now impounding the stilling pool is cracking and spalling. At the present time, no detrimental effects to the stilling basin were observed. However, the condition should be observed in the future to insure that the deteriorated condition does not effect the efficiency of the stilling basin.

It was reported at the time of inspection and visually verified that the lift gates have not been operated for some time. It is recommended that regular operations of the lift gates' equipment be done to insure their working order.

3.2.3 Reservoir Area: The erosion of the left bank area 100 feet upstream of the dam should be controlled by placement of riprap to assure this erosion does not continue and eventually affect the stability in the left abutment area.

3.2.4 Downstream Channel: No further investigation is necessary.

NAME OF DAM: SUGAR HOLLOW

13
SECTION 4 - OPERATIONAL PROCEDURES

4.1 Procedures: Operational procedures are generally discussed in paragraphs 1.2.8 and 2.3. The normal reservoir elevation of 975.0 is controlled by the gated primary spillway overflow.

The dam is controlled by a resident operator and visited by maintenance personnel from the Rivanna Water and Sewer Authority.

Rapid emergency drawdown is controlled through the 30 inch diameter drawdown line (invert elevation of 913.17), which is located within the intake tower. The operating condition of the control valve for this line is unknown.

4.2 Maintenance of Dam: Because of its water supply function, the dam has an on site resident operator and is frequently visited by maintenance personnel. The dam is generally in good condition; except for minor spalling, cracking, clear seepage from some construction joints, and growth of vegetation.

4.3 Maintenance of Operating Facilities: Maintenance personnel of the Rivanna Water and Sewer Authority operate the two slide gates for the 18 inch discharge pipes into the intake tower for the 24 inch water supply line. The spillway crest gates appear to be in good condition but they are not operated regularly.

4.4 Warning System: At the present time, there is no warning system or evacuation plan in operation. It is recommended that a formal emergency procedure be prepared, and prominently displayed and furnished to all operating personnel. This should include:

1) How to operate the dam during an emergency.

2) Who to notify, including public officials, in case evacuation from the downstream area is necessary.

3) Procedures for evaluating inflow during periods of emergency operation.

4.5 Evaluation: Maintenance of the dam by personnel of the Rivanna Water and Sewer Authority is considered to be acceptable. However, the operating condition of the valve in the 30 inch drawdown line should be determined.
SECTION 5 - HYDRAULIC/HYDROLOGIC DATA

5.1 Design: A stage versus storage curve, received from the Rivanna Water and Sewer Authority, was the only design data available for use in the analyses of hydrologic and hydraulic conditions.

5.2 Hydrologic Records: Flood discharge information is available for the Whitehall stream gaging station from 1951 to date. The gage has a drainage area of 11.4 square miles and is located approximately 0.73 mile upstream of the dam on the North Fork Moormans River.

5.3 Flood Experience: No records are available.

5.4 Flood Potential: The flood potential of the dam was evaluated by routing various hydrographs as shown in Table 5.1.

5.5 Reservoir Regulation: Pertinent dam and reservoir data are shown in Table 1.1, paragraph 1.3.3.

Flow from the reservoir is regulated by eight crest gates, five feet high, 25.5 feet wide. Crest elevation with gates opened is 970.0, and with gates closed is elevation 975.0. With the exceptions of discharge through the lake drain and water supply pipes, all outflow from the reservoir passes through the gated spillway.

Outlet discharge capacity, reservoir area, and hydrograph and routing determinations were calculated as part of this report. The routing of the Probable Maximum Flood (P.M.F.), one-half P.M.F., and 100 year hydrographs began with the reservoir level at the spillway crest elevation 975.0 with the crest gates closed, at elevation 970.0 with the crest gates open, and at elevation 970.0 with the crest gates removed.

5.6 Overtopping Potential: The probable rise in the reservoir and other pertinent information on reservoir performance in various hydrographs are shown in the following table:

<table>
<thead>
<tr>
<th>Item</th>
<th>Normal</th>
<th>Hydrograph</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a) (b) (c)</td>
<td>100 Year (a) (b) (c)</td>
</tr>
<tr>
<td>Peak flow, c.f.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflow</td>
<td>- - -</td>
<td>7880 7880 7880</td>
</tr>
<tr>
<td>Outflow</td>
<td>- - -</td>
<td>7657 7743 7743</td>
</tr>
<tr>
<td>Peak elev., ft. M.S.L.</td>
<td>975.0 970.0 970.0</td>
<td>980.8 974.6 974.6</td>
</tr>
<tr>
<td>Gated spillway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth of flow, ft. (d)</td>
<td>- - -</td>
<td>9.8 3.6 3.6</td>
</tr>
<tr>
<td>Average velocity, f.p.s. (e)</td>
<td>- - -</td>
<td>10.9 10.7 10.7</td>
</tr>
<tr>
<td>Non-overflow section (f)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth of flow, ft.</td>
<td>- - -</td>
<td>0.5 - -</td>
</tr>
<tr>
<td>Average velocity, f.p.s.</td>
<td>- - -</td>
<td>4.1 - -</td>
</tr>
<tr>
<td>Duration of overtopping, hrs.</td>
<td>- - -</td>
<td>2.7 - -</td>
</tr>
</tbody>
</table>

