A thesis submitted to Rensselaer Polytechnic Institute, Troy, New York, in partial fulfillment of the requirements for the degree of Master of Engineering.

Approved for public release; distribution unlimited with the understanding that portions of this thesis have been published under the 16th Int'l Conf. on Defects and Radiation Effects in Semiconductors - Inst. Phys. Conf. Ser. No. 46, 1979.
NEW OPTICAL METHOD FOR STUDYING DEFECTS IN SILICON

by

Michael T. Mitchell

A Thesis Submitted to the Graduate Faculty of Rensselaer Polytechnic Institute in Partial Fulfillment of the Requirements for the Degree of

MASTER OF ENGINEERING

Approved:

John C. Corelli, Thesis Advisor

Rensselaer Polytechnic Institute
Troy, New York

December 1978
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>A. Historical Background</td>
<td>1</td>
</tr>
<tr>
<td>B. Statement of Problem</td>
<td>2</td>
</tr>
<tr>
<td>II. EXPERIMENTAL METHOD</td>
<td>3</td>
</tr>
<tr>
<td>III. DIVACANCY BANDS</td>
<td>7</td>
</tr>
<tr>
<td>A. Experimental Results</td>
<td>7</td>
</tr>
<tr>
<td>B. Conclusions; Divacancy Bands</td>
<td>10</td>
</tr>
<tr>
<td>IV. HIGHER ORDER BANDS</td>
<td>18</td>
</tr>
<tr>
<td>A. Experimental Results</td>
<td>18</td>
</tr>
<tr>
<td>B. Conclusions; Higher Order Bands</td>
<td>22</td>
</tr>
<tr>
<td>V. SUMMARY</td>
<td>28</td>
</tr>
<tr>
<td>VI. REFERENCES</td>
<td>31</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Optical system used in the experiment</td>
<td>4</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Absorption-time response of probe light ($\lambda_p = 3.62\mu m$) to excitation light ($E_e = 0.83 eV$) for 10 ohm-cm n-type (P-doped) Si, crucible grown, irradiated to 5×10^{18} neutrons/cm² ($E>1$ MeV)</td>
<td>8</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Absorption response of probe light ($\lambda_p = 3.62\mu m$) to excitation light (E_e) for 100 ohm-cm n-type (P-doped) Si, crucible grown, irradiated to 5×10^{18} neutrons/cm² ($E>1$ MeV)</td>
<td>9</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Response of varying probe light (λ_p) for various constant excitation energies. Results are for 10 ohm-cm n-type (P-doped) Si, crucible grown, irradiated to 5×10^{18} neutrons/cm² ($E>1$ MeV)</td>
<td>11</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Absorption dependence on neutron fluence for various infrared absorption bands</td>
<td>12</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Fast neutron dose dependence of band tailing ("near edge absorption") in irradiated silicon</td>
<td>13</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Model of the photoionization process utilizing direct gap energy transitions. a) excitation light on: b) excitation light off</td>
<td>15</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Higher order bands for n-type Si, float zone, irradiated to 6×10^{17} neutron/cm² ($E>1$ MeV)</td>
<td>19</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Absorption-time response of probe light (λ_p) to excitation light (E_e) for 200 ohm-cm p-type (B-doped) Si, crucible grown, irradiated to 5×10^{18} neutrons/cm² ($E>1$ MeV) and annealed at 500°C for 15 minutes. a) and b) $\lambda_p = 9.54\mu m$, $E_e = 1.17 eV$: c) $\lambda_p = 9.54 m$, $E_e = 0.74 eV$</td>
<td>20</td>
</tr>
</tbody>
</table>
Figure 10: Model of the photoionization process for the 9.54μm and 9.08μm higher order bands in irradiated silicon annealed to 500°C for 15 minutes. a) applies during the excitation process with band gap light; b) applies to depletion process with depletion energy \(\lambda_d = 1.7\mu m \) (\(E_e = 0.74eV \)) light.

