ACKNOWLEDGMENT

This manual was prepared under the direction of the Chief for Programming with general technical support provided by the International Business Machines Corporation under contracts DCA 100-67-C-0062, DCA 100-69-C-0029, DCA 100-70-C-0031, DCA 100-70-C-0080, DCA 100-71-C-0047 and DCA 100-77-C-0065.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vii</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>2</td>
<td>FEATURES OF NIPS 360 FPS PROCEDURES</td>
</tr>
<tr>
<td>2.1</td>
<td>Symbolic Parameters</td>
</tr>
<tr>
<td>2.2</td>
<td>File Name Conventions</td>
</tr>
<tr>
<td>2.3</td>
<td>File Block Size Conventions</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Default File Block Size</td>
</tr>
<tr>
<td>2.3.2</td>
<td>User Specified File Block Size</td>
</tr>
<tr>
<td>2.4</td>
<td>Example of File Name Conventions and Symbolic Parameters</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Single Data Base</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Multiple Data Bases</td>
</tr>
<tr>
<td>2.4.3</td>
<td>File Libraries</td>
</tr>
<tr>
<td>2.5</td>
<td>Catalog Requirements</td>
</tr>
<tr>
<td>2.6</td>
<td>Checkpoint/Restart</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Checklist for Using Checkpoint/Restart</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Sample Job Setup</td>
</tr>
<tr>
<td>2.7</td>
<td>Segmented Files</td>
</tr>
<tr>
<td>2.8</td>
<td>Source Language Storage</td>
</tr>
<tr>
<td>3</td>
<td>COMPONENT PROCEDURE DESCRIPTIONS</td>
</tr>
<tr>
<td>3.1</td>
<td>FM Procedure (XFM)</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Sample Job Setup</td>
</tr>
<tr>
<td>3.2</td>
<td>FR Procedure (XFR)</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Sample Job Setup</td>
</tr>
<tr>
<td>3.2.2</td>
<td>File Structure, Revision, and Maintenance</td>
</tr>
<tr>
<td>3.3</td>
<td>FS Procedure (XFS)</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Sample Job Setup</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Non-NIPS FS</td>
</tr>
<tr>
<td>3.4</td>
<td>ISAM to SAM Procedure (XISTOS)</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Sample Job Setup</td>
</tr>
<tr>
<td>3.5</td>
<td>OP Procedures (XOP, XOPSD)</td>
</tr>
<tr>
<td>3.5.1</td>
<td>XOPSD Sample Job for Single File Processing</td>
</tr>
<tr>
<td>3.5.2</td>
<td>XOPSD Sample Job for Merge File Processing</td>
</tr>
<tr>
<td>3.5.3</td>
<td>XOP Sample Job</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Segmented File Sample</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Output Data Set Overrides</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Additional DD Card for Tape Output</td>
</tr>
<tr>
<td>3.6</td>
<td>QRT/QDF Utility Procedure (XQRTQDF)</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Sample Job Setup</td>
</tr>
<tr>
<td>3.7</td>
<td>QUIP Procedures (XQUIP, XQUIPSD)</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Sample Job Setup</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------</td>
</tr>
<tr>
<td>3.7.2 Interfile Output (IFO)</td>
<td>39</td>
</tr>
<tr>
<td>3.7.3 Non-MIPS Files</td>
<td>39</td>
</tr>
<tr>
<td>3.8 RASP Procedure (XRASP)</td>
<td>40</td>
</tr>
<tr>
<td>3.8.1 Sample Job Setup</td>
<td>41</td>
</tr>
<tr>
<td>3.9 SAM to ISAM Procedure (XSTOIS)</td>
<td>44</td>
</tr>
<tr>
<td>3.9.1 Sample Job Setup</td>
<td>45</td>
</tr>
<tr>
<td>3.10 Subroutine Loader Procedure (ISUBLDR)</td>
<td>45</td>
</tr>
<tr>
<td>3.10.1 Sample Job Setup</td>
<td>45</td>
</tr>
<tr>
<td>3.11 Table Generation Procedure (XTABGEN)</td>
<td>46</td>
</tr>
<tr>
<td>3.11.1 Sample Job Setup</td>
<td>46</td>
</tr>
<tr>
<td>3.12 Source Language Library Procedure (XUTSOURCE)</td>
<td>46</td>
</tr>
<tr>
<td>3.12.1 Sample Job Setup</td>
<td>46</td>
</tr>
<tr>
<td>3.13 1410 to 360 Conversion (X36OCON)</td>
<td>47</td>
</tr>
<tr>
<td>3.13.1 Sample Job Setup</td>
<td>47</td>
</tr>
<tr>
<td>3.14 360 to 1410 Conversion (X1410CON)</td>
<td>48</td>
</tr>
<tr>
<td>3.14.1 Sample Job Setup</td>
<td>48</td>
</tr>
<tr>
<td>3.15 List Logic Statement/Report Names Procedure (XDMPLIB)</td>
<td>48</td>
</tr>
<tr>
<td>3.15.1 Sample Job Setup</td>
<td>49</td>
</tr>
<tr>
<td>3.16 Subroutine Check Procedure (XSUBCHK)</td>
<td>49</td>
</tr>
<tr>
<td>3.16.1 Sample Job Setup</td>
<td>49</td>
</tr>
<tr>
<td>3.17 Classification Change Procedure (XCLASS)</td>
<td>49</td>
</tr>
<tr>
<td>3.17.1 Sample Job Setup</td>
<td>50</td>
</tr>
<tr>
<td>3.18 Data Field Scan Procedure (XUPSCAN)</td>
<td>51</td>
</tr>
<tr>
<td>3.18.1 Sample Job Setup</td>
<td>51</td>
</tr>
<tr>
<td>3.19 Index Specification Procedure (XSP)</td>
<td>52</td>
</tr>
<tr>
<td>3.19.1 Sample Job Setup</td>
<td>52</td>
</tr>
<tr>
<td>3.20 Unload Index Data Set Procedure (XTRDISK)</td>
<td>53</td>
</tr>
<tr>
<td>3.20.1 Sample Job Setup</td>
<td>53</td>
</tr>
<tr>
<td>3.21 Load Index Data Set Procedure (XTRTAPE)</td>
<td>54</td>
</tr>
<tr>
<td>3.21.1 Sample Job Setup</td>
<td>54</td>
</tr>
<tr>
<td>3.22 Keyword Analysis (XKA)</td>
<td>54</td>
</tr>
<tr>
<td>3.22.1 Sample Job Setup</td>
<td>54</td>
</tr>
<tr>
<td>3.23 Dictionary Maintenance Utility (XKH)</td>
<td>55</td>
</tr>
<tr>
<td>3.23.1 Sample Job Setup</td>
<td>55</td>
</tr>
<tr>
<td>3.24 Format Definition Translator Procedure (XUTODE)</td>
<td>55</td>
</tr>
<tr>
<td>3.24.1 Sample Job Setup</td>
<td>55</td>
</tr>
</tbody>
</table>

4 SUPPLEMENTARY PROCEDURES DESCRIPTIONS
4.1 Restore Answers Procedure (XRESTANS) | 57 |
4.1.1 Sample Job Setup | 57 |
4.2 Restore Library Procedure (XRESTLIB) | 58 |
4.2.1 Sample Job Setup | 58 |
4.3 Save Answers Procedure (XSAVEANS) | 59 |
4.3.1 Sample Job Setup | 59 |
4.4 Save Library Procedure (XSAVELIB) | 59 |
4.4.1 Sample Job Setup | 60 |
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>PRODUCTION PROCEDURES DESCRIPTION</td>
</tr>
<tr>
<td>5.1</td>
<td>FM Production Procedure (XFME)</td>
</tr>
<tr>
<td>5.2</td>
<td>OP Production Procedure (XOPEX, XOPSDEX)</td>
</tr>
<tr>
<td>5.3</td>
<td>Compression and Compaction of Data Records</td>
</tr>
<tr>
<td>5.4</td>
<td>RASP Production Procedure (XRASPPEX)</td>
</tr>
<tr>
<td>6</td>
<td>S/370 VSAM CONSIDERATIONS</td>
</tr>
<tr>
<td>6.1</td>
<td>VSAM Service Routine IDCAMS</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Creating a NIPS User Catalog</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Defining a Cluster for a VSAM File</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Converting an ISAM File to VSAM</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Deleting a Cluster</td>
</tr>
<tr>
<td>6.2</td>
<td>File Maintenance (FM)</td>
</tr>
<tr>
<td>6.2.1</td>
<td>VSAM Generate</td>
</tr>
<tr>
<td>6.2.2</td>
<td>VSAM Update</td>
</tr>
<tr>
<td>6.2.3</td>
<td>VSAM Transactions</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Processing SAM Files with a VSAM PFT/LS</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Other FM VSAM Considerations</td>
</tr>
<tr>
<td>6.3</td>
<td>File Revision (FR)</td>
</tr>
<tr>
<td>6.4</td>
<td>File Structure (FS)</td>
</tr>
<tr>
<td>6.5</td>
<td>VSAM to SAM Procedure (XISTOS)</td>
</tr>
<tr>
<td>6.6</td>
<td>OP</td>
</tr>
<tr>
<td>6.7</td>
<td>QUIP</td>
</tr>
<tr>
<td>6.8</td>
<td>RASP</td>
</tr>
<tr>
<td>6.9</td>
<td>SAM to VSAM Procedure (XSTOIS)</td>
</tr>
<tr>
<td>6.10</td>
<td>XDMPLIB</td>
</tr>
<tr>
<td>6.11</td>
<td>XCLASS</td>
</tr>
<tr>
<td>6.12</td>
<td>XUTPSCAN</td>
</tr>
<tr>
<td>6.13</td>
<td>XSP</td>
</tr>
<tr>
<td>6.14</td>
<td>XTRDISK</td>
</tr>
<tr>
<td>6.15</td>
<td>XKA</td>
</tr>
<tr>
<td>APPENDIX</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>SYMBOLIC PARAMETER DEFINITIONS</td>
</tr>
<tr>
<td>B</td>
<td>INPUT SOURCE DDNAME</td>
</tr>
<tr>
<td>C</td>
<td>PROCEDURES DESCRIPTIONS</td>
</tr>
<tr>
<td>D</td>
<td>NIPS PROCEDURE RETURN CODES</td>
</tr>
<tr>
<td>E</td>
<td>NIPS PROCEDURE DD STATEMENT USAGE</td>
</tr>
<tr>
<td>F</td>
<td>PROCEDURE LISTINGS</td>
</tr>
</tbody>
</table>

XCLASS
XDMPLIB
XFM
XFME
XFR
XFS
XISTOS
IKA
XK1
XOP
XOPER
XOPS
XOPSDEX
XQRTQDF
XQUIP
XQUIPSD
XRASP
XRASPEX
XRESTAMS
XRESTLIB
XSAVEAMS
XSAVELIB
XSP
XSTOIS
XSUBCHK
XSUBLDR
XTABGEN
XTP
XTBDISK
XRRTAPE
XUTFSCAN
XUTODE
XUTSOURC
X1410CON
X360CON

DISTRIBUTION... 176
DD Form 1473.. 180
ABSTRACT

This document familiarizes the user with the features available using NIPS 360 PPS Job Preparation procedures. It describes symbolic parameters and file naming conventions, illustrates general approaches to running jobs using single or multiple databases and file libraries. Job Control Language (JCL) examples for each system component are given.

This document supersedes CSM UM 15-78, Volume VIII.

CSM UM 15-78, Volume VIII, is part of the following additional NIPS 360 PPS documentation.

- CSM UM 15-78 Vol I - Introduction to File Concepts
- CSM UM 15-78 Vol II - File Structuring (FS)
- CSM UM 15-77 Vol III - File Maintenance (FM)
- CSM UM 15-78 Vol IV - Retrieval and Sort Processor (RASP)
- CSM UM 15-78 Vol V - Output Processor (OP)
- CSM UM 15-78 Vol VI - Terminal Processing (TP)
- CSM UM 15-78 Vol VII - Utility Support (UT)
- CSM UM 15-78 Vol IX - Error Codes
- TR 54-78 - Installation of NIPS 360 PPS
- CSM GD 15-78 - General Description
Section 1

INTRODUCTION

This volume is intended to familiarize the user with the features available using MIPPS 360 FFS Job Preparation procedures and the manner in which they are used.

Section 2 describes symbolic parameters and file naming conventions. It also illustrates general approaches to running jobs using single or multiple data bases and file libraries.

Section 3 contains JCL examples for each component and additional information pertinent to each procedure.

Section 4 contains JCL examples for S/360 Utilities which are used to dump and restore RASP answers and the User File Library from disk to tape and vice versa.

Section 5 describes procedures which are used in File Maintenance, Output Processing and the Retrieval and Sort Processor component.

Section 6 describes the procedures and considerations necessary to create, maintain and process MIPPS data bases using the S/370 Virtual Storage Access Method (VSAM).
Section 2

FEATURES OF NIPS 360 FFS PROCEDURES

NIPS 360 FFS has single-step cataloged procedures using symbolic parameters. This feature allows a user to run all FFS jobs with no DD statement overrides unless one of the following conditions exists:

a. RASP OP, or QUIP run with more than three data bases and/or more than three file libraries
b. FM run with transaction source from tape or disk
c. FM run with auxiliary output on tape or disk
d. QUIP run storing a query into a user library.
e. OP run with record output.

The procedures provide a convention for naming user data files and file libraries which will be discussed in subsequent paragraphs.

2.1 Symbolic Parameters

Symbolic parameters simplify the overriding of DD statements in the execution of jobs. Basically, they allow the user to equate names, units, and volumes to symbolic parameters in the EXEC card without concern for the step name or the order of DD cards within a procedure. The use of symbolic parameters does not preclude the overriding of DD cards. A DD card override takes precedence over symbolic parameters. Each procedure has default options for every symbolic parameter not referenced by the user in his run. See examples in section 2.3.
2.2 File Name Conventions

Names of data files and file libraries must begin with an alphabetic character and contain only alphabetic and numeric characters. ISAM data file names are seven characters or less, not ending in L, S, or X. The SAM form of a data file is named by suffixing the ISAM name with S. A file Index Data Set is named by adding the suffix X to the ISAM name form, and a file library by suffixing the ISAM name with L. "L," "X," and "S" are concatenated to the ISAM form of the file name by the procedures to obtain the full library, Index Data Set, and SAM file names. Thus TEST360S, TEST360X, and TEST360L are the names of the SAM file, Index Data Set, and library for the TEST360 file.

Qualified data set names are valid as names of NIPS data files, libraries and index data sets. The file name used on control cards should appear as the last segment of a qualified name. Thus JULY.VERSION3.TEST360 would be a qualified data set name for a version of the TEST360 file. Because of the imbedded special characters in a qualified data set name the value must be enclosed in apostrophes when referenced as a symbolic parameter in a procedure:

// EXEC IRASP,ISAM='JULY.VERSION3.TEST360'

The transaction data set dynamically output by the File Analysis Statistics capability expects the data set to have the name of the data file concatenated with a 'T' suffix. The presence of an entry in the catalog for this name on the same volume as the data file will cause the transactions to be generated and output.

2.3 File Block Size Conventions

All NIPS 360 FFS cataloged procedures, components and utilities are designed to either generate or process default block size files or files with a user specified block size. The default block size is 1,004 bytes. A user specified block size can be 1,004 or greater, up to the files storage device limitation.
2.3.1 Default File Block Size

No action is required on the part of the user to generate or process standard block size files.

2.3.2 User Specified File Block Size

User block size specifications are accomplished by use of BSZFILE and BSZNEWF symbolic parameters in the applicable cataloged procedures. BSZFILE is used to indicate the block size of an input file, and it is required only when the input file resides on unlabeled magnetic tape and its block size is greater than 1,004 bytes. BSZNEWF is used to generate a file with a block size greater than 1,004 bytes or to change the block size of an existing file. The block size of an existing file can be changed only when a new copy is produced; you cannot change the block size of an ISAM file during execution of XPM in the update mode, because it is updated in place and it is still the same physical data set.

Once a user specified block size has been established for a file and that file resides on a direct access storage device or on labeled magnetic tape, the user is never required to provide the block size with the BSZFILE symbolic parameter.

2.4 Example of File Name Conventions and Symbolic Parameters

Naming conventions and symbolic parameters have a great impact upon the JCL required for running MIPS jobs. The amount of JCL the user becomes concerned with depends principally on whether he is using single or multiple data bases and single or multiple file libraries. A general discussion of job setups under each environment is included in the following subsections. Although RASP is used in the examples, the same concepts apply when using the other procedures.

2.4.1 Single Data Base

A portion of the XRASP procedure is shown below to illustrate how symbolics and naming conventions help the user in setting up various RASP jobs for a single data base:
JOB PREPARATION

//XRASP
PROC ISAM='DUMMY.FILE',SAM='DUMMY.FILE', X
VISAM=UISAM='(2314,P),BSZFILE=,
VSAM=USAM='(2400,DEFER)',LAB=SL

//RASP
EXEC PGM=RSEXEC

//DATAPLLE
DD DSNAM=ISAN,DISP=SHR,UNIT=&UISAN,VOLUME=&VISAN

//SAMPLE
DD DSNAM=SAM.S,DISP=SHR,UNIT=&USAN,VOLUME=&VSAN

LAB_SL

a. When the user wants to run RASP against a cataloged ISAM data base named TESTER, he writes

// EXEC XRASP,ISAM=TESTER

which causes OS to mount TESTER on a 2314. Note that the volume parameter for DATAPLLE defaults to a NULL parameter.

b. To execute a RASP run against an uncataloged ISAM data base named TEST360 residing on a 2311 labeled TSTLAB, he would write

// EXEC XRASP,ISAM=TEST360,UISAM=2311,VISAM='SER=TSTLAB'

c. Similarly, to run RASP against a cataloged SAM version of the TEST360 data base named TEST360S (note the 'S' suffix), he would write

// EXEC XRASP,SAM=TEST360

which causes OS to defer mounting the (first) TEST360S tape when the program calls for it.

d. To run RASP against an uncataloged, nonlabeled tape data base named TEST360S with a volume serial of NYTAPE and a block size of 7000 bytes, he would write

// EXEC XRASP,SAM=TEST360,VSAM='SER=NYTAPE',
// LAB=NL,BSZFILE=7000
which would cause OS to defer mounting the TEST36OS tape.

e. To run RASP against either an ISAM or SAM data base, cataloged or not, whose associated Index Data Set is cataloged, he would write

// EXEC XRASP,ISAM=TEST36O,INDEX=TEST360

f. To run RASP against a data base whose associated Index Data Set is not cataloged, a user would use the following statements (assume the ISAM form of the data base is cataloged)

// EXEC XRASP,ISAM=TEST360,XUNIT=2314,
// XVOL='SER=ND0026',INDEX=TEST360

2.4.2 Multiple Data Bases

RASP, OP, and QUIP are the only FFS components that support multiple data base capabilities. This is accomplished by having multiple DATAPLEX and SAMFILEx DD cards in the procedures. Multiple Index Data Sets are provided by having XINDEXx DD cards. Although up to 10 data bases could be used, the following portion of the XRASP procedure is shown to illustrate the concepts behind job setups for a two-file environment.
a. To run RASP against two cataloged ISAM data bases named TRAINER and TEST360, he writes

 // EXEC XRASP,ISAM=TRAINER,ISAM1=TEST360

b. To run RASP against two cataloged SAM versions of TRAINER and TEST360 named TRAINERS and TEST360S, he writes

 // EXEC XRASP,SAM=TRAINER,SAM1=TEST360

c. To run RASP against a cataloged ISAM data base named TRAINER and a cataloged SAM version of TEST360 named TEST360S, he writes

 // EXEC XRASP,ISAM=TRAINER,SAM=TEST360

The single and multiple data base runs use the same procedure, XRASP; therefore, examples using uncataloged data bases would follow the same rules shown in the discussion of single data bases.
2.4.3 File Libraries

It is anticipated that many files containing RITs, retrievals, subroutines, and tables will have a library associated with them. The procedure is set up to form user library names by suffixing the ISAM data base name with an 'L'. This should be taken into consideration when cataloging user libraries. If the ISAM symbolic parameter specifies a qualified data set name, the user library name will be formed by suffixing an 'L' to only the last segment of the DSNNAME.

Private user libraries are specified by using the LIB, LIB1, and LIB2 symbolic parameters. These libraries have a disposition of SHR which means they are read-only. The only user library that should be written into is the library defined by the LIB symbolic parameter. Therefore, to store permanent RITs or retrievals on a user library, define this library with the LIB symbolic parameter, and change the disposition symbolic parameter to LIBDISP=OLD.

Caution should be exercised in specifying multiple user libraries in that a search for information from these libraries is in a LIB, LIB1, LIB2 sequence. If a subroutine, for example, exists on LIB and LIB2 under the same name, the subroutine will always be fetched from LIB (the first library on which it was found).

An additional library named DUMMY.FILEL is referenced in the procedures. This can be used by those installations which desire to maintain an installation library of common subroutines and tables. The name of this library may be changed if desired.

2.5 Catalog Requirements

Aside from the usual catalog requirements for user's data bases, job libraries, and file libraries, procedures imply that the following data sets must be cataloged to run FFS jobs:

a. DUMMY.FILE - This data set must be cataloged but need not actually exist. It should be assigned to a system residence volume to avoid taking up an extra tape drive.
b. DUMMY.FILEL - This data set must be cataloged and physically exist as a partitioned data set, usually put on the same pack as FFS.JOBLIB.

c. DUMMY.FILES - This data set must be cataloged but need not actually exist.

d. DUMMY.FILEX - This data set must be cataloged but need not actually exist.

Caution should be observed when file libraries, Index Data Sets, and SAM files are cataloged since the procedure suffixes an 'I', 'S' or 'L' on the ISAM data base name to form the final name.

2.6 Checkpoint/Restart

The checkpoint/restart capability installed in FM, RASP, and OP is designed to serve as an aid in efficient use of the efficient computer in that processing functions already completed need not be duplicated if an incomplete job is returned to the user.

FM, RASP, and OP allow the user the option to periodically take checkpoints (time or end-of-volume) as the job progresses. A detailed description of the OS 360 checkpoint/restart capability (which is utilized in NIPS) is available to the interested user in IBM Systems Reference Library, Number C28-6708. Checkpoints are taken in the execution phases only, not during edit code generation, library action, etc.

The execute-only procedures (XFMEX, XRASPEX, XOPEX, and XOPSDEX) are the only ones designed for use with the checkpoint capability.

The coding of the following keyword values on the EXEC card will initiate the checkpoint/restart capability:

| CHKID | A user-assigned name up to seven characters long which is used to assign DSNAMES to |
all normally temporary data sets (the procedure will concatenate suffixes to make the names unique) and the checkpoint data set defined on the CHECKDD DD card.

EOY

The value EOY or a time interval in minutes (mm) to designate the type of checkpoint desired.

CHKDSP
The conditional disposition for the work data sets and the CHECKDD data set to be used in case of an ABEND. The value in the procedures is 'DELETE'; the user should override it to 'KEEP'.

NRMDSP
The normal disposition for the work data sets and the CHECKDD data set to be used for a normal run (one which does not ABEND). The value in the procedures is 'DELETE'; the user should override this parameter only if he needs to keep his temporary data sets from a successful run.

CHKSP
The space required for the checkpoint data set in cylinders. Approximately one cylinder per checkpoint is required for a 100K job. This substitution is mandatory for a new data set.

VCHK
The volume onto which the checkpoint data set is to be allocated.

UCHK
The unit onto which the checkpoint data set is to be allocated.

Note: VCHK defaults to a null value and UCHK defaults to NIPW. The above default values will cause one of the work packs to be used for the checkpoint data set, but it will be difficult to ascertain the volume serial number of the work pack used if a system error produces no listing. To avoid the problem, one should provide values for UCHK and VCHK to
JOB PREPARATION

reference a known volume. Example: UCHK=2314,
VCHK='SER=ND000'.

For recurring jobs using checkpoint/restart, a
previously allocated data set for the CHECKDD DD card will
save time.

2.6.1 Checklist for Using Checkpoint/Restart

After the user establishes the need for
checkpoint/restart insurance, the following list may serve
as a guide to assist him in setting up the deck correctly:

a. All routines to be used (logic statements, queries,
RISs) should be prestored.

b. Invoke the appropriate procedure and provide the
CHKID, CHKPT, CHKDSP, CHKSP, VCHK, and UCHK
substitutions.

c. If a restart is necessary, the changes required are
the inclusion in the run deck of a SYSCHK DD card
immediately preceding the first execute card and
the coding of a RESTART parameter on the JOB card.

d. The deferred restart must be done prior to the
scratching of the work packs. This requires that
the analyst in charge of the critical job be
available to resubmit the job within some
reasonable time period after the job was originally
run unsuccessfully.

2.6.2 Sample Job Setup

The following example shows initial and restart
submissions of an FM SAM update run using the TESTER file
and a multireel tape transaction file.

Only the front end of the deck is shown since the only
changes to be made for restart are in the JCL. The end-of-
volume checkpoint option is used.

The JOB card on the restart deck shows the RESTART
parameter. The 'A.FM' represents the mandatory stepname on
the EXEC card of the step to be restarted and the stepname
in the XFMEX procedure. The 'C0000002' represents the number of the checkpoint (obtained from the console listing) to be used for the restart.

INITIAL SUBMISSION

```plaintext
//JOBNAME JOB (normal job card parameters)
//A EXEC XFMEX,CHKID=REQUEST,PARM='CHKPT=EOV',
  // CHKDSP=KEEP,CHKSP=5,UCHK=2314,
  // VCHK='SER=ND0000',SAM=TESTER,SAMOUT=,
  // VSAM='SER=INPUT',VSMOUT='SER=OUTPUT'
```

RESTART SUBMISSION

```plaintext
//JOB JOB (normal job card parameters) RESTART=(A,FH,C0000002)
//SYSCHK DD DSNNAME=REQUEST,DISP=(OLD,KEEP,KEEP),
  // VOLUME=SER=ND0000,UNIT=2314
//A EXEC XFMEX,CHKID=REQUEST,PARM='CHKPT=EOV',
  // CHKDSP=KEEP,CHKSP=5,UCHK=2314,
  // VCHK='SER=ND0000',SAM=TESTER,SAMOUT=,
  // VSAM='SER=INPUT',VSMOUT='SER=OUTPUT'
```

In the following example, the OP step theoretically abended with an SB37 ABEND after the eighth checkpoint had been taken. When the deferred restart is attempted, the batch mix of jobs will hopefully use less disk space. The restart procedure is the same as in the first example.

INITIAL SUBMISSION

```plaintext
//JOBNAME JOB (normal job card parameters)
//AB EXEC XASPEX,ISAM=TESTER,QDF=QDFILE,
  // QRT=QRTFILE,UQDF=2314,VQDF='SER=ND0000',
  // VQRT='SER=ND0000',CHKID=RASP,PARM='CHKPT=15',
  // CHKDSP=KEEP,LIB=TESTER,QDISP=KEEP
//AC EXEC XPPEX,QDF=QDFILE,LIB=TESTER,
  // QRT=QRTFILE,UQDF=2314,VQDF='SER=ND0000',
  // VQRT='SER=ND0000',CHKID=OP,PARM='CHKPT=10',
  // CHKDSP=KEEP,QDSP=KEEP,UCHK=2314,
  // VCHK='SER=ND0000'
```
The PM component has the capability to generate and maintain segmented data files. This capability allows the user to segment his large chronological SAN file into segments which may be updated individually, thereby reducing processing time. Each segment, when generated, will contain records with record keys within a specified range.

The OP, RASP, and QUIP components can retrieve and output from the segments singly or as a group making up one complete data file. No additional parameters are needed to process one segment. However, if more than one segment is to be processed, the OS S/360 concatenation capability must be used (see S/360 SRL C28-6539). Examples of this capability will be included in the Sample Job Setups for FM, RASP, OP, and QUIP.

2.8 Source Language Storage

All NIPS batch components procedures which perform language compilation or structuring will also allow source decks to be added, replaced, or deleted from a source library. The PS, FM, RASP, OP, and QUIP procedures contain a SOURCLIB DD statement which is used to define the source library. When a DSNAME other than 'DUMNY.FILE' is provided and source control statements are included in the input stream, source library maintenance will be performed.
JOB PREPARATION

Section 3

COMPONENT PROCEDURE DESCRIPTIONS

This section examines each procedure, pointing out specific ways of setting up jobs for each component.

The sample jobs will omit the JOB card which is always required and standard for each installation.

Note: In all JCL examples, the 'X' signifying a continuation card is usually punched in card column 72, even though it is no longer required by the Operating System.

3.1 FM Procedure (XFM)

The procedure XFM is used to accomplish all FM functions. The file name must be specified using the ISAM or SAM symbolic parameter. If an ISAM file is being generated, INDEX, PRIME, and OVFLOW should be used to specify the amount of disk space (in cylinders) required for each of these areas. If an assembler listing of logic statements being compiled is desired, code PARM=DEBUG or PARM=LIST on the EXEC card.

When adding new DD cards to the run that do not appear in the cataloged procedure, the DD card(s) should be placed immediately before the SYSIN DD card. If the POOL APR capability is used, the DD name referenced in the APR operator forms the DD name for a new JCL card by affixing it to the characters 'FM.' Hence, if APR referenced the DD name 'APRDDD1', the user supplied JCL card for the FM run would have a DD name of 'FM.APRDDD1'.

If a file is being generated and the output file block size is to be different than the input FFT block size, use symbolic parameter BSZNEWF to specify the output block size.

If a SAM file is being updated and the output file block size is to be changed, use BSZNEWF to specify the new block size.
JOB PREPARATION

If the input is a SAM file on unlabeled magnetic tape and the file block size is not 1,004, use symbolic parameter BSZFILE to indicate the input file's block size.

In some cases, the user may need to provide JCL information that is not included in the procedure. Overriding DD cards must have a DD statement name which includes the stepname (FM) and the name of the DD statement to which the override applies. All override DD cards must be placed in the order that they appear in the procedure.

If the transaction source is a single tape or disk file, the user must include an override DD statement named FM.TRANS which specifies the DSNAMES, DISP, UNIT, and VOLUME parameters plus the DCB parameters if the transaction file is an unlabeled tape. When multiple transaction sources are to be used in an FM execution, the user must provide a DD statement for each source. The DD statement must be named PSTRANxx for sequential tape or disk transactions and ISTRANxx for ISAM NIPS files. The XX may be a unique user specified ID for each DD statement. Parameters to be specified in each of the added transaction DD statements are the same as those required in the FM.TRANS DD statement. The FM.TRANS override DD must not be used when utilizing the multiple transaction source capability as it is used for describing single source transactions.

The following DD statements would be required only if the user is producing auxiliary output files by using the WRT, WT2, WT3, WT4 or WT5 instructions in his logic statement. These statements must include the DSNAMES parameter and should include UNIT, VOLUME and DISP parameters. If the user specifies a direct access device for output, he must also include a space parameter. DCB parameters should be specified if other than standard parameters are desired.

A DD statement named FM.AUX1, is used to identify the name given to the first auxiliary output file. This file is produced by the POOL instruction WRT.

A DD statement, FM.AUX2, is used to identify the name given to the second auxiliary output file. This file is produced by the POOL instruction WT2.
JOB PREPARATION

A DD statement, FM.AUX3, is used to identify the name given to the third auxiliary output file. This file is produced by the POOL instruction WT3.

A DD statement, FM.AUX4, is used to identify the name given to the fourth auxiliary output file. This file is produced by the POOL instruction WT4.

A DD statement FM.AUX5, is used to identify the name given to the fifth auxiliary output file. This file is produced by the POOL instruction WT5.

A DD statement must always be used to identify the user's input deck. The format of this card is (/FM.SYSIN DD *). This is followed by the user's input deck, followed by a /* card to indicate the end of the input deck.

The FM component is designed to use a disk sort provided enough disk sort work space (DD cards SORTWK01-06) is available. The FM component required this space to sort the transactions prior to their being added to the data file. As these transactions are processed by FM prior to sorting, FM calculates the amount of disk space required for the sort, and if this space is not available it will default to a tape sort. When this occurs the following DD cards must be added to the standard procedure:

//TAPEWK01 DD parameters defining a 9-track tape unit.
//TAPEWK02 DD parameters defining a 9-track tape unit.
//TAPEWK03 DD parameters defining a 9-track tape unit.
//TAPEWK04 DD parameters defining a 9-track tape unit.

In addition, if the number of transactions necessitates that SORTIN and SORTOUT will contain more than one tape volume, the following JCL changes are needed. Otherwise, only the transactions on the last volume specified on your VOLUME parameter will be used to update the file.