(a) Gates completely closed.
(b) Gates completely open.
(c) Gates removed.
(d) Depth of flow over crest (elevation 970.0).
(e) Weighted velocity over spillway and walkway.
(f) Sections of dam on either side of spillway.
(g) Orifice flow between dam crest and gate, and between dam crest and walkway.

NAME OF DAM: SUGAR HOLLOW
5.7 Reservoir Emptying Potential: The 30 inch cast-iron pipe entering at a low level below the spillway will permit withdrawal of about 163 c.f.s. with the reservoir level at the crest (elevation 970.0) and essentially dewater the reservoir in about five days.

5.8 Evaluation: Sugar Hollow Dam with an "intermediate" size-"high" hazard classification must pass a spillway design flood equal to the P.M.F. As shown in Table 5.1, the P.M.F. was routed and found to overtop the dam by an average depth of 1.8 feet with the crest gates open. The spillway passes the one-half P.M.F. with the gates open.

The P.M.F., one-half P.M.F., and 100 year flood were also routed with the gates closed, and all floods were found to overtop the dam. With the gates closed the spillway would pass 18 percent of the P.M.F. without overtopping. The spillway with the gates open will pass approximately 62 percent of P.M.F. With the gates completely removed, the spillway passes 80 percent of the P.M.F. Therefore, the spillway is inadequate.

It should be indicated that conclusions pertain to present day conditions, and that the effect of future development on the hydrology has not been considered.
SECTION 6 - DAM STABILITY

6.1 Foundation and Abutments: The structure is founded on hard granite. Joints with a dip between 80° to 90° were observed in localized rock exposures. Some moderately dipping cleavage planes were also observed. Selected pervious rockfill was placed adjacent to the downstream face of the dam with a silty sand and gravel cover. Upstream of the dam, selected impervious fill with a 1.5 feet cover of riprap was indicated on the design drawings. This was not visible at the time of inspection.

Both abutments were founded on hard jointed granite with joint dips ranging from 80° to 90°. Clear seepage was observed along portions of the cleavage plane sloping downstream from the toe of the dam in the left abutment area.

6.2 Stability Analysis

6.2.1 Visual Observations: No unusual misalignment or structural cracking was observed during the visual inspection. A small amount of clear seepage from the granite joints in the left abutment area was noted. In addition to the clear seepage from the abutment area, some clear seepage was observed to be coming from the horizontal and vertical construction joints in the left abutment area.

6.2.2 Design Data: Since there were no design calculations available, stability analyses were performed on a full section through the dam (see Appendix VI). The stability computations were made in accordance with Gravity Dam Design, U.S. Army Corps of Engineers, Manual EM 1110-2-2200, 23 November 1960 (including Change 2) and ETL 1110-2-184, February 1974.

Stability analyses were completed for three cases:

I. Water level at normal pool (elevation 975.0) with ice load and normal tailwater of nine feet (the spillway gates were assumed to be closed).

II. Water level 3.1 feet over top of dam elevation 980.0 with no ice load and tailwater at elevation 914.0. (The 3.1 feet height was based on the calculated P.M.F. elevation. The spillway crest gates were assumed to be completely opened.)

NAME OF DAM: SUGAR HOLLOW
II. Water level again 3.1 feet over top of dam elevation 980.0 with no ice load. (However, the tailwater was estimated to be at elevation 920.0, and the spillway crest gates were assumed to be completely opened.)

The results of the stability analyses show the resultant force is within the middle one-third of the base and a factor of safety against sliding that is well above that required. The high values of angle of internal friction ($\phi = 31^\circ$) and average shear strength ($S_o = 1825$ p.s.i.) of the quartz monzonite are primarily responsible for the very large factor of safety against sliding.

The $\frac{H}{V}$ for Case I normal conditions is 0.64 as compared to the allowable of 0.65.

The $\frac{H}{V}$ for Case II is 0.79 as compared to the allowable of 0.65. However the factor of safety against sliding is very large.