Figure 11: Contrast in the photoconductivity spectrum of levels for 50 and 1.5MeV electron irradiated phosphorus-doped, 1-Ωcm, floating-zone silicon.
ACKNOWLEDGEMENT

The author wishes to convey his sincere gratitude to Dr. John C. Corelli for his advice and expert knowledge lent during all phases of this graduate work. Sincere appreciation is also extended to Dr. J. W. Corbett for his valuable assistance and encouraging discussions. The author also wishes to express his gratitude to his wife, Palma-Lynn, for her patience and understanding during graduate school. Special appreciation is extended to the Department of Nuclear Engineering for use of their equipment and funding for portions of the experiment.
ABSTRACT

A new optical method incorporating two monochromatic light beams incident on the sample whose temperature is at \(\approx 78{\text{°}}K \) is used to study infrared active radiation-induced defect absorption bands. Defect energy levels, photoionization excitation and de-excitation processes were examined for the divacancy associated bands found in the 3-3.6\(\mu \)m wavelength region and two higher order bands which appear in the 7 to 14\(\mu \)m wavelength region.

For the divacancy band region 10\(\Omega \)-cm and 0.1\(\Omega \)-cm n-type (P-doped) crucible grown silicon irradiated to \(5 \times 10^{18} \) neutrons/cm\(^2\) (E>1 MeV) were examined. An excitation energy \((E_\text{e}) \) of width 0.81eV to 0.89eV was found to produce an absorption throughout the entire 3.3\(\mu \)m absorption band region with a maximum absorption occurring around 3.1\(\mu \)m. A model is proposed which incorporates direct band gap transitions.

A 200\(\Omega \)-cm p-type (B-doped) crucible grown silicon sample irradiated to \(5 \times 10^{18} \) neutrons/cm\(^2\) (E>1 MeV) and annealed at 500\({\text{°}} \)C for 15 minutes was examined for higher order bands. The 9.54\(\mu \)m and 9.08\(\mu \)m bands were found to have a maximum absorption for band gap energy. A model is proposed for the photoionization process incorporating the band gap energy for absorption and a depletion energy of 0.74eV.
A. Historical Background

One of the greatest contributions to modern technology has been the advent of solid state devices. Their use in almost every phase of electronics has revolutionized man's capability to understand and control his environment. Continuing research in the area of solid state will aid scientists and engineers in developing better, smaller, and more accurate electronic instrumentation needed to expand in all areas of science and industry. This continuing research will by necessity mean that better understanding of the solid state materials, their basic characteristics and physical behavior, under varied environmental situations will come about.

One semiconductor material in which property investigation is currently progressing is silicon, since it is one of the mainstays of solid state electronics. In particular, its behavior and changing characteristics in an environment of radiation has been under study due to its use in such capacities as reactor control, electronic control devices, radiation characterization, aerospace activities and other areas where a radiation environment exists. This radiation produces defects in the lattice structure, such as, vacancies, interstitials, line defects and many others which can alter the characteristics of the material by changing its conductivity, strength, ductility, etc. Continuing examination of these defects will give a better
understanding of how they come about, their influence on the material and how they may be promoted, eliminated or mitigated to serve man's needs.

A search of the literature indicates that since the time of Fan and Ramdas\(^1\), much work has been performed on the study of defects by utilizing infrared spectroscopy. Infrared absorption bands have been studied and, together with other experimental techniques, such as, EPR, the bands have been linked to particular defects thereby aiding in understanding the defect's characteristics.

B. Statement of Problem

Some of these infrared absorption bands have been found to be electronic in nature and associated with transitions requiring an electron to be present in the ground state of the defect center. In particular those bands associated with the divacancy defect (Chen and Corelli)\(^2,3\) and the Higher Order Bands (Corelli, et. al.)\(^4\) have been found to have this characteristic. Previously when observing these bands, the ground state was populated by using the full energy spectrum (all wavelengths) of the light source and analyzing the absorption which occurred at a specific wavelength. This procedure did not allow one to determine the position of the energy level; therefore, the transition energy dependence remained unknown.

