THERMAL ANALYSIS OF SOME COMPONENTS OF THE Li-So₂ CELL

BY WILLIAM P. KILROY STEVEN DALLEK
RESEARCH AND TECHNOLOGY DEPARTMENT

13 NOVEMBER 1978

Approved for public release, distribution unlimited

NAVAL SURFACE WEAPONS CENTER
Dahlgren, Virginia 22448 • Silver Spring, Maryland 20910
Safety problems associated with heat generation in the Li/So2 system were investigated using differential scanning calorimetry. Various binary mixtures of cell components were found to undergo explosive combustion. Ignition temperatures and cell temperature increases were determined. Passivation of some exothermic reactions were observed on addition of other cell components to some binary mixtures.
SUMMARY

The Li-SO₂ battery is currently being considered by the Navy for future use in mines. However, this battery has experienced safety problems where cells have exploded, vented toxic fumes, and have caught fire.

This report represents preliminary studies on the thermal compatibility of the lithium anode with various cell components and some of the expected discharge products.

The work leading to this report was jointly supported by the Naval Sea Systems Command under Task Area Number 202 and by Independent Research Task Area Number ZR00130T01.
PREFACE

We wish to thank Mr. R. Walk and Mr. W. Ebner of the Honeywell Power Sources Center for supplying us with the various components comprising the cathode collector.
CONTENTS

INTRODUCTION.. 5

EXPERIMENTAL.. 5

Apparatus... 5

Cell Design... 6

Reagents... 6

Sample Preparation... 6

DISCUSSION OF RESULTS... 8

CONCLUSION.. 27

ILLUSTRATIONS

Figure

1 Cell Designs Employed in the DSC Studies. (A) Dupont Type, (B) Welded Type, (C) Perkin Elmer O-Ring Type.. 7

2 DSC Thermogram of (a) Dry LiAsF6, (b) Wet LiAsF6
Prepared From Improper Drying of LiAsF6·4CH3CN;
10°C/min; Sensitivity 1.0 mcal/sec/in... 9

3 DSC Thermogram of Li+LiAsF6+LiAsF6·H2O 1.52 mg Li,
3.18 mg salt; 10°C/min; 20.0 mcal/sec/in.. 10

4 DSC Thermogram of 2.00 mg of Lithium and 7.00 mg of
LiAsF6 · 4CH3CN Wet with CH3CN; 10°C/min; and
20.0 mcal/sec/in.. 11

5A DSC Thermogram of 1.90 mg Lithium and 5.00 mg LiAsF6.
10°C/min; 20.0 mcal/sec/in... 12

5B DSC Thermogram of 2.00 mg of Lithium and 1.80 mg LiAsF6.
10°C/min; 20.0 mcal/sec/in... 13

6 DSC Thermogram of 1.60 mg of Lithium and 4.20 mg of Teflon.
10°C/min; 5.0 mcal/sec/in... 14

7 DSC Thermogram of 2.30 mg of Lithium and 1.60 mg of Non-Woven Polypropylene. 10°C/min; 2.0 mcal/sec/in................................. 16