The $\frac{H}{V}$ for Case III is 0.81. However the factor of safety against sliding is again very large.

6.2.3 Operating Records: There is no instrumentation for indicating movement of the structure under prior maximum loading conditions.

6.2.4 Post-Construction Changes: No post-construction changes were observed.

6.3.5 Seismic Stability: The dam is located in Seismic Zone 2; therefore, the dam is considered to have no hazard from earthquakes provided static stability conditions are satisfactory and conventional safety margins exist.

6.3 Evaluation: Sugar Hollow Dam meets all stability requirements according to EM 1110-2-2200.
7.1 Dam Assessment: Clear minor seepage and erosion were observed at Sugar Hollow Dam. The primary concern for Sugar Hollow Dam, however, is the spillway capacity. The spillway is gated and was evaluated for three operating conditions:

1) Gates closed.
2) Gates opened.
3) Gates removed.

With the gates closed, the spillway passes 18 percent of the P.M.F. With the gates opened, the spillway passes 62 percent of the P.M.F. With the gates removed, the spillway passes 80 percent of the P.M.F. Therefore, the spillway is inadequate.

The stability of Sugar Hollow Dam meets the criteria required by the Recommended Guidelines for Safety Inspection of Dams for normal pool with ice load and during the P.M.F.

The Rivanna Water and Sewer Authority provided design drawings which were adequate to conduct a Phase I evaluation.

7.2 Recommended Remedial Measures: The inspection and subsequent hydrologic/hydraulic analyses revealed work which should be done immediately by the owner. This is to perform a detailed investigation of spillway capacity with the aim of increasing the capacity by possibly removing the lift gates and lowering the normal pool to the spillway crest.

Lower priority items which should be performed as part of the maintenance program are:

1) Monitor clear seepage near the 24 inch water supply line and in the right abutment for a possible increase in flow, especially during higher reservoir levels.
2) Clear the plugged foundation drains in the gallery and clear the entire gallery of mud and debris.
3) Uncover the outlet of the four inch terra-cotta drain, provide a channel for flow, and remove the heavy growth.
4) Check concrete in the intake dam of the stilling pool for progressive deterioration.

5) Annually operate the lift gates to assure proper functioning.

6) Repair erosion of the left upstream shoreline.

7) Divert surface runoff from the gallery entrance.

8) The operating condition of the valve in the 30 inch drawdown line should be determined.
CONTENTS

Location Plan
Plate 1: General Plan of Dam
Plate 2: Elevation of Dam
Plate 3: Galleries, Drains and Grout Pipes
Plate 4: Sections, Construction Joints, Water Stops and Spraywalls
Plate 5: Details of Intake Tower

NAME OF DAM: SUGAR HOLLOW
LOCATION PLAN
SUGAR HOLLOW

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC
This page is Best Quality Practicable from Copy Published To DDQ

PLATE 2

E. W. SAUNDERS
CONSULTING ENGINEER
CHARLOTTESVILLE, VIRGINIA
CITY OF CHARLOTTESVILLE
ALBEMARLE COUNTY
VIRGINIA
MOORMAN'S RIVER STORAGE DAM
ELEVATIONS

1:200' SCALE

RECOMMENDED FOR APPROVAL

DATE
APPROVED
PLATE 5

E. W. SAUNDERS
CONSULTING ENGINEER
CHARLOTTESVILLE, VIRGINIA

F. W. WHEELER
DESIGNING ENGINEER

GITY OF CHARLOTTESVILLE

MOORMAN'S RIVER STORAGE DAM
DETAILS OF INTAKE TOWER

NOTE:

All dimensions shown on the drawings are approximate. Seals and gaskets are not shown. The construction must be in accordance with the instructions given in this sheet and the drawings. The designer reserves the right to make any changes in the plans and specifications without notice. The plan shown is subject to the approval of the owner and the architect.

Scales: AS SHOWN

Recommended for Approval

City Manager

1925-2
APPENDIX II

PHOTOGRAPHS
CONTENTS

Photo 1: View of Main Overflow Spillway Gate Hoist in Upper Right Corner

Photo 2: Clear Seepage, Calcite Stains, Cracked and Spalled Areas of Non-Overflow Section

Photo 3: Original Low Head Dam Downstream of Main Dam (Now serves as end sill of stilling basin for Sugar Hollow Dam.)

Photo 4: View of Gate Hoist

Photo 5: View of 30 Inch Blowoff Pipe (Left) and 24 Inch Water Supply Main (Right)

Photo 6: View of 24 Inch Water Supply Main at Exit From Drainage Gallery

Photo 7: Erosion of North Bank 100 Feet Upstream of Left Abutment

Photo 8: Reservoir Looking Upstream From Dam

Photo 9: View of Downstream Channel Beyond Stilling Pool

Note: Photographs were taken 25 July 1978.