In this thesis, a new optical method for examining infrared absorption bands will be presented along with transition energy dependence results for the divacancy defect infrared absorption bands and the higher order bands.
II

EXPERIMENTAL METHOD

The new optical system introduced here eliminates the necessity of utilizing the full energy spectrum. Figure 1 depicts the experimental setup which employs two Model 98 Perkin Elmer monochromators. In contrast to previous experiments where the full energy spectrum strikes the sample and then the transmitted beam is examined by wavelength, only two wavelengths, with $\pm \Delta \lambda$ resolution, are incident on the sample. The first light beam (probe light) is incident normal to and passes through the sample on to a detector. The second beam (excitation light) strikes the sample slightly off normal incidence yet illuminating the same sample area as the probe light. With the probe light set at the predetermined wavelength of the absorption band to be studied, a pulse of excitation light whose energy can be varied (say from $-2.4eV$ down to $0.05eV$) by the use of different prisms is shone on the sample. The variables available in the experiment are the excitation light energy, the pulse duration, the light intensity, the sample temperature and the polarization condition of probe and excitation light. The sample is kept in a cryostat for low temperature studies. Different types of cryostats with different windows, various types of detectors, prisms and sources can be utilized depending upon the specific experimental needs.

Using the optical system in Figure 1, results were obtained using a glass cryostat with NaCl windows and a copper cold finger
List of Instruments: p. 5
Figure 1 Instruments

A - Amplifier
C - Chopper at 13 cps
CS - Glass Cryostat Holding Sample at 78°K
D - Thermocouple Detector with KBr window
EM - Ellipsoid Mirror
G - Probe Light Source (Globar)
M - Plane Mirror
PA - Preamplifier
R - Recorder
S - Exciter Light Source (Sun Lamp with Quartz Envelope)
SM - Spherical Mirror
to keep the sample at liquid Nitrogen temperature (78^0 K). A thermocouple detector with a KBr window was used for detecting the probe light and a globar was used for the probe light source. A tungsten lamp, globar, and high intensity quartz lamp were used alternately as sources for the excitation light. In addition, the optical system was made light tight by covering both monochromators and the pathways of both beams.
DIVACANCY BANDS

A. Experimental Results

The first infrared absorption band to be studied was the $3.62 \mu m \ (2762 \ cm^{-1})$ band associated with the divacancy defect. Two samples were utilized, each irradiated to $5 \times 10^{18} \text{ neutrons/cm}^2$ ($E>1 \text{ MeV}$) of initial resistivity $0.1 \Omega\text{-cm}$ and 10^{-4}-cm n-type (P-doped) silicon crucible grown. Response of maximum absorption to the excitation light for the band was as depicted in Figure 2. There were at least two absorption and two decay modes noted for the effect of the excitation light; absorption $T_1=3.8 \text{ sec}; T_2=12 \text{ min};$ decay $T_3=50 \text{ sec}; T_4>30 \text{ min}$. Where $T_1 + T_2$ and $T_3 + T_4$ are the times to reach steady state. The energy range of the excitation beam giving the greatest absorption effect occurred from 0.81eV to 0.89eV. The experiment was conducted under light tight conditions, i.e., no light was allowed to strike the sample, both before and after the sample was brought to a temperature of 78°K. No other excitation energy was found to produce an absorption. It was also noted that the excitation energy was found to behave similar to a resonance and to have an effect as low as 0.56eV at the low energy tail and 0.95eV at the high energy tail.

The response of the $3.62 \mu m$ probe energy to excitation energy is shown in Figure 3, in which the transmission of $3.62 \mu m$ light through the sample is plotted as a function of the excitation energy. It was first believed that this excitation energy range was applicable to the $3.62 \mu m$ band itself; however, it was found that the probe light alone
Figure 2
Figure 3
would weakly bring about the 3.62\(\mu\)m band and that the noted excitation energy affected not only the 3.62\(\mu\)m band but the entire 3.3\(\mu\)m region with a maximum absorption occurring around 3.1\(\mu\)m, see Figure 4.

Another experimental finding is that for the above samples near edge absorption occurred down to 0.6eV implying that the band gap (indirect optical) of Si has closed due to band tailing from 1.17eV down to 0.6eV.