8 DSC Thermogram of 1.60 mg of Lithium and 2.20 mg of LiBr;
10°C/min; 10.0 mcal/sec/in... 17

9A DSC Thermogram of 0.50 mg of Lithium and 3.10 mg of Sulfur.
10°C/min; 1.0 and 20.0 mcal/sec/in... 18
ILLUSTRATIONS (Cont.)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9B</td>
<td>DSC Thermogram of 2.7 mg of Lithium and 2.2 mg of Sulfur. 10°C/min; 20.0 mcal/sec/in</td>
<td>19</td>
</tr>
<tr>
<td>9C</td>
<td>DSC Thermogram of 2.00 mg of Lithium (Coated with 0.30 mg of SO₂) and 5.05 mg of Sulfur. 10°C/min; 20.0 mcal/sec/in</td>
<td>20</td>
</tr>
<tr>
<td>10A</td>
<td>DSC Thermogram of 3.40 mg of Lithium and 6.50 mg of Li₂S₂O₃. (dry) 10°C/min; 20.0 mcal/sec/in</td>
<td>21</td>
</tr>
<tr>
<td>10B</td>
<td>DSC Thermogram of 1.50 mg of Lithium and 3.20 mg of Li₂S₂O₃. (wet) 10°C/min; 5.0 mcal/sec/in</td>
<td>22</td>
</tr>
<tr>
<td>11</td>
<td>DSC Thermogram of 1.80 mg of Lithium and 4.30 mg of Sodium Dithionite. 10°C/min; 20.0 mcal/sec/in</td>
<td>23</td>
</tr>
<tr>
<td>12A</td>
<td>DSC Thermogram of 1.90 mg of Lithium and 2.70 mg of Li₂SO₃·H₂O. 10°C/min; 20.0 mcal/sec/in</td>
<td>24</td>
</tr>
<tr>
<td>12B</td>
<td>DSC Thermogram of 2 mg of Lithium and 2 mg of Li₂SO₃. 10°C/min; 20.0 mcal/sec/in</td>
<td>25</td>
</tr>
<tr>
<td>13</td>
<td>DSC Thermogram of 1.39 mg of Lithium, 2.10 mg of LiAsF₆ and 31.0 mg of Propylene Carbonate. 10°C/min; 20.0 mcal/sec/in</td>
<td>28</td>
</tr>
<tr>
<td>14</td>
<td>DSC Thermogram of 2.01 mg of Lithium and Approximately 38 mg of CH₃CN. 20°C/min; 20.0 mcal/sec/in</td>
<td>29</td>
</tr>
<tr>
<td>15</td>
<td>DSC Thermogram of 2.30 mg of Lithium, 10.1 mg LiAsF₆ and 38 mg of SO₂ saturated AN.</td>
<td>30</td>
</tr>
</tbody>
</table>
THERMAL ANALYSIS OF SOME COMPONENTS OF THE Li—SO2 BATTERY SYSTEM

INTRODUCTION

Increases in the temperature of a battery during either storage or discharge can be expected to occur as a result of environmental, mechanical, electrical or chemical occurrences. Since safety problems associated with some lithium batteries are often accompanied by an increase in temperature, thermal studies on the chemical components is an important first step in understanding the safety question. The explosion hazard can be attributed to exothermic reactions that occur in a cell. These chemical reactions often require thermal energy for activation, and once activated can then either be violently exothermic or can create local "hot spots" that may trigger another reaction into producing a thermal runaway.

This report is a preliminary thermal investigation of the compatibility of various components of the Li—SO2 battery in order to identify potentially explosive reactions and the temperatures at which these occur. Due to the numerous components in the Li—SO2 system including choice of several solutes (LiBr, LiAsF6, etc.) and solvents CH3CN (AN) and propylene carbonate (PC), the complexity of combinations was restricted to reactions involving mixtures of lithium with initial components or with some expected products.

The experimental approach involved differential scanning calorimetry and thermogravimetric analysis.

EXPERIMENTAL

Apparatus. Differential scanning calorimetry (DSC) was employed to measure enthalpy changes during controlled heating of known masses of elemental lithium with either single or multiple components of the Li—SO2 system. DSC measurements were obtained between 25°C and 350°C at a programmed rate, using a calibrated DuPont Model 990 DSC instrument in which a flowing atmosphere of dry argon was maintained.

One inch on the ordinate corresponds to 2mv or approximately 50°C. Accurate sample temperatures were obtained from the millivolt output of the chromel-alumel thermocouple of the instrument.

Thermogravimetric analysis (TGA) using a DuPont Model 951 was employed to elucidate compositional changes resulting from mass loss on heating.
Cell Design. The selection of a sample container presented two immediate problems, the reactivity of lithium with the container and the confinement of volatile liquids.

Thermal studies involving lithium with solid components were performed by hermetically sealing the mixture in a DuPont type cell (Fig. 1A), specially fabricated from Armco iron.

In thermal analysis involving volatile liquids, a cell must be designed that is (a) tightly sealed so as to prevent the slow loss of gaseous products and (b) capable of withstanding the internal pressure that develops over the desired temperature range to be studied.

Slowly leaking containers result in spurious endotherms whereas pressure bursts occur when the cell container can no longer maintain internally generated pressures.

Two cell designs were employed to study the volatile liquid system.

Figure 1B shows the dimensions of the 95 microliter "welded" cell, consisting of a type 303 stainless steel cover and pan. Both parts were cleaned and then sealed by resistance welding, employing copper electrodes and approximately 17 joules of welding energy for each weld.

A Perkin Elmer "O-ring" 304 stainless steel cell (Fig. 1C) was also employed. It has a 75 microliter capacity with a viton rubber O-ring seal capable of containing a pressure limit of 24 atmospheres.

Reagents. Acetonitrile was triply distilled as previously reported(1) and stored over molecular sieves. Anhydrous 99.98% SO₂ was condensed under an argon atmosphere. Lithium hexafluoroarsenate, obtained from U. S. Steel, was used throughout. All solids were vacuum dried at the appropriate temperature. Webril non-woven polypropylene, Shawinigan black, and Teflon were obtained from Honeywell Power Sources.