NAME OF DAM: SUGAR HOLLOW
PHOTO 1. View of Main Overflow Spillway Gate Hoist in Upper Right Corner

PHOTO 2. Clear Seepage, Calcite Stains, Cracked and Spalled Areas of Non-Overflow Section
PHOTO 3. Original Low Head Dam Downstream of Main Dam
(Now serves as End Sill of Stilline Basin for Sugar Hollow Dam)

PHOTO 4. View of Gate Hoist
PHOTO 5. View of 30 Inch Blowoff Pipe (Left) and 24 Inch Water Supply Main (Right)

PHOTO 6. View of 24 Inch Water Supply Main at Exit From Drainage Gallery
PHOTO 7. Erosion of North Bank 100 Feet Upstream of Left Abutment

PHOTO 8. Reservoir Looking Upstream From Dam
PHOTO 9. View of Downstream Channel Beyond Stilling Pool
APPENDIX III

CHECK LIST - VISUAL INSPECTION
Check List
Visual Inspection
Phase 1

Name Dam Sugar Hollow County Albemarle State Virginia Coordinates Lat. 3808.2 Long. 7844.3

Date Inspection 25 July 1978 Weather Cloudy Temperature 85°F.

Pool Elevation at Time of Inspection 975 M.S.L. Tailwater at Time of Inspection 912 M.S.L.

Inspection Personnel:

MICHAEL BAKER, JR., INC.: VIRGINIA WATER CONTROL BOARD:
M. Moore
T. Dougan
W. Sheafer

Bill Lorenz

T. Dougan Recorder
CONCRETE/MASONRY DAMS

SUGAR HOLLOW

<table>
<thead>
<tr>
<th>VISUAL EXAMINATION OF TO DAM</th>
<th>OBSERVATIONS</th>
<th>REMARKS OR RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACKFILL Adjacent to Dam</td>
<td>According to the design drawings, selected rockfill was placed next to the downstream face with silty sand and gravel outside. 1.5 feet of riprap stone over nine inches of granular material overlying impervious fill on the upstream side is called for in the plans. The materials were observed downstream.</td>
<td></td>
</tr>
<tr>
<td>Structure to</td>
<td>Both abutments of the structure are founded on hard granite with joints. One set of joints is approximately perpendicular to the axis of the dam and dips from 80° to 90°. Clear seepage was observed from the left side of the dam toe.</td>
<td></td>
</tr>
<tr>
<td>Abutment/Embarkment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junctions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drains</td>
<td>Gallery drains are shown on design drawings. All drains in left concrete section appeared to be unclogged. All drains were full of water. Drains located in right concrete section had a mud cover. One-half of the drains in this area were not visible because of mud. They may be clogged.</td>
<td>Drains in right concrete section should be cleared of mud and debris.</td>
</tr>
<tr>
<td>Water Passages</td>
<td>An arch culvert located at the toe of the dam in left abutment area carried a 24 inch water supply line. No flow was present in culvert. A trough was located in the gallery for collecting overflow from foundation drains. The trough had two to three inches of water for the entire length. The flow rate was minimal.</td>
<td></td>
</tr>
<tr>
<td>Foundation</td>
<td>Concrete section founded on hard granite as indicated by the borings. The foundation was stepped, only the top of the foundation was visible. Joints dipping 80° to 90° were observed in rock exposures in the vicinity. Some moderately dipping cleavage planes were also apparent. The rock is either the Marshall or Crozet Granite of the Precambrian Virginia Blue Ridge Crystalline Complex.</td>
<td></td>
</tr>
</tbody>
</table>
SUGAR HOLLOW