B. Conclusions; Divacancy Bands

The fact that the 3.62\(\mu\)m and 3.46\(\mu\)m bands are weak follows the results obtained by Rolle\(^6\) where it is indicated that the bands are fluence dependent and the absorption coefficient is reduced by half at a fluence of \(5 \times 10^{18}\) neutrons/cm\(^2\), see Figure 5.

The near edge absorption of 0.6eV also follows the results of Rolle where it is shown that the effects of radiation cause band gap closure, see Figure 6. At room temperature (300\(^0\)K) a band gap of \(~0.51\)eV was observed in this work which is in close agreement with the results given in Figure 6 obtained by Rolle.

The excitation energy of 0.81 eV - 0.89eV at first seems to be in contradiction with the knowledge of a band gap reduced to 0.6eV at 78\(^0\)K. Based upon results from experimentation in the area of neutron radiation damage in silicon; however, a model is proposed here which explains these results with a logical interpretation based on the experimental facts.

First it is recognized that silicon is an indirect semiconductor in that the optical transition from valence to conduction
Figure 4

TRANSMISSION (ARBITRARY UNITS)

4.14μm 0.30eV
3.62μm 0.34eV
3.46μm 0.36eV
3.1μm 0.40eV
2.68μm 0.46eV
2.51μm 0.50eV

PROBE ENERGY, eV

- Probe Energy Only
- Probe Energy + Excitation Energy 0.75eV
- Probe Energy + Excitation Energy 0.83eV
Figure 6
band is phonon assisted due to the maxima and minima of the two bands not lying at the same point in momentum space. After irradiation by high doses, such as, 5×10^{18} neutrons/cm2 it has been shown6 that a large amount of disorder is produced in the lattice crystal structure and the band gap is narrowed. Since the indirect gap narrows, it is reasonable to assume that the direct gap narrows as well due to lattice disorder. If the direct gap narrows sufficiently enough, it is possible that the cross section for direct gap transition could be higher than that for the indirect transition in which the latter necessitates phonon assistance. Such a situation is proposed here and a model incorporating direct gap transition has been formulated.

Figure 7a depicts the model in the following manner. The direct gap has been reduced to 0.81eV thus causing the predominant transition from valence band to conduction band to be direct. Excitation energy (0.81eV) promotes an electron from the valence band to the conduction band by direct transition. The electron is captured by the positive divacancy charge state (V_2^+) which is photoionized to the neutral charge state (V_2^0). With the electron now in the V_2^0 state the probe light at 0.4eV promotes an electron from V_2^0 to the conduction band.

The V_2^+ charge state is the appropriate charge state to be photoionized for the following reasons. First, the predominant charge state will be dependent upon the Fermi level. The high fast neutron fluence to which the sample has been subjected here drives the Fermi level deep into the forbidden gap thus necessitating a V_2^+ or at the
Figure 7
very least a V_2^0 charge state. Second, the fact that the 3.62µm and
3.46µm bands are observed indicate, as Carton-Merlet et. al. suggest,
that a non-uniform Fermi-level due to the radiation damage does exist
thus causing some V_2^- charge states to be present in the bulk sample.
More importantly, however, the absorption bands are of low intensity
thus indicating a small number of V_2^- charge states, and the intensity
of the bands is unaffected by excitation light, see Figure 4: therefore,
indicating the V_2^- charge state plays no part in the photoionization
process. Thus, the photoionization process is e(C.B.) + $V_2^+ \rightarrow V_2^0$
and not e(C.B.) + $V_2^0 \rightarrow V_2^-$. The cross section for direct transition vs. indirect trans-
ition is reflected in Figure 3 where it is shown that some absorption
into the conduction band (0.6eV) by indirect transition and subsequent
photoionization of the V_2^+ charge state does take place: however, it is
significantly smaller due to lowering of the band gap causing pre-
dominate absorption in the direct transition mode (0.81eV).