//FM.SORTIN DD UNIT=(2400,DEFER),VOL SER=(.............)
//FM.SORTOUT DD UNIT=APF=SORTIN,VOL- SER=(some tapes as SORTIN)

The above DD cards are not distributed with the standard procedure. The space defined for the disk sort work area is adequate for most applications.
When generating an ISAM file, space allocation in terms of INDEX, PRIME, and OVFLOW areas must be specified for the new file. This is done utilizing the INDEX, PRIME, and OVFLOW symbolic parameters. These parameters default to 1, 5, and 1 cylinders respectively. For example, if 1 cylinder of index, 20 cylinders of prime area and 5 cylinders of independent overflow area are desired when generating the TEST360 file, the following EXEC card would be coded:

```//FMGEN EXEC XFM,GEN=,ISAM=TEST360,PRIME=20,OVFLOW=5```

The XFM procedure will also maintain SAM data files. The use of the SAM or ISAM parameter specifies the type of input file to File Maintenance. The type of file must always agree with that specified on the FM control card, with one exception. A SAM file may be generated from an ISAM PFT. For this one exception, the ISAM symbolic parameter would be used to specify the input PFT and the FM control card would specify 'TAPE'.

When updating a SAM file, the updated file will normally be written on the data set (tape) specified by the FMSAMOUT DD statement. However, if any record controls are being changed by use of the MCT or MCW POOL instructions, the updated file will be written on the data set (tape) specified by the FMNDATA DD statement. These data sets are normally written on a 9-track tape. A message is written on the console stating the file name and which tape is to be saved at the completion of FM.

The XFM procedure is generalized since it has a variety of applications: SAM or ISAM data files in either the generate or update mode. To avoid possible run terminations due to insufficient space for the NEWFILE DD statement, special provisions have been made to DUMMY this statement in the XFM procedure. Also, this statement must be DUMMY when updating a multivolume ISAM data file. No space will be allocated for this statement unless GEN= is coded on the EXEC card. Coding of GEN= on the EXEC card is applicable for an ISAM generate run only. Special consideration has been directed to the FMSAMOUT and FMNDATA DD statements. These DD statements have been put to DUMMY. They should remain in the DUMMY status for all ISAM runs. For all SAM runs, the user must code SAMOUT= on the execute card to
allow allocation of the FMSAMOUT and FMMNDATA data sets (tapes).

During COM and LIB mode runs, if the FPT and logic statements are on a sequential file, no library action will be performed. However, the XFM procedure may be used for debugging a logic statement. If the FPT is on an indexed sequential file, library action may be performed and logic statements may be added to the library.

In FM the default for the processing block size is 16,000 bytes. The user may override this size by using the PARM='PBSIZE=nK' or PARM='PB=nK' parameter on the EXEC card, where n may be any integer from 1 to 99 inclusive.

3.1.1 Sample Job Setup

The following examples generally use the ISAM symbolic parameters. Except where noted, these same examples can be used for SAM files by using the SAM, VSAM and USAM parameters in place of the respective ISAM parameters. The FM control card must also be changed to TAPE instead of DISK file update. For SAM files, SAMOUT= must be coded on the EXEC card.

a. **Compile Logic Statements Only** - The following FM run deck would be used to compile logic statements for the TEST360 file. The purpose of this run is to produce listings of the logic statement source cards for use in debugging new logic statements. This type of run would be used as the first step in setting up a new file. The file is not cataloged but resides on a 2314 disk pack.

A typical run deck follows:

```
// EXEC XFM,ISAM=TEST360,VISAM='SER=MYPACK'
//FM.SYSIN DD $FMS/COM,TEST360
 ...
 ...
 LOGIC STATEMENT LIBRARY UPDATE DECK
 ...
 ...
//
```

18
d. **Update Logic Statement Library** - The following run deck could be used to update the Logic Statement Library for the TEST360 file which is cataloged.

```plaintext
// EXEC XFM,ISAM=TEST360
//FM.SYSIN DD *
$FMS/LIB,TEST360
.
. LOGIC STATEMENT LIBRARY UPDATE
.
.*/
```

If the file is a SAM file, logic statements can only be added during a GEN or UPD run.

c. **Update a File (Card Transactions)** - The following deck could be used to update the TEST360 file using card transactions. The first transaction report name is ONE. The second report name is TWO. The user's subroutine library is named TEST360L and is cataloged. The processing block size will be increased from 16,000 bytes to 20,000 bytes.

```plaintext
// EXEC XFM,ISAM=TEST360,LIB=TEST360,
//PM.SYSIN DD PARM='PBSIZE=20K'
$FMS/UPD,TEST360,ONE
.
. TRANSACTIONS FROM REPORT ONE
.
. NEW REPORT TWO
.
. TRANSACTIONS FROM REPORT TWO
.
.*/
```

d. **Update a File (Tape Transactions)** - The following deck could be used to update the TEST360 file with tape transactions. The transaction report name is XYZ. The transaction file label is TAPXACT and it resides on tape with the volume label 1234. The installation has 2400 tape drives, and the transaction tape has standard labels.
Compile Logic Statements. Update a File (Tape Transactions), and Produce Two Tape Auxiliary Outputs - The following run deck could be used to compile logic statements and update the file TEST360 with a tape transaction file labeled TAPEX. The transaction tape volume label is 2345. The transaction report name is ABC; 2400 series tape drives are available for mounting tapes. Two auxiliary output tapes are produced, named AUDITA and AUDITB. These are to be produced on tapes with serial numbers TAPEA and TAPER.

Compile Logic Statements and Generate a File (Card Transactions) - The following run deck could be used to compile logic statements for a TEST360 file and to generate the TEST360 file using card transactions. The transaction report names are A and B. The users subroutine library is named TEST360L. The index, prime and overflow areas for the generated file are 1, 25 and 10 cylinders, respectively.
// EXEC  XFM,ISAM=TEST360,LIB=TEST360,     X
//     PRIME=25,OVFLOW=10,GEN=,INDEX=1
//FM SYSIN DD *
$FMS/GEN,TEST360,LS,DISK

-- LOGIC STATEMENT LIBRARY UPDATE DECK
-- NEW REPORT A
-- REPORT A TRANSACTIONS
-- NEW REPORT B
-- REPORT B TRANSACTIONS
*/

If a SAM file were being generated, the PRIME, INDEX and OVFLOW parameters would not be used.

9. Generate an ISAM File (Card Transactions) Using the
   FMT and Logic Statement Library of Another File
   The following run deck could be used to generate a
   file having the same FMT and Logic Statement
   Library as an existing file. (The data base of the
   new file must still be supplied via transaction
   inputs.) It is assumed that the input data file,
   TEST360, is cataloged and that the required logic
   statements have been added to the Logic Statement
   Library. The new file will be named MYFILE, and
   will be generated with card transactions. At the
   end of the FM run, both TEST360 and MYFILE will
   be cataloged data sets. The transaction report name
   is REPORT. The user's subroutine library is named
   SUBSL and is cataloged.

// EXEC  XFM,ISAM=TEST360,LIB=SUBS,GEN=
//FM SYSIN DD *
$FMS/GEN,MYFILE,REPORT

*
h. **Generate a SAM File (ISAM FFT)** - For GEN mode sequential processing, the input file containing the FFT (and logic statements, if desired) may be either a sequential or an indexed sequential file. The following is an example of using card transactions to generate a SAM file from an ISAM file consisting of FFT and logic statements. The TEST360 file is cataloged. The sequential data file will be cataloged at the end of the processing with the name specified on the FMS control card padded with a suffix character of 'S'.

```plaintext
// EXEC XFM, ISAM=TEST360, SAMOUT=
// FM.SYSIN DD *
$FMS/GEN, TEST360, RPT,, TAPE, CARD
...
* TRANSACTIONS FOR REPORT RPT
* /
```

Note that GEN= is not coded on the EXEC card for a SAM generate run. It only applies to an ISAM generate run. Note also that SAMOUT= must be coded on the EXEC card for any FM run that produces a SAM output file. The Indexed sequential data file will be cataloged at the end of the processing. If a qualified data set name was used, and the last segment of the name matches the name on the FMS control card, the fully qualified name will be used as the catalog entry.

i. **Update a SAM File and Add Logic Statements** - For UPD mode sequential processing, the input file must be a sequential file and SAMOUT= must be coded on the EXEC card.
JOB PREPARATION

// EXEC XFM, ISAM=TEST360, SAMOUT=
// FM.SYSIN DD *
// FNS/UPD, TEST360, RPT, LS, TAPE, CARD

• LOGIC STATEMENTS
• TRANSACTIONS FOR REPORT RPT

/*

Note: Although the sequential file is cataloged with a suffix character 'S', it should be specified without the suffix on the FMS control card and the execute card.

j. Generate a First Segment From an FPT - The following JCL and input control cards would be used to generate an initial segment from an ISAM file consisting of FPT and logic statements.

// EXEC XFM, ISAM=TEST360, SAMOUT=,
// LAB=SL
// FM.SYSIN DD *
// FNS/GEN, TEST360, RPT, TAPE, CARD, SEG
// SEG M00001 M00999

• CARD TRANSACTION FOR REPORT RPT

/*

k. Generate a Segment From Another Segment - The following JCL and input control cards would be used to generate a segment. (The first segment was created using the JCL and control cards in sample j above.)
JOB PREPARATION

// EXEC XPARM=SAM=TEST360,SAMOUT=, 
//             LAB=SL 
//FMS/GEN,TEST360,RPT,,TAPE,CARD 
$SEG N00001 N00999 
....
CARD TRANSACTIONS FOR REPORT RPT 
....
/

1. **Generate a New Segment From a Segment and Add a New Segment Record** - The following JCL and input control cards would be used to generate a new segment from an existing segment and add new segment control records.

// EXEC SAM=TEST360,SAMOUT=,LAB=SL 
//FMS/GEN,TEST360,RPT,,TAPE,CARD 
$ADD J00001 J00999 N36098 
$SEG W00001 W00999 
.... 
CARD TRANSACTIONS 
.... 
/

Note: After generation of a segment using the PFT and logic statements from the previous segment, the new segment will contain the PFT and logic statements and old segment control records from the previous segments. A new segment control record for the new segment and the new data records generated by the transactions will also be on the new segment.
m. **Updating a Segment With No Segment Processing** -
The following JCL and input control cards would be used to update a segment with no segment processing.

```
// EXEC XPARM, SAM=TEST360, SAMOUT=, LAB=SL
//FM.SIN DD *
$FMS/UPD, TEST360, RPT, TAPE, CARD, NOSEG
CARD TRANSACTIONS

/*

Note: When updating a segment with no segment processing to be performed, the volume serial number field in the segment control record will be updated by the system.
```

n. **Generating a Segment Using an ISAM FPT to Maintain Segment Information** - The following JCL and input control cards would be used to generate a segment using an ISAM FPT and maintaining segment information and logic statements on the ISAM file.

```
// EXEC XPARM, ISAM=ISAMPFT, VISAM='SER=XXXXXX'
//SAMOUT=, LABEL=SL
//FM.SIN DD *
$FMS/GEN, TEST360, RPT, LS, TAPE, CARD, SEG
LOGIC STATEMENT
STOP
CARD TRANSACTION

/*

After completion of the job, ISAMPFT will contain the new segment record, any old segment records, and the new logic statement.
```

o. **Updating a Segment Using an ISAM FPT to Maintain Segment Information** - The following JCL and input control cards would be used to update a segment using the ISAM FPT to maintain segment information.
JOB PREPARATION

// EXEC XFM, SAM=TEST360, VSAM=SER=XXXXX,
// SAMOUT=LABEL=SL
// FM.ISAMWORK DD DSNNAME=ISAMWORK,UNIT=2314, VOL=SER=XXXXX,
// DISP=OLD
// FM.SYSIN DD *
$FMS/UPD, TEST360, RPT,, TAPE, CARD

CARD TRANSACTIONS

/*

P. Updating an ISAM File with Transactions from Multiple Sources - The following JCL and input control cards would be used to update a file from four transaction sources of varying data attributes in a single execution. Particular attention should be paid to the added DD cards and the parameters of the $FMS control card. Note: CARD must be specified as transaction source for multiple transaction source capability.

// EXEC XFM, ISAM=TEST360, VSAM=SER=XXXXX, LIB=TEST360
// PSTRAN1 DD DSN=LTRANS, UNIT=(2400, ,DEFER), VOL=SER=AAAAAA, X
// DISP=(OLD, KEEP), X
// DCB=(REC FM=FB, LRECL=480, BLKSIZE=2400)
// PSTRAN2 DD DSN=ATRANS, UNIT=APP=PSTPAN1, VOL=SEP=BBBBB, X
// DISP=(OLD, KEEP), X
// DCB=(REC FM=F, LRECL=80, BLKSIZE=80)
// PSTRAN3 DD DSN=PTTRANS, UNIT=2314, VOL=SER=YYYYY, X
// DISP=(OLD, KEEP), X
// DCB=(REC FM=FB, LRECL=160, BLKSIZE=160)
// FM.SYSIN DD *
$FMS/UPD, TEST360, RPT,, DISK, CARD
J00008-------------------------M
J00009-------------------------M
J00004-------------------------M          CAPD Transactions for
J00007-------------------------M          Report RPTM
J00003-------------------------M

NEW REPORT RPTL, PSTRAN1 TAPE TRANS FOR REPORT L
3.2 FR Procedure (XVP)

This procedure is used to revise the format of a NIPS 360 PPS data base. The procedure invokes FR to analyze the old and new FFTs and to produce logic statements which are then used by FM to revise the file format. The old data file may be SAM or ISAM; the new FFT must be ISAM; revised file is always SAM.

The block size of the new file will be the same as the old file block size unless a new block size is specified with the BSZNEWF symbolic parameter.

If the old file is a SAM file on unlabeled magnetic tape and its block size is not 1,004 bytes, the block size must be indicated with the BSZFILE symbolic parameter.

3.2.1 Sample Job Setup

The following JCL could be used to revise the TEST360 file to a new format. The old file is cataloged on disk. The new FFT is not. The new TEST360S SAM file will be a standard label tape on a 2400 unit. The new TEST360 FFT is on a 2314 disk pack labeled OURUSE. As the file being revised; i.e., the old TEST360, resides on tape as a SAM data set, the parameter TRANTYP must equal SAM.

```
//REV EXEC XFR,SAM=TEST360,NEWFFT=TEST360, X
 VPFT= 'SER=OURUSE',LAB=SL,TRANTYP=SAM
//FR.SYSIN DD *
FR CONTROL CARDS
/*
```

If the old data file is a cataloged ISAM file instead of SAM, simply replace the SAM= parameter with ISAM= in the above example. TRANTYP defaults to ISAM and need not be included in an ISAM File Revision.
JOB PREPARATION

3.2.2 File Structure, Revision, and Maintenance

//FRJOB JOB (Standard Parameters)
//JOBLIB DD (Installation JOBLIB Parameters)
// EXEC XFR ISAM=TEST360,NEWFPT=Fptest
//FR.SYSIN DD *
FILE = TEST360
NEWFILE = FTEST
PRINT = ALL
CNAM = CNAME
LYN = STLOC
PLEAC = STPLAN
/*

File Structuring of the new FPT has been completed and the FPT is a cataloged ISAM data set named 'FTEST'. The file to be revised is a cataloged ISAM data set named 'TEST360'. The user has specified that all logic statements are to be printed. Three field name changes are specified. Other nonmatching field names found in the two FPTS will be treated as deletions when not found in the new FPT and as additions when not found in the old FPT. The new sequential file produced by the FM generate step may be loaded to disk using the SAM to ISAM utility procedure XSTOIS. The sequential file may be retained as backup.

3.3 FS Procedure (IFS)

This procedure is used to structure FPTs. If a user library is desired, use the LIB parameter, remembering that the procedure will suffix the name with an 'L'. The disposition of the new data file (FPT) can be specified using the NDISP parameter. NDISP defaults to KEEP. The file name must be specified by the ISAM symbolic parameter. If a block size greater than 1,004 bytes is desired, use symbolic parameter BSZNEWF to indicate the size.

3.3.1 Sample Job Setup

The following control cards could be used to structure an FPT for debugging purposes. A file library called TEST360L is used but is not cataloged. It resides on a 2314 pack with a volume serial number of MYPACK.
The standard PS procedure (XPS) can be used to structure FPTs for non-NIPS without modifications.
JOB PREPARATION

3.4 ISAM TO SAM Procedure (XISTOS)

This procedure is used to unload an ISAM data file from disk-to-tape (SAM) or copy a SAM data file from tape-to-tape (SAM). The disposition of the old file defaults to KEEP. A new block size can be specified for the output file by using symbolic parameter BSZNEWF.

If the input is a SAM file on unlabeled magnetic tape and its block size is not 1,004 bytes, its block size must be specified with the BSZFILE symbolic parameter.

3.4.1 Sample Job Setup

In the first example, the JCL could be used to unload the TEST360 file to a 9-track tape with standard labels and volume serial of TSTVOL. It is desired to delete the ISAM file from the disk pack.

```plaintext
//ISTS EXEC XISTOS,ISAM=TEST360,VSAM='SER=MYPACK', X
 LAB=SL,ODISP=DELETE,
 SAN=TEST360,VSAN='SER=TSTVOL'
/*
```

In the second example, the JCL could be used to copy the TEST360 file onto a 9-track tape with standard labels and volume serial of TSTVOL. The old SAM file is kept and is on the volume OLDVOL. The block size of the new SAM file is changed to 10,004 bytes.

```plaintext
//CSTS EXEC XISTOS,SAM=TEST360,VSAM='SER=TSTVOL', X
 BSZNEWF=10004,OLDSAM=TEST360,
 OLDVSAM='SER=OLDVOL'
/*
```

3.5 OP Procedures (XOP, XOPSD)

There are two standard procedures for executing OP.

a. XOP should be used when publishing the results of a PASF retrieval (source retrieval mode). This procedure is normally executed immediately following the execution of the retrieval component. If it is executed at any other time, the user must insure that the retrieval answer sets (QRT and QDF)
have been kept and are properly defined in the XOP procedure. The XOP procedure can be used when structuring single or merge file RITs. The XOP procedure must be used when publishing merge file RITs.

d. XOPSD should be used when structuring and/or publishing directly from a data base (source direct mode). Merge file RITs may be structured but not executed using XOPSD.

Either procedure, XOP or XOPSD, may be used when structuring and/or publishing an RIT that makes use of the Interfile Output (IFO) capability. Although these RITs are written as one would write a merged file RIT, they are considered to be a single primary file with a maximum of nine secondary ISAM files. Only one of the secondary files can have the same name as the primary file. Secondary file(s) are named in the symbolic parameters, ISAM1 and ISAM2 or in additional DATAPILE through nine DD statements.

When using the XOPSD (source direct) procedure, a database name must be assigned to the ISAM or SAM symbolic parameter. A source retrieval (XOP) run does not require a database name unless a RIT is being structured in the run and the FFTs required for structuring are not on the QDF (either because PARM='NOPL' was specified on the preceding RASP execute statement or the file(s) required for structuring are not the same files being retrieved and published). If the input is a SAM file on unlabeled magnetic tape and its block size is not 1,004 bytes, its block size must be specified with the BSZFILE symbolic parameter.

To structure permanent RITs using either procedure, a user library must be specified using the LIB parameter and by indicating LBDISP=OLD on the EXEC card. User (private) libraries must be specified using the LIB, LIB1, LIB2, etc., parameters if a RIT uses subroutines and/or tables. Use care in assigning the LIB parameter since the procedure will suffix this file name with an 'L' to form the final library name. This point should also be considered when cataloging user libraries.
when tape output is desired, the user must include an additional DD statement named OP.RECORD which specifies the DSNAME, UNIT, VOLUME, LABEL, and DISP parameters. If the DSNAME OPTAPE is used, then OP will replace it with the name specified on the FORMAT card of the RIT, if any.

Inclusion of the keyword and operand, PARM=LIST, on the EXEC card will cause creation of the generated code assembly listing during the RIT structuring process. This option should not normally be used, but is included as a diagnostic aid in case of system malfunction. The system will automatically generate this assembly listing if an error occurs during the code generation process and is sensed by the assembler.

3.5.1 XOPSD Sample Job for Single File Processing

To structure a RIT for a single file using XOPSD, only the data file name and library name need be specified. If the RIT being structured is to be stored permanently on the library, the library disposition must be specified.

Example:

```
//OP EXEC XOPSD,ISAN=TEST360,LIB=TEST360,LIRDISP=OLD
//OP.SYSIN DD *
/* (OP Run Deck)
*/
```

The example given would allow RITs to be structured and/or published for the indexed sequential data file TEST360. User library TEST360L would be used and any permanently structured RITs would be stored on that library.

3.5.2 XOPSD Sample Job for Merge File Processing

When structuring for a merge file using XOPSD, all data files and libraries must be named. The data files may be indexed sequential or sequential; they do not have to be the same type.

If a library is specified for symbolic LIB, any RITs structured to be stored permanently will be stored on that library. If there is no library specified for LIB and there is a library specified for LIB1, then that library will
receive any permanent RITs structured during the run. If neither LIB or LIB1 is specified, the RITs will not be permanently stored. Also, a library disposition must be specified as OLD to store permanent RITs.

Example:

```
//OP EXEC XOPSD,ISAM=TEST360,SAM=TRAINER,
// LIB=TEST360,LIB1=TRAINER,LIBDISP=OLD
//OP.SYSIN DD *
(\OP Run Deck)
/*
```

The example given would allow a merge file RIT to be structured for the indexed sequential data file TEST360 and the sequential data file TRAINERS using libraries TEST360L and TRAINERL. Any permanent RITs would be stored on TEST360L. The use of the XOPSD procedure for merge file report is limited to structuring the RITs. Publishing merge file reports requires a retrieval step and the use of the XOP procedure.

3.5.3 XOP Sample Job

If the execution is to publish retrieval answer sets, the following job could be used.

Example:

```
//OP EXEC XRASP,ISAM=TEST360,SAM=TRAINER,LIB=TEST360,
// LIB1=TRAINER
//RASP.SYSIN DD *
(RASP run deck)
/*
//OP EXEC XOP,LIB=TEST360,LIB1=TRAINER,LIBDISP=OLD
//OP.SYSIN DD *
(\OP run deck)
/*
```

Note that the RIT could be structured and the reports published in one execution of the XOP procedure. Any user subroutine required by the RITs would be found on the library TEST360L, which would also be used for storing any permanent RITs structured during the run. Note also that in the OP job step no data files are named. Although file
names could have been specified it is never necessary to do so when publishing an answer set. When structuring a RIT using the XOP procedure, it is only necessary to specify file names when PARM='NOFL' has been specified on the preceding RASP EXEC statement or when the RIT being structured requires a file or files other than the files retrieved by RASP. When the XOP procedure is used to structure RITs, the QRT and QDF are used to locate the FFT in the absence of a designated file name. It is possible in one XOP run to structure one RIT using the QRT/QDF and to structure additional RITs specifying data file names.

3.5.4 Segmented File Sample

The following example will publish a report from three segments of a segmented data file. The first segment is specified through the symbolic parameters. The additional DD cards must provide all necessary DD parameters.

```// EXEC DD XOP,SAM=TEST360,LIB=TEST360
// OP.SAMFILE DD
// DD DSNAMES=TEST360S,Vol=SER=XXXXX,
// DD DISP=OLD,UNIT=2400
// DD CNAME=TEST360S,Vol=SER=YYYYY,
// DD DISP=OLD,UNIT=2400
// OP.SYSIN DD
// RIT DECK
/*
```

3.5.5 Output Data Set Overrides

The OP component and the OP procedures (XOP and XOPSD) are designed to allow the user certain override options on his output data sets. The DDNAMES for the data sets which may be overridden follow, together with a brief description of the data set:

**OPLINE** - This is the output data set for printer output. It can be overridden and put out on any SAM data set, provided the following parameters are provided by the user.

**BLKSIZE** - Block size

**LRECL** - Record length
JOB PREPARATION

RECFM - Record form
DSNAME - Data set name

OPPUNCH - This is the output data set for card (punch) output. It can be overridden and put out on any SAM data set. The same parameters used when overriding OPLINE must be furnished by the user.

Examples:
To override the printer output and create a tape to be printed elsewhere (by the utility IEBPTPCH) -

//OP.OPLINE DD DSNAME=OPLINE,DCB=(BLKSIZE=133, X
   LRECL=133,RECFM=F,DEN=2)

To override the punch and create a tape to be punched later -

//OP.OPPUNCH DD DSNAME=PUNCHIT,DCB=(BLKSIZE=80, X
   LRECL=80,RECFM=F,DEN=2)

3.5.6 Additional DD Card for Tape Output

If the RIT being executed contains a FORMAT TAPE statement, an additional DD card must be added to the input job stream with a DDNAME of OP.OPRECORD. This is the data set for tape record output. DISP, LABEL, DSNAME, and VOLUME are the required parameters. The remaining parameters are normally taken from the RIT but may be overridden by the user at run time. The following are parameters which may be overridden by the user on the DD card:

BLKSIZE - Block size
LRECL - Record length
RECFM - Record form
DEN - Tape density
TRTCH - Recording technique

Example:

To override the standard blocking and record form on a record output and generate fixed length unblocked records -
JOB PREPARATION

//OP.OPRECORD DD DCB=(BLKSIZE=150,LRECL=150,RECFM=F),
// DISP=(NEW,KEEP),LABEL=(SL),UNIT=2400, VOL=SER=MYTAPE,
// DSNAM=OPTAPE

Note that OP will replace the DSNAM with the name specified on the format card of the RIT, if any.

3.6 QRT/QDF Utility Procedure (XQRTQDF)

This procedure is used to create a NIPS 360 FFS data file from the answer file (QRT and QDF) produced by RASP. The output from the utility is a SAM file. A block size greater than 1,004 bytes can be specified for the SAM file with the BSZNEWF symbolic parameter.

3.6.1 Sample Job Setup

The following statements illustrate the job setup used to execute the XQRTQDF procedure. The retrieval is from the TEST360 file and uses the file library TEST360L; both are cataloged. The new data file will be named TEST361.

//RET EXEC XRASP,ISAM=TEST360,LIB=TEST360
//RASP.SYSIN DD *

RETRIEVAL DECK

/**
//NEWDF EXEC XQRTQDF,SAM=TEST361,LAB=SL
//QRTQDF.SYSIN DD *

CONTROL CARD
/**

Using this job setup, the user obtains his new data file on a standard labeled, 9-track tape written according to the installation assigned density. The user may override the symbolic parameters in the procedure to use input and output data sets differing from the procedure defaults.

The XQRTQDF procedure may be executed in a separate job from the RASP if the QRT and QDF are saved. In this case,
the QRT and QDF symbolic parameters would have to be specified on the EXEC card with the appropriate values.

3.7 QUIP Procedures (XQUIP, XQUIPSD)

The XQUIP and XQUIPSD procedures are used to execute QUIP in the batch mode. No DD card overrides are necessary, but additional DD statements are required when processing more than one segment of a segmented file, when using more than two secondary files with Interfile Output (IFO) and when using the TRACE operator. A DD statement named SYSIN must always be included to identify the user's input. When using the XQUIPSD procedure, a file name must be specified using either the ISAM or SAM symbolic parameter. For IFO, the symbolic parameters ISAM and SAM identify the primary file.

If the input is a SAM file on unlabeled magnetic tape and its block size is not 1,004 bytes, its block size must be specified with the BSZFILE symbolic parameter.

In addition, when executing QUIP with the XQUIPSD procedure, the File Indexing mode of retrieval will be automatically invoked whenever practical if the input file is indexed and the user's input statements include either a FIND or a retrieval type IF statement that is compatible with Secondary Indexing or a KEYWORD statement is present in the query. The user may override the Secondary Indexing mode of retrieval by using the PARM='INDEX=NO' parameter on the EXEC card. However, the presence of a KEYWORD statement negates the PARM override, so the indexing will be invoked as long as it is feasible.

In QUIP, the processing blocksize is computed using the file statistics records. If the records are not present in the file, the size defaults to 10,000 bytes. The user may override this size by using the PARM='PBSIZE=nk' or PARM='PB=nk' parameter on the EXEC card, where n is any integer from 1 to 99 inclusive. For IFO, only the size of the processing block for the primary file may be overridden.

3.7.1 Sample Job Setup

The following JCL may be used to retrieve, sort, or output from the TEST:60 file using the file library
JOB PREPARATION

TEST360L. Both files are cataloged. Since the TEST360 file itself is used, the XQUIPSD procedure is executed. The processing block size will be reduced from 10,000 to 6,000 bytes, and the Secondary Indexing mode of retrieval will be bypassed.

```
//SAMPLE1 EXEC XQUIPSD,ISAM=TEST360,LIB=TEST360,
 PARM='PB=6K,INDEX=NO'
//QUIP.SYSIN DD *
```

The XQUIPSD procedure may be used to query and output from a segmented data file using either one segment or a concatenated group of segments. If more than one segment is to be processed, additional DD cards must be included for the required segments. The first segment can be described by the symbolic parameters in the procedure, with the other segments being defined by the additional DD cards.

```
//SAMPLE2 EXEC XQUIPSD,ISAM=TEST360,LIB=TEST360,
//QUIP.SAMPLE DD
 DD DSN=TEST360S,Vol=SER=XXXXXX,
 UNIT=2400,DISP=OLD
//QUIP.SYSIN DD *
```

In addition to using an ISAM or SAM data base, QUIP can also use a RASP QRT and QDF. To use a QRT/QDF, the XQUIP procedure is executed. The QRT and QDF symbolic parameters should be overridden to specify the QRT and QDF names unless QUIP is being run in the same job as RASP. The following JCL can be used to retrieve, sort, and output from a QRT named TESTQRT and a QDF named TESTQDF both located on a 2314 whose volume serial is MYPACK. The user subroutine library is a cataloged data set named TESTERL.
The XQUIPSD procedure may be used to output statistical data on the subfiles in a subfile library employing the TRACE operator. A SUBFILE DD statement defining the library must be included.

3.7.2 Interfile Output (IFO)

Either the XQUIP or XQUIPSD procedures may be used with IFO. When XQUIPSD is used, the primary file may be SAM or ISAM and is specified by the SAM or ISAM symbolic parameter. When XQUIP is used, the primary file is the RASP answer set and is specified in the same manner as for a single file query.

With either procedure, up to nine secondary files may be referenced. All secondary files must be ISAM. The symbolic parameters, ISAM1 and ISAM2, are provided for two secondary files.

3.7.3 Non-NIPS Files

The XQUIPSD procedure must be used when querying a non-NIPS file. The non-NIPS file may be either a SAM file or an ISAM file and the name is specified by either the SAM or
JOB PREPARATION

ISAM parameter. Also the FPT to be used for the non-NIPS file must be specified by the FPT symbolic parameter.

Non-NIPS files can be used with IFO, either as the primary file or as one or more secondary files. When a non-NIPS is the primary, the JCL specifications are as stated above. When a non-NIPS file is used as a secondary file, the file name is specified using either ISAN1 or ISAN2 symbolic parameter or by the addition of the appropriate DATAPILx DD statement (DATAPIL3 through DATAPIL9). Also when a non-NIPS file is used as a secondary file, the FPT for the file must be specified by either the FPT1 or FPT2 symbolic parameter or by the addition of the appropriate FTT3 DD statement (FPT3 through FPT9). The 'x' suffix number on the FTTx DD statement must be the same as the DATAPILx DD statement. All secondary non-NIPS files must be ISAM.

NOTE: It is possible to intermix NIPS and non-NIPS files during IFO.

3.8 RASP Procedure (XRASP)

This procedure may be used for either single-file or merge-file retrievals. If the retrieval is to be added to the file library identified by the LIB parameter, LIBDISP=OLD must be specified on the EXEC card. Use care when specifying file libraries using LIB, LIB1, LIB2 parameters since the procedure will suffix the specified name with an 'L'. Indexed files will be suffixed with an 'I' when the parameters XINDEX, INDEX1, and INDEX2 are specified, while SAM files will be suffixed with an 'S' when using the SAM, SAM1, and SAM2 parameters.

If an assembler list of the retrieval is desired, code PARM='LIST' on the EXEC card.

PARM='NOPL' on the EXEC card causes the FPT and logic statements not to be copied to the QDF. This option should be used only when the QD is input to OP.

If the file being queried is indexed, the File Indexing mode of retrieval will automatically be invoked if the retrieval logic allows. The user may override the Secondary
JOB PREPARATION

Indexing mode of retrieval by using the PARM='INDEX=NO' parameter on the EXEC card. However, the presence of a KEYWORD statement in the retrieval negates the PARM override so that indexing will be involved as long as it is feasible.

PARM=SORTX on the EXEC card will cause RASP to limit the contents of the QDF to a minimum of a few required control records. This technique will significantly reduce the processing time for large retrievals; however, all file data required for later processing must be placed in the QRT via the SORT statement. The truncated QRT/QDF can be used as input to OP to publish a previously structured RIT or to any program or system which is able to process the QRT exclusive of the QDF. However, the truncated QRT/QDF cannot be used to structure an RIT nor as input to the XQRTQDF utility.

3.8.1 Sample Job Setup

The following JCL could be used to retrieve from TEST360 using the file library TEST360L. Both files are cataloged.

```c
//RET EXEC XRASP,ISAM=TEST360,LIB=TEST360
//RASP.SYSIN DD *

RETRIEVAL DECK
/*

The following JCL could be used if two libraries are required and TEST360 is on tape (9-track). The TEST360S data base and both libraries (TEST360L and TRAINERL) are cataloged. The retrieval is to be added to the TEST360L library.

```c
//RET EXEC XRASP,ISAM=TEST360,LIB=TEST360, X
// LIB1=TRAINER,LIBDISP=OLD
//RASP.SYSIN DD *
```

RETRIEVAL DECK
/*

The XRASP procedure can be used to query a segmented data file. If only one segment is to be queried, the deck setup is the same as for a SAM FILE execution. If more than
one segment is to be queried, additional DD cards must be provided to define the additional segments. The first segment may be defined through the symbolic parameters, but the additional DD statements must completely define the data set.

```
// EXEC XRASP, SAM=TEST360, LIB=TEST360
// RASP.SAMPFILE DD
//   DD DSNAM=TEST360S, DISP=OLD,
//       UNIT=2400, VOL=SER=XXXXXX
//   DD DSN=TEST360S, DISP=OLD,
//       UNIT=2400, VOL=SER=YYYYYY
// RASP.SYSIN DD *
```

RETRIEVAL DECK

```
/*

The following JCL could be used to query an index data file. The Index Data Set name is designated by the symbolic parameter XINDEX and its volume by the symbolic parameter XVOL. For this example, the TEST360 file, the TEST360L library, and the TEST360X Index Data Set are not cataloged. Note that the 'X' suffix on the Index Data Set name is affixed by the procedure as is the 'L' suffix for the library.

```
// RETSX EXEC XRASP, ISAM=TEST360, LIB=TEST360,
// VISAM='SER=MYPACK', VLIB='SER=MYLIBR',
// XINDEX=TEST360, XVOL='SER=SXPACK'
// RASP.SYSIN DD *
```

RETRIEVAL DECK
```
/*

The following JCL could be used to keep the retrieval answer data sets (QRTFILE and QDFILE) on the user's disk pack for later use. This is done by specifying non-temporary DSNAMES, the pack volume serial numbers, units, and the dispositions (KEEP). These same parameters (with the exception of disposition) will have to be specified when executing OP against these answer data sets. The TEST360 disk datafile and TEST360L library are used for the example. If a possibility exists that the retrieval answer set might occupy more than one volume, the UQDP parameter should be
JOB PREPARATION

coded as UQDF='(unit type,2)' or as many volumes as necessary up to 59.