CONCRETE/MASONRY DAMS

<table>
<thead>
<tr>
<th>VISUAL EXAMINATION OF</th>
<th>OBSERVATIONS</th>
<th>REMARKS OR RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURFACE CRACKS CONCRETE SURFACES</td>
<td>Surface cracks and spalls were present throughout the entire dam (superficial in nature--no repairs necessary). The crest of the spillway and the center gated section had considerable spalling due to constant overflow in this area.</td>
<td></td>
</tr>
<tr>
<td>STRUCTURAL CRACKING</td>
<td>No structural cracking was present in the dam. Evidence of cracking was present in an appurtenant structure (walkway outlet culvert).</td>
<td></td>
</tr>
<tr>
<td>VERTICAL AND HORIZONTAL ALIGNMENT</td>
<td>No misalignment was present in the dam structure.</td>
<td></td>
</tr>
<tr>
<td>EXPANSION JOINTS</td>
<td>Expansion joints were in fair condition. Evidence of expansion and contraction was visible. Neoprene sealant was being "squeezed" from joints; one-half inch of sealant material remained.</td>
<td></td>
</tr>
<tr>
<td>CONSTRUCTION JOINTS</td>
<td>Evidence of seepage was visible in the construction joints in the left concrete section adjacent to the main spillway. Calcite stains were present from longitudinal and transverse joints. Considerable spalling was evident in the same area near the 24 inch water supply line.</td>
<td></td>
</tr>
<tr>
<td>SEEPAGE AND DRAINAGE</td>
<td>Drainage from a covered outlet of a four inch terra-cotta drain, leakage at several joints. Seepage at the downstream toe on the left side. The total flow was measured at three g.p.m., most of which apparently came from the terra-cotta drain.</td>
<td>It is recommended that the outlet of the terra-cotta drain be uncovered, a channel be provided for flow and heavy growth be cut.</td>
</tr>
</tbody>
</table>
OUTLET WORKS

SUGAR HOLLOW

<table>
<thead>
<tr>
<th>VISUAL EXAMINATION OF</th>
<th>OBSERVATIONS</th>
<th>REMARKS OR RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRACKING AND SPALLING OF CONCRETE SURFACES IN OUTLET CONDUIT</td>
<td>Minor spalling was evident in the 30 inch outlet conduit at construction joints. Calcite stains and a small amount of seepage was observed. Condensation was present on both walls in the gallery.</td>
<td></td>
</tr>
<tr>
<td>INTAKE STRUCTURE</td>
<td>The intake structure was in fair condition. Gates could not be observed or operated during the inspection.</td>
<td></td>
</tr>
<tr>
<td>OUTLET STRUCTURE</td>
<td>Outlet structure consisted of a 30 inch diameter blow off pipe. No obstruction was observed at time of inspection.</td>
<td></td>
</tr>
<tr>
<td>OUTLET CHANNEL</td>
<td>There is no outlet channel. The 30 inch blow off pipe is directed into the stilling pool.</td>
<td></td>
</tr>
<tr>
<td>EMERGENCY GATE</td>
<td>This consists of the 24 inch cone valve on the blow off pipe. It was not operated during the inspection.</td>
<td></td>
</tr>
</tbody>
</table>
GATED SPILLWAY

SUGAR HOLLOW

<table>
<thead>
<tr>
<th>VISUAL EXAMINATION OF</th>
<th>OBSERVATIONS</th>
<th>REMARKS OR RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONCRETE SILL</td>
<td>A stilling pond is located at the toe of the dam and was impounded by means of an old concrete dam located downstream of present dam. Riprap was present on the bottom of the stilling pond. Stillling pond depth (7.5± feet).</td>
<td></td>
</tr>
<tr>
<td>APPROACH CHANNEL</td>
<td>There is none.</td>
<td></td>
</tr>
<tr>
<td>DISCHARGE CHANNEL</td>
<td>Discharged water flows into the Moormans River.</td>
<td></td>
</tr>
<tr>
<td>BRIDGE AND PIERS</td>
<td>Piers between spillway gates are in good condition with some minor surface cracking.</td>
<td></td>
</tr>
<tr>
<td>GATES AND OPERATION EQUIPMENT</td>
<td>Eight vertically hoisted gates were present. No leakage was evident. The gates are operated by a hoist on rails above the gates. They were not operated during inspection nor have they been operated recently.</td>
<td>Operate gates at least yearly to insure proper functioning.</td>
</tr>
</tbody>
</table>
INSTRUMENTATION

SUGAR HOLLOW

<table>
<thead>
<tr>
<th>VISUAL EXAMINATION</th>
<th>OBSERVATIONS</th>
<th>REMARKS OR RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MONUMENTATION/SURVEYS</td>
<td>U.S.G.S. Bench Mark.</td>
<td></td>
</tr>
</tbody>
</table>

Observation Wells

There are none.

Weirs

There are no flow measuring weirs.