Figure 7b. reflects the light off decay sequence. The long
absorption and decay times in Figure 2, T_2 and T_4 respectively, are
indicative of the amount of trapping occurring at the V_2^0 charge state.
This trapping along with the process of continuing photoionization of
the V_2^+ charge state as the probe light promotes electrons from V_2^0
to the conduction band and then their subsequent capture by V_2^+ adds
competition for electrons and a slower response for decay as compared
to the absorption process.
The fact that the 3.1μm (0.4eV) absorption in Figure 4 is broad and not sharp is attributed to a defect energy level width which will be addressed later in this paper, or it can also be indicative of combinations of direct transitions and phonon assisted indirect transitions to various energy levels in the conduction band.

The width of the direct band gap excitation energy (0.81eV - 0.89eV) is due to the increase in optical absorption as higher energies are reached above 0.89eV.
IV

HIGHER ORDER BANDS

A. Experimental Results

The samples used were irradiated to 5×10^{18} neutrons/cm2 ($E > 1$ MeV) with an initial resistivity of 200Ω-cm p-type crucible grown and 1000Ω-cm p-type float zone silicon. The samples were annealed to 500°C for 15 minutes. Two infrared absorption bands were investigated, 9.54μm (1048 cm$^{-1}$) and 9.08μm (1101 cm$^{-1}$) and these are in the spectrum shown in Figure 8.9. Probe light alone produced none of the higher order bands (HOB). A maximum absorption (intensity) for the 9.54μm and 9.08μm bands occurred for an excitation energy of approximately 1.17eV or band gap energy.

The absorption response of the probe light to the excitation energy for initial excitation is shown in Figure 9a. After the excitation light was turned off and a decay equilibrium reached, the sample was excited again with the same excitation light. After each excitation the absorption response would become faster until the absorption response became similar to the decay response when light was turned off (Figure 9b.). Initial signal level (prior to any excitation) was never achieved after the sample was exposed to excitation radiation. After subsequent excitations, the same equilibrium signal level was reached in the light off condition. Times for absorption and decay for both bands for initial excitation and subsequent excitations are shown in Table 1. Although both bands achieve maximum absorption with
n-type Si (FZ)
$T = 78^\circ K$
$\phi_1 = 6 \times 10^{17} \text{n/cm}^2$

Figure 8
Figure 9

TRANSMITTANCE (ARBITRARY UNITS)

LIGHT ON
2 MIN 20 SEC
OFF

LIGHT ON
29 SEC
OFF

LIGHT ON
2 MIN 30 SEC
OFF

TIME (ARBITRARY SCALE)
<table>
<thead>
<tr>
<th>Band</th>
<th>Absorption Time to Steady State</th>
<th>Decay Time to Steady State</th>
<th>Excitation</th>
<th>Depletion Time to Steady State</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.54μm</td>
<td>2 min 20 sec</td>
<td>25 sec</td>
<td>Initial</td>
<td></td>
</tr>
<tr>
<td>9.54μm</td>
<td>29 sec</td>
<td>31 sec</td>
<td>Subsequent</td>
<td></td>
</tr>
<tr>
<td>9.08μm</td>
<td>3 min 30 sec</td>
<td>1 min</td>
<td>Initial</td>
<td></td>
</tr>
<tr>
<td>9.08μm</td>
<td>30 sec</td>
<td>20 sec</td>
<td>Subsequent</td>
<td></td>
</tr>
<tr>
<td>9.54μm</td>
<td></td>
<td></td>
<td>Depletion</td>
<td>2 min 30 sec</td>
</tr>
<tr>
<td>9.08μm</td>
<td></td>
<td></td>
<td>Depletion</td>
<td>4 min</td>
</tr>
</tbody>
</table>
the same excitation energy, the times for absorption and decay are different.

Subsequent excitation with the band gap energy was found to produce the initial response (Figure 9a.) only after waiting a considerable amount of time or after first exciting the sample with a lower energy. The most effective energy (hereafter referred to as the depletion energy) was found to be 0.74eV. The times for depletion energy equilibrium are shown in Table 1 and the depletion energy response is depicted in Figure 9c.