//RASPV EXEC XRASP,ISAM=TEST360,LIB=TEST360,
 UQDF=2314,UQRT=2114,VQRT='SFR=MYPACK',
 VQDF='SER=MYPACK',QDF=TSTQDF,
 QRT=TSTQRT,QDISP=KEEP
//RASP.SYSIN DD *

RETRIEVAL DECK
/*

The standard XRASP procedure provides for retrievals against up to three data files with a merge of the records which qualify. This can be expanded to up to 10 data files but will require a change to the procedures XRASP and XOP.

When doing a merge-file retrieval, all files, Index Data Set and libraries must be named. The symbolic parameters for naming the files are ISAM, ISAM1, and ISAM2 for indexed sequential data files and SAM, SAM1, and SAM2 for sequential data files. In a merged-file run both ISAM and SAM data files can be named.

The symbolic parameters for naming the Index Data Sets associated with the retrievals in a merged-file file are XINDEX1, XINDEX2, and XINDEX2.

The symbolic parameters for naming the libraries are LIB, LIB1, and LIB2. Library designations do not necessarily correspond to the data file designations; i.e., LIB may not be the library associated with ISAM or LIB1 with ISAM1. Also it is not necessary to specify a library for each data file. However, when library actions are to be performed, the library parameters used take on special significance. Library action will be performed against the library specified by the LIB or LIB1 symbolic parameters. If a library name was specified for LIB, the action will be against that library. If LIB was not specified and a name was specified for LIB1, the action will be for that library. If neither was specified or the library disposition was not specified, no library action will take place.
JOB PREPARATION

In the following example, index sequential data file TEST360 and sequential data file TRAINERS will be queried using libraries TEST36OL and TRAINERL. Library action would be performed with library TEST360L. TRAINERS is an indexed file.

//RET1 EXEC XRASP,ISAM=TEST360,SAM=TRAINER,LIB=TEST360, X LIB1=TRAINER,LIBDISP=OLD,INDEX=TRAINER

//RASP.SYSIN DD *

(RASP CONTROL AND SOURCE LANGUAGE STATEMENTS)

/*

3.9 SAM TO ISAM Procedure (XSTOIS)

This procedure is used to load a tape data file (SAM) to disk (ISAM). Space is allocated separately for INDEX, PRIME, and OVFLOW areas. The procedure defaults these areas to 1, 40, and 5 cylinders, respectively. The disposition of the new disk file defaults to KEEP.

If the input is SAM file on unlabeled magnetic tape and its block size is not 1,004 bytes, its block size must be specified with the BSZFILE symbolic parameter.

The BSZNEWF symbolic parameter is used to specify a new block size for the ISAM file. If it is not used, the ISAM block size will be the same as the input SAM block size.

The procedure also can be used to create an ISAM file in the compression/compaction form or to recreate a standard form ISAM file. The PARM parameter can be used for specifying the option. The default value is the form of the input file. The options are:

- PARM=COMPRESS for compression only
- PARM=COMPACT for compaction only
- PARM='COMPRESS,COMPACT' for both compression and compaction
- PARM=EXPAND for reversing the compression/compaction process to produce standard form data records
JOB PREPARATION

All unused PRIME space will be filled with system generated PAD records. The PARM option NOPAD may be used if this feature is not desired, e.g.:

PARM=NOPAD

3.9.1 Sample Job Setup

The following JCL could be used to load the TEST36OS file from tape-to-disk. It is desired to increase the PRIME area to 50 cylinders and catalog the new data set. The SAM file is not cataloged.

//STOIS EXEC XSTOIS,SAM=TEST360,PRIME=50, X
 VSAM='SER=MYTAPF',ISAM=TEST360, X
 VISAM='SER=MYPACK',NISP=CATLG
/

3.10 Subroutine Loader Procedure (XSUBLDR)

This procedure is used to place user subroutines on the file library. The two inputs are the user subroutine in load module form on a temporary or permanent data set and a control card. The MODLIB parameter is used to specify the name of the data set containing the input subroutine. It defaults to $TEMP which is the name of the data set containing the subroutine if the ASMFCL procedure has been used in a prior step of the job to assemble and link edit the subroutine.

3.10.1 Sample Job Setup

The following JCL could be used to assemble, link-edit, and add a subroutine to the TEST36OL library which is cataloged. The subroutine is named DTGIS.

Note: The MODLIB DSNANE is not specified on the EXEC card since it defaults to the DSNANE of the assembler job step output ($TEMP).

//ASML EXEC ASMFCL
//ASML.SYSIN DD *

SUBROUTINE SOURCE DECK (DTGIS)
/*
3.11 Table Generation Procedure (XTABGEN)

This procedure is used to generate one or more table(s). The input is a card deck containing the argument/function pairs and the generated table(s) is placed on the user's File Library.

3.11.1 Sample Job Setup

The following JCL could be used to place one or more table(s) on the TEST36OL library which is not cataloged and resides on a 2314 with a volume serial number of MYPACK.

```
//GEN EXEC XTABGEN,LIB=TEST360,
// VLIB='SER=MYPACK'
//TAB.SYSIN DD *
```

INPUT CARD DECK DEFINING ONE OR MORE TABLES.

/*

3.12 Source Language Library Procedure (XUTSOURC)

This procedure may be used to add, replace, delete, or list members from a source library. The library is a direct access partitioned data set which may be the file library or a special library for source material.

3.12.1 Sample Job Setup

The following JCL could be used to list a member named MYRITS from the TEST360L library.

```
//LIST EXEC XUTSOURC,SOURCL=TEST360,NAME=MYRITS
/*
The following JCL could be used to add, replace, or delete source members from the TEST360L library.

\[ //UPD EXEC XUTSOURC,SOURC=TEST360 \\
//SYSIN DD * \\
ADD NAME=MYRITS OP
\]

Source Cards for MYRIT

\[ //REPL NAME=RETROIS RASP
\]

Source Cards for RETROIS

\[ //DELETE NAME=RETR07S
\]

3.13 1410 to 360 Conversion (X360CON)

This procedure is used to convert 1410 NIPS databases to the NIPS 360 FFS format. The NIPS 360 FFS must be structured on disk, the input 1410 file is on tape and the new NIPS 360 file is also on tape.

3.13.1 Sample Job Setup

The following JCL could be used to convert the TESTA 1410 file to the NIPS 360 FFS TEST360 file. TESTA is on a seven-track tape at 556 BPI with a volume serial number of XX1410. The TEST360 FFS is on disk, not cataloged, and will be deleted after conversion (specified by the ODISP parameter). The new TEST360S file will be cataloged on a standard label tape whose volume serial number is '123456'.

\[ //CON EXEC X360CON,ISAM=TEST360,LAB=SL, ODISP=DELETE,NDISP=CATLG, VISAM='SER=XX1410', VSAM='SEP=123456' //GO.SYSIN DD *
\]

1410 FFS OBJECT DECK
3.14 360 to 1410 Conversion (X1410CON)

This procedure is used to convert NIPS 360 FPS data bases to the 1410 NIPS format. The NIPS 360 FPS input is an ISAM data base on disk; the output is tape.

Note: S/360 input for conversion must be an ISAM data base.

When specifying the file name of the new 1410 file, using the SAM symbolic parameter, adhere to 1410 file name rules. The name must be five characters long, beginning with an alphabetic character and ending in 'A'.

The tape used for the new 1410 file must have had at least one block or a tape mark written on it in the same density and track format as is desired for the 1410 file. This should be done with an OS utility (IEBGENER) prior to the conversion step. If more than one volume is expected as output, the number must be specified using the VOLCOUNT field of the volume JCL parameter.

3.14.1 Sample Job Setup

The following JCL could be used to convert the TEST360 file to the 1410 file called TESTA. The 1410 file is created on a 7-track tape, 556 BPI density. TEST360 is cataloged.

```sh
//CON EXEC X1410CON,ISAM=TEST360,SAM=TESTA
//GO.SYSIN DD *

1410 TESTA FFT OBJECT DECK
```

If two volumes are expected for the new 1410 file, add the following parameter to the EXEC card:

```sh
VSAM='(,,2,SER=FL1410)'
```

3.15 List Logic Statement/Report Names Procedure (XDMPLIB)

This procedure is used to enable the user to list report names and/or logic statement names from his file. The
procedure allows the data file to reside on either SAM or ISAM.

3.15.1 Sample Job Setup

The following JCL would list all report names and logic statement names residing on an uncataloged ISAM file named TESTER. The unit is a 2314 disk pack with the volume serial number of MYPACK.

```plaintext
// EXEC XDMPLIB,ISAM=TEST360,VISAM='SER=MYPACK'
//UTDMP.SYSIN DD *
PRINT,REPORT,ALL
/*
```

3.16 Subroutine Check Procedure (XSUBCHK)

This procedure is used to check out a user-written subroutine. The LIB symbolic parameter identifies the user library on which the subroutine resides. The ULIB and VLIB symbolic parameters must be coded if the library is not cataloged.

Input to the XSUBCHK procedure is a card deck containing a control card and test data cards. The control card identifies the subroutine.

3.16.1 Sample Job Setup

The following JCL could be used to test a subroutine on the TEST360L library. The TEST360L library is cataloged.

```plaintext
// EXEC XSUBCHK,LIB=TEST360
//SUBCHK.SYSIN DD *
CONTROL CARD
DATA CARDS
/*
```

3.17 Classification Change Procedure (XCLASS)

This procedure is used to change the classification of a MIPS 360 PFS data file. If the input is a SAM file on unlabeled magnetic tape and its block size is not 1,004
bytes, its block size must be specified with the BSZFILE symbolic parameter.

Use symbolic parameter BSZNEWF to change the block size of the file.

3.17.1 Sample Job Setup

The following JCL could be used to change the classification of an ISAM data file. If it is an uncataloged data set that resides on a 2314 pack with a volume serial number of MYLIB.

```
// EXEC XCLASS,ISAM=TEST360,VISAM='SER=MYLIB'
//CLASS.SYSIN DD *
```

CLASSIFICATION CARD

```
CLASSIFICATION CARD

The following JCL could be used to change the classification of a SAM file on tape. The input is a cataloged data set that resides on a 9-track tape. The output is a 9-track scratch tape with the volume serial number of TSTVOL.

// EXEC XCLASS,SAM=TEST360,
// VSMOUT='SER=TSTVOL',SAMOUT=
//CLASS.SYSIN DD *
```

CLASSIFICATION CARD

```
CLASSIFICATION CARD

Note that SAMOUT= must be coded on the EXEC card for any CLASS run that changes the classification on a SAM tape file.

The following JCL could be used to change the classification of a SAM file on disk. It is an uncataloged data set that resides on a 2314 pack with a volume serial number of MYLIB.
3.18 Data Field Scan Procedure (XUTFSCAN)

This procedure is used to scan all of a user's source component statements to count the number of data field references in each source, to provide a total count of references for each component and to provide transactions suitable for updating and maintaining a NIPS data file. If the input is a SAM file on unlabeled magnetic tape and its block size is not 1,004 bytes, its block size must be specified with the BSZFILE symbolic parameter.

3.18.1 Sample Job Setup

The following JCL would count the data field references in each component source statement for the ISAM file named TEST360. Some of the source statements are members of the library TEST360L and some are cards in the input stream. Transaction records will also be output.

```
// EXEC XUTFSCAN,ISAM=TEST360,UISAM='SER=MYPACK'
// LIB=TEST360,VLIB='SER=MYPACK',TRANS=TEST360T,
// VTRANS='SER=MYPACK'
//SYSIN DD *
./ SOURCE COMP=FM,NAME='TESTO A',MEMBER=TESTA
./ SOURCE COMP=RASP,NAME=TEST01
.: :
RASP QUERY
./ SOURCE COMP=OP,NAME=TESTOP
.: :
OP RIT
.: :
./ SOURCE COMP=QUIP,NAME=QTEST,MEMBER=QTESTA
/*
```
3.19 Index Specification Procedure (XSP)

This procedure is used to specify keyword indexing information for a data file without running a File Structure or File Maintenance job. The disk-resident Index Data Set may be either generated or updated from either an ISAM or SAM data file.

Both SUB/TAB and INDEX statements are accepted and must be specified through the SYSIN device. Both additions and deletions of indexed fields may be made in the same run.

If, for any reason, the Index Data Set is destroyed but the file remains operational, the user has the option to recreate the Index Data Set to have it correspond with the existing file by specifying PARM='GEN' and XDISP='NEW'. If the input is a SAM file on unlabeled magnetic tape and its block size is not 1,004 bytes, its block size must be specified with the BSZFILE symbolic parameter.

3.19.1 Sample Job Setup

The first example is used to generate a new Index Data Set from an existing ISAM data file.

```//GENXSP EXEC XSP,XINDEX=TEST360,XDISP=NEW, // XVOL='SER=MYPACK',LIB=TEST360, // VLIB='SER=MYPACK',ISAM=TEST360, // VISAM='SER=MYPACK', //XSP.SYSIN DD INDEX STATEMENTS /*
```

The second example is used to update an existing Index Data Set from an existing SAM data file.

```//UPDXSP EXEC XSP,XINDEX=TEST360,XVOL='SER=MYPACK', // LIB=TEST360,VLIB='SER=MYPACK', // SAM=TEST360,VSAM='SER=MYTAPE', // LAB=SL,DEN=2, // SAMOUT=,VSMOUT='SER=NEWTAPE', //XSP.SYSIN DD INDEX STATEMENTS /*
```
JOB PREPARATION

The third example is used to recreate an Index Data Set from an existing SAM file containing Index Descriptor records. In this example new changes are desired to the indexed fields. However, the Index Descriptor records may be updated by including the proper Index Statements.

```bash
//RECXSP EXEC XSP,PARM='GEN',XINDEX=TEST360,
// XVOL='SER=MYPACK',LIB=TEST360,
// VLIB= 'SER=MYPACK',SAM=TEST360,
// VSAM='SER=MYTAPE',LAB=SL,
// DEN=2,SAMOUT='VSMOUNT='SER=NEWTAP',
// XDISP=NEW
//XSP.SYSIN DD
/*
```

3.20 Unload Index Data Set Procedure (XTRDISK)

This procedure is used to copy a disk-resident, direct-access organization, Index Data Set to a tape-resident, sequential-access organization data set. The XFNAME and XFVOL symbolic parameters must be supplied for the Input Index Data Set. The XTNAME and XTVOL symbolic parameters must be supplied for the unloaded data set residing on tape. No control statements are required.

If statistics on the content of the index data set are desired, STAT=YES should be designated. When this option is chosen the corresponding data file name and volume must also be specified. The parameters are ISAM and VISAM for an ISAM data base and SAM and VSAM for a SAM data base.

3.20.1 Sample Job Setup

The following JCL would unload the TEST360X Index Data Set from a 2314 disk pack to a 9-track labeled tape.

```bash
//STEPNAME EXEC XTRDISK,
// XTNAME='INDEXSAM',XTVOL='SER=MYTAPE',
// XFNAME=TEST360X, XFVOL='SER=MYPACK
/*
```

The following JCL would unload and print the contents of the TEST360X index data set.
3.21 Load Index Data Set Procedure (XTRTAPE)

This procedure is used to reconstruct a disk-resident direct access organization Index Data Set from a previously unloaded sequential access organization data set. The XFNANE and X?VOL symbolic parameters must be supplied for the input tape. The XTNAME and XTVOL symbolic parameters must be supplied for the Output Index Data Set on disk.

3.21.1 Sample Job Setup

The following JCL would load the TEST360X Index Data Set to a 2314 disk pack from a 9-track labeled tape.

```jcl
//STEPNAME EXEC XTRTAPE,
//                 XTNAME=TEST360X,XTVOL='SER=MYPACK',
//                 XFNANE=INDEXSAM,XPVOL='SER=MYTAPE'
```

3.22 Keyword Analysis (XKA)

This procedure is used to obtain printed listing of text, nonkeywords, and keywords that occur in a data base without updating the index data set. No DD card overrides are necessary, but a DD statement named SYSIN must always be included to identify the user's input. A file name must be specified using either the ISAM or SAM symbolic parameter. If a user scan subroutine, stop word table, or dictionary is required, the library name must be specified with the LIB symbolic parameter.

3.22.1 Sample Job Setup

The following JCL would be used to analyze keyword fields in the TEST360 ISAM data base:
3.23 Dictionary Maintenance Utility (XKM)

This procedure is used to generate or update keywords, stop word tables and dictionaries. More than one stop word table or dictionary may be created or updated in one run provided that all are members in one library (specified by the LIB parameter), stop word table and dictionary names, maintenance commands, and data are accepted through the SYSIN device.

3.23.1 Sample Job Setup

The following JCL would be used to maintain any or all stop word tables and dictionaries in the TEST360 library.

```
// EXEC XKA,LIB=TEST360
// XKA.SYSIN DD *
/*

3.24 Format Definition Translator Procedure (XUTODE)

This procedure is used to place format definitions on the user library. The input definition statements may be in punched cards or in card image records stored in a library. More than one format definition may be added to the library at a time.

3.24.1 Sample Job Setup

The following JCL would be used to add a format definition in punched cards to the user library, TEST360.
JOB PREPARATION

// EXEC XUTODE,LIB=TEST360,VLIB='SER=MYPACK'
//SYSIN DD *
    Definition source statement cards.
/*

To add a format to the TEST360 library when the definition source statements reside in a library (MYLIB), the following JCL would be used.

// EXEC XUTODE,LIB=TEST360,VLIB='SER=MYPACK'
//SYSIN DD DSN=MYLIB(FORMAT1),VOL=SER=MYPACK2,
 Disp=(SHR,KEEP),UNIT=2314,
 DCB=(RECFM=FB,LRECL=80,BLKSIZE=800
/*

Note that the definition source statements may be on any library, including TEST360. The only restriction is that the source member name is not the same as the name of the format definition.

56
This section will examine the four procedures used by NIPS 360 PFS that do not execute a NIPS component or utility. These procedures are made available for users to perform the backup and restore functions of RASP generated QRT and QDF answer sets and user libraries. The utilities IEBGENER and IEHMOVE are used to perform the backup and restore functions. These utility programs are documented in the S/360 Systems Reference Library, Utilities manual. Use of these procedures requires knowledge of these programs and their JCL requirements.

The sample jobs will omit the JOB card that is always required for S/360 OS jobs. These supplementary procedures do not execute NIPS components or utilities and therefore do not require a STEPLIB card.

Note: In all JCL examples, the "X" signifying a continuation card is always punched in card column 72, even though it is no longer required by the operating system.

4.1 Restore Answers Procedure (XRESTANS)

This procedure is used to load QRT and QDF answer data sets from tape to disk. The procedure is set up to default the space allocation for the QRT and the QDF if not specified at execution time. The XRESTANS procedure assumes that the QRT and QDF was copied to tape by the XSAVEANS procedure.

4.1.1 Sample Job Setup

The following JCL could load the QRT and QDF answer data sets from tape to disk. It is desired to decrease the space allocation for both the QRT and the QDF. The QRT and QDF answer data sets will be used by subsequent job steps but will not be kept at job termination.
The following JCL could load a QRT named MYQRT and a QDF named MYQDF from tape to disk. It is desired to save the QRT and QDF answer data sets on disk.

```
//RESTORE EXEC XRESTANS, VTAPE='SER=MYTAPE', X
// QRTSP='(5,1)', QDFSP='(10,5)' */
```

4.2 Restore Library Procedure (XRESTLIB)

This procedure uses the IEHMOVE utility program to load a user library from tape to disk. The XRESTLIB procedure requires that a volume on which a work data set needed for the IEHMOVE program can be placed be identified with the VWORK symbolic parameter. The LIB and VTAPE symbolic parameters must be supplied for the unloaded user library residing on tape. The ULIB and VLIB symbolic parameters must be supplied for the disk volume that is to receive the user library. The control statement required by the IEHMOVE utility program must be provided.

4.2.1 Sample Job Setup

The following JCL could load the TEST36OL library from tape to a 2314 disk pack with the volume serial number MYPACK. The TEST36OL library presently resides on a standard labeled, 800 BPI tape labeled MYTAPE.

```
//RESTLIB EXEC XRESTLIB, LIB=TEST360, VLIB='SER=MYPACK', X
// VTAPE='SER=MYTAPE', VWORK='SER=WORK06', X
// LAB=SL
//RESTLIB.SYSIN DD *
COPY PDS=TEST360, FROM=2400=MYTAPE, TO=2314=MYPACK, */
```
4.3 Save Answers Procedure (XSAVEANS)

This procedure is used to unload the QRT and QDF answer data sets from disk to tape.

4.3.1 Sample Job Setup

The following JCL could unload the QRT/QDF answer set from disk to tape. The QRT is named MYQRT and the QDF is named MYQDF. The QRT/QDF answer set resides on a 2314 disk pack with the volume serial number MYPACK.

```plaintext
//SAVE EXEC XSAVEANS, QRT=MYQRT, QDF=MYQDF,
//UQRT=2314, VQRT='SER=MYPACK',
//UQDF=2314, VQDF='SER=MYPACK',
//VTAPE='SER=QRTQDF'
```

The following JCL could unload a QRT/QDF answer set from disk to tape. This example assumes that RASP was executed in a prior step and that the data set names for the QRT/QDF will be the temporary defaults established in the XPASP procedure.

```plaintext
//SAVE TEMP EXEC XSAVEANS, VTAPE='SER=QRTQDF'
```

4.4 Save Library Procedure (XSAVELIB)

This procedure is used to unload a user library from disk to tape. The XSAVELIB procedure requires that a volume on which a work data set needed for the IEHMOVE program can be placed be identified with the VWORK symbolic parameter. The LIB and VTAPF symbolic parameters must be supplied for the unloaded user library. The ULIB and VLIB symbolic parameters must be supplied for the disk volume on which the library resides. The control statement required by the IEHMOVE utility program must be supplied.
4.4.1 Sample Job Setup

The following JCL could unload the TEST360L library from a 2314 disk pack with the volume serial number MYPACK to a tape with the volume serial number MYTAPE.

```
//SAVELIB EXEC XSAVELIB,LIB=TEST360,VLIB='SER=MYPACK', X
 VTAPE='SER=MYTAPEx',VWORK='SER=WORK06'
//SAVELIB.SYSIN DD *
 COPY PDS=TEST360L,FROM=2314=MYPACK,TO=2400=MYTAPEx, X
 TODD=TAPE
/*
```
Section 5

PRODUCTION PROCEDURES DESCRIPTION

Production procedures are available for the three major NIPS components: FM, RASP, and OP. These procedures (FMEX, RASPEX, OPEX, and OPSDEX) were developed for the production environment in which execution only is required of previously compiled RITs, retrievals and logic statements. Data sets not required during execution have been eliminated to reduce direct access storage requirements and allocation/deallocation overhead. The reduction in the number of data definition (DD) statements permits more job steps per job. Specifications of symbolic parameters and override DD statements for the production procedures are the same as for the normal component procedures.

5.1 FM Production Procedure (XFMEX)

The procedure XFMEX is used to update a SAM or ISAM file using previously compiled logic statements. It may not be used if logic statement compilation is necessary, nor if a file is to be generated. The intended use of the XFMEX procedure is for production update runs only.

Specifications of symbolic parameters and override DD statements for the production procedure XFMEX are the same as for the normal component procedure FM.

5.2 OP Production Procedure (XOPEX, OPSDEX)

The procedures XOPEX and OPSDEX are used to publish output using previously structured RIT's. Procedure XOPEX is used when publishing the results of a RASP retrieval run (SOURCE RETRIEVAL); procedure OPSDEX is used when publishing directly from a data file (SOURCE DIRECT). These procedures may not be used if a RIT is to be structured. The intended use of procedures XOPEX and OPSDEX is for production runs only.

Specifications of symbolic parameters and override DD statements for the production procedures XOPEX and OPSDEX
are the same as for the normal component procedures XOP and XOPSD.

5.3 Compression and Compaction of Data Records

Compression and compaction provide a means for the reduction of intermediate storage requirements for data without altering the integrity of the data. This data reduction scheme is particularly suited to data files that contain strings of identical characters or a large quantity of alphabetic data.

A string of identical characters is compressed by translating it to two bytes. The first byte is a control byte which indicates that compression has been applied and gives a count of the number of identical consecutive bytes that were in the original string. The second byte is identical to those in the original string.

A string of alphabetic characters is compacted by translating it to a control byte followed by a string of coded characters. The control byte indicates that compaction has been applied and gives a count of the coded characters. Each coded character represents a combination of two adjacent alphabetic characters.

Compression and compaction can be applied to data files by specifying COMPRESS or COMPACT or 'COMPRESS/COMPACT', if both features are desired, as PARM values in the EXEC statement that calls procedures for UTBLDSAM, UTBLDISM and FM (file generation mode only). If both compression and compaction are specified, compression is applied to a record first and data within the record that cannot be compressed is processed by the compaction routine.

The compression and compaction process can be reversed by specifying EXPAND as the PARM value on the EXEC statement that calls the procedures for UTBLDSAM and UTBLDISM. EXPAND does not apply to FM processing.
5.4 RASP Production Procedure (XRASPEX)

The procedure XRASPEX is used to execute previously compiled single-file or merge-file retrievals. It may not be used to compile a retrieval or to add a retrieval to a library. The intended use of procedure XRASPEX is for production retrievals only.

Specifications for symbolic parameters and override DD statements for the production procedure XRASPEX are the same.
This section addresses the procedures and considerations under which the S/370 user of NIPS FFS may create and process a NIPS file using the Virtual Storage Access Method (VSAM). Each NIPS procedure which might be used to process a VSAM file is examined and the VSAM service routine IDCAMS is examined for use with NIPS VSAM files.

The sample jobs will omit the job card which is always required and standard for each installation.

NIPS PROCEDURES ARE DISTRIBUTED WITHOUT STEPCAT DD CARDS. VSAM USERS SHOULD ADD A STEPCAT TO EACH DISTRIBUTED PROCEDURE.

NOTE: NIPS FFS will not currently process a VSAM NIPS file in the terminal environment. Also NIPS FFS will not process VSAM files which are not NIPS files.

6.1 VSAM Service Routine IDCAMS

VSAM processing requires that VSAM files be defined before they can be accessed by any program or system, including NIPS. The VSAM service routine IDCAMS is used for this purpose. By making use of the various options available, the user can create user catalogs, define clusters (allocate and catalog data sets), copy data sets, move data sets from one operating system to another, and recover from certain types of data damage.

Four of the IDCAMS options are of interest to the NIPS user.

- Creating a NIPS user catalog
- Defining a cluster for a VSAM file
- Converting an ISAM FILE to VSAM
- Deleting an unneeded cluster
JOB PREPARATION

6.1.1 Creating a NIPS User Catalog

All VSAM data sets must be cataloged on a user or a master catalog. In normal applications, the user's VSAM file will be cataloged on the NIPS user catalog. This provides for user control of his data sets. The following JCL could be used to create a NIPS user catalog:

```
//DCAT EXEC PGM=IDCAMS
//DDMST DD DSN=AMASTCAT,DISP=SHR
//DDNIP DD UNIT=3330,VOL=SER=xxxxxx,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSSIN DD *

DEFINE USERCATALOG -
(NAME (NIPSM) VOLUME (xxxxxx) -
 FILE (DDNIP) TRACKS (133,8)) -
 DATA (RECORDS (23,8))
```

In the preceding example the DDMAST statement points to the master catalog, needed to receive a catalog entry for the NIPS user catalog; and the DDNIP statement points to the disk pack which will contain the NIPS user catalog. The NIPS user catalog was named NIPSM. A complete discussion concerning the creation of user catalogs is contained in the OS/VS Access Methods Services manual (GC26-3836).

6.1.2 Defining a Cluster for a VSAM File

Prior to running a NIPS job which creates a new VSAM file, the user must first define the cluster that represents that VSAM file via IDCAMS. In defining the cluster, the user specifies the name of the file, the volume that contains the file, the key size and location, etc. The following JCL could be used to define a cluster for the VSAM file VSAM.SECOND:

```
//DCLUS EXEC PGM=IDCAMS
//S?EPCAT DD DSN=NIPSM,DISP=SHR
//DDNIP DD UNIT=3330,VOL=SER=xxxxxx,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSSIN DD *

DEFINE CLUSTER -
(NAME (VSAM.SECOND) VOL(xxxxxx) -
 KEYS (21,1) BUFEPSSPACE(13312) -
```
In the preceding example the STEPCAT statement points to the NIPS user catalog which will contain the catalog entry for the VSAM file. The DDNIP statement points to the disk pack which will contain the VSAM file.

For NIPS VSAM files the KEYS parameter is specified as follows:

KEYS (KS, 1)

where KS is the keysize. The key is a minimum of 15 bytes and consists of the following:

a. Two bytes for system control
b. The user defined major control group
c. The largest user or system defined set control group, a minimum of four bytes.

A complete discussion concerning the definition of a cluster is contained in the OS/VS Access Method Services Manual.

6.1.3 Converting an ISAM File to VSAM

The user can use the IDCAMS service routine to convert an existing ISAM file to a new VSAM file. The following JCL could be used to convert the ISAM file, ISAM.SECOND, to the VSAM file, VSAM.SECOND:

```
//REP EXEC PGM=IDCAMS
//STEPCAT DD DSN=NIPS.M,DISP=SHR
//DDVSAM DD DSN=VSAM.SECOND,DISP=OLD
//DDISAM DD DSN=ISAM.SECOND,UNIT=3330, VOL=SER=xxxxxxx,DISP=SHR,
// DCB=D5ORG=IS
```
In the preceding example the STEPCAT statement specifies the NIPS user catalog containing the catalog entry for the VSAM file. The DDVSAM statement specifies the VSAM file and the DDISAM statement specifies the input ISAM file.

6.1.4 Deleting a Cluster

If it becomes necessary to delete a VSAM file, the user must use IDCAMS to delete the file. IDCAMS will scratch the file from the user's disk pack and will delete the file catalog entry in the NIPS user catalog. The following JCL could be used to delete the VSAM file, VSAM.SECOND:

```jcl
//DCAT EXEC PGM=IDCAMS
//STEPCAT DD DSN=NIPSM,DISP=SHP
//DDNIP DD UNIT=3330, VOL=SER=xxxxxx, DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYandin DD *
DELEIp VSAM.SECOND CATALOG (NIPSM) -
FILE (DDNIP) PURGE
/*
```

In the preceding example the STEPCAT statement specifies the user NIPS catalog containing the catalog entry for the VSAM file to be deleted and the DDNIP statement points to the disk pack containing the VSAM file. A complete discussion of the delete procedure within IDCAMS is contained in the OS/VS Access Service Methods Manual.

6.2 File Maintenance (FM)

When File Maintenance (FM) is used to process a VSAM file, as either a data base, transaction source or APR file, the user must specify the NIPS user catalog that contains the catalog entry for the VSAM file. This is done by including the VSCAT parameter on the EXEC statement. The following is an example of a completed VSCAT parameter:

```jcl
//FM EXEC XFM, VSCAT=NIPSM
```
6.2.1 VSAM Generate

When running a VSAM generate operation, the user must specify the name of the VSAM file containing the PFT via the VSDSN parameter, and the name of the newly generated VSAM file via the NEWVSM parameter. These two file names (DSNAMES) cannot be the same, as they refer to two different VSAM files. The file specified by the NEWVSM parameter will be the newly generated file and must have been previously defined via the VSAM service routine IDCAMS (section 6.1.2). The user must not include any of the parameters associated with an ISAM generate. The following job could be used to generate a VSAM file:

```plaintext
//GEN EXEC XFM, VSCAT=WIPSM, LIB=PRIME,
// VSDSN='VSAM.FFT.PRIME',
// NEWVSM='VSAM.PRIME'
//FM.SYSIN DD *
$FNS/GEN,PRIME,XXX,,DISK,CARD
. GENERATE TRANSACTIONS
. /*
```

In the above example, the term DISK on the $FNS control card denotes that the data base will be either ISAM or VSAM.

6.2.2 VSAM Update

When running a VSAM update, the user specifies the name of the VSAM file with the VSDSN parameter. The user must not include any of the symbolic parameters associated with an ISAM update. The following job could be used to update a VSAM file:

```plaintext
//UPD EXEC XFM, VSCAT=WIPSM,
// VSDSN='VSAM.PRIME',
// LIB=PRIME
//FM.SYSIN DD *
$FNS/UPD,PRIME,XXX,,DISK,CARD
. UPDATE TRANSACTIONS
. /*
```
JOB PREPARATION

In the above example, the term DISK on the $PNS control card denotes that the database is either ISAM or VSAM.

6.2.3 VSAM Transactions

When an FM generate or update is to be performed using a VSAM file as the transaction source, the user must code the FM.TRANSD DD override statement which specifies the DSNAME, DISP and AMP parameters. The AMP parameter must be coded as follows:

AMP='AMORG'

Additional subparameters may be specified as set forth in the OS/VS VSAM Programmer's Guide (GC26-3838).

If more than one VSAM file is to be used as the transaction source, each file must be identified by a separate DD statement. The DD statements must be named ISTRANxx, where xx is a unique identifier for each DD statement. The same parameters specified for a single VSAM file on the FM.TRANSD DD statement must be specified for each VSAM file on the corresponding ISTRANxx DD statement. The $PNS/xxx control card would specify the transaction source as ISAM. The following job could be used to update a VSAM file using a VSAM file as input transactions.