Piezometers

There are none.
RESERVOIR

SUGAR HOLLOW

<table>
<thead>
<tr>
<th>VISUAL EXAMINATION OF</th>
<th>OBSERVATIONS</th>
<th>REMARKS OR RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLOPES</td>
<td>Some erosion was visible in left bank just upstream of dam. The banks along the shore consist of silty sand with gravel, boulders and rock fragments. Soft to medium hard weathered granite is exposed in several areas. The slopes are moderately steep and wooded. Some wooden debris has been deposited on the shore.</td>
<td></td>
</tr>
<tr>
<td>SEDIMENTATION</td>
<td>Some sedimentation was evident last year when the lake level was drawn down 35 feet. Sedimentation was in upstream reaches.</td>
<td></td>
</tr>
</tbody>
</table>
DOWNSTREAM CHANNEL

SUGAR HOLLOW

<table>
<thead>
<tr>
<th>VISUAL EXAMINATION OF</th>
<th>OBSERVATIONS</th>
<th>REMARKS OR RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONDITION</td>
<td>Heavily overgrown with trees and brush in main channel.</td>
<td>The streambed consists of boulders and cobbles with sandy gravel. Granite is exposed in some areas primarily near the stilling basin.</td>
</tr>
<tr>
<td>(OBSTRUCTIONS, DEBRIS, ETC.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLOPES</td>
<td>The slopes consist of sand and gravel with cobbles in some areas, portions with hard granite exposed. There is some clear seepage along cleavage planes toward the stream from the hillside, primarily on the left side of the valley. Granite is at or near the surface of the valley slopes.</td>
<td></td>
</tr>
<tr>
<td>APPROXIMATE NO. OF HOMES AND POPULATION</td>
<td>Eight to ten homes are located in immediate downstream area, with an approximate population of 35. A girl scout camp is also located approximately 1000 yards downstream and is a seasonal operation.</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX IV

CHECK LIST - ENGINEERING DATA
CHECK LIST
ENGINEERING DATA
DESIGN, CONSTRUCTION, OPERATION

SUGAR HOLLOW

<table>
<thead>
<tr>
<th>ITEM</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAN OF DAM</td>
<td>Enclosed with design drawings (see Plates 1 and 2).</td>
</tr>
<tr>
<td>REGIONAL VICINITY MAP</td>
<td>Enclosed (see Location Plan).</td>
</tr>
<tr>
<td>CONSTRUCTION HISTORY</td>
<td>Photos of construction are available from the Rivanna Water and Sewer Authority.</td>
</tr>
<tr>
<td>TYPICAL SECTIONS OF DAM</td>
<td>Enclosed in report (see Plate 4).</td>
</tr>
<tr>
<td>HYDROLOGIC/HYDRAULIC DATA</td>
<td>None was available.</td>
</tr>
<tr>
<td>OUTLETS - PLAN</td>
<td>Enclosed (see Plate 5).</td>
</tr>
<tr>
<td>- DETAILS</td>
<td>Enclosed (see Plate 5).</td>
</tr>
<tr>
<td>- CONSTRAINTS</td>
<td>Enclosed (see Plate 5).</td>
</tr>
<tr>
<td>- DISCHARGE RATINGS</td>
<td>Enclosed (see Plate 5).</td>
</tr>
<tr>
<td>RAINFALL/RESERVOIR RECORDS</td>
<td>None were available at the dam site.</td>
</tr>
<tr>
<td>ITEM</td>
<td>REMARKS</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>DESIGN REPORTS</td>
<td>None were available.</td>
</tr>
<tr>
<td>GEOLOGY REPORTS</td>
<td>None were available.</td>
</tr>
<tr>
<td>DESIGN COMPUTATIONS</td>
<td>None were available.</td>
</tr>
<tr>
<td>HYDROLOGY & HYDRAULICS</td>
<td></td>
</tr>
<tr>
<td>DAM STABILITY</td>
<td></td>
</tr>
<tr>
<td>SEEPAGE STUDIES</td>
<td></td>
</tr>
<tr>
<td>I-V-2</td>
<td></td>
</tr>
<tr>
<td>MATERIALS INVESTIGATIONS</td>
<td>Boring records are available.</td>
</tr>
<tr>
<td>BORING RECORDS</td>
<td></td>
</tr>
<tr>
<td>LABORATORY</td>
<td></td>
</tr>
<tr>
<td>FIELD</td>
<td></td>
</tr>
<tr>
<td>POST-CONSTRUCTION SURVEYS OF DAM</td>
<td>None were available.</td>
</tr>
<tr>
<td>BORROW SOURCES</td>
<td>No information on borrow source was available.</td>
</tr>
<tr>
<td>ITEM</td>
<td>REMARKS</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>MONITORING SYSTEMS</td>
<td>There are none.</td>
</tr>
<tr>
<td>MODIFICATIONS</td>
<td>Information on modifications was not available.</td>
</tr>
<tr>
<td>HIGH POOL RECORDS</td>
<td>None were available.</td>
</tr>
<tr>
<td>POST-CONSTRUCTION ENGINEERING STUDIES AND REPORTS</td>
<td>None are available.</td>
</tr>
<tr>
<td>PRIOR ACCIDENTS OR FAILURE OF DAM DESCRIPTION REPORTS</td>
<td>None were reported.</td>
</tr>
<tr>
<td>MAINTENANCE OPERATION RECORDS</td>
<td>None were available.</td>
</tr>
</tbody>
</table>
CHECK LIST
HYDROLOGIC AND HYDRAULIC DATA
ENGINEERING DATA