An interesting observation in experimental technique was made concerning the light beams. It was noticed that unless the excitation light beam was accurately superimposed on the probe beam illuminating the sample, the energy position for maximum absorption would change and shift upwards (i.e., 1.17eV to 1.25eV). This may be due to carrier diffusion where the higher energy electrons have a greater probability of diffusing to the probe beam and causing the absorption process. This effect of probe and excitation light position dependence in the sample was not observed for the excitation energy for the divacancy bands where, if the excitation light did not strike the sample at the same position as the probe light, the maximum absorption would occur at the same excitation energy but with less absorption.

B. Conclusions; Higher Order Bands

A model which this author believes correctly explains what is taking place with the excitation energy, probe beam, and depletion energy for both higher order bands is shown in Figure 10a. & 10b.
With initial excitation, electrons are raised into the conduction band from the valence band and then captured by a defect level of charge state \(T_1 \). Upon capture of an electron \(T_1 \) changes to charge state \(T_1^* \). This charge state also has an affinity for capturing electrons from the conduction band, and when this occurs, \(T_1^* \) changes to a new charge state \(T_1^{**} \). Once this has been accomplished, the probe light (\(\lambda_p \)) excites an electron from \(T_1^{**} \) to a new defect level, \(T_2 \), or an excited state of \(T_1^{**} \). The process, therefore, is initially (see Figure 10a.):

\[
\begin{align*}
\text{e(C.B.)} + T_1 &\rightarrow T_1^* \\
\text{e(C.B.)} + T_1^* &\rightarrow T_1^{**} \\
T_1^{**} + \lambda_p &\rightarrow T_2
\end{align*}
\]

When the excitation light is turned off, no more electrons are promoted into \(T_1 \) via the conduction band and those that were promoted have changed \(T_1 \) to \(T_1^* \), also no more electrons are falling into \(T_1^* \) so that no more \(T_1^{**} \) states are being produced and those that were produced are almost totally eliminated by the continuing probe light. Therefore, what remains are the charge state \(T_1 \) and a quasi-stable charge state \(T_1^* \). When the excitation energy is turned on again (subsequent excitation) the response is faster because \(T_1^* \) now exists where before it did not; so one observes \(T_1^* + \text{e(C.B.)} \rightarrow T_1^{**} \), \(T_1^{**} + \lambda_p \rightarrow T_2 \) in addition to the initial response scheme.

The response to the depletion energy is depicted in Figure 10b. \(T_1^* \) is depleted as the depletion energy excites electrons from \(T_1^* \) to the conduction band. As this occurs, several competing processes
take place. First, some of the electrons initially removed from \(T_1^* \) to the conduction band fall back to \(T_1^* \) and are captured by some of the \(T_1^* \) charge states not yet depleted. This causes \(T_1^{**} \) to be produced and the initial absorption seen in Figure 9c. as the probe light makes the transition from \(T_1^{**} \) to \(T_2^* \). Electrons also fall into \(T_1^* \) and initiate the absorption scheme previously observed for initial excitation. The depletion energy, however, will gradually deplete almost, if not all, the \(T_1^* \) charge states eventually as electrons are gradually lost to the valence band. Subsequent excitation with band gap light will then produce an excitation scheme and slow response almost exactly like that shown in Figure 9a., since the number of \(T_1^* \) charge states will be very low thus minimizing the quick response of capture of an electron by \(T_1^* \) immediately and forming \(T_1^{**} \). The fact that an exact initial response is not reproduced indicates that some (although relatively small number) \(T_1^* \) states may exist, further indicating some level of trapping at \(T_1^* \). There may be some trapping at \(T_1^{**} \) as well, and this in addition to electrons possibly being lost to other defects may be contributing factors as to why initial equilibrium level is not reached.