```
//UPD EXEC XPM,VSCAT=NIPSM,
// VSDSN='VSAM.PRIME',
// LIB=PRIME
//FM.TRANSD DSN=VSAM.SECOND,DISP=SHP,
// AMP='AMORG'
//FM.SYSIN DD *
$PMS/UPD,PRIME,ZZZ,,DISK,ISAM
/*
```

6.2.4 Processing SAM Files with a VSAM FPT/LS

It is possible for the user to elect to perform a SAM file generate using the FPT and logic statements from a VSAM file. This can be accomplished by specifying the VSCAT, VSDSN, and SAMOUT parameters along with the other parameters needed to perform a SAM run. The following job could be used to generate a SAM file using a VSAM FPT:
**JOB PREPARATION**

```plaintext
//SGEN EXEC XFM,VSCAT=NIPSM,
 VSDDSN='VSAM.PRIME',
 SAMOUT='VSMOUT='SEP=xxxxxx'
//FN.SYSIN DD *
$FNS/GEN,PRIME,YYY,,TAPE,CARD
.
. GENERATE TRANSACTIONS
.
/*

The user can also perform a SAM update while using the FPT and logic statements from an existing VSAM file. This is accomplished by preparing the EXEC statement for a normal SAM update while including the VSCAT parameter and overriding the FN.ISAMWORK DD statement to point to the VSAM file. The user must provide the DSNAMe, DISP, and AMP parameters on the ISAMWORK DD statement. The following job could be used to update a SAM file using the FPT and logic statements from a VSAM file:

```plaintext
//SUPD  EXEC XFM,VSCAT=NIPSM,
     SAM=PRIME,LIB=PRIME,
     VSAM='SER=xxxxxx',
     VSMOUT='SER=xxxxxx',
     SAMOUT=
//FN.ISAMWORK DD DSN=VSAM.PRIME,DISP=SHR,
     AMP='AMORG'
//FN.SYSIN DD *
$FMS/UPD,PRIME,XYZ,,TAPE,CARD
.
.  UPDATE TRANSACTIONS
.
/*

6.2.5 Other FM VSAM Considerations

If the user employs the APP operator in POOL to address a VSAM file, the DD statement for the referenced VSAM file must specify the DSNAMe, DISP and AMP parameters. Also the user must include the VSCAT parameter on the EXEC statement. The following DD statement could be used for an APP referenced VSAM file:

```plaintext
//APPVSM DD DSN=VSAM.PRIME,DISP=SHR,
 AMP='AMORG'
```
The BSZNEWF parameter used to specify output block size does not apply when generating a VSAM file, as its block size was established when the file cluster was defined via IDCAMS.

When the user is performing a SAM generate with a VSAM FFT, BSZNEWF must be used to specify the block size of the new SAM file if a block size other than 1004 is desired.

6.3 File Revision (PR)

File Revision (PR) will revise the format of a NIPS VSAM file as well as a SAM or ISAM file. The new FFT can be either an ISAM FFT or a VSAM FFT. When running PR against a VSAM file or using a new VSAM FFT, the user must include the VSCAT symbolic parameter on the EXEC statement to specify the NIPS user catalog.

When the user is revising an old VSAM file, the EXEC statement must include the VSOLDF parameter (specifying the old file name) and the TRANYP parameter (equal to VSAM). Additionally, the following JCL override DD statement must be included:

```
//PR.VSAM DD AMP='AMORG'
```

When the new FFT is a VSAM file, the user must include the VSDSN parameter (specifying the FFT name) on the EXEC statement.

The following JCL could be used to revise an old VSAM file using a new VSAM FFT:

```
//REV
EXEC XPR,VSCAT=NIPS,N,
//
VSDSN='NEW.PRINE',
//
VSOLDF='VSAM.PRIME',
//
TRANYP=VSAM,
//
VSMOUT='SER=xxxxxx'
//PR.VSAM DD AMP='AMORG'
//PR.SYSIN DD *
/*
PR CONTROL CARDS
```

71
JOB PREPARATION

The block size of the new SAM file will be 1004 when the file being revised is a VSAM file, unless a different block size is specified in the BSZNEWP parameter on the EXEC statement.

6.4 File Structure (FS)

File Structure (FS) is used to structure the PET for a new file. This new file can be either an ISAM file or a VSAM file. When the new file is VSAM, the user must have previously defined the file using the VSAM service routine IDCAMS (section 6.1.2). To structure a VSAM file PET, the user must include the VSCAT parameter (specifying the name of the NIPS user catalog), the VSDSN parameter (specifying the name of the VSAM file), and the NONVS parameter (must equal 'DUMMY,'). The following JCL could be used to structure a VSAM PET:

```jcl
//FSSTR EXEC XPS, VSCAT=NIPSM,
// VSDSN='VSAM.PET.PRIME',
// NONVS='DUMMY,',
// LIB=PRIME
//FS.SYSIN DD *
SOURCE PET DECK
/*
```

The BSZNEWP parameter, which is normally used to specify a block size other than 1004, has no application when structuring a VSAM PET. Block size was specified when the VSAM file was defined with the IDCAMS utility.

If the structure of a VSAM PET fails, the file will not be automatically deleted. The user must delete the VSAM file using IDCAMS (section 6.1.4) and then redefine the file with IDCAMS prior to rerunning the FS job.

6.5 VSAM to SAM Procedure (XISTOS)

The procedure which is used to unload an ISAM file to SAM (XISTOS) can also be used to unload a VSAM file. To unload a VSAM file, the user must include the VSCAT parameter (specifying the NIPS catalog) and the VSDSN parameter (specifying the VSAM file name) on the EXEC statement. ISAM parameters are not permitted. The block size of the output SAM file will be 1004 unless
JOB PREPARATION

overridden by use of the BSZNEWP parameter on the EXEC statement. The following JCL could be used to unload a VSAM file:

```plaintext
//VSTS EXEC XISTOS, VSCAT=NIPSM,
// VSDSN='VSAM.PRIME',
// SAM=PRIME, VSAM='SER=xxxxxx'
/*
```

6.6 OP

The user of a VSAM file can use the OP component of NIPS to produce reports as if the file was an ISAM file. To process a VSAM file, the user specifies the name of the VSAM file using the ISAM parameter and the NIPS user catalog with the VSCAT parameter. The user must also include the following JCL override statement:

```plaintext
//OP.DATAFILE DD AMP='AMORG'
```

The following JCL could be used to run a source direct OP against the VSAM.PRIME file:

```plaintext
//SD EXEC XOPS D, VSCAT=NIPSM,
// ISAM='VSAM.PRIME', LIB=PRIME
//OP.DATAFILE DD AMP='AMORG'
//OP.SYSIN DD *
// OP CONTROL CARDS
/*
```

To perform merged file processing against VSAM files, the user must specify the name of the NIPS user catalog with the VSCAT parameter and the names of the VSAM files using the ISAM, ISAM1, and ISAM2 parameters. For each VSAM file used, the user must include a JCL override DD statement to specify AMP='AMORG'. The DD statements are DATAFILE for ISAM, DATAFILE1 for ISAM1 and DATAFILE2 for ISAM2. Additional secondary files may be specified by including a DATAFILEx DD statement for each additional file, when x is a 1-digit number from 3 to 9. Each DD statement must contain the file DSNAME, DISP=SHR and AMP='AMORG'. The following JCL could be used to run a merged file source direct OP against VSAM files:

---

73
JOB PREPARATION

//SD3 EXEC XOPS,D,VSCAT=NIPS,M,
// ISAM='VSAM.PRI',ISAM1='VSAM.SECOND',
// ISAM2='VSAM.THIRD',LIB=PRIME
//OP.DATAFEL DD AMP='AMORG'
//OP.DATAPL1 DD AMP='AMORG'
//OP.DATAPL2 DD AMP='AMORG'
//OP.DATAPL3 DD AMP='AMORG',DSN=VSAM.FORTH,
// DISP=SHR
//OP.SYSIN DD *
/*
OP CONTROL CARDS
*/

The only operand which must be coded for the AMP parameter is 'AMORG'. Additional operands can be supplied and their descriptions are contained in the OS/VS VSAM Programmer's Guide (GC26-3838).

6.7 QUIP

Information can be retrieved and output from VSAM files using QUIP, but only in the batch mode. To process a VSAM file using QUIP the user must specify the NIPS user catalog with the VSCAT parameter and the name of the file in the ISAM parameter. The user must also override the DATAFILE DD statement to specify AMP='AMORG'. The following JCL could be used to run a source direct QUIP against a VSAM file:

//QPVM EXEC XQUIPSD,VSCAT=NIPS,M,
// ISAM='VSAM.PRI',LIB=PRIME
//QUIP.DATAPL DD AMP='AMORG'
//QUIP.SYSIN DD *
/*
QUIP SOURCE STATEMENT
*/

When using I'O, the first two secondary files are specified by using the ISAM1 and ISAM2 parameters on the EXEC statement. The user must also override the DATAFEL1 and DATAFIL2 DD statements to include the AMP='AMORG' parameter. If more than two secondary files are required, each additional file must be specified by including a DATAFILX DD statement, where x is a unique 1-digit number. The DD statement must include the DSNAME, DISP=SHR and AMP='AMORG'. A total of nine secondary files may be specified. The following JCL could be used to run a source direct QUIP with I'O against VSAM files.
JOB PREPARATION

```plaintext
//Q PVSM EXEC XQUIPS D,VSCAT=NIPS ,
// ISAM='VSAM.PRIME', ISAM1='VSAM.SECOND',
// ISAM2='VSAM.THIRD', LIB=PRIM E
//QUIP.DAT AFILE DD AMP='AMORG'
//QUIP.DAT AFILE1 DD AMP='AMORG'
//QUIP.DAT AFILE2 DD AMP='AMORG'
//QUIP.DAT AFILE3 DD DSN=VSAM.FOPTH, DISP=SHR, AMP='AMORG'
//QUIP.SYSIN DD *
/*
QUIP SOURCE STATEMENTS
*/
```

The only operand which must be coded for the AMP parameter is 'AMORG'. Additional operands can be supplied as described in the OS/VS VSAM Programmer's Guide (QC26-3838).

6.8 RASP

RASP may be used to retrieve data from a VSAM file for output by OP or QUIP. To retrieve data from a VSAM file the user must specify the NIPS user catalog with the VSCAT parameter and the file name with the ISAM parameter. The user must also override the DATAFILE DD statement to include AMP='AMORG'.

When doing a merged file retrieval against VSAM files, the user must specify the names of the additional files via the ISAM1 and ISAM2 parameters and must provide overrides for the DATAFIL1 and DATAFIL2 DD statements to include AMP='AMORG'. When more than three files are being processed, the user must add a DATAFILx DD statement for each file, where x is a unique one digit number. Each DD statement must have a DSNAME, DISP=SHR and AMP='AMORG'. The following JCL could be used to run a RASP against VSAM files:

```plaintext
//RASP EXEC XRASP,VSCAT=NIPS,
// ISAM='VSAM.PRIME',
// ISAM1='VSAM.SECOND',
// LIB=PRIME
//RASP.DAT AFILE DD AMP='AMORG'
//RASP.DAT AFILE1 DD AMP='AMORG'
//RASP.SYSIN DD *
/*
RASP SOURCE STATEMENTS
*/
```
JOB PREPARATION

The only operand which must be coded for the AMP parameter is 'AMORG'. Additional operands can be supplied as described in the OS/VS VSAM Programmer's Guide (GC26-3838).

6.9 SAM to VSAM Procedure (XSTOIS)

The procedure which is used to load an ISAM file from a SAM file (XSTOIS) can also be used to load a VSAM file. To load a VSAM file, the user must first define the file using the VSAM service routine IDCAMS (section 6.1.2). To use the XSTOIS procedure for VSAM, the user must specify the NIPS user catalog with the VSCAT parameter, specify the file name with the VSDSN parameter and void the ISAM files by specifying NONVSM='DUMMY,'. The following JCL could be used to load a VSAM file:

```
//STOVS EXEC XSTOIS,VSCAT=NIPSN,
// VSDSN='VSAM.PRIME',
// NONVSM='DUMMY',
// SAM=PRIME,VSAM='ser=xxxxxx'
/*
```

6.10 XDMPLIB

To run an XDMPLIB job against a VSAM file, the user must specify the NIPS user catalog with the VSCAT parameter and the file name with the ISAM parameter. The user must also override the DATAFILE DD statement to include AMP='AMORG'. The following JCL could be used to run an XDMPLIB job against a VSAM file:

```
//DMP EXEC XDMPLIB,VSCAT=NIPSN,
// ISAM='VSAM.PRIME'
//UTDMP.DATAPFILE DD AMP='AMORG'
//UTDMP.SYSIN DD *
 XDMPLIB CONTROL CARDS
/*
```

Additional AMP operands may be specified as described in the OS/VS VSAM Programmer's Guide (GC26-3838).
JOB PREPARATION

6.11 XCLASS

To change the classification of a VSAM file, the XCLASS procedure would be used. The user must specify the NIPS user catalog with the VSCAT parameter and the file name with the ISAM parameter. The DATAPFILE DD statement must be overridden to include AMP='AMORG'. The following JCL could be used to change the classification of a VSAM file:

```
//CLS EXEC XCLASS,VSCAT=NIPSM,ISAM='VSAM.PRIME'
//CLASS.DATAPFILE DD AMP='AMORG'
//CLASS.SYSIN DD *
CLASSIFICATION CARD
/*
```

Additional AMP operands may be specified as described in the OS/VS VSAM Programmer's Guide (GC26-3838).

6.12 XUTFSCAN

To use a VSAM file as the input for a field scan job, the user specifies the NIPS user catalog with the VSCAT parameter and the file name with the ISAM parameter. The DATAPFILE DD statement must be overridden to include AMP='AMORG'. The following JCL could be used to run an XUTFSCAN involving a VSAM file:

```
// EXEC XUTFSCAN,VSCAT=NIPSM,ISAM='VSAM.PPRIME',
// LIB=PRIME,TRANS=PRIMET
//UTFLDSCN.DATAPFILE DD AMP='AMORG'
//UTFLDSCN.SYSIN DD *
SCAN CARDS
/*
```

Additional AMP operands may be specified as described in the OS/VS VSAM Programmer's Guide (GC26-3838).

6.13 XSP

The XSP procedure can be used to perform index specification on a VSAM file. The user must specify the NIPS user catalog with the VSCAT parameter and the file name with the ISAM procedure. The NEWFILE DD statement must be overridden to include AMP='AMORG'. The following JCL could be used to index a VSAM file.
JOB PREPARATION

//XSPV EXEC XSP,VSCAT=NIPSM,
// ISAM='VSAM.PRIME',XINDEX=PPIME,
// XVOL='SER=xxxxxx',LIB=PRIME
//XSP.NEWFILE DD AMP='AMORG'
//XSP.SYSIN DD *
/* INDEX CARDS */

Additional AMP operands may be specified as described in the

6.14 XTRDISK

When the user is unloading an Index Data Set for a VSAM
file and the option STAT=YES is specified, the NIPS user
catalog must be specified with the VSCAT parameter and the
file name with the ISAM parameter. The DATAPILE DD
statement must be overridden to include AMP='AMORG'. The
following JCL could be used to unload the index of a VSAM
file:

//STPS EXEC XTRDISK,VSCAT=NIPSM,STAT=YES,
// ISAM='VSAM.PRIME',XFILENAME=PRIME
//XTR.DATAPILE DD AMP='AMORG'
/*

Additional AMP operands may be specified as described in the

6.15 XKA

The XKA procedure can be used to perform keyword
analysis on a VSAM file. The user must specify the NIPS
user catalog with the VSCAT parameter and the file name with
the ISAM parameter. The DATAPILE DD statement must be
overridden to include AMP='AMORG'. The following JCL could
be used to perform keyword analysis on a VSAM file:
JOB PREPARATION

//KEY EXEC XKA, VSCAT=NIPSAM,
// ISAM='VSAM.PRIME', LIB=PRIME
//XKA.DATAPFILE DD AMP='AMORG'
//XKA.SYSIN DD *
*/

XKA CONTROL CARDS

Additional AMP operands may be specified as described in the OS/VS VSAM Programmer's Guide (GC26-3838).
## Appendix A

### SYMBOLIC PARAMETER DEFINITIONS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUXBUFN</td>
<td>This defines the number of buffers used by the auxiliary output data sets in FM.</td>
</tr>
<tr>
<td>AUXSP</td>
<td>This defines the space allocation for temporary storage of auxiliary output and card transactions in FM.</td>
</tr>
<tr>
<td>BLK</td>
<td>This defines the blocksize for the library created by XTABGEN or XSUBLDR. It defaults to 7294.</td>
</tr>
<tr>
<td>BLKSIZE</td>
<td>This defines the blocksize for the Index Data Set.</td>
</tr>
<tr>
<td>BSZFILE</td>
<td>This is used to indicate the block size of an input SAM file on unlabeled magnetic tape. Its use is required only when the block size is not 1,004 bytes.</td>
</tr>
<tr>
<td>BSZNEWF</td>
<td>This is used to change the block size of a file, or to specify a block size greater than 1,004 bytes when creating a file.</td>
</tr>
<tr>
<td>CHKDSP</td>
<td>This parameter defines the conditional disposition for the work data sets and the CHECKDD data set utilized in checkpoint/restart in case of an ABEND.</td>
</tr>
<tr>
<td>CHKID</td>
<td>This parameter defines the DSNAMES for the work data sets and the CHECKDD DD statement in the 'execute only' procedure.</td>
</tr>
<tr>
<td>PARAMETER</td>
<td>DEFINITION</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>CHKSP</td>
<td>This parameter defines the space allocated for the data set (CHECKDD DD card) utilized in checkpoint/restart for the 'execute only' procedures.</td>
</tr>
<tr>
<td>CYLOFL</td>
<td>This specifies amount of cylinder overflow for a data base generated by FM or loaded to disk from tape.</td>
</tr>
<tr>
<td>DEN</td>
<td>This specifies the tape density.</td>
</tr>
<tr>
<td>DNSMOUT</td>
<td>This defines the name of the SAM file generated by this run. If this parameter is not used, the data set name in the FMS control card is used.</td>
</tr>
<tr>
<td>EROPT</td>
<td>This specifies the error option to be selected when an I/O error occurs while reading SAM transactions in FM.</td>
</tr>
<tr>
<td>FPT</td>
<td>These define the FPTs for use with non-NIPS files.</td>
</tr>
<tr>
<td>PFT1</td>
<td></td>
</tr>
<tr>
<td>PFT2</td>
<td></td>
</tr>
<tr>
<td>GEN</td>
<td>This is used to control the allocation of the NEWFILE data set in FM.</td>
</tr>
</tbody>
</table>

Please note that all references to secondary indexing functions include keyword indexing functions. Keyword stop word tables and dictionaries are stored as members in either private user libraries or in the common DUMMY.FILEL library. To obtain keyword functions, use secondary indexing procedures and specify symbolic parameters to include the libraries that contain keyword data (see File Libraries, section 2.3.3).

INDEX     | This defines the number of cylinders allocated to the index of a new ISAM data file. |
ISAM      | These define ISAM or VSAM data file names. |
ISAM1     | ISAM2 |
JOBLIB     | This defines the partitioned data set containing program load modules. |
<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOBMAC</td>
<td>This defines the partitioned data set containing generative code macros.</td>
</tr>
<tr>
<td>LAB</td>
<td>This defines label types for sequential files.</td>
</tr>
<tr>
<td>LABIN</td>
<td>This defines the label type for the SAM data file for the XTRDISK procedure when requesting the statistics option.</td>
</tr>
<tr>
<td>LIB</td>
<td>These define user-library file names.</td>
</tr>
<tr>
<td>LIB1</td>
<td></td>
</tr>
<tr>
<td>LIB2</td>
<td></td>
</tr>
<tr>
<td>LIBDISP</td>
<td>This defines the disposition of user library(s).</td>
</tr>
<tr>
<td>NAME</td>
<td>This specifies the name of the member to be listed from a source library.</td>
</tr>
<tr>
<td>NBRBLK</td>
<td>This defines the number of blocks required to hold the Index Data Set.</td>
</tr>
<tr>
<td>MCTSP</td>
<td>This defines the space allocation for temporary storage of new data records and data records whose key or length has changed during an FM update.</td>
</tr>
<tr>
<td>MODLIB</td>
<td>This defines the name of the user's subroutine library for the subroutine loader.</td>
</tr>
<tr>
<td>NDISP</td>
<td>This defines the disposition of the ISAM data file in XPS and XSTOIS procedures, and the disposition of the new file in 360 to 1410 conversion.</td>
</tr>
<tr>
<td>NEWFPT</td>
<td>This defines the name of the new FFT for FR.</td>
</tr>
<tr>
<td>NEWVSM</td>
<td>This defines the name of the newly generated VSAM file in FM.</td>
</tr>
<tr>
<td>NRMDISP</td>
<td>This parameter defines the normal disposition for the work data sets and the CHECKDDD data set utilized in checkpoint/restart in case of an ABEND.</td>
</tr>
<tr>
<td>PARAMETER</td>
<td>DEFINITION</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>NONVSM</td>
<td>This is used to control allocation of ISAM data files when processing VSAM files in FS and XISTOS.</td>
</tr>
<tr>
<td>ODISP</td>
<td>This defines the disposition of the old data file in the X360CON and the XISTOS procedures.</td>
</tr>
<tr>
<td>OLDDLAD</td>
<td>This defines the label parameter of the 1410 data file during data conversion.</td>
</tr>
<tr>
<td>OLDSAM</td>
<td>This defines the name of the old SAM file in the XISTOS procedure.</td>
</tr>
<tr>
<td>OLDSAM</td>
<td>This defines the volume for the old SAM file in the XISTOS procedure.</td>
</tr>
<tr>
<td>OSDISP</td>
<td>This defines the disposition of the old SAM file in the XISTOS procedure.</td>
</tr>
<tr>
<td>OVFLOW</td>
<td>This defines the number of cylinders allocated to the overflow area for a new ISAM data file.</td>
</tr>
<tr>
<td>PRIME</td>
<td>This defines the number of cylinders allocated to the prime area for a new ISAM data file.</td>
</tr>
<tr>
<td>PTFJOBL</td>
<td>This defines the data set name of a partitioned data set containing the PTF load modules.</td>
</tr>
<tr>
<td>PTFJOBM</td>
<td>This defines the data set name of the partitioned data set containing PTF generative code macros.</td>
</tr>
<tr>
<td>QDF</td>
<td>This defines the name of the RASP qualified data file if other than a temporary name is required.</td>
</tr>
<tr>
<td>QDFSP</td>
<td>This defines the space allocation for the RASP qualified data file.</td>
</tr>
<tr>
<td>QDISP</td>
<td>This defines the disposition of the RASP qualified data file and qualified record table.</td>
</tr>
<tr>
<td>QRT</td>
<td>This defines the name of the RASP qualified record table.</td>
</tr>
<tr>
<td>PARAMETER</td>
<td>DEFINITION</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>QRTSP</td>
<td>This defines the space allocation for the RASP qualified record table.</td>
</tr>
<tr>
<td>SAM</td>
<td></td>
</tr>
<tr>
<td>SAM1</td>
<td>These define SAM data file names.</td>
</tr>
<tr>
<td>SAM2</td>
<td></td>
</tr>
<tr>
<td>SEQNO</td>
<td>This parameter defines the data set's position with respect to other data sets on the volume.</td>
</tr>
<tr>
<td>SDISP</td>
<td>This defines the disposition of the user's source library.</td>
</tr>
<tr>
<td>SLAB</td>
<td>This defines the label type for sort work tapes.</td>
</tr>
<tr>
<td>SAMOUT</td>
<td>This is used to control the allocation of the PMSAMOUT and PMNDATA data sets in PM.</td>
</tr>
<tr>
<td>SORTSP</td>
<td>This defines the cylinder allocation for disk sort work areas.</td>
</tr>
<tr>
<td>STAT</td>
<td>This requests the statistics option for XTPDISK index utility.</td>
</tr>
<tr>
<td>STG</td>
<td>This defines the unit type for sort work areas.</td>
</tr>
<tr>
<td>SOURCL</td>
<td>This defines the user's source library names.</td>
</tr>
<tr>
<td>TBLK</td>
<td>This defines the blocksize for the File Analysis Statistics transaction data set.</td>
</tr>
<tr>
<td>TDISP</td>
<td>This defines the disposition for the File Analysis Statistics transaction data set.</td>
</tr>
<tr>
<td>TRANS</td>
<td>This defines the File Analysis Statistics transaction data file name.</td>
</tr>
<tr>
<td>TRANSp</td>
<td>This defines the space allocation for temporary storage of update transactions with the sort key and logic statement name appended.</td>
</tr>
<tr>
<td>PARAMETER</td>
<td>DEFINITION</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>TRANTYP</td>
<td>This defines to the FM component the data set containing records to be used as transactions during execution of PR. Default value is ISAM. The value for this parameter is either ISAM, SAM or VSAM and denotes the access method associated with the file being revised.</td>
</tr>
<tr>
<td>TRBUFNO</td>
<td>This defines the number of buffers used by some of the transaction temporary data sets.</td>
</tr>
<tr>
<td>TRCH</td>
<td>This specifies the TRTCH DCB parameter for 7-track tapes.</td>
</tr>
<tr>
<td>UCHK</td>
<td>This parameter defines the unit type for the CHECKDD DD statement in the 'execute only' procedures.</td>
</tr>
<tr>
<td>UPFT</td>
<td>This defines the unit type of the new PPT for PR or the unit type of the PTT used with a primary non-NIPS file in QUIP.</td>
</tr>
<tr>
<td>UPFT1/UPFT2</td>
<td>These define the unit type of the PPTs used with secondary non-NIPS files in QUIP.</td>
</tr>
<tr>
<td>UISAM</td>
<td>This defines the unit type for all ISAM files.</td>
</tr>
<tr>
<td>ULIB/ULIB1/ULIB2</td>
<td>These define the unit type for all user libraries.</td>
</tr>
<tr>
<td>UQDF</td>
<td>This defines the unit type for the RASP qualified data file.</td>
</tr>
<tr>
<td>UQRT</td>
<td>This defines the unit type for the RASP-qualified record table.</td>
</tr>
<tr>
<td>USAM</td>
<td>This defines the unit type for all SAM files.</td>
</tr>
<tr>
<td>USMMCT</td>
<td>This defines the unit type of the tape on which the new file will be written if major control fields are changed during an FM SAM or PR run.</td>
</tr>
</tbody>
</table>

85
<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>USMOUT</td>
<td>This defines the unit type of the tape on which the new file will be written if no major control fields are changed during an FM SAM or FR run.</td>
</tr>
<tr>
<td>USOURCL</td>
<td>This defines the unit type for the user source library.</td>
</tr>
<tr>
<td>U1410</td>
<td>This defines the unit for a 1410 data base.</td>
</tr>
<tr>
<td>VCHK</td>
<td>This parameter defines the volume for the CHECKDD DD statement in the 'execute only' procedures.</td>
</tr>
<tr>
<td>VFPT</td>
<td>This defines the volume of the new FFT for FR or the volume of the FFT used with a primary non-NIPS file in QUIP.</td>
</tr>
<tr>
<td>VFPT1</td>
<td>These define the volume of the FFTs used with secondary non-NIPS files in QUIP.</td>
</tr>
<tr>
<td>VFPT2</td>
<td></td>
</tr>
<tr>
<td>VISAM</td>
<td>These define the volume for all ISAM files.</td>
</tr>
<tr>
<td>VISAM1</td>
<td></td>
</tr>
<tr>
<td>VISAM2</td>
<td></td>
</tr>
<tr>
<td>VLIB</td>
<td>These define the volume for user libraries.</td>
</tr>
<tr>
<td>VLIB1</td>
<td></td>
</tr>
<tr>
<td>VLIB2</td>
<td></td>
</tr>
<tr>
<td>VINDEX</td>
<td>These define the volumes on which the respective portions (INDEX, OVFLOW, PRIME) of the new ISAM data set will be allocated during an FM generate run.</td>
</tr>
<tr>
<td>VOVFLOW</td>
<td></td>
</tr>
<tr>
<td>VPRIME</td>
<td></td>
</tr>
<tr>
<td>VSOURCL</td>
<td>This defines the volume of the user's source library.</td>
</tr>
<tr>
<td>VQDF</td>
<td>This defines the volume for the RASP-qualified data file.</td>
</tr>
<tr>
<td>VQRT</td>
<td>This defines the volume for the RASP-qualified record table.</td>
</tr>
<tr>
<td>VSAM</td>
<td>These define the volume for all SAM files.</td>
</tr>
<tr>
<td>VSAM1</td>
<td></td>
</tr>
<tr>
<td>VSAM2</td>
<td></td>
</tr>
<tr>
<td>PARAMETER</td>
<td>DEFINITION</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>VSCAT</td>
<td>This defines the NIPS user catalog for VSAM processing.</td>
</tr>
<tr>
<td>VSDSN</td>
<td>This defines the VSAM file being processed in FM, FS, ISTOS, and STOIS and the new VSAM FFT in FR.</td>
</tr>
<tr>
<td>VSMHCT</td>
<td>This defines the volume on which the new file will be written if major control fields are changed during an FM SAM or FR run.</td>
</tr>
<tr>
<td>VSMOUT</td>
<td>This defines the volume on which the new file will be written if no major control fields are changed during an FM SAM or FR run.</td>
</tr>
<tr>
<td>VSOLDF</td>
<td>This defines the VSAM file being revised in FR.</td>
</tr>
<tr>
<td>V1410</td>
<td>This defines the volume for a 1410 data base.</td>
</tr>
<tr>
<td>XDISP</td>
<td>This defines the disposition of the Index Data Set.</td>
</tr>
<tr>
<td>XFDISP</td>
<td>This parameter describes the status of the &quot;FROM&quot; Index Data Set, and indicates what is to be done with it after termination of UTNDXTFR.</td>
</tr>
<tr>
<td>XFILENAME</td>
<td>This parameter defines the name given to the &quot;FROM&quot; Index Data Set for UTNDXTFR.</td>
</tr>
<tr>
<td>XFUNIT</td>
<td>This UTNDXTFR parameter is used to specify information about the input unit used by the &quot;FROM&quot; Index Data Set.</td>
</tr>
<tr>
<td>XFPVOL</td>
<td>This UTNDXTFR parameter provides information about the volume on which the &quot;FROM&quot; Index Data Set resides.</td>
</tr>
<tr>
<td>XINDEX</td>
<td>This defines the name of the Index Data Set.</td>
</tr>
<tr>
<td>XINDEX1</td>
<td>This defines additional Index Data Sets to be used in a merge file retrieval.</td>
</tr>
<tr>
<td>XINDEX2</td>
<td></td>
</tr>
</tbody>
</table>

7
<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>XTDISP</td>
<td>This parameter describes the status of the &quot;TO&quot; Index Data Set, and indicates what is to be done with it after termination of UTNDXTPR.</td>
</tr>
<tr>
<td>XTNAME</td>
<td>This parameter defines the name given to the &quot;TO&quot; Index Data Set for UTNDXTPR.</td>
</tr>
<tr>
<td>XT VOL</td>
<td>This UTNDXTPR parameter provides information about the volume on which the &quot;TO&quot; Index Data Set resides.</td>
</tr>
<tr>
<td>XUNIT</td>
<td>This is the unit type for the Index Data Set.</td>
</tr>
<tr>
<td>XVOL, XVOL1, XVOL2</td>
<td>These define the volume for Index Data Sets.</td>
</tr>
<tr>
<td>Column 1</td>
<td>Column 2</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>Row 1</td>
<td>Row 2</td>
</tr>
<tr>
<td>Row 7</td>
<td>Row 8</td>
</tr>
</tbody>
</table>

**END**

**DATE FILMED**

3-79

**DOC**
## Appendix B

### INPUT SOURCE DDNAME

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>STEPNAME . DDNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>RASP</td>
<td>RASF.SYSIN</td>
</tr>
<tr>
<td>OP</td>
<td>OP.SYSIN</td>
</tr>
<tr>
<td>FM</td>
<td>FM.SYSIN</td>
</tr>
<tr>
<td>PS</td>
<td>FS.SYSIN</td>
</tr>
<tr>
<td>FR</td>
<td>FR.SYSIN</td>
</tr>
<tr>
<td>QUIP</td>
<td>QUIP.SYSIN</td>
</tr>
<tr>
<td>TABGEN</td>
<td>TAB.SYSIN</td>
</tr>
<tr>
<td>SUBLDR</td>
<td>SUB.SYSIN</td>
</tr>
<tr>
<td>SAM TO ISAM</td>
<td>STP1 (No Input Source)</td>
</tr>
<tr>
<td>ISAM TO SAM</td>
<td>STP1 (No Input Source)</td>
</tr>
<tr>
<td>360CON</td>
<td>G360.SYSIN</td>
</tr>
<tr>
<td>1410CON</td>
<td>G1410.SYSIN</td>
</tr>
<tr>
<td>UTDQDP</td>
<td>QRTQDP.SYSIN</td>
</tr>
<tr>
<td>UTDMLIB</td>
<td>UTDMP.SYSIN</td>
</tr>
<tr>
<td>UTFLDSCH</td>
<td>UTFP.SYSIN</td>
</tr>
<tr>
<td>UTSUBCHK</td>
<td>SUBCHK.SYSIN</td>
</tr>
<tr>
<td>UTCCLASS</td>
<td>CLASS.SYSIN</td>
</tr>
<tr>
<td>UTSOURC</td>
<td>SOURC.SYSIN</td>
</tr>
<tr>
<td>XSP</td>
<td>UTXSPL.SYSIN</td>
</tr>
<tr>
<td>UTNDXXKAN</td>
<td>XKA.SYSIN</td>
</tr>
<tr>
<td>XKM</td>
<td>XKM.SYSIN</td>
</tr>
<tr>
<td>XKA</td>
<td>XKA.SYSIN</td>
</tr>
</tbody>
</table>
## Appendix C

### PROCEDURES DESCRIPTIONS

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>XOP</td>
<td>This procedure is normally only used to publish the results of a PASP retrieval run or to structure an FIT.</td>
</tr>
<tr>
<td>XOPSD</td>
<td>This procedure is used to publish directly from a data base or to structure a FIT.</td>
</tr>
<tr>
<td>XPM</td>
<td>This procedure is used to perform all file maintenance functions.</td>
</tr>
<tr>
<td>XPS</td>
<td>This procedure is used to structure a data base.</td>
</tr>
<tr>
<td>XRASP</td>
<td>This procedure is used to retrieve and sort data from one or more data files.</td>
</tr>
<tr>
<td>XISTOS</td>
<td>This procedure is used to convert an ISAM or VSAM data file to a SAM tape data file or copy a SAM tape data file to a SAM tape data file.</td>
</tr>
<tr>
<td>XSTOIS</td>
<td>This procedure is used to convert a SAM tape data base to an ISAM or VSAM disk data base.</td>
</tr>
<tr>
<td>XSUBLDR</td>
<td>This procedure is used to link-edit a user subroutine (which has already been assembled) into a file library with the necessary control information to load the subroutine at execution time.</td>
</tr>
<tr>
<td>XFMEX</td>
<td>This procedure is used to perform file maintenance updates using stored logic statements.</td>
</tr>
<tr>
<td>XRASPEX</td>
<td>This procedure is used to retrieve and sort data from one or more data files using stored retrievals.</td>
</tr>
<tr>
<td>XOPEX</td>
<td>This procedure is used to publish the results of a PASP retrieval run using a stored FIT.</td>
</tr>
<tr>
<td>XOPSDEX</td>
<td>This procedure is used to publish directly from a data file using a stored FIT.</td>
</tr>
<tr>
<td>PROCEDURE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>XTABGEN</td>
<td>This procedure is used to generate tables and place them in a user library.</td>
</tr>
<tr>
<td>X1410CON</td>
<td>This procedure is used to convert a NIPS 360 FFS data base to a 1410 NIPS data base.</td>
</tr>
<tr>
<td>X360CON</td>
<td>This procedure is used to convert a 1410 NIPS data base to a NIPS 360 FFS data base.</td>
</tr>
<tr>
<td>XFR</td>
<td>This procedure is used to revise a NIPS 360 FFS data base to a new format.</td>
</tr>
<tr>
<td>XQBTQDF</td>
<td>This procedure is used to create a NIPS 360 FFS data file from the answer file produced by RASP.</td>
</tr>
<tr>
<td>XQUIP</td>
<td>This procedure is used to publish the results from a RASP retrieval run.</td>
</tr>
<tr>
<td>XQUIPSD</td>
<td>This procedure is used to retrieve, sort, and output directly from a NIPS 360 FFS data file or a S/360 non-NIPS data file.</td>
</tr>
<tr>
<td>XDMPLIB</td>
<td>This procedure is used to print logic statements and/or report names from a NIPS 360 FFS data file.</td>
</tr>
<tr>
<td>XSUBCHK</td>
<td>This procedure is used to test user-written subroutines.</td>
</tr>
<tr>
<td>XCLASS</td>
<td>This procedure is used to change the classification on any NIPS 360 FFS data file.</td>
</tr>
<tr>
<td>XUTFSCAN</td>
<td>This procedure is used to scan component source statements and count the number of data field references in each source statement.</td>
</tr>
<tr>
<td>XUTSOURC</td>
<td>This procedure is used to add, replace, delete, or list source members from a library.</td>
</tr>
<tr>
<td>XSP</td>
<td>This procedure is used to either generate or update an Index Data Set based on an ISAM data file.</td>
</tr>
<tr>
<td>PROCEDURE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>XTRDISK</td>
<td>This procedure is used to transfer a disk-resident Index Data Set to tape. This operation condenses the Index Data Set. The tape so created is a sequential data set consisting of variable-length blocked records that contain the source data and control information for subsequently reconstructing the Index Data Set.</td>
</tr>
<tr>
<td>XTRTAPE</td>
<td>This procedure is used to reconstruct a disk-resident Index Data Set from a previously unloaded sequential version.</td>
</tr>
<tr>
<td>XKA</td>
<td>This procedure is used to obtain printed listings of text, nonkeywords, and keywords that occur in a file without updating the index data set.</td>
</tr>
<tr>
<td>XKM</td>
<td>This procedure is used to create, update, or display a stop word table or dictionary.</td>
</tr>
</tbody>
</table>
These procedures issue return codes which may be tested by subsequent steps of the job. A successful return code is issued upon satisfactory completion of the job step; an unsuccessful return code is issued if the job step is not satisfactorily completed. Satisfactory completion means that the results of the job step are usable for a succeeding job step.

The XOP and XOPSD procedures will issue a return code of 151 when no output is published, unless output was not requested; in this case a return code of 151 will be issued if no RITS are structured. The other procedures will issue unsuccessful return codes when the step is terminated without ASENDING.

Return codes issued by all preceding steps may be tested; e.g., COND=(3,GE); those issued for any specific step or combination of steps; i.e., COND=((131,EQ), (181,GE)), to bypass this job step if either the PM step or the UTQRTQDF job step was not satisfactorily completed.
JOB PREPARATION

See the IBM System/360 Operating System Job Control Language Reference, Form GC28-6704 for a description of the use of return codes.
JOB PREPARATION

Appendix E

NIPS PROCEDURE DD STATEMENT USAGE

PROCEDURE: XPS (File Structuring)

STEPCAT  Defines the NIPS user catalog for VSAM processing.

STEPLIB  Defines the NIPS system library.

SLIB  Defines the user and system libraries.

NEWVSM  Defines the VSAM FPT output by FS phase 2. The file must have been previously defined by IDCAMS.

NEWFILE  Defines the FPT output of FS phase 2. It is an indexed sequential data set. If the FPT is to be saved, the ISAM, VISAM, and DISP symbolic parameters must be coded accordingly.

SORTLIB  Defines the S/360 Operating System’s sort library.

SORTWK01 through SORTWK06  Defines work data set used by SORT. They must all be the same unit type.

SORTIN  Defines the output of FS phase 1 and input to SORT. Contains the temporary FPT entries, one per FIELD or GROUP card.

SORTOUT  Defines the output of SOPT and input to FS phase 2. Contains the temporary FPT entries sorted into alphabetical order on FIELD and GROUP names.

SYSPRINT  Defines the printed output of FS. Contains FPT listings and any error messages.
JOB PREPARATION

DELNEW  Defines the PS output that is scratched if the PS run was unsuccessful due to errors.
SOURCPRT  Defines a printer output data set used for source listings.
SOURCLIB  Defines a library used to store source material.
SYSUT1  Temporary data set for INDEX Specification statements to be processed by the INDEX Specification processor, IXSP, which builds descriptor (D) records for the file.
SYSIN  Defines the input source statements for PS. This statement must be supplied by the user as //PS.SYSIN DD *.

PROCEDURE: XFR (File Revision)

The following DD statements appear in the FR and PRTST steps of this procedure. For a description of all other DD statements, refer to the XFM procedure.

STEPCAT  Defines the NIPS user catalog for VSAM processing.
STEPLIB  Defines the NIPS system library.
SYSOUT  Defines a printer output data set for sort messages.
SYSPRINT  Defines a printer output data set.
SYSUDUMP  ABEND dump printer output.
SYSPUNCH  Defines a punch output data set.
OLDVSM  Defines the VSAM data file to be revised.
VSMFILE  Defines the data set containing the new VSAM FFT.
OLDFILE  Defines the ISAM data file to be revised.
JOB PREPARATION

SAMPLE  Defines the SAM data file to be revised.

DATAFILE  Defines a data set containing the new ISAM PFT.

TDDRCDS  Defines a temporary data set for generated TDD cards.

POOLRCDS  Defines a temporary data set for generated POOL statements.

FRVSN A  Defines a temporary data set containing first 24 generated logic statements.

FRVSNB  Defines a temporary data set containing second group of 24 generated logic statements if needed.

FRVSN C  Defines the temporary data set containing a third group of 24 generated logic statements if needed.

FRGENCD  Defines the temporary data set FMS control card for file generation steps; passed to GENT and GEND steps.

SORTLIB  Defines the S/360 Operating System's Sort library.

SORTIN  Defines the temporary data set containing intermediate work records to be sorted.

SORTWK01 through SORTWK06  Defines the work data sets used by SORT. They must all be the same unit type.

SORTOUT  Defines the temporary data set for sorted intermediate work records.

SYSIN  Defines the input source statements for FR. This statement must be supplied by the user as //FR.SYSIN DD *.

TRAN TYP  Defines the DD card to be used for input transaction to FM.
JOB PREPARATION

**ISAM**
Defines to FM where update transactions may be found. Entries in this DD correspond to the OLDFILE DD.

**SAM**
Defines to FM where update transactions may be found. Entries in this DD correspond to the SAMFILE DD.

**VSAM**
Defines to FM where update transactions may be found. Entries in this DD correspond to the OLDEVSM DD.
JOB PREPARATION

**PROCEDURE: XFM, XFMEX (File Maintenance)**

**STEPCAT**  
Defines the NIPS user catalog for VSAM processing.

**STEPLIB**  
Defines the NIPS system library.

**SYSOUT**  
Printer output for sort messages.

**SYSPRINT**  
Printer output for remainder of FM.

**SYSLIST**  
Printer output for assembler listing of logic statements.

**SYSUDUMP**  
ABEND dump printer output.

**VSMFILE**  
Defines the VSAM data file to be processed by FM.

**NEWVSM**  
Defines the VSAM data file generated by an FMS/GEN. This data file must have been previously defined by IDCAMS.

**DATAFILE**  
Defines the indexed sequential data file to be processed by FM.

**NEWFILE**  
Defines the indexed sequential data file created during an FM generation run. The user normally codes the INDEX, PRIME, and OVFLOW symbolic parameters accordingly on the EXEC card.

**FMCOMM**  
Defines a temporary data set used for section communication data.

**FMFLUD**  
Defines a temporary data set used for logic statement compilation and contains formatted images of the user's input statements.

**FMTRANS**  
Defines a temporary data set containing the images of card transactions, if any.

**FMLABELS**  
Defines a temporary data set containing lists of POOL instruction labels used in the logic statements.
JOB PREPARATION

FMSTAT  Printer output for statistics gathered during the run.

FMCM  Defines a temporary data set containing an intermediate form of the logic statement control records.

FMCMFILE  Defines a temporary data set containing the logic statement control member records in their final format.

FMLITFILE  Defines a temporary data set containing the literals produced for logic statement compilation.

SYSLIB  Identifies the library containing those macros necessary to generate logic statements (Gen Code macros).

FMLEIN  Defines the temporary data set containing the output of the compiler.

SYSLMOD  Defines the data set containing the logic statement CSPCT load modules.

TEMLSREC  Defines the temporary data set containing the list of the names of temporary logic statements.

SORTLIB  Defines the S/360 Operating System's sort library.

SORTIN  Defines the data sets containing the unsorted update records.

TAPEIN  Defines the work data sets residing on disk and used by sort.

SORTWK01 through SORTWK06

SORTOUT  Defines the data sets containing the sorted update records.

TAPEOUT  Defines the work data sets residing on tape and used by sort.

TAPEWK01 through TAPEWK04

FMLEFILE  Defines the temporary data set containing the linkage editor control statements.
JOB PREPARATION

FMMACRO Defines the temporary data set containing the input to the FM compiler.

FMOUTMAC Defines the temporary data set containing the Gen Code macro statements that will be input to the FM compiler.

RECSIN Defines a temporary data set containing new data records and subsets to be used as input to a data record sort. These records will eventually be merged into the data file to form the new SAM data file.

RECSOUT Defines a temporary data set containing the sorted new data records and subsets.

RECSWK01 through RECSWK06 Defines the disk sort work areas for the sort of the data records.

TRANS Defines the transaction input file. This DD statement must be overridden by the user to identify a single disk or transaction data set. For multiple transaction sources see section 3.1.

FMSSTTBL Defines the temporary data set containing a list of the periodic set numbers to be accessed by the FM run.

FMAUXOP Defines a temporary data set containing all the auxiliary output records. All auxiliary records, regardless of device they are to be written to, are first written to FMAUXOP.

PUNCH Defines the punch data set for the user's punched output.

AUX1 through AUX5 Defines the data sets for tape or disk auxiliary output. The user must override these DD statements to describe the data sets he wishes to produce.

FMTAUX Defines a temporary data set containing output for a second printer output.
JOB PREPARATION

SLIB Defines a temporary partitioned data set containing temporary logic statements, and the user and system libraries.

OMMACS Defines a temporary data set containing the compiler input of those macros generated for Ordinary Maintenance (OM).

GENFILE Defines a temporary data set used as a work area for the OM compiler.

LITFILE Same properties as FMLITFIL but dedicated for OM use only.

EDITFILE Defines a data set used as a work area by the OM compiler.

FMNFLUD Same properties as FMFLUD but dedicated for OM use only.

FMTFILE Defines a temporary data set containing extended TDD formats for OM.

FMA3FIL Defines a temporary data set containing extended ADD statement records for OM.

FMSODANQ This DD statement prevents the update of a data set simultaneously by SODA (Source Data) and PM.

NFLERR Defines a temporary data set containing error messages reflecting those errors detected by the NFL editing steps.

NFLMACS Defines a temporary data set containing NFL generated macro prototypes with their corresponding parameters; it is used as input to the macro generator.

ASSEMIN Defines two concatenated data sets containing generated macros and those values specified in OM DEFINE statements; all used as input to the assembler.
JOB PREPARATION

ISAMWORK Defines a temporary ISAM data set containing the PFT and logic statement library during sequential file processing.

SAMPLE Defines the sequential data set to be processed by FM.

FMNDATA Defines the sequential output data file when record key changes occurred during sequential file processing.

FMSAMOUT Defines the output sequential data file that is produced by sequential file processing without key changes.

STAT Defines the temporary data set used by the statistics capability.

TRANSF Defines a temporary data set containing the File Analysis Statistics Transactions data file.

SOURCPRT Defines a printer output data set used for source listings.

SOURCLIB Defines a library used to store source material.

SYSIN Defines the input source statements for FM. This statement must be supplied by the user as //FM.SYSIN DD *.

IXTRANS This defines the temporary SAM data set used to hold the Index Transaction Records for input to Index Maintenance.

XINDEX This defines the Index Data Set.
JOB PREPARATION

Procedure: XPASP, XPASPPX (Retrieval and Sort Processor)

STEPCAT  Defines the NIPS user catalog for VSAM processing.

STEPLIB   Defines the NIPS system library.

DATAFILE Defines the indexed sequential data files to be interrogated by RASP.

DATAFILE1 Defines the sequential data files to be interrogated by RASP.

DATAFILE2 Defines the sequential data files to be interrogated by RASP.

QDFILE   Defines the sequential data set generated by RASP containing the retrieval source statements and the subset of qualified records from the retrieval.

SORTOUT Used by S/360 sort. At the end of retrieval proper, this data set is the Qualifying Record Table (QRT) generated during retrieval time.

SORTIN  Defines the input data set (QRT) to S/360 sort.

SORTWK01 Defines the work data sets used by S/360 sort. through SORTWK06

SORTLIB Defines the S/360 Operating System's sort library.

SYSLMOD Defines a temporary data set which first contains RASP source statements and finally compiled retrievals. If permanent retrievals are specified, they are copied from SYSLMOD to the data set defined by the SLIB DD statement.

SLIB    Defines a temporary partitioned data set containing temporary retrievals, the user library and system libraries.