DRAINAGE AREA CHARACTERISTICS: 17.2 square miles
ELEVATION TOP NORMAL POOL (STORAGE CAPACITY): 970 (gates open) (1105 acre-feet)
ELEVATION TOP FLOOD CONTROL POOL (STORAGE CAPACITY): 975 (gates closed) (1320 acre-feet)
ELEVATION MAXIMUM FLOOD CONTROL POOL (STORAGE CAPACITY): 980 (1460 acre-feet)
ELEVATION TOP DESIGN POOL: 980
ELEVATION TOP DAM: 980

CREST: Gated Spillway
a. Elevation 970
b. Type Ogee shape with slide gates
c. Width Eight sections at 25.5 feet each
d. Length Not Applicable
e. Location Spillover Center of dam
f. Number and Type of Gates Eight crest gates operated by moveable lift

OUTLET WORKS:

a. Type 30 inch blow off pipe
b. Location Gate house
c. Entrance Inverts 914.4
d. Exit Inverts 914.4
e. Emergency drain down facilities 30 inch diameter drain

HYDROMETEOROLOGICAL GAGES:

a. Type Streamflow gage
b. Location Less than one mile upstream of dam on North Fork of Moormans River
c. Records 1951 to date

MAXIMUM NON-DAMAGING DISCHARGE Unknown

NAME OF DAM: SUGAR HOLLOW
APPENDIX V

BORING LOGS AND LOCATIONS
LOCATION PLAN OF BORINGS IN RIDGE AT SOUTH END OF DAM

LEGEND:

- Boulders and sandy-clay overburden
- Sand
- Soft, coarse-grained granite
- Hard and dense granite

THOUGHT TO BE 500 FT. ROCK

- Site of 275 FT. ROCK

Bore No. 12 was by Southern Drilling Co. in 1931.
Bore No. 51 was by Virginia Drilling Co., Harrisonburg, Va., during December, 1931, and January, 1932.
All cores were drilled on a 5-degree dip.

Th E. W. SAUNDERS F. W. WHEELER
CONSULTING ENGINEER DESIGNING ENGINEER
CHARLOTTESVILLE, VIRGINIA

CITY OF CHARLOTTESVILLE
ALBEMARLE COUNTY

MOORMAN'S RIVER STORAGE DAM
LOG BORINGS SOUTH OF DAM SITE

DRAWN BY TRACED BY CHECKED BY
SHEETS: 2 2

RECOMMENDED FOR APPROVAL, 11/22/1932
APPROVED 12/3/1932

CITY OF CHARLOTTESVILLE

LOG OF CEMENTING OPERATIONS

HOLE #1

Date: Jan 31, 1945

First cementing job at Elev 928.8

All 169 bags of cement were used in a job.

HOLE #2

Date: Feb 5, 1945

First cementing job at Elev 920.2

A total of 150 bags of cement were used in this job.

HOLE #1

Date: Feb 3, 1945

Pocket set at Elev 921.2. A total of 150 bags of cement were used.

HOLE #2

Date: Feb 8, 1945

Pocket set at Elev 921.2. A total of 150 bags of cement were used.

HOLE #1

Date: Feb 21, 1945

Pocket set at Elev 922.4. A total of 150 bags of cement were used.

HOLE #2

Date: Feb 22, 1945

Pocket set at Elev 922.4. A total of 150 bags of cement were used.

LOG OF CEMENTING OPERATIONS

HOLE #1

Date: Feb 3, 1945

Pocket set at Elev 921.2. A total of 150 bags of cement were used.

HOLE #2

Date: Feb 5, 1945

Pocket set at Elev 920.2. A total of 150 bags of cement were used.

LOG OF CEMENTING OPERATIONS

HOLE #1

Date: Feb 21, 1945

Pocket set at Elev 922.4. A total of 150 bags of cement were used.

HOLE #2

Date: Feb 22, 1945

Pocket set at Elev 922.4. A total of 150 bags of cement were used.
Log of Grouting Operations

Hole 4H
Date: Jan 28, 1945
Grout entered this hole from hole H4 and the hole was plugged.