All three charge states are necessary to explain the absorption, decay and depletion energy responses. If there was just one charge state \(T_1^* \) with an excited state or new defect level \(T_2^* \), then each subsequent response to excitation would be the same and would be relatively fast since there would be no competition and other charge states would not be produced. In addition no depletion energy would
have been realized since T_1 would have been eliminated by the probe light, which is not the case. There is a depletion energy and the initial excitation response is slow and subsequent excitations are faster. If there were just two charge states T_1 and T_1^{**} with a defect level T_2, the response again would be expected to be the same on subsequent excitations, since any T_1^* would be depleted by the probe light to T_2 and any electron captured by T_1 would have caused a charge state change to T_1^*. The combination of observed responses to initial excitation, subsequent excitation and depletion energy, therefore, dictates the necessity for three charge states and the above model.

This model and its experimental findings are not in disagreement with the findings of Koval et. al. Their results indicate through use of filters that the HOB can be separated into two groups (Corelli et. al. indicate more groups through stress analysis). Within one of the groups the 9.54μm and 9.08μm bands can be observed with all wavelength light and also with a 2μm long pass filter. In the latter case energy from the valence band to T_1 and T_1^* would have been passed thus causing the same absorption responses.

Investigation of the valence band to T_1^* transition failed to produce any results; however, this was almost expected since the T_1^* charge state is dependent upon the photoionization of the T_1 charge state and the excitation energy used in searching for the valence band to T_1^* charge state would not have matched the photoionization energy of T_1 from the valence band. Search for the valence band to the T_1 charge state transition showed one absorption utilizing probe light.
alone at $\lambda_p = 7.3\mu m$ (0.17eV); however, due to the low intensity and the fact that the $7.3\mu m$ absorption band did not go out with the other HOB after annealing to 606°C, this energy could not be confirmed as the T_1 charge state level.

In addition to the 9.54μm and 9.08μm bands, band gap excitation energy also produced in varying intensities the 8.4μm (1189cm$^{-1}$), 10.3μm (970cm$^{-1}$), 11.0μm (910cm$^{-1}$), 11.5μm (868cm$^{-1}$), 12.9μm (776cm$^{-1}$), and 13.5μm (741cm$^{-1}$) bands. Other bands were not noted; however, this could be due to the fluence dependence of the HOB. These bands were also not completely checked with the aforementioned model: therefore, it is not known whether they follow the same pattern as the 9.54μm and 9.08μm bands for absorption and depletion.

* The time required to complete the studying of all HOB bands is sufficiently long as to go beyond the scope of the study undertaken in this thesis. Additional studies are needed to complete the task of using the technique reported herein to make detailed studies of all bands.
SUMMARY

As the experimental results indicate, this new optical system offers the ability to observe the time-energy dependence for population of an excitable state through electron infrared absorption and the subsequent depopulation once the excitation light pulse is turned off. New properties of defects, such as, more defined energy levels, photo excitation cross sections, excitation and decay times of energy levels and better understanding of charge states associated with particular bands can be obtained from this experimental technique.

One new characteristic currently being thought of is the possibility of varying widths to these defect energy levels and charge states. The width of excitation energies, depletion energies and regions of absorption response seem to indicate such an energy width. Past experiments in photoconductivity12 also suggest such a characteristic. Figure 1112 shows that the photoconductivity is not instantaneous once a particular energy is reached but varies over a width of energy. In one case the width is 0.2-0.65eV, whereas, in another it is relatively sharp, 0.55-0.6eV.

A new experiment incorporating the optical method reported here and photoconductivity is being contemplated for future research. Such an experiment with variations in sample temperature, irradiation, fluence, initial resistivity and oxygen content should bring about new and definitive results on infrared absorption bands, their associated charge states, and other characteristics.
An important and concluding result of the optical technique developed by this research is that it can be used to investigate defects and their associated infrared absorption bands whenever one is dealing with defect levels for which it is possible to promote electrons to or out of the levels.
REFERENCES