DLIB    Defines the user's primary file library.
JOB PREPARATION

TLIB
Defines the user's secondary file library. Library references will always search the library specified by DLIB before searching TLIB.

SYSLIB
Defines the library containing the Gen Code macros used to generate a retrieval.

DPUNCH
Defines the data set which contains the compiled CSECTS.

SYSUT1
Defines the data set containing the statement factoring input and is used by the assembler and linkage editor for work data sets.

SYSUT2
Defines the data set containing the qualification mask records generated by statement factoring for the translator section. Also used by the assembler for a work data set.

SYSUT3
Defines the data set containing translator generated linkage editor control cards. Also used by the assembler as a work data set.

STEREO
Contains the final stereotype records from Edit Pass 2 used as input to the translator.

STROUTDD
Defines the temporary data set used by the input editor phase only and contains intermediate stereotype records.

ASSEMIN
Defines the assembler input data set generated by the translator.

RSIPUS
Defines a partitioned data set used throughout RASP as the run communications data set.

NAMETAB
Defines the temporary data set containing a list of field/group names as detected by the RASP edit. Resolved by Edit Pass 2 against the FFT.

STAT
Defines the temporary data set used by the statistics capability.
JOB PREPARATION

SYSPRINT Used to print any user data from the RASP component.

SYSOUT Defines a printer output data set containing S/360 sort messages.

SYSDUMP ABEND dump printer output.

XINDEX1, XINDEX2 These define the Index Data Sets to be used.

PRINTER This defines diagnostic messages from Index Processing.

SYSDUMMY Required to negate the printout from the linkage editor.

SOURCPRT Defines a printer output data set used for source listings.

SOURCLIB Defines a library used to store source material.

SYSIN Defines the input source statements for RASP. This statement must be supplied by the user as //RASP.SYSIN DD *.
**Procedure:** XOP, XOPSD, XOPEX, XOPSDEX (Output Processor)

**STEPCAT**
Defines the NIPS user catalog for VSAM processing.

**STEPLIB**
Defines the NIPS system library.

**DATAFILE**
Defines the indexed sequential data files processed by OP.

**DATAFILE1**

**DATAFILE2**

**SAMPLE**
Defines the sequential data files processed by OP.

**SAMPLE1**

**SAMPLE2**

**DLIB**
Permanent RITs will be stored on one of these data sets.

**TLIB**

**SYSPRINT**
Defines printer output data sets.

**SYSOUT**

**SYSUDUMP**
ABEND dump printer output.

**SYSUT1**
Defines temporary work data sets.

**SYSUT2**

**SYSUT3**

**SYSPUNCH**
Defines a temporary data set containing the object modules resulting from the assembly.

**SYSLIB**
Defines a data set containing the Gen Code macros used to generate a RIT.

**SYSLMOD**
Defines an output library for temporary data sets.

**SYSTPRT**
Defines the printer output data set for the assembler and linkage editor listings.

**OPINWCF**
Defines a temporary data set containing OP supervisor control cards. Created by OPBEGIN and used by OPCTLPRC.

**OPSTSTI**
Defines a temporary data set containing RIT specification decks. Created by OPBEGIN and used by OPTAG.
JOB PREPARATION

OPCREATE Defines a temporary data set containing the RIT create cards and pointers to the corresponding specification deck. Created by OPBEGIN and used by OPTAG.

OPCOMREC Defines a temporary data set containing communications for OPTAG. Created by OPBEGIN.

STRUCT Same as OPSTST.

INSTS Defines a temporary data set containing the macro calls and instructions comprising a RIT. Created by OPTAG and used by the assembler.

LCF Defines a temporary data set containing the linkedit control cards for permanent RIT.

LCT Same as LCF but for temporary RITs.

LITSTR Defines a temporary data set containing macro definitions generated by OPTAG defining the communications CSECTs of the RITs that have been structured.

NAMDEF Defines a temporary data set containing a name-definition string defining the attributes, in coded form, of field/group names.

LITAB Defines a temporary data set containing a table of literals defined in a RIT. Created and used by OPTAG.

RGTAB Defines a temporary data set containing a table in internal format of the functions of a RIT. Created and used by OPTAG.

CGC Defines a temporary data set containing a table, by RIT, of CSECT ID used for constructing the link-edit control files.

ERRTAB Defines a temporary data set containing a table of error codes recognized in the editing of the RIT specification decks.
JOB PREPARATION

**DCTNY**
Defines a temporary data set for the storage of a dictionary of data fields and literal names in source form.

**SUBTAB**
Defines a temporary data set created and used by OPTAG for storage of a table of conversion subroutines and tables used by the PIT.

**OPLGOGO**
Defines a temporary data set containing the preliminary execution table. Created and used by OPCTLPRC.

**OPLEXEX**
Defines a temporary data set containing the execution table. Created by OPCTLPRC and used by OPPROPER.

**OPLEXDIR**
Defines a temporary data set containing a directory into the execution table. Created by OPCTLPRC and used by OPPROPER.

**OPLINE**
Defines a printer output data set for the printed output of a RIT.

**OPPUNCH**
Defines a punch output data set for the punched output of a RIT.

**OPRECORD**
Defines a data set for RIT record output.

**SLIB**
Defines libraries of load modules.

**SYSAIN**
Defines a concatenation of the data sets defined by the LITSTR and INSTS DD statements.

**SYSLIN**
Defines the link-edit control file for permanent RITs. (LCP)

**SYSTIN**
Defines the link-edit control file for temporary RITs (LCT)

**LOADR**
Defines a temporary data set containing object modules to be link-edited.
JOB PREPARATION

QDFILE  Defines a temporary data set containing those data records which were qualified by RASP.

QRTFILE  Defines the RASP-generated data set containing sorted pointers into the QDFILE.

STAT  Defines the temporary data set used by the statistics capability.

SOURCPRT  Defines a printer output data set used for source listings.

SOURCLIB  Defines a library used to store source material.
PROCEDURE: XTABGEN (Table Generator)

STEPLIB
Defines the MIP'S system library.

SYSUDUMP
ABEND printer output.

SYSPRINT
Defines a printer output data set.

SORTLIB
Defines the S/360 Operating System's sort library.

SORTWK01 through SORTWK06
Defines the S/360 Sort disk work data sets.

SYSOUT
Defines a printer output data set for the S/360 SORT messages.

SYSLMOD
Defines a partitioned data set where the table is to be stored by the linkage editor.

SYSIN
Defines the TABGEN source input statements. This statement must be supplied by the user as //TAB.SYSIN DD *.
Procedure: XSUBLDR (Subroutine Loader)

STEPLIB  Defines the NIPS system library.
SYSABEND  ABEND dump printer output.
SYSPRINT  Defines printer output data set used to print subroutine loader output.
ASSENIN  Defines the assembler input data set built by the subroutine loader.
LNKEDIN  Defines the linkage editor input data set containing control cards for that processor.
SYSOUT  Defines a printer data set.
SYSUT1  Defines a work data set used by the assembler and linkage editor.
SYSUT2  Defines work data sets used by the assembler.
SYSUT3

ASMBL.SYSLIB  Defines the macro library containing the macro QUTSUBR.
SYSPUNCH  Defines the data set containing the assembler output CSECTS.
ASMBL.SYSIN  Defines the same data set as ASSEMIN.
SYSLMOD  Defines the partitioned data set onto which the user subroutine is to be loaded.
DPUNCH  Defines the same data set as LNKEDIN.
SYSLIN  Defines the same data set as SYSPUNCH.
LKEDIT.SYSLIB  Defines the partitioned data set containing any load modules called internally by the user subroutine.
MODLIB  Defines the partitioned data set containing the user subroutine input load module.
JOB PREPARATION

SYSIN  Defines the input source deck and must be supplied by the user as //SUB.SYSIN DD *.

Procedure: XSTOIS (File Load Utility)

STEPCAT  Defines the MIP$ user catalog for VSAM processing.

STEPLIB  Defines the MIP$ system library.

VSMFILE  Defines the VSAM data file to be loaded. This data file must have been previously defined by IDCAMS.

DATAFILE  Defines the indexed sequential data set to be created.

SANFILE  Defines the sequential data set used to create the ISAM data set.

SYSPRINT  Defines a printer output data set.

SYSUDUMP  ABEND dump printer output.

Procedure: XISTOS (File Unload Utility)

STEPCAT  Defines the MIP$ user catalog for VSAM processing.

STEPLIB  Defines the MIP$ system library.

VSMFILE  Defines the VSAM data set to be unloaded.

DATAFILE  Defines the indexed sequential data set to be unloaded.

SANFILE  Defines the sequential data set to be copied.

SYSPRINT  Defines a printer output data set.

SYSUDUMP  ABEND dump printer output.

SANOUT  Defines the sequential data set to be created.
JOB PREPARATION

**Procedure:** X1410CON (360 to 1410 Data Conversion)

- **STEPLIB** Defines the NIPS system library.
- **SYSPRINT** Defines printer output data sets.
- **SYSOUT**
- **SYSUDUMP** ABEND dump printer output.
- **DATAFILE** Defines the NIPS 360 FFS ISAM data set to be converted to a 1410 data file.
- **NEWFILE** Defines the sequential 1410 data file generated by this utility.
- **SYSIN** Defines the 1410 PFT object deck and must be supplied by the user as //GO.SYSIN DD *.

**Procedure:** X360CON (1410 to 360 Data Conversion)

- **SYSPRINT** Defines printer output data sets.
- **SYSOUT**
- **SYSUDUMP** ABEND dump printer output.
- **DATAFILE** Defines the NIPS 360 FFS ISAM PFT.
- **FILE1410** Defines the 1410 data file.
- **NEWFILE** Defines the NIPS 360 FFS sequential data set generated by this utility.
- **SYSIN** Defines the 1410 PFT object deck and must be supplied by the user as //GO.SYSIN DD *.
PROCEDURE: XORTQDF

STEPLIB   Defines the NIPS system library.
SYSPRINT  Defines a printer output data set.
SYSUDUMP  ABEND dump printer output.
QRTFILE   Defines a data set containing sorted pointers into the QDFILE created by RASP.
QDFILE    Defines a data set containing those data records qualified by RASP.
SAMFILE   Defines a sequential data set which has all the properties of a S/360 SAM data set.
SYSIN     Defines the QRTQDF source input statements. This statement must be supplied by the user as //QRTQDF.SYSIN DD *.
PROCEDURE: XQUIP, XQUIPSD (Quick Inquiry Processor)

STEPCAT
Defines the NIPS user catalog for VSAM processing.

STEPLIB
Defines the NIPS system library.

SYSUT1
Defines temporary work data sets used for structuring the query, and for Index Processing.

SYSUT2

SYSUT3

SYSUT4

SLIB
Defines user and system libraries.

DATAFILE
Defines the indexed sequential or VSAM data set accessed by QUIP in source direct mode.

DATAFILE1
Defines the indexed sequential data sets accessed by QUIP as secondary files in Interfile Output.

DATAFILE2

FPT

FPT1
Defines the FPT data sets which are associated with non-NIPS files being accessed by QUIP.

FPT2

SAMPLE
Defines the sequential data set accessed by QUIP in source direct mode.

SYSPRINT
Defines a printer output data set.

PB
Defines a temporary data set containing those data records qualified by QUIP in source direct mode.

KEY
Defines a temporary data set containing the sort keys generated by QUIP for those data records which qualified in source direct mode.

SORTWK01 through SORTWK04
Defines work areas used by the internal QUIP sort when in source direct mode.

SYSUDUMP
ABEND dump printer output.

SOURCEPRT
Defines a printer output data set used for source listings.
JOB PREPARATION

SOURCLIB  Defines a library used to store source material.

SYSIN    Defines the QUIP source statement input. This statement must be supplied by the user when QUIP is run in the batch partition. It is coded as //QUIP.SYSIN DD *.

QDFILE  Defines the data set containing the data records qualified by RASP.

QRTFILE Defines the RASP-generated data set containing sorted pointers (QRT) into the QDFILE.

STAT    Defines the temporary data set used by the statistics capability.

XINDEX  This defines the Index Data Set.
**Procedure: XDMPLIB**

**STEPCAT** Defines the NIPS user catalog for VSAM processing.

**STEPLIB** Defines the NIPS system library.

**SYSPRINT** Defines a printer output data set.

**SYSUDUMP** ABEND dump printer output.

**DATAFILE** Defines an indexed sequential data set.

**ISAMWORK** Defines a temporary ISAM data set containing the FFT and logic statement library during sequential file processing.

**SAMPLE** Defines the sequential data set to be processed by UTDMLIB.

**SYSIN** Defines the input source control card for UTDMLIB. This statement must be supplied by the user as //UTDMP.SYSIN DD *.
JOB PREPARATION

**Procedure:** XSUBCHK (Subroutine Check)

- **STEPLIB**  Defines the NIPS system library.
- **SYSUDUMP**  ABEND dump printer output.
- **SYSPRINT**  Defines a printer output data set.
- **SYSOUT**  Defines a printer output data set.
- **SLIB**  Defines user and system libraries.
- **SYSIN**  Defines the input source deck and must be supplied by the user as //SUBCHK.SYSIN DD *.
**JOB PREPARATION**

**Procedure: XCLASS (File Classification Change)**

<table>
<thead>
<tr>
<th>Short Description</th>
<th>Detailed Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEPCAT</td>
<td>Defines the NIPS user catalog for VSAM processing.</td>
</tr>
<tr>
<td>STEPLIB</td>
<td>Defines the NIPS system library.</td>
</tr>
<tr>
<td>SYSPRINT</td>
<td>Defines a printer output data set.</td>
</tr>
<tr>
<td>SYSUDUMP</td>
<td>ABEND dump printer output.</td>
</tr>
<tr>
<td>DATAFILE</td>
<td>Defines the ISAM data file to be processed.</td>
</tr>
<tr>
<td>SAMPLE</td>
<td>Defines the sequential data set to be processed. This will be both the input and output data set for sequential processing on disk.</td>
</tr>
<tr>
<td>UTSAMOUT</td>
<td>Defines the output sequential data file that is produced when tape input is used.</td>
</tr>
</tbody>
</table>
| SYSIN               | Defines the CLASS source input card. This statement must be supplied by the user as //CLASS.SYSIN DD *.
**JOB PREPARATION**

**Procedure:** XUTFSCAN (Field Scan)

**STEPCAT**
Defines the MVS user catalog for VSAM processing.

**SYSPRINT**
Defines a printer output data set.

**SYSUDUMP**
ABEND dump printer output.

**DATAFILE**
Defines the ISAM data file.

**SAMPLE**
Defines the SAM data file.

**ISANWORK**
Defines temporary ISAM data set if a SAM data file is input.

**SYSUT2**
Defines partitioned data set containing members to be scanned.

**TRANSL**
Defines the data set for output transactions.

**SYSIN**
Defines input stream. This card must be supplied by the user as //UTP.SYSIN DD *.

**SOURCPRT**
Defines a printer output data set.

**SOURCLIB**
Defines a library used to store source material.

**SYSIN**
Defines the input to the UTSOURC utility. This is not overridden if a LIST operation is desired. This statement is overridden if library update is to be performed.
JOB PREPARATION

Procedure: XSP (Index Specification)

STEPCAT Defines the NIPS user catalog for VSAM processing.

STEPLIB Defines the NIPS system library.

NEWFILE Defines the indexed sequential data file created during an FM run.

XINDEX Defines the Index Data Set.

SORTWK01 through SORTWK06 Defines the S/360 Operating System's Sort work data sets.

SORTLIB Defines the S/360 Operating System's Sort Library.

SYSOUT Defines a printer output data set for Sort messages.

SYSPRINT Defines a printer output data set.

SOURCPRT Defines a printer output data set for Index Specification messages.

SYSUDUMP ABEND dump printer output.

SLIB Defines the user library containing subroutines/tables.

SAMPLE Defines a sequential data file.

UTSAMOUT Defines the updated sequential data file.

ISAMWORK Defines the temporary ISAM data set containing the FFT during sequential file processing in Index Specification.
JOB PREPARATION

**Procedure:** XTRDISK (Index Transfer - Unload)

STEPCAT    Defines the NIPS user catalog for VSAM processing.
STEPLIB    Defines the NIPS system library.
SYSPRINT   Defines the printed output of XTRDISK. Contains any diagnostic messages.
SYSUDUMP   ABEND dump printer output.
INDEXSAM   Defines the output sequential Index Data Set.
INDEXDAM   Defines the input, direct access, disk-resident Index Data Set.
DATAFILE   Defines the ISAM data file corresponding to the index data set.
SAMPLE     Defines the sequential access data file corresponding to the index data set.
JOB PREPARATION

**Procedure:** XTRTAPE (Index Transfer - Load)

STEPLIB: Defines the MIP5 system library.

SYSPRINT: Defines the printed output of XTRTAPE. Contains any diagnostic messages.

SYSUDUMP: ABEND dump printer output.

INDEXSAM: Defines the input, sequential version of an Index Data Set.

XINDEX: Defines the output, disk-resident, direct access Index Data Set.
**Procedure:** XKA (Keyword Analysis)

**STPCAT** Defines the MIPS user catalog for VSAM processing.

**STEPLIB** Defines the MIPS system library.

**DATAFILE** Defines the indexed sequential data file to be analyzed.

**SAMPLE** Defines the sequential data files to be analyzed.

**SLIB** Defines the user library containing subroutine and/or tables.

**SYSPRINT** Defines a printer output data set.

**SOURCLIB** Defines a library used to store source material.

**SOURCPRT** Defines a printer output data set used for source listings.

**SYSUDUMP** Defines a printer output data set for ABEND dump output.

**SYSOUT** Defines a printer output data set containing S/360 sort messages.

**SORTLIB** Defines the S/360 Operating System sort library.

**SORTWK01** Defines the work data sets used by S/360 sort.

**SORTWK01** thru **SORTWK04**

**KANWK01** Defines a temporary work data set.

**KMDPPT** Defines a printer output data set.

**SYSIN** Defines the input user control statement data set for UTNDOXKAN. This statement must be supplied by the user as //XKA.SYSIN DD *.
**JOB PREPARATION**

**Procedure:**

- **XUTODE**
- **STEPLIB** Defines the NIPS system library.
- **SYSUDUMP** Defines a printer output data set for ABEND.
- **SNAPSHOT** Defines a printer output data set for debug.
- **SOURCPRT** Defines a printer output data set for source listings.
- **ODDPRT** Defines a printer output data set for diagnostics.
- **SYSPRINT** Defines a printer output data set.
- **SLIB** Defines the library where the user compiled format will be stored.
- **SOURCLIB** Defines a library used to store source material.
### JOB PREPARATION

**Procedure:** UTNDXKMD

STEPLIB	Defines the MIPS System Library.
SLIB	Defines the user library containing tables.
KMDWK01	Defines UTNDXKMD work data sets.
KMDWK04	
KMDPRT	Defines message and display device, UTNDXKMD.
SYSOUT	Sort message output device.
SYSPRINT	Printer output device.
SORTLIB	S/360 OS Sort Library.
SORTWK01	Sort work data sets.
SORTWK06	
SYSUDUMP	ABEND dump device.
SYSIN	SYSIN device.
Appendix P

PROCEDURE LISTINGS
NIPS 360 F/5 PROCEDURES

//XCLASS PROC A=A,BSZFILE=BSZNEWF*,
//   CL=*,CL=*,DEN=*,ISAM=*,DUMMY*,FILE=*,
//   JOBLIB=FFS,JOBLIB*,LAB= SL,NDISP=KEEP,RGN=60K,
//   PTFJOBL=PTF,JOBLIB*,
//   SAM=DUMMY,FILE*,SAMOUT=DUMMY,*,TRCH=,
//   UISAM=2314,USAM=*,(TAPE9,*,DEFEr)*,
//   VISAM=*,VSAM=*,VSMOUT=*
//*
//* CHARLES W. HICKISCH MAJOR,USA PROJ CODE=763NIPS BRANCH=43
//* DATE=MARCH 1,1974
//*
//CLASS EXEC PGM=UTCLASS,REGION=CRGN
//STEP1 LIB DD DSN=PTFJOBL,DISP=SHR
// DD DSN=JOBLIB,DISP=SHR
//SYSPRINT DD SYSOUT=(CA,CLL)
//SYSDUMP DD SYSOUT=(CA,CLL)
//DATAFILE DD DSN=UISAM,UNIT=UISAM,VOL=UISAM,DISP=SHR
//SAMFILE DD DSN=UISAM,UNIT=UISAM,VOL=UISAM,DISP=(SHR,KEEP),
// DCB=(RECFM=VB,LRECL=1000,BLKSIZE=8BSZFILE,TRCH=TRCH,
// DEN=DEN),LABEL=(,CLAB),
//UTSAMOUT DD UISAMOUT,DCB=(RECFM=VB,LRECL=1000,BLKSIZE=6BSZNEWF,
//   TRCH=TRCH,DEN=DEN),DISP=(,ENDISP),LABEL=(,CLAB),
// UNIT=UISAM,VOL=UISAMOUT

00000000
NIPS 360 FFs PROCEDURES

//XDMPLIB PROC A=A,BSZFILE=,
                 //   CL='*',CL1='*',DEN='ISAM='*DUMMY.FILE*',
                 //   JOBLIB='*FFS.JOBLIB*',LAB=SL,RGH=60K,
                 //   PTFJOBLIB='*PTFJOBLIB*',
                 //   SAM='*DUMMY.FILE*',STG=NIPS,TRCH=,
                 //   UISAM='(2314,P)',USAM='(TAPE9,DEFR)*',
                 //   VISAM='VSA=
                 // * CHARLES W. HICKSCH MAJOR, USA PROJ CODE=763NIPS BRANCH 431
                 // * DATE=MARCH 1, 1974
                 // * UTDMPI EXEC PGM=UTDMPLIB,REGION=ERGN
                 // STEPLIB DD DSN='PTFJOBLIB,DISP=SHR
                 // DD DSN='JOBLIB,DISP=SHR
                 // SYSPRINT DD SYSOUT=(GA,GCL)
                 // SYSDUMP DD SYSOUT=(GA,GCL1)
                 // DATAFILE DD DSNNAME='UISAM',UNIT=UISAM,VOLUME=UISAM,DISP=SHR
                 // ISAMWORK DD UNIT='STG,DCB=DSORG=1S,SPACE=(CYL,(10))
                 // SAMFILE DD DSNNAME='SISAM',UNIT='UISAM,VOLUME=VSAM,DISP=(SHR,KEEP),
                 // LABEL=(,&LAB),DCB=(RECFM=VB,LRECL=1000,BSZFILE=BSZFILE,
                 // TRCH='TRCH,DISP=SHR'
NIPS 360 FFS PROCEDURES

//FMSODANQ DD DISP=SHR,DSNAME=6ISAM,D,_VOLUME=&&STEPLIB, 00011800
//NFLERR DD DSNAME=*.SORTWK04, VOLUME=REF=*.SORTWK04,DISP=(MOD, PASS) 00011900
//NPLMACS DD DSNAME=*.SORTWK03, VOLUME=REF=*.SORTWK03,DISP=(OLD, PASS) 00012000
//ASSEMIN DD DSNAME=*.FMTTLFIL, VOLUME=REF=*.FMTTLFIL,DISP=(OLD, PASS) 00012100
// DD DSNAME=*.SORTWK06, VOLUME=REF=*.SORTWK06,DISP=(OLD, PASS) 00012200
//ISAMWORK DD UNIT=6STG,DCB=DSORG=IS,SPACE=(CYL,(101)) 00012300
//SAMFILE DD DSNAME=6SAM.S,UNIT=6USAM, VOLUME=6VSAM,DISP=(SHR,KEEP), 00012400
// LABEL=(&,&LAB),DCB=(RECFM=VB, LRECL=1000, BLKSIZE=6BSIZEFILE, 00012500
// TRCH=TRCH,DEN=GDEN), 00012600
//FMSAMOUT DD 6SAMOUT.DC==(RECFM=VB, LRECL=1000, BLKSIZE=6BSIZEFILE, 00012700
// DEN=GDEN,TRCH=TRCH,DISP=(NEW,KEEP), 00012800
// LABEL=(&,&LAB), 00012900
// UNIT=6USAM, VOLUME=(PRIVATE,RETAI N, 00013000
//FMSAMOUT.DC=6SAMOUT.DC,DISP=(KEEP),LABEL=(&,&LAB), 00013100
// UNIT=6USAM, VOLUME=(PRIVATE,RETAI N, 00013200
//STAT DD DSN=*6FMCH, VOL=REF=*, FMCH,DISP=(OLD, PASS) 00013300
//TRANST DD DSN=6TRAN, VOL=6TRAN, UNIT=6UN1T,DISP=6TDISP, 00013400
// SPACE=(TRK,1) 00013500
//INDEXPRT DD SYSOUT=(6CA,6CL) 00013600
//IXTRAN DD DISP=(NEW, PASS),UNIT=6STG,SPACE=(CYL,(6INP,1)) 00013700
//XINDEX DD DSN=6INDEX, X,DISP=6XDISP,KEEP),UNIT=6UNIT, VOL=6VOL, 00013800
// DCB=(BLKSIZE=6BLKSIZE,RECFM=F,KEYLEN=4,DSORG=DA), 00013900
// SPACE=(6BLKSIZE, #NBRLK) 00014000
NIPS 360 FFS PROCEDURES

//XFNE PROC A=A,AUXBUFN=2,AUXSP=6,B=B,BLKSIZ=560,
// BS2FILE=BS2NEWF*, X00000200
// CHKDSP=DELETE,CHKID='&CKHID*,CHKP=O,
// CHKST=NEW,CLF='*.*,CL2='*,DEN=,EROPT=ABE,
// INKSP=1.ISAM='*DUMMY-FILE*',JOBLIB='*FFS,JOBLib*',
// LAB=SL,LIB='*DUMMY. FILE*', MCTSP=5,NBRBLK=200,NRMDSP=DELETE, RGN=98K,
// PTFJOBL='*PTF,JOBLIB*', SAM='*DUMMY. FILE*,SAMOUT='*DUMMY, ',SORTSP=10,
// STG=NI,P,TISP= MOD, TRANS='*CTrans',
// TRANS=200,TRCH='UCHewart,NI,P,USAM='(2314,P)',
// ULIB=2314,ULIB=2314,USAM='(TAPE9,DEFER)',
// UTRANSP=NI,TRANS='*VISAM,VLIB='*VLIB=',
// VSAM='VSMCTV',VSNOUT='*TRANS',
// XDISP=SHR, XINDEX='*DUMMY. FILE', XUNIT=2314, XVOL=
// /* CHARLES W. HICKISCH MAJOR, USA PROJ CODE=763NPS BRANCH=431
// /* DATE=MARCH 1, 1974
// /*
// /* FM EXEC PGM=FM, REGION=ERGN
// /* STEPLIB DD DSN=EPFJOBL,DISP=SHR
// /* DD DSN=J0BLIB,DISP=SHR
// /* FMSTAT DD SYSDOUT=(ZA,CL)
// /* SYSSOUT DD SYSDOUT=(ZA,CL)
// /* SYSSPRINT DD SYSDOUT=(ZA,CL)
// /* SOURCPT DD SYSDOUT=(ZA,CL)
// /* DATAFILE DD DSNAM='ISAM',UNIT='1USAM',VOLUME='VISAM',DISP=SHR
// /* FMCOMM DD UNIT='1STG', SPACE=('TRK', (1,1))
// /* FMFILE DD UNIT='1STG', SPACE=('CYL', (2314,51)),
// /* FMTRANS DD UNIT='1STG', SPACE=('CYL', (1,AUXSP,5)),
// /* SYSLSMOD DD LABEL=EXPMT-66366, SPACE=('CYL', (1,110)),
// /* UNIT='1STG', DSNAM='CHKID',DISP=('1RRMDSP,CHKPsp'),
// /* SORTLIB DD DSNAM='Sys, SORTLIB',DISP=SHR
// /* SORTIN DD UNIT='1STG', SPACE=('TRK', (1, TRANS, 150)),
// /* SORTWK01 DD SPACE=('CYL', (1,SORTSP), CONTIG), UNIT=(STG,SEP=SORTIN),
// /* SORTWK02 DD SPACE=('CYL', (1,SORTSP), CONTIG),
// /* SORTWK03 DD SPACE=('CYL', (1,SORTSP), CONTIG),
// /* SORTWK04 DD SPACE=('CYL', (1,SORTSP), CONTIG),
// /* SORTWK05 DD SPACE=('CYL', (1,SORTSP), CONTIG),
// /* SORTWK06 DD SPACE=('CYL', (1,SORTSP), CONTIG),

// */
NIPS 360 FF 5 PROCEDURE S

// UNIT=(&STG,SEP=(SORTWK01, SORTWK03, SORTWK05)), 00005600
// SEP=(SORTWK01, SORTWK03, SORTWK05) 00005700
// SORTOUT DD DISP=(OLD, PASS), DSNNAME=*SORTIN, VOLUME=REF=*SORTIN, 00005800
// DCB=(LRECL=1500, BLKSIZE=1504, RECFM=VB) 00005900
// RECSIN DD DSNNAME=*FMFLUD, VOLUME=REF=*FMFLUD, DISP=(OLD, PASS), 00006000
// DCB=(LRECL=1000, BLKSIZE=1004, RECFM=VB) 00006100
// RECSWK01 DD DSNNAME=*SORTWK01, VOLUME=REF=*SORTWK01, DISP=(OLD, PASS), 00006200
// DCB=(LRECL=1000, BLKSIZE=1004, RECFM=VB) 00006300
// RECSWK02 DD DSNNAME=*SORTWK02, VOLUME=REF=*SORTWK02, DISP=(OLD, PASS), 00006400
// RECSWK03 DD DSNNAME=*SORTWK03, VOLUME=REF=*SORTWK03, DISP=(OLD, PASS), 00006500
// RECSWK04 DD DSNNAME=*SORTWK04, VOLUME=REF=*SORTWK04, DISP=(OLD, PASS), 00006600
// RECSWK05 DD DSNNAME=*SORTWK05, VOLUME=REF=*SORTWK05, DISP=(OLD, PASS), 00006700
// RECSWK06 DD DSNNAME=*SORTWK06, VOLUME=REF=*SORTWK06, DISP=(OLD, PASS), 00006800
// TRANS DD DUMMY, DISP=OLD, DCB=EROPT=EROPT 00006900
// FMSETTBL DD UNIT=&STG, SPACE=(TRK,11,1), 00007000
// DSNNAME=*FMFLUD, VOLUME=REF=*FMFLUD, DISP=(OLD, PASS), 00007100
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00007200
// DCB=(LRECL=1000, BLKSIZE=1004, BUFNO=auxbufn) 00007300
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00007400
// DCB=(LRECL=1000, BLKSIZE=1004, BUFNO=auxbufn) 00007500
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00007600
// DCB=(LRECL=1000, BLKSIZE=1004, BUFNO=auxbufn) 00007700
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00007800
// DCB=(LRECL=1000, BLKSIZE=1004, BUFNO=auxbufn) 00007900
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00008000
// DCB=(LRECL=1000, BLKSIZE=1004, BUFNO=auxbufn) 00008100
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00008200
// DCB=(LRECL=1000, BLKSIZE=1004, BUFNO=auxbufn) 00008300
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00008400
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00008500
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00008600
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00008700
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00008800
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00008900
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00009000
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00009100
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00009200
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00009300
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00009400
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00009500
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00009600
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00009700
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00009800
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00009900
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00010000
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00010100
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00010200
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00010300
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00010400
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00010500
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00010600
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00010700
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00010800
// DSNNAME=*, VOLUME=REF=*, DISP=(OLD, PASS), 00010900

135
NIPS 360 FFS PROCEDURES

// XFS PROC A=A, CL=' ', CLI=' ', BSZNEWF=1004, INDEX=1, X00000100
// ISAM='DUMMY.FILE', X00000200
// JOBLIB='FFS.JOBLIB', 00000300
// LIB='DUMMY.FILE', LIB1='DUMMY.FILE', 00000400
// NDISP=KEEP, OVFLOW=1, PRIME=5, RGN=60K, SDISP=SHR, 00000500
// PTFJOBL='PTF.JOBLIB', 00000600
// SORTSP=3, SOURCL='DUMMY.FILE', STG=NIPW, 00000700
// UISAM=2314, USOURCL=2314, ULIB1=2314, USOURCL=2314, 00000800
// VLSAM, VLIB1, VLIB, VSOURCL= 00000900
// CHARLES W. HICKISCH MAJOR, USA PROJ CODE=763NIPS BRANCH=431 00001000
// DATE=MARCH 1, 1974 00001100

// EXEC PGM=FSPHASE, REGION=&RGN 00001200
// STEPLIB DD DSN=&PTFJOBL, DISP=SHR 00001300
// DD DSN=&JOBLIB, DISP=SHR 00001400
// SLIB DD DSN='LIB1.D', DISP=SHR, VOLUME=&VLIB1, UNIT=&ULIB 00001500
// SOURCL DD DISP=SDISP, DSN='SOURCL.D', VOLUME=&VSOURCL, UNIT=&USOURCL 00001600
// NEWFILE DD DSN='ISAM.(INDEX)', UNIT=&UISAM, VOLUME=&VISAM, 00001700
// DISP=(, &NDISP, DELETE) 00001800
// DD DSN='ISAM.(INDEX)', UNIT=&UISAM, VOLUME=&VISAM, 00001900
// DISP=(, &NDISP, DELETE) 00002000
// SPACE=(CYL, &INDEX), DCB=(DSORG=IS, BLKSIZE=6BSZNEWF), 00002100
// SPACE=(CYL, &INDEX), DCB=(DSORG=IS, BLKSIZE=6BSZNEWF), 00002200

// SORTLIB DD DSN='SYS1.SORTLIB', DISP=SHR 00002300
// SORTIN DD UNIT='STG', SPACE=(CYL, 111), 00002400
// DBC=(RECFM=VB, BLKSIZE=1004, LRECL=1000) 00002500
// SORTWK01 DD SPACE=(CYL, &SORTSP), CONTIG, UNIT='STG', SEP=SORTIN 00002600
// SORTWK02 DD SPACE=(CYL, &SORTSP), CONTIG, UNIT='STG', SEP=SORTWK01 00002700
// SEPC=SORTWK01 00002800
// SORTWK03 DD SPACE=(CYL, &SORTSP), CONTIG, UNIT='STG', SEP=SORTWK02 00002900
// SEPC=SORTWK02 00003000
// SORTWK04 DD SPACE=(CYL, &SORTSP), CONTIG, UNIT='STG', SEP=SORTWK03 00003100
// SEPC=SORTWK03 00003200
// SORTWK05 DD SPACE=(CYL, &SORTSP), CONTIG, UNIT='STG', SEP=SORTWK04 00003300
// SEPC=SORTWK04 00003400
// SORTWK06 DD SPACE=(CYL, &SORTSP), CONTIG, UNIT='STG', SEP=SORTWK05 00003500
// SEPC=SORTWK05 00003600
// SORTOUT DD UNIT='STG', SPACE=(CYL, 111), 00003700
// DBC=(RECFM=VB, BLKSIZE=1004, LRECL=1000) 00003800
// SYSPRINT DD SYSOUT=('GA', 'GCL') 00003900
// SYSPRINT DD SYSOUT=('GA', 'GCL') 00004000
// SYSPRINT DD SYSOUT=('GA', 'GCL') 00004100
// SYUSDSP DD SYSOUT=('GA', 'GCL') 00004200
// SYUSDSP DD SYSOUT=('GA', 'GCL') 00004300
// SYUSDSP DD SYSOUT=('GA', 'GCL') 00004400
// SYUSDSP DD SYSOUT=('GA', 'GCL') 00004500
// SYUSDSP DD SYSOUT=('GA', 'GCL') 00004600
// SYUSDSP DD SYSOUT=('GA', 'GCL') 00004700
// SYUSDSP DD SYSOUT=('GA', 'GCL') 00004800
// SYUSDSP DD SYSOUT=('GA', 'GCL') 00004900
// SYUSDSP DD SYSOUT=('GA', 'GCL') 00005000
// SYUSDSP DD SYSOUT=('GA', 'GCL') 00005100
// SYUSDSP DD SYSOUT=('GA', 'GCL') 00005200
// SYUSDSP DD SYSOUT=('GA', 'GCL') 00005300
// SYUSDSP DD SYSOUT=('GA', 'GCL') 00005400
// SYUSDSP DD SYSOUT=('GA', 'GCL') 00005500
// SYUSDSP DD SYSOUT=('GA', 'GCL') 00005600
// SYUSDSP DD SYSOUT=('GA', 'GCL') 00005700
NIPS 360 FFS PROCEDURES

//XISTOS PROC A=4,RSFILE=BSZNEWF,CC=*,CL=*,CL1=*,DEN=*

// ISAM=*DUMMY.FILE*,JOBLIB=FFS,JOBLIB*,LAB=SL,NDISP=KEEP,
// ODISP=KEEP,OLDSAM=*
// OSDISP=KEEP,SGN=60K,SAM=*
// PTFJOB=PTF,JOBLIB *
// TRCH=,UISAM=('2314,P'),USAM=('TAPE9,,DEFER'),
// VISAM=,VSAM=

/* CHARLES W. HICKISCH MAJOR, USA PROJ CODE=763NIPS BRANCH=431 */
/* DATE=MARCH 1, 1974 */

//STP1 EXEC PGM=UTBLDSAM,REGION=CRGN,PARM='&CC'
//STEPLIB DD DSN=PTFJOBL,DISP=SHR
// DD DSN=JOBLIB,DISP=SHR
//DATAFILE DD DSNAM=EGSAM,UNIT=EGSAM,VOLUME=EGSAM,
// DISP=(SHR,&ODISP,KEEP),DCB=BUFNO=5
//SAMFILE DD DSNAM=EGDSAM,S,UNIT=EGSAM,DISP=(SHR,&ODISP),
// Vol=EGVSAM,DCB=(RECFM=VB,LRECL=1000,BLKSIZE=8BSZFILE,
// DEN=&DEN,TRCH=&TRCH,BUFNO=5),LABEL=('SEQNO,&LAB)
//SAMOUT DD DSNAM=EGSAM,S,UNIT=EGSAM,VOLUME=EGSAM,DISP=(,NDISP),
// DCB=(*,SAMFILE,BLKSIZ=8BSZNEWF),LABEL=('SEQNO,&LAB)
//SYSPRINT DD SYSOUT=(&A,&CL)
//SYSDUMP DD SYSOUT=(&A,&CL1)
NIPS 360 FFS PROCEDURES

//XKA PROC A=A,CL="",CL1="",CL2="",JOBLIB="FFS.JOBLIB",RGN=100K,
PTFJOBL=PTF.JOBLIB',
STG=NIPW,SORTSP=10,
LIB=ULIB=2314,VLIB=,
ISAM=DUMMY.FILE',UISAM=(2314,P),VISAM=,
SAM=DUMMY.FILE',USAM=(TAPE9,DEFER),VSAM=,
LAB=SL,DEC=3,TRCH=,
/* PARAMETERS */
A SYSOUT - DEFAULT=PRINTER
CL SYSOUT CLASSIFICATION - REQUIRED
CLL SYSUDUMP CLASSIFICATION - REQUIRED
JOBLIB STEPLIB DSN - DEFAULT=FFS.JOBLIB
RGN STEP REGION - DEFAULT=175K
PTFJOBL STEPLIB DSN - DEFAULT=PTF.JOBLIB
STG TEMP STORAGE UNIT - DEFAULT=NIPW
SORTSP SORTMKN CYLINDERS - DEFAULT=10
LIB USER LIBRARY DSN - REQUIRED
ULIB USER LIBRARY UNIT - DEFAULT=2314
VLIB USER LIBRARY *SER=SERIAL* - REQUIRED
/* ISAM */
DSNAME IF ISAM DATA FILE, OMIT IF SAM FILE.
UISAM ISAM UNIT CLASS
VISAM ISAM VOL SERIAL
/* SAM */
DSNAME IF SAM DATA FILE, OMIT IF SAM FILE.
USAM SAM UNIT CLASS
VSAM SAM VOL SERIAL
LAB SAM VOL LABEL IF NOT STANDARD
DEN SAM VOL DENSITY IF NOT 1600 BPI.
TRCH SAM CONVERSION IF M-TRACK VOL.
/* CHARLES W. HICKISCH MAJOR, USA RCJ CODE 763NIPS BRANCH=431 */
DATE=MARCH 1, 1974
EXEC PGM=UTNDXKAN,
REGION=&RGN
/* STEPLIB */
DD DSN=PTFJOBL,
DISP=SHR
DD DSN=JOBLIB,
DISP=SHR
/* DATAFILE */
DD DSN=UISAM,
DISP=SHR
UNIT=UISAM,
VOL=VISAM
/* SAMFILE */
DD DSN=SAM.S,
UNIT=USAM,
VOL=VSAM,
DISP=(SHR,KEEP),
LABEL=,DCB=(DEN=&DEN,TRCH=&TRCH)
/* CHARLES W. HICKISCH MAJOR, USA RCJ CODE 763NIPS BRANCH=431 */
DATE=MARCH 1, 1974
EXEC PGM=UTNDXKAN,
REGION=&RGN
/* STEPLIB */
DD DSN=PTFJOBL,
DISP=SHR
DD DSN=JOBLIB,
DISP=SHR
/* DATAFILE */
DD DSN=UISAM,
DISP=SHR
UNIT=UISAM,
VOL=VISAM
/* SAMFILE */
DD DSN=SAM.S,
UNIT=USAM,
VOL=VSAM,
DISP=(SHR,KEEP),
LABEL=,DCB=(DEN=&DEN,TRCH=&TRCH)
//SLIB DD DSN=GLIB/L, 00005400
  //  UNIT=GLIB, 00005500
  //  VOL=GLIB, 00005600
  //  DISP=SHR 00005700
  /// DSN=GLIB/L,DISP=SHR 00005800
  ///
  //KANWK01 DD UNIT=STG, 00006100
  //  DISP=(PASS), 00006200
  //  SPACE=(CYL,(ESORTSP,ESORTSP)) 00006300
  /// SYSOUT DD SYSOUT=(EA,ECL) 00006400
  /// SYSPRINT DD SYSOUT=(EA,ECL) 00006500
  /// KMOPRT DD SYSOUT=(EA,ECL),SPACE=(CYL,(2,1)) 00006600
  /// SYSUOMP DD SYSOUT=(EA,ECL) 00006700
  ///
  //SORTLIB DD DSN=SYS1.SORTLIB, 00007300
  //  DISP=SHR 00007400
  /// SORTWK01 DD UNIT=STG, 00007600
  //  SPACE=(CYL,(ESORTSP),,CONTIG) 00007700
  /// SORTWK02 DD UNIT=(STG,SEP=SORTWK01),SEP=SORTWK01, 00007900
  //  SPACE=(CYL,(ESORTSP),,CONTIG) 00008000
  /// SORTWK03 DD UNIT=(STG,SEP=SORTWK02),SEP=SORTWK02, 00008100
  //  SPACE=(CYL,(ESORTSP),,CONTIG) 00008200