Sample Preparation. All of the samples were weighed, mixed, and sealed in the DSC cells in a dry room maintained at 2% relative humidity. The solid samples were pressed and sandwiched in a single piece of 99.9% lithium (Foote Mineral Company).

Tetraacetonitrilolithium hexafluoroarsenate(2) was prepared by mixing 1:4 mole ratio of lithium hexafluoroarsenate and acetonitrile. An exothermic reaction occurred producing the tetrasolvated salt.

Solutions of SO₂ in AN were prepared by passing SO₂ gas over a weighed sample of AN, followed by cooling in an acetone-dry ice bath, weighing, equilibrating to room temperature and reweighing.

FIGURE 1 CELL DESIGNS EMPLOYED IN THE DSC STUDIES. (A) DUPONT TYPE, (B) WELDED TYPE, (C) PERKIN ELMER O-RING TYPE
OF RESULTS

Although several solutes and solvents are employed in the Li-SO₂ system, our attention was focused on the LiAsF₆-AN electrolyte. Our objective was to identify chemical combinations that could generate sufficient heat to produce a thermal runaway.

LiAsF₆

Figure 2a represents a DSC thermogram of a U. S. Steel sample of LiAsF₆ that was prepared from an unopened bottle in a dry room. The LiAsF₆ undergoes a reversible phase transition that occurs at 258°C. Figure 2a has been superimposed on the thermogram of Figure 2b. Figure 2b represents the DSC thermogram of the tetrasolvate, LiAsF₆·4CH₃CN that was dried at 25°C overnight under vacuum. Such drying was performed in an effort to produce very dry LiAsF₆. However, if the dried material is removed from the vacuum oven outside of the dry room, TGA analysis revealed 2.5% water pickup. The hygroscopic nature of LiAsF₆ is illustrated in Figure 2b. The endotherm at 117°C corresponds to dehydration of the monohydrate, LiAsF₆·H₂O.

Li + LiAsF₆ + LiAsF₆·H₂O

Figure 3 reveals the thermal behavior of lithium heated in intimate contact with LiAsF₆ containing some LiAsF₆·H₂O. The LiAsF₆ - LiAsF₆·H₂O mixture was prepared from vacuum drying the tetrasolvate LiAsF₆·4CH₃CN at 25°C.

Li + LiAsF₆·4CH₃CN

A DSC study on the reaction of Li with the tetrasolvate LiAsF₆·4CH₃CN (wet with AN) is shown in Figure 4. The second exotherm (180°) appears to have been initiated by the melting of lithium.

Li + LiAsF₆

The thermal behavior of dry LiAsF₆ pressed into firm contact with lithium was recorded in triplicate. Explosive exotherms were initiated at 197°C (apparently triggered by the lithium melting); 216°C and 236°C with cell temperature increases of 177°C, 179°C, and 36°C. The latter two are illustrated in Figures 5A and 5B. The endotherm at 180.5°C corresponds to the melting of lithium.

Li + Shawinigan Acetylene Black

No exothermic reaction was observed on heating 3.60 mg Li with 0.90 mg carbon over the temperature range studied (25°C - 250°C).

Li + Teflon

Exothermicity studies involving the Li-Teflon reaction were not reproducible. In some instances, no exothermic reaction was observed. However, occasionally, exothermic reactions occurred as illustrated by Figure 6. An 87°C increase in the cell temperature was observed.
FIGURE 2 DSC THERMOGRAM OF (a) DRY LiAsF$_6$, (b) WET LiAsF$_6$
PREPARED FROM IMPROPER DRYING OF LiAsF$_6'$4CH$_3$CN:
10°C/MIN; SENSITIVITY 1.0 MCAL/SEC/IN
FIGURE 3 DSC THERMOGRAM OF Li+LiAsF₆+LiAsF₆⁻•H₂O 1.52 MG Li, 3.18 MG SALT; 10°C/MIN; 20.0 MCAL/SEC/IN
Figure 4 DSC thermogram of 2.00 mg of lithium and 7.00 mg of LiAsF$_6$·4CH$_3$CN wet with CH$_3$CN; 10°C/min; and 20.0 MCAL/SEC/IN
FIGURE 5A DSC THERMOGRAM OF 1.90 MG LITHIUM AND 5.00 MG LiAsF₆

10°C/MIN; 20.0 MCAL/SEC/IN
FIGURE 5B DSC THERMOGRAM OF 2.00 MG OF LITHIUM AND 1.80 MG LiAsF$_6$
10°C/MIN; 20.0 MCAL/SEC/IN
FIGURE 6 DSC THERMOGRAM OF 1.60 MG OF LITHIUM AND 4.20 MG OF TEFNON
10°C/MIN; 5.0 MCAL/SEC/IN
Li + Polypropylene

No exothermic reactions between lithium and polypropylene were observed from 25°C to 300°C. Polypropylene has an endothermic transition at approximately 160°C followed by the melting of lithium at 180°C as illustrated by Figure 7.