<table>
<thead>
<tr>
<th>REPORT DOCUMENTATION PAGE</th>
<th>READ INSTRUCTIONS BEFORE COMPLETING FORM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. REPORT NUMBER</td>
<td>2. GOVT ACCESSION NO.</td>
</tr>
<tr>
<td></td>
<td>3. RECIPIENT'S CATALOG NUMBER</td>
</tr>
<tr>
<td>4. TITLE (and Subtitle)</td>
<td>5. TYPE OF REPORT & PERIOD COVERED</td>
</tr>
<tr>
<td>NEW OPTICAL METHOD FOR STUDYING DEFECTS IN SILICON</td>
<td>Master's Thesis December 1978</td>
</tr>
<tr>
<td>6. PERFORMING ORG. REPORT NUMBER</td>
<td></td>
</tr>
<tr>
<td>7. AUTHOR(s)</td>
<td>8. CONTRACT OR GRANT NUMBER(s)</td>
</tr>
<tr>
<td>Cpt. Michael T. Mitchell</td>
<td>491-50-3398</td>
</tr>
<tr>
<td></td>
<td>9. PERFORMING ORGANIZATION NAME AND ADDRESS</td>
</tr>
<tr>
<td></td>
<td>Student, N D L M P R C J N (DAPC-CPY-E),</td>
</tr>
<tr>
<td></td>
<td>200 Stovall Street, Alexandria, VA 22332</td>
</tr>
<tr>
<td>10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS</td>
<td></td>
</tr>
<tr>
<td>11. CONTROLLING OFFICE NAME AND ADDRESS</td>
<td></td>
</tr>
<tr>
<td>12. REPORT DATE</td>
<td>December 1978</td>
</tr>
<tr>
<td>13. NUMBER OF PAGES</td>
<td></td>
</tr>
<tr>
<td>14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)</td>
<td></td>
</tr>
<tr>
<td>15. SECURITY CLASS. (of this report)</td>
<td></td>
</tr>
<tr>
<td>Unclassified</td>
<td></td>
</tr>
<tr>
<td>16. DISTRIBUTION STATEMENT (of this Report)</td>
<td></td>
</tr>
<tr>
<td>Approved for Public Release; Distribution unlimited with the understanding that portions of this thesis have been published under the 10th Int'l Conf. on Defects and Radiation Effects in Semiconductors - Inst. Phys. Conf. Ser. No. 46, 1979.</td>
<td></td>
</tr>
<tr>
<td>17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)</td>
<td></td>
</tr>
<tr>
<td>18. SUPPLEMENTARY NOTES</td>
<td>Master's Thesis for Master of Engineering in Nuclear Engineering</td>
</tr>
<tr>
<td>19. KEY WORDS (Continue on reverse side if necessary and identify by block number)</td>
<td></td>
</tr>
<tr>
<td>Infrared Absorption Bands</td>
<td></td>
</tr>
<tr>
<td>Nonchomatic Light</td>
<td></td>
</tr>
<tr>
<td>Photoionization Process</td>
<td></td>
</tr>
<tr>
<td>Photoionization Cross Sections</td>
<td></td>
</tr>
<tr>
<td>20. ABSTRACT (Continue on reverse side if necessary and identify by block number)</td>
<td></td>
</tr>
<tr>
<td>(Over)</td>
<td></td>
</tr>
</tbody>
</table>
A new optical method incorporating two monochromatic light beams incident on the sample whose temperature is at a 78°C is used to study infrared active radiation-induced defect absorption bands. Defect energy levels, photoionization excitation and deexcitation processes were examined for the divacancy associated bands found in the 3 - 3.6 μm wavelength region and two higher order bands which appear in the 7 to 14 μm wavelength region.

For the divacancy band region 10A-cm and 0.10 cm p-type (P-doped) crucible grown silicon irradiated to 5 x 10^13 neutrons/cm^2 (≥1 MeV) were examined. An excitation energy (E_e) of width 0.21 eV to 0.89 eV was found to produce an absorption throughout the entire 3.3 μm absorption band region with a maximum absorption occurring around 3.1 μm. A model is proposed which incorporates direct band gap transitions.

A 200A-cm p-type (B-doped) crucible grown silicon sample irradiated to 5 x 10^13 neutrons/cm^2 (≥1 MeV) and annealed at 500°C for 15 minutes was examined for higher order bands. The 9.54μm and 9.08 μm bands were found to have a maximum absorption for band gap energy. A model is proposed for the photoionization process incorporating the band gap energy for absorption and a depletion energy of 0.74 eV.