  /// SORTWK04 DD UNIT=(STG,SEP=(SORTWK01,SORTWK03)), 00008300
    SEP=(SORTWK01,SORTWK03), 00008400
    // SPACE=(CYL,(ESORTSP),,CONTIG) 00008500
    /// SORTWK05 DD UNIT=(STG,SEP=(SORTWK02,SORTWK04)), 00008600
      SEP=(SORTWK02,SORTWK04), 00008700
      // SPACE=(CYL,(ESORTSP),,CONTIG) 00008800
      /// SORTWK06 DD UNIT=(STG,SEP=(SORTWK01,SORTWK03,SORTWK05)), 00008900
        SEP=(SORTWK01,SORTWK03,SORTWK05), 00009000
        // SPACE=(CYL,(ESORTSP),,CONTIG) 00009100
        /// SORTWK07 DD UNIT=(STG,SEP=(SORTWK02,SORTWK04,SORTWK06)), 00009200
          SEP=(SORTWK02,SORTWK04,SORTWK06), 00009300
          // SPACE=(CYL,(ESORTSP),,CONTIG) 00009400
          /// SORTWK08 DD UNIT=(STG,SEP=(SORTWK03,SORTWK05,SORTWK07)), 00009500
            SEP=(SORTWK03,SORTWK05,SORTWK07), 00009600
            // SPACE=(CYL,(ESORTSP),,CONTIG) 00009700
NIPS 360 FFS PROCEDURES

//KKM PROC A=A,CL=1,CL=1,CL=1,CL=A ,JOBLIB='FFS.JOBLIB',RGN=10K,
// PTFJOBL='PTF.JOBLIB',
// STG=NIPW,SORTSP=10,
// LIB=ULIB=2314,VLIB=DLIB='MCD,KEEP',
// PRISP=2,SECSP=2,BLKSI=3478
//
// PARAMETERS
//
// A
SYSSOUT - DEFAULT=PRINTER
// CL
SYSDUMP CLASSIFICATION - REQUIRED
// CL1
SYSDUMP CLASSIFICATION - REQUIRED
// JOBLIB
STEPLIB DSN - DEFAULT=FFS.JOBLIB
// RGN
STEP REGION - DEFAULT=175K
//PTFJOBL
STEPLIB DSN - DEFAULT=PTF.JOBLIB
// STG
TEMP STORAGE UNIT - DEFAULT=NIPW
// SORTSP
SORTWKNN CYLINDERS - DEFAULT=10
// LIB
USER LIBRARY DSN - REQUIRED
// ULIB
USER LIBRARY UNIT - DEFAULT=2314
// VLIB
USER LIBRARY 'SERIAL' - REQUIRED
// DLIB
USER LIBRARY DISP - DEFAULT='MOD,KEEP'
// PRISP
WORK SPACE PRIMARY CYLS - DEFAULT=2
// SECSP
WORK SPACE SECONDARY CYLS - DEFAULT=2
// BLKSI
WORK SPACE DCB BLKSIZE - DEFAULT=94

// CHARLES W. HICKISCH MAJCR, USA PROJ CODE=763NIPS BRANCH=431
// DATE=MARCH 1, 1974
//
// KKM EXEC PGM=UTNDKKMD,
// REGION=CRGN
//
// STEPLIB DD DSN=PTFJOBL,
// DISP=SHR
// DD DSN=JOBLIB,
// DISP=SHR
//
// SLIB DD DSN=ULIB,
// UNIT=ULIB,
// VOl=VLIB,
// DISP=(GOLIB)
//
// KMDWK01 DD UNIT=STG,
// DISP=(PASS),
// SPACE=(CYL,(PRISP,SECSP)),
// DCB=(RECFM=FBS,LRECL=94,BLKSIZE=BLKSI)
//
// KMDWK02 DD UNIT=STG,
// DISP=(PASS),
// SPACE=(CYL,(PRISP,SECSP)),
// DCB=(RECFM=FBS,LRECL=94,BLKSIZE=BLKSI)
//
// KMDWK03 DD UNIT=STG,
// DISP=(PASS),
// SPACE=(TRK,(1,11))
//
// KMDWK04 DD UNIT=STG,
// DISP=(PASS),
// SPACE=(TRK,(5,5)),
// DCB=(RECFM=FBS,LRECL=72,BLKSIZEx=720) 00005400
// /* KMDWK05 DD UNIT=ESTG,
// DISP=(,PASS),
// SPACE=(CYL,(&PRISP,&SECSP)),
// DCB=(RECFM=FBS,LRECL=94,BLKSIZEx=&BLKSI) 00005900
// /* SYSOUT DD SYSOUT=(&A,&CCL) 00006000
// /* SYSPRT DD SYSOUT=(&A,&CCL)
// /* KMDPRT DD SYSOUT=(&A,&CCL),SPACE=(CYL,(2,1)) 00006400
// /* SYSDUMP DD SYSOUT=(&A,&CCL)
// /* SORTLIB DD DSN=SYS1.SORTLIB,
// DISP=SHR
// /* SORTWK01 DD UNIT=ESTG,
// SPACE=(CYL,(&SORTSP),,CONTIG) 00007100
// /* SORTWK02 DD UNIT=(ESTG,SEP=SORTWK01),SEP=SORTWK01,
// SPACE=(CYL,(&SORTSP),,CONTIG) 00007200
// /* SORTWK03 DD UNIT=(ESTG,SEP=SORTWK02),SEP=SORTWK02,
// SPACE=(CYL,(&SORTSP),,CONTIG) 00007300
// /* SORTWK04 DD UNIT=(ESTG,SEP=(SORTWK01,SORTWK03)),
// SEP=(SORTWK01,SORTWK03),
// SPACE=(CYL,(&SORTSP),,CONTIG) 00007400
// /* SORTWK05 DD UNIT=(ESTG,SEP=(SORTWK02,SORTWK04)),
// SEP=(SORTWK02,SORTWK04),
// SPACE=(CYL,(&SORTSP),,CONTIG) 00007500
// /* SORTWK06 DD UNIT=(ESTG,SEP=(SORTWK01,SORTWK03,SORTWK05)),
// SEP=(SORTWK01,SORTWK03,SORTWK05),
// SPACE=(CYL,(&SORTSP),,CONTIG) 00007600
NIPS 360 FFS PROCEDURES

//XOP PROC A=A,B,B,BSZFILE=,BSZFIL1=,BSZFIL2=,
CL=*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*.
NIPS 360 FFS

PROCEDURES

//OPINWF : DD UNIT=ESTG,SPACE=(TRK,(12,1)),DCB=(BLKSIZE=400,LRECL=80), *03005400
//RECFM=FB)
00005500
//OPSTST : DD UNIT=ESTG,SPACE=(TRK,(10,2)) 00005600
//OPCREATE : DD UNIT=ESTG,SPACE=(TRK,(1,11)) 00005700
//OPCOMREC : DD UNIT=ESTG,SPACE=(TRK,(1,1)) 00005800
//INSTS : DD UNIT=ESTG,SPACE=(TRK,(50,5)) 00005900
//LCF : DD UNIT=ESTG,SPACE=(TRK,(10,5)) 00006000
//LITSTR : DD UNIT=ESTG,SPACE=(TRK,(50,5)) 00006200
//NAMEDEF : DD DSNAME=SYSUT1,VOLUME=REF=SYSUT1,DISP=(OLD,PASS) 00006300
//LITAB : DD DSNAME=SYSUT2,VOLUME=REF=SYSUT2,DISP=(OLD,PASS) 00006400
//RTAB : DD DSNAME=SYSUT3,VOLUME=REF=SYSUT3,DISP=(OLD,PASS) 00006500
//GC : DD UNIT=ESTG,SPACE=(TRK,(1,1)) 00006600
//ERRTAB : DD UNIT=ESTG,SPACE=(TRK,(8,5)) 00006700
//DCTNY : DD DSNAME=SYSPUNCH,VOLUME=REF=SYSPUNCH,DISP=(OLD,PASS) 00006800
//SUBTAB : DD UNIT=ESTG,SPACE=(TRK,(1,1)) 00006900
//OPL0000 : DD DSNAME=SYSUT1,VOLUME=REF=SYSUT1,DISP=(OLD,PASS) 00007000
//DD DCB=(RECFM=FB,LRECL=80,BLKSIZE=400,BUFNO=5) 00007100
//SYSLIN DD DSNAME=SYSMOD,VOLUME=REF=SYSMOD,DISP=(OLD,PASS) 00007200
//DD DSNAME=L LIB,DISP=SHR,UNIT=WLIB,VOLUME=VLIB 00007300
//DD DSNAME=L LIB2,L DISP=SHR,UNIT=WLIB2,VOLUME=VLIB2 00007400
//DD DSNAME=JOBLIB,DISP=SHR 00007500
//DD DSNAME=QTFJOBBL,DISP=SHR 00007600
//SYAIN DD DSNAME=LITSTR,VOLUME=REF=LITSTR,DISP=(OLD,CLD), 00007700
//DCB=(RECFM=FB,LRECL=80,BLKSIZE=400,BUFNO=5) 00007800
//DD DSNAME=INSTS,VOLUME=REF=INSTS,DISP=(OLD,PASS) 00007900
//DCB=(RECFM=FB,LRECL=80,BLKSIZE=400,BUFNO=5) 00008000
//SYSLIN DD DSNAME=L CF,VOLUME=REF=L CF,DISP=(OLD,PASS) 00008100
//SYSTIN DD DSNAME=L CT,VOLUME=REF=L CT,DISP=(OLD,PASS) 00008200
//LOADR DD DSNAME=SYS PUNCH,VOLUME=REF=SYS PUNCH,DISP=(OLD,PASS) 00008300
//DCB=(RECFM=FB,LRECL=80,BLKSIZE=400) 00008400
//QDFILE DD DSNAME=QDF,UNIT=QDF,DISP=(SHR,&QDISP,KEEP) 00008500
//QRTFILE DD DSNAME=QRT,UNIT=QRT,DISP=(SHR,&QDISP,KEEP) 00008600
//STAT DD DSNAME=INSTS,VOLUME=REF=INSTS,DISP=(OLD,PASS) 00008700
//TRANS DD DSNAME=TRANS,VOLUME=TRANS,UNIT=UTRANS, 00008800
//DISP=TDISP,SPACE=(TRK,(1)) 00008900
//DISP=TDISP,SPACE=(TRK,(1)) 00009000
//DISP=TDISP,SPACE=(TRK,(1)) 00009100
//DISP=TDISP,SPACE=(TRK,(1)) 00009200
NIPS 360 FFS PROCEDURES

//QRTFILE DD DSN=QRRT,UNIT=QURT, VOLUME=CQURT, DISP=(SHR, &ODISP, KEEP) 00005500
//CHECKDD DD DSN=CHKID, DISP=(&CHKST, &NRMDSP, &CHKDSP), UNIT=&UCHK, 00005600
// VOLUME=&VCHK, SPACE=(CYL, (&CHKSP, I)) 00005700
//STAT DD UNIT=ESTG, SPACE=(CYL, (2, I)) 00005800
//TRANS DD DSN=ETRANS, VOL=EVTTRANS, UNIT=EUTRANS, 00005900
// DISP=ETDISP, SPACE=(TRK, I) 00006000
NIPS 360 FFS PROCEDURES

//XOPSD PROC A=A,B=B,BSZFILE=,BSZFILE1=,BSZFILE2=,
// CL=* ,CL1=,CL2=,
// ISAM=*DUMMY.FILE1*,ISAM2=*DUMMY.FILE*,ISAM3=*DUMMY.FILE*,
// JOBLIB=FFS.JOBLIB,JOBLIB1=FOSS.JOBLIB,JOBLIB2=FFS.JOBLIB,
// LAB=SL,
// LIB=*DUMMY.FILE*,LIB1=*DUMMY.FILE*,LIB2=*DUMMY.FILE*,
// LIB4SHR,SOURCE=*=DUMMY.FILE*,STG=NIPW,
// TDISP=MOD,TRANS=*G&TRANS*,
// UISAM=(2314,P),
// ULIB=ULIB1=2314,ULIB2=2314,
// USAM=UISAM1,UISAM2=UISAM3,
// USISAM=UISAM1,USISAM2=UISAM3,
// USLIB=USLIB1,
// USLIB2=USLIB1,
// USLIB3=USLIB1,
// VLIB=ULIB1,
// VLIB2=ULIB1,
// VLIB3=ULIB1,
// VTRANS=ULIB1,
// VTRANS1=ULIB1,
// VTRANS2=ULIB1,
// VTRANS3=ULIB1,
// VLIB=ULIB1,
// VLIB2=ULIB1,
// VLIB3=ULIB1,
// VLIB4=ULIB1,
// VLIB5=ULIB1,
// VLIB6=ULIB1,
// VLIB7=ULIB1,
// VLIB8=ULIB1,
// VLIB9=ULIB1,
// VLIB10=ULIB1,
// VLIB11=ULIB1,
// VLIB12=ULIB1,
// VLIB13=ULIB1,
// VLIB14=ULIB1,
// VLIB15=ULIB1,
// VLIB16=ULIB1,
// VLIB17=ULIB1,
// VLIB18=ULIB1,
// VLIB19=ULIB1,
// VLIB20=ULIB1,
// VLIB21=ULIB1,
// VLIB22=ULIB1,
// VLIB23=ULIB1,
// VLIB24=ULIB1,
// VLIB25=ULIB1,
// VLIB26=ULIB1,
// VLIB27=ULIB1,
// VLIB28=ULIB1,
// VLIB29=ULIB1,
// VLIB30=ULIB1,
// VLIB31=ULIB1,
// VLIB32=ULIB1,
// VLIB33=ULIB1,
// VLIB34=ULIB1,
// VLIB35=ULIB1,
// VLIB36=ULIB1,
// VLIB37=ULIB1,
// VLIB38=ULIB1,
// VLIB39=ULIB1,
// VLIB40=ULIB1,
// VLIB41=ULIB1,
// VLIB42=ULIB1,
// VLIB43=ULIB1,
// VLIB44=ULIB1,
// VLIB45=ULIB1,
// VLIB46=ULIB1,
// VLIB47=ULIB1,
// VLIB48=ULIB1,
// VLIB49=ULIB1,
// VLIB50=ULIB1,
// VLIB51=ULIB1,
// VLIB52=ULIB1,
// VLIB53=ULIB1,
// VLIB54=ULIB1,
// VLIB55=ULIB1,
// VLIB56=ULIB1,
// VLIB57=ULIB1,
// VLIB58=ULIB1,
// VLIB59=ULIB1,
// VLIB60=ULIB1,
// VLIB61=ULIB1,
// VLIB62=ULIB1,
// VLIB63=ULIB1,
// VLIB64=ULIB1,
// VLIB65=ULIB1,
// VLIB66=ULIB1,
// VLIB67=ULIB1,
// VLIB68=ULIB1,
// VLIB69=ULIB1,
// VLIB70=ULIB1,
// VLIB71=ULIB1,
// VLIB72=ULIB1,
// VLIB73=ULIB1,
// VLIB74=ULIB1,
// VLIB75=ULIB1,
// VLIB76=ULIB1,
// VLIB77=ULIB1,
// VLIB78=ULIB1,
// VLIB79=ULIB1,
// VLIB80=ULIB1,
// VLIB81=ULIB1,
// VLIB82=ULIB1,
// VLIB83=ULIB1,
// VLIB84=ULIB1,
// VLIB85=ULIB1,
// VLIB86=ULIB1,
// VLIB87=ULIB1,
// VLIB88=ULIB1,
// VLIB89=ULIB1,
// VLIB90=ULIB1,
// VLIB91=ULIB1,
// VLIB92=ULIB1,
// VLIB93=ULIB1,
// VLIB94=ULIB1,
// VLIB95=ULIB1,
// VLIB96=ULIB1,
// VLIB97=ULIB1,
// VLIB98=ULIB1,
// VLIB99=ULIB1,
// VLIB100=ULIB1,
// VLIB101=ULIB1,
// VLIB102=ULIB1,
// VLIB103=ULIB1,
// VLIB104=ULIB1,
// VLIB105=ULIB1,
// VLIB106=ULIB1,
// VLIB107=ULIB1,
// VLIB108=ULIB1,
// VLIB109=ULIB1,
// VLIB110=ULIB1,
// VLIB111=ULIB1,
// VLIB112=ULIB1,
// VLIB113=ULIB1,
// VLIB114=ULIB1,
// VLIB115=ULIB1,
// VLIB116=ULIB1,
// VLIB117=ULIB1,
// VLIB118=ULIB1,
// VLIB119=ULIB1,
// VLIB120=ULIB1,
// VLIB121=ULIB1,
// VLIB122=ULIB1,
// VLIB123=ULIB1,
// VLIB124=ULIB1,
// VLIB125=ULIB1,
// VLIB126=ULIB1,
// VLIB127=ULIB1,
// VLIB128=ULIB1,
// VLIB129=ULIB1,
// VLIB130=ULIB1,
// VLIB131=ULIB1,
// VLIB132=ULIB1,
// VLIB133=ULIB1,
// VLIB134=ULIB1,
// VLIB135=ULIB1,
// VLIB136=ULIB1,
// VLIB137=ULIB1,
// VLIB138=ULIB1,
// VLIB139=ULIB1,
// VLIB140=ULIB1,
// VLIB141=ULIB1,
// VLIB142=ULIB1,
// VLIB143=ULIB1,
// VLIB144=ULIB1,
// VLIB145=ULIB1,
// VLIB146=ULIB1,
// VLIB147=ULIB1,
// VLIB148=ULIB1,
// VLIB149=ULIB1,
// VLIB150=ULIB1,
// VLIB151=ULIB1,
// VLIB152=ULIB1,
// VLIB153=ULIB1,
// VLIB154=ULIB1,
// VLIB155=ULIB1,
// VLIB156=ULIB1,
// VLIB157=ULIB1,
// VLIB158=ULIB1,
// VLIB159=ULIB1,
// VLIB160=ULIB1,
// VLIB161=ULIB1,
// VLIB162=ULIB1,
// VLIB163=ULIB1,
// VLIB164=ULIB1,
// VLIB165=ULIB1,
// VLIB166=ULIB1,
// VLIB167=ULIB1,
// VLIB168=ULIB1,
// VLIB169=ULIB1,
// VLIB170=ULIB1,
// VLIB171=ULIB1,
// VLIB172=ULIB1,
// VLIB173=ULIB1,
// VLIB174=ULIB1,
// VLIB175=ULIB1,
// VLIB176=ULIB1,
// VLIB177=ULIB1,
// VLIB178=ULIB1,
// VLIB179=ULIB1,
// VLIB180=ULIB1,
// VLIB181=ULIB1,
// VLIB182=ULIB1,
// VLIB183=ULIB1,
// VLIB184=ULIB1,
// VLIB185=ULIB1,
// VLIB186=ULIB1,
// VLIB187=ULIB1,
// VLIB188=ULIB1,
// VLIB189=ULIB1,
// VLIB190=ULIB1,
// VLIB191=ULIB1,
// VLIB192=ULIB1,
// VLIB193=ULIB1,
// VLIB194=ULIB1,
// VLIB195=ULIB1,
// VLIB196=ULIB1,
// VLIB197=ULIB1,
// VLIB198=ULIB1,
// VLIB199=ULIB1,
// VLIB200=ULIB1,
// VLIB201=ULIB1,
// VLIB202=ULIB1,
// VLIB203=ULIB1,
// VLIB204=ULIB1,
// VLIB205=ULIB1,
// VLIB206=ULIB1,
// VLIB207=ULIB1,
// VLIB208=ULIB1,
// VLIB209=ULIB1,
// VLIB210=ULIB1,
// VLIB211=ULIB1,
// VLIB212=ULIB1,
// VLIB213=ULIB1,
// VLIB214=ULIB1,
// VLIB215=ULIB1,
// VLIB216=ULIB1,
// VLIB217=ULIB1,
// VLIB218=ULIB1,
NIPS 360 FFS PROCEDURES

//OPCOMREC DD UNIT=ESTG,SPACE=(TRK,(1,1)) 000005700
//INSTS DD UNIT=ESTG,SPACE=(TRK,(50,5)) 000005800
//LCF DD UNIT=ESTG,SPACE=(TRK,(10,5)) 000005900
//LCT DD UNIT=ESTG,SPACE=(TRK,(10,5)) 000006000
//LITSTR DD UNIT=ESTG,SPACE=(TRK,(50,5)) 000006100
//NAMEDEF DD DSNAME=.SYSUT1,VOLUME=REF=.SYSUT1,DISP=(OLD,PASS) 000006200
//LITAB DD DSNAME=.SYSUT2,VOLUME=REF=.SYSUT2,DISP=(CLD,PASS) 000006300
//AGTAB DD DSNAME=.SYSUT3,VOLUME=REF=.SYSUT3,DISP=(CLD,PASS) 000006400
//GCC DD UNIT=ESTG,SPACE=(TRK,(1,1)) 000006500
//ERRTAB DD UNIT=ESTG,SPACE=(TRK,(8,5)) 000006600
//SUBTAB DD UNIT=ESTG,SPACE=(TRK,(1,1)) 000006700
//DCNTY DD DSNAME=.SYSYPUNCH,VOLUME=REF=.SYSYPUNCH,DISP=(OLD,PASS) 000006800
//OPLGOGO DD DSNAME=.SYSUT1,VOLUME=REF=.SYSUT1,DISP=(OLD,PASS) 000006900
//OPLXFX DD DSNAME=.SYSUT2,VOLUME=REF=.SYSUT2,DISP=(OLD,PASS) 000007000
//OPLXDIR DD DSNAME=.SYSUT3,VOLUME=REF=.SYSUT3,DISP=(OLD,PASS) 000007100
//OPLINE DD SYSOUT=(6A,6CL2),DCB=LRECL=133 000007200
//OPPUNCH DD SYSOUT=68 000007300
//SLIB DD DSNAME=.SYSLMOD,VOLUME=REF=.SYSLMOD,DISP=(OLD,PASS) 000007400
// DD DSNAME=.DLIB,DISP=SHR,UNIT=ELIB,VOLUME=ELIB 000007500
// DD DSNAME=.TLIB,DISP=SHR,UNIT=ELIB1,VOLUME=ELIB1 000007600
// DD DSNAME=.L1B2,DISP=SHR,UNIT=ELIB2,VOLUME=ELIB2 000007700
// DD DSNAME=GLIB0BL,DISP=SHR 000007800
// DD DSNAME=ELIB1,DISP=SHR 000007900
//SYSAIN DD DSNAME=.LITSTR,VOLUME=REF=.LITSTR,DISP=(OLD,PASS), 000008000
// DCB=(RECFM=FB,LRECL=80,BKSIZE=400,BNFNO=5) 000008100
// DD DSNAME=.INSTS,VOLUME=REF=.INSTS,DISP=(OLD,PASS), 000008200
// DCB=(RECFM=FB,LRECL=80,BKSIZE=400,BNFNO=5) 000008300
//SYSIN DD DSNAME=.LCF,VOLUME=REF=.LCF,DISP=(OLD,PASS) 000008400
//SYSIN DD DSNAME=.LCT,VOLUME=REF=.LCT,DISP=(OLD,PASS) 000008500
//LOADR DD DSNAME=.SYSYPUNCH,VOLUME=REF=.SYSYPUNCH,DISP=(OLD,PASS) 000008600
// DCB=(RECFM=FB,LRECL=80,BKSIZE=400) 000008700
//STAT DD DSNAME=.INSTS,VOLUME=REF=.INSTS,DISP=(OLD,PASS) 000008800
//TRANS DD DSNAME=ETRANS,VOLUME=ETRANS,UNIT=ETRANS, 000008900
// DISP=ETDISP,SPACE=(TRK,1) 000009000
NIPS 360 FFS PROCEDURES

//OPPUNCH DD SYSOUT=6B
//SLIB DD DSNAME=*,DLIB,DISP=SHR,UNIT=ULIB,VOLUME=VLIB
// DD DSNAME=*,TLIB,DISP=SHR,UNIT=ULIB1,VOLUME=VLIB1
// DD DSNAME=GLIB2,L,DISP=SHR,UNIT=ULIB2,VOLUME=VLIB2
// DD DSN=GPTFJOB,DISP=SHR
// DD DSNAME=GLIB0,DISP=SHR
//CHECKDD DD DSNAME=CHKID,DISP=(&CHECKST,&NRMDSP,&CHECKSP),UNIT=UCHK,
// VOLUME=VCHK,SPACE=(CYL,(&CHECKSP,1))
// STAT DD UNIT=ESTG,SPACE=(CYL,2,1)
//TRANST DD DSN=TRAN,N=VTRANS,UNIT=UTRANS,
// DISP=TDISP,SPACE=(TRK,1)
NIPS 360 FFS PROCEDURES

//XQRTQDF PROC A=A,BSZNEWF=1004,CL='.',CL1='.',DEN=,
// JOBLIB='FFS,JOBLIB=',
// LAB='QDF='&QDFFILE',QDISP=PASS,
// PTFJOBL='PTF,JOBLIB=',
// QRT='&QRTFILE',RGN=60K,SAM='DUMMY',TRCH=,
// UQDF=NIPW,UQRT=NIPW,USAM='TAPE9,,DEFER=',
// VQDF=,VQRT=,VSAM=,
///
*** CHARLES W. HICKISCH MAJOR,USA PRPJ CODE=763NIPS BRANCH=431
*** DATE=MARCH 1, 1974
///
//QRTQDF EXEC PGM=QTQRTQDF,REGION=CRGN
//STEPLIB DD DSN=&PTFJOBL,DISP=SHR
// DD DSN=&JOBLIB(B),DISP=SHR
//SYSPRINT DD SYSOUT=(GA,6CL)
//SYSDUMP DD SYSOUT=(GA,6CL)
//QRTFILE DD DSNAME=&QRT,UNIT=CUQRT,VOLUME=EVQRT,DISP=(SHR,&QDISP,KEEP)
//QDFILE DD DSNAME=QDF,UNIT=CUQDF,VOLUME=EVQDF,DISP=(SHR,&QDISP,KEEP)
//SAMFILE DD DSNAME=ESAM,UNIT=CUUSAM,VOLUME=EVUSAM,DISP=(,KEEP),
// DCB=(TRCH=TRCH,DEN=GEN,BLKSIZE=&BSZNEWF),
// LABEL=1,(CLAB)
NIPS 360 FFS PROCEDURES

A=A, 00000100
CL=* , * , CL1=*, * , CL2=*, * , 00000200
JOBLIB=*FFS JOBLIB*, 00000300
LIB=*DUMMY FILE*, LIB1=*DUMMY FILE*, 00000400
PTFJOBL=*PTF JOBLIB*, 00000500
QRT=* & QRT FILE*, 00000600
QDF=* & QDF FILE*, QDISP=PASS, 00000700
RGN=92K, SDISP=SHR, 00000800
SDIRCL=*DUMMY FILE*, 00000900
STG=NIPW,TDISP=MOD,TRANS=* & TRANS*, 00001000
UISAM1=* (2314, P1), UISAM2=* (2314, P1), 00001100
ULIB=2314, ULIB1=2314, 00001200
UQDF=NIPW, 00001300
UQRT=NIPW, 00001400
USOURC1=2314, UTRANS=NIPW, 00001500
VISAM1=, VISAM2=, 00001600
VLIB1, VLIB1=, 00001700
VQDF=, 00001800
VQRT=, 00001900
VSOURC1 , VTRANS= 00002000

/* CHARLES W. HICKISCH MAJOR, USA PROJ CODE=763NIPS BRANCH=431 00002100
/* DATE=MARCH 1, 1974 00002200
/*
QUIP EXEC PGM=IPBASE, REGION=CRGN 00002300
//STEPL1 DD DSN=EPTFJOBL,DISP=SHR 00002400
// DD DSN=EJOBLIB,DISP=SHR 00002500
//SYSUT1 DD SPACE=((TRK, (50, 101)), UNIT=GSTG 00002600
//SYSUT2 DD SPACE=((TRK, (11, 11)), UNIT=GSTG 00002700
//SYSUT3 DD SPACE=((TRK, (10, 101)), UNIT=GSTG, SEP=SYSUT1) 00002800
//SL1B DD DSNAME=GLIB,L,UNIT=GULIB, VOLUME=GVLIB,DISP=SHR 00002900
// DD DSNAME=GLIB1,L,UNIT=GULIB1, VOLUME=GVLIB1,DISP=SHR 00003000
// DD DSNAME=GJLIB1,DISP=SHR 00003100
//DD DSNAME=GJLIB1,DISP=SHR 00003200
//QDFILE DD DSNAME=GQDF,UNIT=GQDF, VOLUME=GQDF,DISP=(SHR, QDISP=KEEP) 00003300
//QRTFILE DD DSNAME=GQRT,UNIT=GQRT, VOLUME=GQRT,DISP=(SHR, QDISP=KEEP) 00003400
//DATAFILE1 DD DSN=GUISAM1,UNIT=GUISAM1, VOLUME=GUISAM1,DISP=SHR 00003500
//DATAFILE2 DD DSN=GUISAM2,UNIT=GUISAM2, VOLUME=GUISAM2,DISP=SHR 00003600
//SOURC1 DD DISP=SISR, DSN=SOURC1, VOL=SOURC1,UNIT=SOURC1 00003700
//SOURCPRT DD SYSOUT= (GA, GCL) 00003800
//SYSUDUMP DD SYSOUT= (GA, GCL) 00003900
//SYSPRINT DD SYSOUT= (GA, GCL) 00004000
//STAT DD DSN=*, SYSUT1, VOL=REF,*, SYSUT1,DISP=(OLD, PASS) 00004100
//TRANS DD DSN= & TRANS, VOL= & TRANS,UNIT=& TRANS,DISP=& TDISP, 00004200
// SPACE=(TRK, 1) 00004300
QUIPS EXEC PGM=IPBASE,REGION=GRG
//STEPLIB DD DSN=PTFJOBL,DISP=SHR
//SYSTUT DD SPACE=(TRK,(50,101),UNIT=&STG)
//SYSTUT2 DD SPACE=(TRK,(111),UNIT=&STG)
//SYSTUT3 DD SPACE=(TRK,(10,101),UNIT=(&STG,SEP=SYSUT1))
//SYSTUT4 DD SPACE=(CYL,(0,0)),UNIT=&STG
//SLIB DD DSN=GLIB1,UNIT=CULIB,DISP=SHR
//DATAFILE DD DISP=SHR,DSNAME=GISAM,UNIT=CUSAM,VOLUME=&VISAM
//DATAFILE1 DD DSN=GISAM1,UNIT=CUSAM1,VOLUME=&VISAM1
//DATAFILE2 DD DSN=GISAM2,UNIT=CUSAM2,VOLUME=&VISAM2
//SAMFILE DD DSN=SHR,DSNAME=GISAM,S,UNIT=CUSAM,VOLUME=&VISAM
//LABEL DD DNAME=GLABI,DCB=(RECFM=VB,LRECL=1000,BSIZE=15256)
//FFT DD DSN=EFFT,
//UNIT=CUFF,
//VOLUME=CVFFT,
//DISP=SHR
//FFT1 DD DSN=EFFTL,
//UNIT=CUFFTL
// VOLUME=&VFFT1,
// DISP=SHR
// FFT2 DD DSN=&FFT2,
// UNIT=&FFT2,
// VOLUME=&VFFT2,
// DISP=SHR
// SOURCLIB DD DISP=DSISP,DSN=&SOURCL1,VCL=&VSOURCL,UNIT=&USOURCL
// SOURCPRNT DD SYSOUT=(&A,&GCL)
// SYSUDUMP DD SYSOUT=(&A,&GCL1)
// SYSPRINT DD SYSOUT=(&A,&GCL2)
// PB DD UNIT=&STG,SPACE=(CYL,&QDFSP)
// KEY DD UNIT=&STG,SPACE=(CYL,&CRTSP)
// SORTWK01 DD UNIT=&STG,SPACE=(CYL,&SCRTSP)
// SORTWK02 DD UNIT=&STG,SPACE=(CYL,&SCRTSP)
// SORTWK03 DD UNIT=&STG,SPACE=(CYL,&SCRTSP)
// SORTWK04 DD UNIT=&STG,SPACE=(CYL,&SCRTSP)
// STAT DD DSN=*,SYSUT1,VOL=REF=*,SYSUT1,DISP=(OLD, PASS)
// SPACE=(TRK,1)
// XINDEX DD DSN=&INDEX_X,UNIT=&UNIT,XCL=&XVOL,DISP=SHR
PRODURRNC

//XRASP PRAC A=4,BSFILE='BSZFILE',BSZFILE2=',
// CL1=', 'CL1=', 'ISAM='DUMMY.FIILE',ISAM1='DUMMY.FIILE',
// ISAM2='DUMMY.FIILE',JBDLIB='FFS.JBDLIB',
// JORMAC='FFS.JOBMAC',LAB=SL,LIB='DUMMY.FIILE',
// LIBDISP=SHR,LIB1='DUMMY.FIILE',LIB2='DUMMY.FIILE',
// PTFJCL='PTF.JBDLIB',PTFJBM='PTF.JOBMAC',
// QDF='&QDFFILE',QDSP='(50,10)',QDISP=PASS,QRT='&QRTFILE',
// QRTSP='(10,10)',RGN=LOOK,SAK='DUMMY.FIILE',
// SAM1='DUMMY.FIILE',SAM2='DUMMY.FIILE',SDISP=SHR,SORTSP=20,
// SOURCL='DUMMY.FIILE',STG=NIPW,TIDSP=MOD,TRANS='&TRANS',
// UISAM='(2314,P)',ULIB='2314,ULIB1='2314,ULIB2='2314,
// UQDF=NIPW,URQRT=NIPW,USAM='(TAPE9,DEFER)',USOURCL='2314',
// UTRANS=NIPW,VSAM='VSAM1',VSAM2='VLIB1,VLIB2',
// XDISP=SHR,XINDEX='DUMMY.FIILE',XINDEX1='DUMMY.FIILE',
// XINDEX2='DUMMY.FIILE',XUNIT='2314,XX0L=XX0L1,XX0L2=

// RASP EXEC PGMS=RSEXEC,REGION=RGN
// STEPLIB DD DISP=SHR,DSN=PTFJBDL
// DD DISP=SHR,DSN=JBDLIB,
// DATAFILE DD DSNAME='ISAM',DISP=SHR,UNIT='ISAM,VOLUME='ISAM',
// DATAFILE DD DSNAME='ISAM1',DISP=SHR,UNIT='ISAM,VOLUME='ISAM1',
// DATAFILE DD DSNAME='ISAM2',DISP=SHR,UNIT='ISAM,VOLUME='ISAM2',
// SAMFILE DD DSNAME='SAM',DISP=SHR,UNIT='USAM,VOLUME='USAM',
// SAMFILE1 DD DSNAME='SAM1',DISP=SHR,UNIT='USAM,VOLUME='USAM1',
// SAMFILE2 DD DSNAME='SAM2',DISP=SHR,UNIT='USAM,VOLUME='USAM2',
// QDFFILE DD DSNAME='QDF',UNIT='QDF,SEP=DATAFILE',VOLUME='CONQDF',
// SPACE=(CYL,DISP=SHR,UNIT='USAM,VOLUME='USAM',
// SORTOUT DD DSNAME='SORT',UNIT=('SORT,SEP=CATFILE,QDFFILE'),
// VOLUME='COMQRT,SPACE=(CYL,DISP=SHR,UNIT='USAM,VOLUME='USAM',
// DCB=(RECFM='F',RECL=1011,LBSIZE=1024),
// SORTIN DD DSNAME='SORT',UNIT='SORT,SEP=CATFILE',
// SPACE=(CYL,DISP=SHR,UNIT='USAM,VOLUME='USAM',
// SORTWKO1 DD SPACE=(CYL,DISP=SHR,UNIT='USAM,VOLUME='USAM',
// SORTWKO2 DD SPACE=(CYL,DISP=SHR,UNIT='USAM,VOLUME='USAM',
// SORTWKO3 DD SPACE=(CYL,DISP=SHR,UNIT='USAM,VOLUME='USAM',
// SORTWKO4 DD SPACE=(CYL,DISP=SHR,UNIT='USAM,VOLUME='USAM',
// SORTWKO5 DD SPACE=(CYL,DISP=SHR,UNIT='USAM,VOLUME='USAM',
// SORTWKO6 DD SPACE=(CYL,DISP=SHR,UNIT='USAM,VOLUME='USAM',
// SYSIMOD DD UNIT='STG,SPACE=(TRK,(40,20,20)),DISC=SYSLINKLIB',
// LABEL='EXPDT=66366',
// DLIB DD DSNAME='DLIB',DISP=DLIBDISP,VOLUME='VLIB1,UNIT='DLIB',
// LIB DD DSNAME='LIB1',DISP=SHR,UNIT='VLIB1,UNIT='ULIB',
// SLIB DD DSNAME='SYSIMOD',DISP=OLD,DISP=REF='SYSIMOD'}
NIPS 360 FFS PROCEDURES

// DD DSNAME=*DLIB,DISP=SHR,UNIT=DLIB,VOLUME=DLIB 00005600
// DD DSNAME=*LIBL,DISP=SHR,UNIT=ULIB1,VOLUME=ULIB1 00005700
// DD DSNAME=GLIB,DISP=SHR,UNIT=ULIB2,VOLUME=ULIB2 00005800
// DD DSNAME=GLIB,DISP=SHR 00005900
//SORTLIB DD DISP=SHR,DSNAME=SYS1.SORTLIB 00006000
//SYSLIB DD DISP=SHR,DSN=PTFJOBM 00006100
// DD DISP=SHR,DSN=JOBMAC 00006110
// SP=SHR,DSNAME=SYS1.MACLIB 00006200
//OP(JNCH DD DSNAME=SP.SORTWKO4,VOLUME=REF=SP.SORTWKO4,DISP=OLD,PASS) 00006300
//SYSUT2 DD DSNAME=SP.SORTWKO1,VOLUME=REF=SP.SORTWKO1,DISP=COLD,PASS) 00006400
//ISYSLIB DD DISP=SHR,DSNAME=PTFJOBM 00006500
//STOUTDD DD UNIT=&STG,SPACE=(TRK,(50,20)) 00006600
//ASSEMBLY DD UNIT=&STG,SPACE=(TRK,(50,51),DCB=BLKSIZE=400, 00006700
// DISP=(MOD,DELETE) 00006800
//DCB=BLKSIZE=80,IRECL=80 00006900
//$ASSEMBLY DD UNIT=&STG,SPACE=(TRK,(13,11),DCB=BLKSIZE=400, 00007000
// DISP=(MOD,DELETE) 00007100
//$ASSEMBLY DD UNIT=&STG,SPACE=(TRK,(13,11)) 00007200
//NAMELIB DD DSNAME=*.ASSEMIN,VOLUME=REF=*.ASSEMIN,DISP=OLD,PASS 00007300
//SOURCPRG DD SYSOUT=(GA,GCL) 00007400
//SOURCPRG DD SYSOUT=(GA,GCL) 00007500
//SOURCPRG DD SYSOUT=(GA,GCL) 00007600
//SOURCPRG DD SYSOUT=(GA,GCL) 00007700
//SOURCPRG DD SYSOUT=(GA,GCL) 00007800
//STAT DD DSN=*.ASSEMIN,DISP=OLD,PASS 00007900
//TRANSD DD DSN=*.TRANSD,DISP=OLD,PASS 00008000
//INDEX DD DSN=*.INDEX,X,DISP=OLD,PASS 00008100
//INDEX DD DSN=*.INDEX1,X,DISP=OLD,PASS 00008200
//INDEXDD DSN=*.INDEX2,X,DISP=OLD,PASS 00008300
//PRINTER DD SYSOUT=(GA,GCL) 00008400
//SYSDUMMY DD DUMMY 00008500
//SYSDUMMY DD DUMMY 00008600
NIPS 360 FFS PROCEDURES

UNIT=(CSTG,SEP=(SORTWK01,SORTWK02,SORTWK03)), X00005600
SEP=(SORTWK01,SORTWK02,SORTWK03), X00005700
// SYSLMOD DD LABEL=EXPDT=66366,SPACE=(TRK,(40,20,20)),DCB=SYS1.LINKLIB, X00005800
// UNIT=CSTG,DSNAME=CCHK1D,G,DISP=(,ENRMDSP,CCHKDSP), 00005900
// DLIB DD DSNMAX=CSTG,DISP=CSTG,DISP=(,ENRMDSP,CCHKDSP), 00006000
// TLIB DD DSNMAX=CSTG,DISP=(,ENRMDSP,CCHKDSP), 00006100
// SLIB DD DSNMAX=CSTG,DISP=(,ENRMDSP,CCHKDSP), 00006200
// DD DSNMAX=CSTG,DISP=(,ENRMDSP,CCHKDSP), 00006300
// DD DSNMAX=CSTG,DISP=(,ENRMDSP,CCHKDSP), 00006400
// DD DSNMAX=CSTG,DISP=(,ENRMDSP,CCHKDSP), 00006500
// DD DSNMAX=CSTG,DISP=(,ENRMDSP,CCHKDSP), 00006600
// DD DSNMAX=CSTG,DISP=(,ENRMDSP,CCHKDSP), 00006700
// DD DSNMAX=CSTG,DISP=(,ENRMDSP,CCHKDSP), 00006800
// DD DSNMAX=CSTG,DISP=(,ENRMDSP,CCHKDSP), 00006900
// DD DSNMAX=CSTG,DISP=(,ENRMDSP,CCHKDSP), 00007000
// DD DSNMAX=CSTG,DISP=(,ENRMDSP,CCHKDSP), 00007100
// DD DSNMAX=CSTG,DISP=(,ENRMDSP,CCHKDSP), 00007200
// DD DSNMAX=CSTG,DISP=(,ENRMDSP,CCHKDSP), 00007300
// DD DSNMAX=CSTG,DISP=(,ENRMDSP,CCHKDSP), 00007400
// DD DSNMAX=CSTG,DISP=(,ENRMDSP,CCHKDSP), 00007500
// DD DSNMAX=CSTG,DISP=(,ENRMDSP,CCHKDSP), 00007600
// DD DSNMAX=CSTG,DISP=(,ENRMDSP,CCHKDSP), 00007700
// DD DSNMAX=CSTG,DISP=(,ENRMDSP,CCHKDSP), 00007800
// DD DSNMAX=CSTG,DISP=(,ENRMDSP,CCHKDSP), 00007900
// DD DSNMAX=CSTG,DISP=(,ENRMDSP,CCHKDSP), 00008000
// DD DSNMAX=CSTG,DISP=(,ENRMDSP,CCHKDSP), 00008100
// DD DSNMAX=CSTG,DISP=(,ENRMDSP,CCHKDSP), 00008200
// DD DSNMAX=CSTG,DISP=(,ENRMDSP,CCHKDSP), 00008300
// DD DSNMAX=CSTG,DISP=(,ENRMDSP,CCHKDSP), 00008400
// DD DSNMAX=CSTG,DISP=(,ENRMDSP,CCHKDSP), 00008500
// DD DSNMAX=CSTG,DISP=(,ENRMDSP,CCHKDSP), 00008600
// DD DSNMAX=CSTG,DISP=(,ENRMDSP,CCHKDSP), 00008700

// STROUTDD DD UNIT=(CSTG,SPACE=(TRK,(50,20))), X00007000
// DISP=I,ENRMDSP,CCHKDSP),DSNAME=CCHK1D,H, 00007100
// RSIPDD DS UNIT=(CSTG,SPACE=(TRK,(50,20))), X00007200
// DISP=I,ENRMDSP,CCHKDSP),DSNAME=CCHK1D,I, 00007300
// NAMETAB DD UNIT=(CSTG,SPACE=(TRK,(50,20))), X00007400
// DISP=I,ENRMDSP,CCHKDSP),DSNAME=CCHK1D,J, 00007500
// SYSOUT DD SYSOUT=(FILE,CVLKSIZE=400,SPACE=(TRK,(50,20))), X00007600
// SYSTEM DD SYSTEM=(FILE,CVLKSIZE=400,SPACE=(TRK,(50,20))), X00007700
// CHECKDD DD DSNMAX=CCHK1D,DISP=(,ENRMDSP,CCHKDSP),UNIT=EPCHK, 00007800
// VOLUME=(CVLKSPACE=(CYL,(CCHKDSP,1)), 00007900
// STAT DD UNIT=(CSTG,SPACE=(CYL,(2,1))), 00008000
// TRANSNT DD DSNMAX=TRANS,UNIT=(TRANS,DISP=(ETDISP, 00008100
// SPACE=(TRK,(11)), 00008200
// INDEX DD DSNMAX=INDEX1,X,UNIT=(INDEX1,DISP=(ETDISP, 00008300
// XINDEX1 DD DSNMAX=INDEX1,X,UNIT=(INDEX1,DISP=(ETDISP, 00008400
// XINDEX2 DD DSNMAX=INDEX2,X,UNIT=(INDEX2,DISP=(ETDISP, 00008500
// XINDEX2 DD DSNMAX=INDEX2,X,UNIT=(INDEX2,DISP=(ETDISP, 00008600
// SYSPRINT DD SYSPRINT=(FILE,CVLKSIZE=400,SPACE=(TRK,(50,20))), X00008700
// SYSDUMPD DD SYSDUMP=(FILE,CVLKSIZE=400,SPACE=(TRK,(50,20))), X00008800
// SYSSORT DD SYSSORT=(FILE,CVLKSIZE=400,SPACE=(TRK,(50,20))), X00008900
// INDEX1 DD DSNMAX=INDEX1,X,UNIT=(INDEX1,DISP=(ETDISP, 00009000
// XINDEX1 DD DSNMAX=INDEX1,X,UNIT=(INDEX1,DISP=(ETDISP, 00009100
// XINDEX2 DD DSNMAX=INDEX2,X,UNIT=(INDEX2,DISP=(ETDISP, 00009200
// XINDEX2 DD DSNMAX=INDEX2,X,UNIT=(INDEX2,DISP=(ETDISP, 00009300
// SYSSORT DD SYSSORT=(FILE,CVLKSIZE=400,SPACE=(TRK,(50,20))), X00009400
// INDEX1 DD DSNMAX=INDEX1,X,UNIT=(INDEX1,DISP=(ETDISP, 00009500
// XINDEX1 DD DSNMAX=INDEX1,X,UNIT=(INDEX1,DISP=(ETDISP, 00009600
// XINDEX2 DD DSNMAX=INDEX2,X,UNIT=(INDEX2,DISP=(ETDISP, 00009700
// XINDEX2 DD DSNMAX=INDEX2,X,UNIT=(INDEX2,DISP=(ETDISP, 00009800
// SYSSORT DD SYSSORT=(FILE,CVLKSIZE=400,SPACE=(TRK,(50,20))), X00009900

159
NIPS 360 FFS PROCEDURES

//XRESTANS PROC A=A,CL=*.*,LAB=BLP,QDF='&QDFILE',
// QDFSP='(50,10)',QDSP=PASS,QRT='&QRTFILE',
// QRTSP='(10,10)',UQDF=NIPW,UQRT=NIPW,
// VQDF=,VQRT=,VTAPE=
//
// CHARLES W. HICKISCH MAJOR USA PROJ CODE=763 NIPS BRANCH=431
// DATE=MARCH 1, 1974
//
// RSTQRT EXEC PGM=IEBGENER
// SYSUT1 DD DSNNAME=QRTXXX,UNIT=TAPE9,VOLUME=CVTAPE,DISP=(OLD,PASS),
// LABEL=(,LAB),DCB=(RECFM=VB,LRECL=1000,BLKSIZE=1004)
// SYSUT2 DD DSNNAME=QRT,UNIT=QRT,VOLUME=&QRTD,DISP=(,QDSP,DELETE),
// SPACE=(CYL,&QRTSP),
// DCB=(RECFM=VB,LRECL=1000,BLKSIZE=1004)
// SYSPRINT DD SYSOUT=('A',&CL)
// SYSIN DD DUMMY
// RSTDF EXEC PGM=IEBGENER,COND=(0,NE,RSTQRT)
// SYSUT1 DD DSNNAME=QDFXXX,UNIT=REF#,RSTQRT,SYSTCUT1,
// DISP=(OLD,KEEP),LABEL=(2,&LAB),
// DCB=(RECFM=VB,LRECL=1000,BLKSIZE=1004)
// SYSUT2 DD DSNNAME=QDF,UNIT=QDF,VOLUME=&QDFD,DISP=(,QDSP,DELETE),
// SPACE=(CYL,&QDFSP),
// DCB=(RECFM=VB,LRECL=1000,BLKSIZE=1004)
// SYSPRINT DD SYSOUT=('A',&CL)
// SYSIN DD DUMMY
NIPS 360 FFS PROCEDURES

//XRESTLIB PROC A=A,CL=*.*,LAB=BLP,LIB=NONE,NDISP=KEEP,
//SEGNO=1,STG=NIPW,ULIB=2314,VLIB=,VTAPE=,VWORK=
//* CHARLES W. HICKISCH MAJOR,USA PRJ CODE=763NIPS BRANCH=431
//* DATE=MARCH 1, 1974
//* R/ESTLIB EXEC PGM=IENMCEVE
//* SYSTLIB DD UNIT=STG,SPACE=(TRK,40),VOLUME=&VWORK
//* DISK DD UNIT=&ULIB,VOLUME=&VLIB,DISP=OLD
//* TAPE DD DNAME=&LIB,L,UNIT=TAPE9,VOLUME=&VTAPE,
//* DCB=(RECFM=FB,LECL=80,BLKSIZ=800),
//* LABEL=(SEQNO,LAB),DISP=(OLC,NODISP)
//* SYSPRINT DD SYSOUT=(&A,GC0)
NIPS 360 FFS PROCEDURES

//XSAVFANS PROC A= A, CL= A, LAB= BLP, QDF= "&QDFFILE", 00000010
// QDISP= PASS, QRT= "&QRTFILE", UCDF= NIPW, UQRT= NIPW, 00000020
// VQDF=, VQRT=, VTAPE= 00000030
//
//* CHARLES W. HICKSCH MAJOR, USA PROJ CODE= 763NIPS BRANCH= 431 00000040
//* DATE= MARCH 1, 1974 00000050
//* 00000060
//* 00000070
//* CPYQR T EXEC PGM= IEBGENER 00000080
//* SYSPPRINT DD SYSIN= (GA, GCL) 00000090
//* SYSUT1 DD DSNAME= QR T, UNIT= &QRT, VOLUME= &QRT, 00000100
//* DISP= (OLD, QDISP, KEEP), X00000110
//* DCB= (RECFM= VB, LRECL= 1000, BLKSIZE= 1004) 00000120
//* SYSUT2 DD DTNAME= QRTXXX, UNIT= TAPE9, VOLUME= &VTAPE, DISP= (PASS), 00000130
//* LABEL= 1, &LAB), DCB= (RECFM= VB, LRECL= 1000, BLKSIZE= 1004) 00000140
//* SYSIN DD DUMMY 00000150
//* CPYQDF EXEC PGM= IEBGENER, COND= (Q, NE, CPYQR T) 00000160
//* SYSUT1 DD DSNAME= QDF, UNIT= &QDF, VOLUME= &VQDF, 00000170
//* DISP= (OLD, QDISP, KEEP), X00000180
//* DCB= (RECFM= VB, LRECL= 1000, BLKSIZE= 1004) 00000190
//* SYSUT2 DD DNAM E= QDFXXX, VOLUME= REF= *.CPYQR T, SYSUT2, 00000200
//* DISP= (OLD, KEEP), LABEL= 1?, &LAB), X00000210
//* DCB= (RECFM= VB, LRECL= 1000, BLKSIZE= 1004) 00000220
//* SYSPRINT DD SYSOUT= (GA, GCL) 00000230
//* SYSIN DD DUMMY 00000240
NIPS 360 FFS

//XSAVE LIB
PROC A=A, CL=",", LAB=BLP, LIB=NONE, NONP=KEEP,
// SEQNO=1, STG=NIPW, ULIB=2314, VLIB=, VTAPE=, VWORK=
/**
** CHARLES W. HICKISCH MAJOR, USA PROJ CODE=763NIPS BRANCH=431
** DATE=MARCH 1, 1974
/**
//SYSUT LIB EXEC PGM=IEHMOVE
//SYSUTI DD UNIT=STG, SPACE=(TRK, 40), VOLUME=VWORK
//DISK DD UNIT=ULIB, VOLUME=VLIB, DISP=OLD
//TAPE DD DNAME=ELIB-L, UNIT=TAPE9, VOLUME=VTAPE,
// DCB=(RECFM=FB, LRECL=80, BLKSIZE=800),
// LABEL=(SEQNO, LAB), DISP=(OLD, NDISP)
//SYSPRINT DD SYSOUT=(GA, &CL)

00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
X00000100
X00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180
00000190
00000200
00000210
NIPS 360 FFS PROCEDURES

//XSP PROC A=A, BLKSIZE=560, BSZFILE=BSZNEWF=*
  00000100
  // CL=*, SUBCL=*, DEN=ISAM=*DUMMY.FILE=*
  00000200
  // JOBLIB=FFS,JOBIB=, LAB=SL, LIB=0DUMMY.FILE=*
  00000300
  // NBRBLK=200, RGN=100K, SAM=0DUMMY.FILE=*
  00000400
  // PTFJOBL=PTF.JOBLIB=*
  00000500
  // SAMOUT=0DUMMY, SORTSP=10, STG=NIPW, TRCH=
  00000600
  // ULSAM=2314, ULIB=2314, USAM=(TAPE9, OFFER=*
  00000700
  // VISAM=VLIB=0SAMOUT=0XDISP=OLD, XINDEX=*DUMMY.FILE=*
  00000800
  // XINDEX=*DUMMY.FILE=*, XUNIT=2314, XVOL=*
  00000900
//** THIS PROC IS USED TO GENERATE OR UPDATE A DISK RESIDENT INDEX DATA SET BASED ON THE DISK RESIDENT ISAM DATA FILE.**
  00001000
//** INDEX NAME EXEC XSP, ISAM=0DUMMY, VISAM=*SER=*XXXXXX=*
  00001100
//** XINDEX=*DUMMY.FILE=*, XUNIT=2314, XVOL=*
  00001200
//** DATE=MARCH 1, [974
  00001300
//**
  00001400
//** EXEC PGM=xutndx5pc, REG ICN=REGICN, RGN=*
  00001500
//** DD DISP=SHR, DSN=PTFJOBL
  00001600
//** DD DISP=SHR, DSN=GJOBIB
  00001700
//** DD DDOUT=(EA=CL, //ISAMWORK DD UNIT=ETG, SPACE=(CYL,(10)), DCB=(DSORG=IS, RECFM=VB),
  00001800
  // LRECL=1000, BLKSIZE=1004, OPTCOP=1LYR, CYLOFL=2)
  00001900
  // NEWFILE DD DSN=ISAM, DISP=SHR, VOL=0VISAM, UNIT=USAM
  00002000
  // SAMFILE DD DSN=0SAM, UNIT=0SAM, VOLUME=0VSAM
  00002100
  // DDISP=(SHR, KEEP), LABEL=(CL, LAB), DCB=(RECFCM=VB, LRECL=1000, LRECL=1000)
  00002200
  // BLKSIZE=BSZFILE, TRCH=TRCH, DEN=DEN
  00002300
  // SLIB DD DSN=ECLIB, VOLUME=0CLIB, UNIT=0ULIB
  00002400
  // DS=0DJBIB, DISP=SHR
  00002500
  // SORTLIB DD DSN=SYS9.SORTLIB=, DISP=SHR
  00002600
  // SORTWKO1 DD UNIT=ETG, SPACE=(CYL,(ISORTSP=), CONTIG)
  00002700
  // SORTWKO2 DD UNIT=ETG, SPACE=(CYL,(ISORTSP=), CONTIG)
  00002800
  // SORTWKO3 DD UNIT=ETG, SPACE=(CYL,(ISORTSP=), CONTIG)
  00002900
  // SORTWKO4 DD UNIT=ETG, SPACE=(CYL,(ISORTSP=), CONTIG)
  00003000
  // SORTWKO5 DD UNIT=ETG, SPACE=(CYL,(ISORTSP=), CONTIG)
  00003100
  // SORTWKO6 DD UNIT=ETG, SPACE=(CYL,(ISORTSP=), CONTIG)
  00003200
  // SOURCPRT DD SYOUT=(EA, CL)
  00003300
  // SYSPRINT DD SYOUT=(EA, CL)
  00003400
  // SYSSDUMP DD SYOUT=(EA, CL)
  00003500
  // UTSAMOUT DD DSN=0DINDEX.BIN=, DISP=(EDISP, KEEP), UNIT=0XUNIT
  00003600
  // VOLUME=1D INDEX.BIN=, VOLUME=0CLIB, UNIT=CLIB
  00003700
  // DBC=(BLKSIZE=64BKSIZE=64=RECFM=F, KEYLEN=4, DSORG=DA)
  00003800

164
NIPS 360 FFS PROCEDURES

//XSTOIS PROC A=A,BSZFILE=BSZNEWF,CC=CL=,CLI=,CYLOFL=1,DEN=,INDEX=1,ISAM=*DUMMY.FILE*,JOBLIB=FFS.JCBLIB*,LAB=SL,NDISP=KEEP,OVFLOW=5,PRIME=40,RGN=60K,PTFJOBBL=*PTF.JOBLIB*,SAM=*DUMMY.FILE*,SEQNO=1,TRCH=UISAM*(2314,P),USAM=*(TAPER,DEEP)*,VUSAM=*SER=CANCEL*,VOVFLOW=REF=*DATAFILE*,VPRIME=*REF=*DATAFILE*,VSAM=

*** CHARLES W. HICKISCH MAJOR,USA PROJ CODE=763NIPS BRANCH=431
*** DATE=MARCH 1, 1974
***

//STP1 EXEC PGM=UTBDISM,REGION=&RGN,PARM=*CC*
//STEPLIB DD DISP=SHR,DSN=PTFJOBBL
// DD DISP=SHR,DSN=JOBLIB
//DATAFILE DD DSN=(DSORG=IS,CYLOFL=CYLOFL,BUFNO=5,BLKSIZE=BSZNEWF),VOLUME=VISAM,
// DSNAME=ISAM.((INDEX),SPACE=(CYL,INDEX),UNIT=UISAM,
// DISP=(,SNDF,DELETE)
// DD DCB=*,DATAFILE,VOLUME=VPRIME,
// DSNAME=ISAM.(PRIME),SPACE=(CYL,PRIME),UNIT=UISAM,
// DISP=(,SNDF,DELETE)
// DD DCB=*,DATAFILE,VOLUME=OVFLOW,
// DSNAME=ISAM.(OVFLOW),SPACE=(CYL,OVFLOW),UNIT=UISAM,
// DISP=(,SNDF,DELETE)
//SAMFILE DD DSN=ESAM.S,DISP=SHR,UNIT=USAM,VOLUME=CVSAM,
//LABEL=(TSEQNO,&LAB),DCB=(RECFM=VB,LRECL=1000,BLKSIZE=BSZFILE,
// DEN=EDEN,TRCH=TRCH,BUFNO=5)
//SYSPRINT DD SYSOUT=*C&CL*)
//SYSDUMP DD SYSOUT=*C&CL*)

165
NIPS 360 FFS PROCEDURES

#include<
PROC A=A, CL=*, ..., CL1=*, ..., CL2=*, ..., JOBLIB=FFS.JOBLIB;
PROC PTFJOBL='PTF.JOBLIB';
LIB=ULIB=2314, VLIB=
* CHARLES W. HICKISH MAJOR, USA PROJ CODE=763NIPS BRANCH=431 *
* *
SUBCHK EXEC PGM=UTSUBCHK
STEPLIB DD DSN=PTFJOBL, DISP=SHR
DD DISP=SHR, DSN=JOBLIB
SLIB DD DSN=LIB.L, VCL=VLIB, UNIT=ULIB, DISP=SHR
SYSDUMP DD SYSOUT=(GA, ECL)
SYSOUT DD SYSOUT=(GA, ECL)

NIPS 360 FFS PROCEDURES

//XTABGEN PROC A=*BLK=7294, CL=*', CL1=*, CL2=*
// JOB1B='FFS.JOB1B', LIB=NONE, LIBDISP=OLD,
// LIBSP='(2,1,5)', RGN=30K, SORTSP=0, STG=NIPW, ULIB=2314,
// PTFJOB1B='PTF.JOB1B',
// VLB=
//
// CHARLES W. HICKISCH MAJOR, USA PROJ CODE=763NIPS BRANCH=431
// DATE=MARCH 1, 1974

//TAB EXEC PGM=UTTABGEN, REGION=&RGN
//STEPLIB DD DISP=SHR, DSN=PTFJOB1B
// DD DISP=SHR, DSN=PTFJOB1B
// SYSDOT DD SYSOUT(&EA, &ECL)
// SYSDUMP DD SYSOUT(&EA, &ECL)
// SYSPRINT DD SYSOUT(&EA, &ECL)
// SORTLIB DD DISP=SHR, DSNNAME=SYS1.SORTLIB
// SORTWK01 DD SPACE=(CYL, (&SORTSP), CONTIG), UNIT=ESTG, SEP=SORTWK01, X0001600
// SEP=SORTWK01
// SORTWK03 DD SPACE=(CYL, (&SORTSP), CONTIG), UNIT=ESTG, SEP=SORTWK02, X0001800
// SEP=SORTWK02
// SORTWK04 DD SPACE=(CYL, (&SORTSP), CONTIG), UNIT=ESTG, SEP=SORTWK01, X0002000
// SORTWK05 DD SPACE=(CYL, (&SORTSP), CONTIG), UNIT=ESTG, SEP=SORTWK02, X0002000
// SORTWK06 DD SPACE=(CYL, (&SORTSP), CONTIG), UNIT=ESTG, SEP=SORTWK01, X0002400
// SORTWK07 DD SPACE=(CYL, (&SORTSP), CONTIG), UNIT=ESTG, SEP=SORTWK05, X0002500
// SYSLMOD DD DSNNAME=GLIB.L, VOLUME=CVLIB, UNIT=&ULIB, SPACE=(CYL, &LIBSP), X0002600
// DISP=(LIBDISP, KEEP), DDB=(RECFM,U, BLKSIZE=&BLK)
NIPS 360 FFS PROCEDURES

//SDCONSOL DD UNIT=STG,SPACE=(230C,(10,,4)) 00004200
//SDKINSET DD SPACE=(CYL,(1,1)),UNIT=STG,DCB=(RECFM=F,BLKSIZE=1004) 00004300
//STATREC5 DD SYSOUT=(&A,,&CFL) 00004400
//SYSMOD DD SPACE=(TRK,(20,,8)),UNIT=STG,DCB=FFS,JOBLIB, 00004500
//LABEL=EXPDT=66366 00004600
//SYSPRINT DD SYSOUT=(&A,,&CFL) 00004700
//SYSABEND DD SYSOUT=(&A,,&CFL1) 00004800
//TPDUMP DD SYSOUT=(&A,,&CFL1) 00004900
//EDITDUMP DD SYSOUT=(&A,,&CFL1) 00005000
//SNAPSHOT DD SYSOUT=(&A,,&CFL1) 00005010
//PIDUMP DD SYSOUT=(&A,,&CFL1) 00005020
//SYS0NIN DD TPDUMP 00005100
//XINDEX DD DSN=EXINDEX.X,UNIT=EXUNIT,VOL=EXVOL,DISP=SHR 00005200
//SHAR2SDD DD DSN=NIPS.TPJOBQ,DISP=(MOD,KEEP) 00005300
//SYSIN DD DUMMY 00005400
//U DD SYSOUT=(&A,,&CFL2) 00005500
//C DD SYSOUT=(&A,,&CFL3) 00005600
//S DD SYSOUT=(&A,,&CFL4) 00005700
//T DD SYSOUT=(&A,,&CFL5) 00005800
//SUBFILE DD UNIT=STG,SPACE=(CYL,(0,,10)) 00005900
//MENUSET DD DSN=DUMMY,FILEL,DISP=SHR 00005910
**XTRDISK**

PROCEDURE