Hole 6H
Date: Jan 29, 1945
Packer set at Ele 850.
24 packs of cement in total, all packed.
Water pressure was 15 psi, changed to 6 psi.
426 packs of cement, pressure was 35 psi.
- S: S
- M: M

Notes:
- The grouting was continued, but the pipe hole did not hold pressure.
- The grouting was stopped at 6 psi.

Log of Grouting Operations

Hole 4H
Date: Feb 5, 1945
Hole was plugged with grout due to grouting.

Hole 6H
Date: Feb 5, 1945
Hole was plugged with grout due to grouting.

Sand and gravel* Elevation 4,112.5
- Sand and gravel
- Hard granite
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 4,000
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 3,900
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 3,800
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 3,700
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 3,600
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 3,500
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 3,400
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 3,300
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 3,200
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 3,100
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 3,000
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 2,900
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 2,800
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 2,700
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 2,600
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 2,500
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 2,400
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 2,300
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 2,200
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 2,100
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 2,000
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 1,900
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 1,800
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 1,700
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 1,600
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 1,500
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 1,400
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 1,300
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 1,200
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 1,100
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 1,000
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 900
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 800
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 700
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 600
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 500
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 400
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 300
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 200
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 100
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Sand and gravel* Elevation 000
- Sand and gravel
- Soft, broken granite
- Sand and gravel
- Overburden

Legend
- Boulders and Sand-Clay overburden
- Sand
- Broken granite
- Soft, coarse-grained granite
- Hard and dense granite

This page is best quality practicable from copy furnished to DDQ.
THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO D.D.Q.

Records of core borings shown on this page have been copied from Plate 4 of a report prepared by
J. A. and William, Inc., of the Engineering, Richmond, Va., on the Manse's River Storage Dam. This report is dated Dec. 18, 1943. The borings were made by the Souther Building Co.

E. W. Saunders
CONSULTING ENGINEER
CHARLOTTESVILLE, VIRGINIA

F. N. Wheeler
DESIGNING ENGINEER
ALBEMARLE COUNTY, VIRGINIA

CITY OF CHARLOTTESVILLE

MOORMAN'S RIVER STORAGE DAM

GEODETIC PROFILES & LOGS OF
BORINGS, DOWNSTREAM FROM DAM

DRAWN BY: J. A. and William, Inc. SCALES 1"=100'-0.01' SHEET
TRACED BY: ... Scales: ... CHECKED By: J. A. and William, Inc.

RECOMMENDED FOR APPROVAL: CITY MANAGER

APPROVED: MAYOR
APPENDIX VI

STABILITY ANALYSES
GRAVITY DAM DESIGN
STABILITY ANALYSIS

SUGAR HOLLOW

ANALYSIS DONE ON FULL SECTION
PARTIAL SECTION
LOCATION OF SECTION Station 2+17 (see Plate 4)

ANALYSIS PREPARED BY M. Mill, Michael Baker, Jr., Inc.

<table>
<thead>
<tr>
<th>LOADING CASE</th>
<th>ELEV. HEAD WATER</th>
<th>ELEV. TAIL WATER</th>
<th>ΣV</th>
<th>ΣH</th>
<th>ΣH/ΣV</th>
<th>LOCATION RESULTANT FROM TOE</th>
<th>% BASE IN COMPRESSION</th>
<th>FACTOR SAFETY SLIDING</th>
<th>FOUNDATION PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case I Normal Pool</td>
<td>975.0</td>
<td>912.0</td>
<td>224,807#</td>
<td>144,586#</td>
<td>0.64</td>
<td>23.1'</td>
<td>100</td>
<td>104(1)</td>
<td>6186 PSF 1702 PSF</td>
</tr>
<tr>
<td>Ice Load</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case II P.M.F.</td>
<td>983.1</td>
<td>914.0</td>
<td>209,129#</td>
<td>165,116#</td>
<td>0.79</td>
<td>19.4'</td>
<td>100</td>
<td>91(1)</td>
<td>7168 PSF 170 PSF</td>
</tr>
<tr>
<td>Case III P.M.F.</td>
<td>983.1</td>
<td>920.0</td>
<td>196,754#</td>
<td>159,936#</td>
<td>0.81</td>
<td>19.7'</td>
<td>100</td>
<td>94(1)</td>
<td>6649 PSF 254 PSF</td>
</tr>
</tbody>
</table>

(1) Jointed Quartz Monzonite

$\theta = 31^\circ$

$S_0 = 1825$ psi

From ETL 1110-2-184