```
//XTRDISK PROC A=A, CL='*', JL='*', JOBLIB='FFS.JOBLIB',
// LAB=SL, RGN=60K,
// PTFJOBL='PTF.JOBLIB',
// XFDISP=SHR, XFNAME='XBSF', XUNIT=2314, XFVOL=,
// ISAM='DUMMY.FILE', UISAM='(234, P)', VISAM=,
// SAM='DUMMY.FILE', USAM='(TAPE9, DEFER)', VSAM=,
// TNAME='XBSF', TUNIT='(TAPE9, DEFER)', TVOL=,
// XTRIOB=SL, XSTAT='NO',
// BSZFILE=', TRCH=', DEN=
//**
```

This procedure is used to transfer a disk-resident D4DEX data set to tape. This operation condenses the index data set. The tape created is a sequential data set consisting of variable length blocks. Records that contain the source data and control information for subsequently reconstructing the source data.

Date: March 1, 1974

---

**CHARLES W. HICKISCH MAJOR, USA**

Project Code: 763NI PS Branch: 431

---

```
//STEPNAME EXEC XTRDISK, XFNAME=WW, XTNAME=XX, XFVOL=YY, XTVO L=ZZ
//
// DATE=MARCH 1, 1974
//
//**
```

---

```
//XTR EXEC PGM=UNDOXXFR, PARM='DISK', CL='STAT', REGION=RGN
// STEPLIB DD DISP=SHR, DSN=&PTFJOBL
// DD DISP=SHR, DSN=&JOBLIB
// INDEXDAM DD DSN= &XFNAME, VOL= &XFVOL, DISP= &XFDISP
// INDEXSAM DD DSN=&XTNAME, VOL= &XTVOL, DISP= (NEW, KEEP),
// LABEL=('), XTLAB
// SYSPRINT DD SYSDUMP=(&A, &GCL)
// SYSPRINT DD SYSDUMP=(&A, &GCL)
// DATAFILE DD DSN= &ISAM,
// UNIT= &UISAM,
// VOLUME= &VSAM,
// DISP= SHR,
// SAMFILE DD DSN= &SAM.S,
// UNIT= &USAM,
// VOLUME= &VSAM,
// DISP= (SHR, KEEP),
// LABEL=('), GLAB,
// DCB=(RECFM=VB, LRECL=1000, BLKSIZE=&BSZFILE,
// TRCH=('), TRCH, DEN='DEN)
```

---

171
**NIPS 360 FFS PROCEDURES**

```
//XTRTAPE PROC A=A,CL='*,CL=*,JOBLIB='FFS.JOBLIB',
//XFLAB=5L,NBRBLK=50,RGN=60K, XFNAME=,
//PTFJOBL='PTF.JOBLIB',
//XFUNIT='(TAPE9,DEFER)',XFVOL=,XF DISP=OLD,
//XTDISP='(NEW,KEEP)',XTNAME=,XTUNIT=2314,XTVOL=
//**
//** THIS PROC IS USED TO RECONSTRUCT A DISK-RESIDENT INDEX DATA
//** SET FROM A PREVIOUSLY UNLOADED SEQUENTIAL VERSION OF THE INDEX
//** DATA SET.
//**
//** //STEPNAME EXEC XTRTAPE, XFNAME=WW, XTNAME=XX, XFVCL=YY,XTVOL=ZZ
//** CHARLES W. HICKISCH MAJOR, USA PRJ CODE=763NIPS BRANCH=431
//** DATE=MARCH 1, 1974
//**
//** //**
//** EXEC PGM=UTNDXTFR,PARM=TAPE,REGION &RGN
//** STEPLIB DD DISP=SHR,DSN=&PTFJOBL
//** INDXPRT DD SYSDT=(&A, &CCL)
//** INDEXSAM DD DSN= XFNAME,UNIT= XFUNIT, VOL= XFVCL, DISP= XF DISP,
//** LABEL=(,XFLAB)
//** SYSPRINT DD SYSDT=(&A, &CCL)
//** SYSDUMP DD SYSDT=(&A, &CCL)
//** INDEX DD DSN= XTNAME,UNIT= XTUNIT, VOL= XT VOL,
//** DISP=XTDISP, SPACE=(560, NBRBLK),
//** DCB= (BLKSIZE=560,REC FM=F,KEYLEN=4,DS ORG=DA)
```

172
NIPS 360 FFS PROCEDURES

---

UTFSCAN EXEC PGM=UTFLDSCN,RFG ICN=CRGN

STEPLIB DD DISP=SHR,DSN=PTFJOBLIB

SYSPRINT DD SYSOUT=(EA,ECL)

SYSDUMP DD SYSOUT=(EA,ECL)

DATAFILE DD DSNAME=GISAM,UNIT=GDISAM,VOLUME=GDISAM,DISP=SHR

SORTLIB DD DSNAME=SYS1.SORTLIB,DISP=SHR

SORTIN DD UNIT=STOP,SPACE=(TRK,5000,TRANSP,150J)

SORTWK01 DD SPACE=(CYL,(SORTSP),,CONTIG),UNIT=(STG,SEP=SORTIN)

SORTWK02 DD SPACE=(CYL,(SORTSP),,CONTIG),UNIT=(STG,SEP=SORTWK01)

SORTWK03 DD SPACE=(CYL,(SORTSP),,CONTIG),UNIT=(STG,SEP=SORTWK01,SEP=SORTWK02)

SORTWK04 DD SPACE=(CYL,(SORTSP),,CONTIG),UNIT=(STG,SEP=SORTWK02,SEP=SORTWK03)

SORTWK05 DD SPACE=(CYL,(SORTSP),,CONTIG),UNIT=(STG,SEP=SORTWK02,SEP=SORTWK04)

SORTWK06 DD SPACE=(CYL,(SORTSP),,CONTIG),UNIT=(STG,SEP=SORTWK04,SEP=SORTWK05)

ISAMWORK DD UNIT=DISP=SAM,DSB=DOSAM=IS,SPACE=(CYL,101)

ISAMFILE DD DSNAME=DISAM,S,UNIT=GDISAM,VOLUME=GDISAM,DISP=(SHR,KEEP)

SYSUT2 DD DSNAME=GDISAM,UNIT=GDISAM,VOLUME=GDISAM,DISP=SHR

TRANS DD DSNAME=GDISAM,UNIT=GDISAM,DISP=SHR

DCB=(RECFM=FB,LRECL=50,BLKSIZE=158K)
NIPS 360 FFS PROCEDURES

//XUTODE PROC A=A,
// CL=' ',
// JOBLIB='FFS.JOBLIB',
// PTFJOBL='PTF_JOBLIB',
// LIB='DUMMY.FILE',
// RGN=66K,
// SDISP=SHR,
// SNAP=,
// SOURCL='DUMMY.FILE',
// ULIB=2314,
// USOURCL=2314,
// VLIB=,
// VSOURCL=
//XUTODE EXEC PGM=UTODF,REGION=REGION,PARM=SNAP
//STEPLIB DD DSN=PTFJOBL,DISP=SHR
// DD DISP=SHR,DSN=JOBLIB
//SYSUDUMP DD SYSOUT=(EA,ECL)
//SNAPSHOT DD SYSOUT=(EA,ECL)
//SOURCEPRT DD SYSOUT=(EA,ECL)
//DDPRT DD SYSOUT=(EA,ECL)
//SYSPRINT DD SYSOUT=(EA,ECL)
//SLIB DD DISP=OLD,DSN=LIB.L,UNIT=ULIB,VOL=VLIB
//SOURCLIB DD DISP=OLD,DSN=SOURCL.L,UNIT=USOURCL,VOL=VSOURCL

00000100 00000200 00000300 00000400 00000500 00000600 00000700 00000800 00000900 00001000 00001100 00001200 00001300 00001400 00001500 00001600 00001700 00001800 00001900 00002000 00002100 00002200 00002300
NIPS 360 FFS PROCEDURES

//XUTSOURC PROC CL='*', CJL='*', JOBIB='FFS.JOBIB',
// PTFJOBL='PTF.JOBIB',
// NAME=, SDISP=SHR, SOURCL=, USOURCL=, VSOURCL=,
///
//* CHARLES W. HICKISCH MAJOR, USA PROJ CCDE=763 NIPS BRANCH=431
//* DATE=MARCH 1, 1974
///
//* SOURC EXEC PGM=UTSOURC
// STEPLIB DD DISP=SHR, DSN=PTFJOBL
// DD DISP=SHR, DSN=JOBLIB
// SOURCPRT DD SYSOUT=(A,ECL)
// SOURCLIB DD DISP=GDISP, DSN=SOURCL.L, VCL=VSOURCL, UNIT=USOURCL
// SYSDUMP DD SYSOUT=(A,ECL)
// SYSLIB DD DISP=SHR, DSN=SOURCL.L(&NAME), UNIT=USOURCL, VCL=VSOURCL

00000100
00000110
00000200
00000300
00000400
00000500
00000600
00000700
00000800
00000810
00000900
00001000
00001100
00001200
DISTRIBUTION

<table>
<thead>
<tr>
<th>CCTC CODES</th>
<th>COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>C124 (Reference and Record)</td>
<td>3</td>
</tr>
<tr>
<td>C124 (Record Copy) Stock</td>
<td>6</td>
</tr>
<tr>
<td>C240</td>
<td>20</td>
</tr>
<tr>
<td>C315</td>
<td>1</td>
</tr>
<tr>
<td>C341 (Maintenance Contractor)</td>
<td>10</td>
</tr>
<tr>
<td>C341 (Stock)</td>
<td>70</td>
</tr>
</tbody>
</table>

EXTERNAL

Director of Administrative Services, Office of the Joint Chiefs of Staff
Attn: Chief, Personnel Division, Room 1A724, The Pentagon Washington, D.C. 20301-- 1

Director for Personnel, J-1, Office of the Joint Chiefs of Staff, Attn: Chief, Data Service Office, Room 1B738C, The Pentagon, Washington, D.C. 20301-- 1

Director for Operations, J-3, Office of the Joint Chiefs of Staff, Attn: P & AD, Room 2B870, The Pentagon, Washington, D.C. 20301-- 1

Director for Operations, J-3, Office of the Joint Chiefs of Staff, Attn: Deputy Director for Operations (Reconnaissance and Electronic Warfare) Room 2D921, The Pentagon, Washington, D.C. 20301-- 1

Director for Logistics, J-4, Office of the Joint Chiefs of Staff, Room 2E828, The Pentagon, Washington, D.C. 20301-- 1


Automatic Data Processing, Liaison Office
National Military Command Center, Room 2D901A, The Pentagon, Washington, D.C. 20301-- 1
Automatic Data Processing Division
Supreme Headquarters Allied Powers, Europe
Attn: SA & P Branch, APO New York 09055------ 1

Director, Defense Communications Agency, Office
Of MEECN System Engineering, Attn: Code 960T,
Washington, D.C. 20301------------------------ 1

Director, Defense Communications Engineering
Center, Hybrid Simulation Facility, 1860
Wiehl Avenue, Reston, VA 22070--------------- 1

Director, Defense Intelligence Agency
Attn: DS - 5C2
Washington, D.C. 20301------------------------ 5

Commander-in-Chief, Pacific, Attn: J6331,
FPO San Francisco, 96610---------------------- 1

Commander-in-Chief, US Army Europe and
Seventh Army ATTN: OPS APO New York 09403--- 1

Commanding General, US Army Forces Command,
Attn: Data Support Division, Building 206,
Fort McPherson, GA 30303---------------------- 1

Commander, Fleet Intelligence Center, Europe,
Box 18, Naval Air Station, Jacksonville,
Florida 32212------------------------------- 1

Commanding Officer, Naval Air Engineering
Center, Ground Support Equipment Department,
SE 314, Building 76-1, Philadelphia, PA 19112 1

Commanding Officer, Naval Security Group
Command, 3801 Nebraska Avenue, N.W. Attn: GP22,
Washington, D.C. 20390--------------------- 1

Commanding Officer, Navy Ships Parts Control
Center, Attn: Code 712, Mechanicsburg, PA 17055 1

Headquarters, US Marine Corps, Attn: System
Design and Programming Section (MC-JSMD-7)
Washington, D.C. 20380------------------------ 1
Commanding Officer, US Army Forces Command Intelligence Center, Attn: AFIC-PD, Fort Bragg, NC 28307-------------------------- 1

Commander, US Army Foreign Science and Technology Center, Attn: AFSJ-CS, 220 Seventh Street NE, Charlottesville, VA 22212-- 1

Commanding Officer, US Army Security Agency, Command Data Systems Activity (CDSA) Arlington Hall Station, Arlington, VA 22212-------- 1

Commanding Officer, US Army Security Agency Field Station - Augsburg, Attn: IAEADP, APO New York 09458-------------------------- 1

Commander, Fleet Intelligence Center, Atlantic, Attn: DPS, Norfolk, VA 23511-------------------------- 1

Commander, Fleet Intelligence Center, Pacific, Box 500, Pearl Harbor, HI 96860-------------------------- 1

Air Force Operations Center, Attn: Systems Division (XOOCSC) Washington, D.C. 20301----- 1

Commander, Armed Forces Air Intelligence Training Center, TTTNM (360 FFS), Lowry AFB, Co 80230-------------------------- 1

Commander, Air Force Data Services Center, Attn: Director of System Support, Washington, D.C. 20330-------------------------- 1

Commander-in-Chief, US Air Forces in Europe, Attn: ACDI APO New York 09332-------------------------- 1

Commander, USAF Tactical Air Command, Langley AFB, VA 23665-------------------------- 1

Commander, Space and Missile Test Center, Attn: (ROCA) Building 7000, Vandenberg, AFB, CA 93437-------------------------- 1

178
<table>
<thead>
<tr>
<th>EXTERNAL</th>
<th>COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Air Systems Command, Naval Air Station, Code 13999, Jacksonville, Florida 32212</td>
<td>1</td>
</tr>
<tr>
<td>Defense Documentation Center, Cameron Station, Alexandria, VA 22314</td>
<td>12</td>
</tr>
<tr>
<td>TOTAL</td>
<td>159</td>
</tr>
</tbody>
</table>
This document familiarizes the user with the features available using NIPS 360 FFS Job Preparation procedures. It describes symbolic parameters and file naming conventions, illustrates general approaches to running jobs using single or multiple data bases and file libraries. Job Control Language (JCL) examples for each system component are given.

This document supersedes CSM UM 15-78, Vol VIII.