Li + LiBr

Samples of LiBr that were dried at 110°C and vacuum dried at 210°C gave similar unexpected exotherms occurring at 142°C and at 131°C respectively. The former is illustrated by Figure 8. Impurities or the deliquescent nature of the LiBr may be responsible.

Li + S

Two endothermic peaks occur corresponding to the melting of two forms of sulfur (Fig 9A).

A very large exothermic reaction occurs between lithium and sulfur in the probable formation of Li2S. If the reactants "wet" one another, a violent exothermic reaction begins at 142°C resulting in a 120°C temperature increase in the cell as shown in Figure 9B. However, if the lithium and sulfur do not "wet", the exothermic reaction was observed to occur at 235°C (Fig 9A). In another experiment, lithium was pressed to give a large surface area, was immersed in liquid SO2 for 15 minutes, and was then mixed with sulfur and firmly pressed. The thermogram illustrated by Figure 9C shows a combustion occurring at about 124°C. The heat generated by this reaction increased the cell temperature by 305°C. Apparently, the passivating film formed by SO2 on lithium is destroyed by molten sulfur.

Li + Li2S2O3

Thermograms before and after vacuum drying Li2S2O3 confirmed the complete removal of water. The DSC thermogram of lithium and dry Li2S2O3 is shown in Figure 10A. Exothermic reactions occur at 152°C and 239°C with a large explosive exotherm occurring at 244°C resulting in a 203°C increase in the cell temperature. The effect of moisture is illustrated in Figure 10B. Thiosulfate containing moisture gives rise to small exotherms at lower temperatures. However, explosive combustion no longer occurs.

Li + Na2S2O4

Sodium dithionite, containing 2.5% thiosulfate and 7% bisulfite, was sandwiched in lithium metal. Although some exothermic peaks were observed at approximately 198°C and 222°C, no significant temperature increase was observed as shown in Figure 11.

\[\text{Li} + \text{Li}_2\text{SO}_3 \cdot \text{x H}_2\text{O} \quad (x = 0, 1) \]

The exothermic behavior shown in Figure 12A appears to be attributable to the reaction between lithium and water. Drying the hydrate at 206°C for two hours under vacuum removed the moisture as evidenced by the disappearance of the DSC
FIGURE 8 DSC THERMOGRAM OF 1.80 MG OF LITHIUM AND 2.20 MG OF LiBr;
10°C/MIN; 10.0 MCAL/SEC/IN
FIGURE 9B DSC THERMOGRAM OF 2.7 MG OF LITHIUM AND 2.2 MG OF SULFUR
10°C/MIN; 20.0 MCAL/SEC/IN
FIGURE 9C DSC THERMOGRAM OF 2.00 MG OF LITHIUM (COATED WITH 0.30 MG OF SO₂) AND 5.05 MG OF SULFUR. 10⁰C/MIN; 20.0 MCAL/SEC/IN
FIGURE 10A DSC THERMOGRAM OF 3.40 MG OF LITHIUM AND 6.50 MG OF \(\text{Li}_2\text{S}_2\text{O}_3 \) (DRY)

10°C/MIN; 20.0 MCAL/SEC/IN
FIGURE 10B DSC THERMOGRAM OF 1.50 MG OF LITHIUM AND 3.20 MG OF Li$_2$S$_2$O$_3$. (WET)
10°C/MIN; 5.0 MCAL/SEC/IN
FIGURE 11 DSC THERMOGRAM OF 1.80 MG OF LITHIUM AND 4.30 MG OF SODIUM DITHIONITE. 10°C/MIN; 20.0 MCAL/SEC/IN
FIGURE 12A DSC THERMOGRAM OF 1.90 MG OF LITHIUM AND 2 MG OF Li$_2$SO$_3$·H$_2$O
10°C/MIN; 20.0 MCAL/SEC/IN
FIGURE 12B DSC THERMOGRAM OF 2 MG OF LITHIUM AND 2 MG OF Li₂SO₃. 10°C/MIN; 20.0 MCAL/SEC/IN
endotherm previously recorded at approximately 145°C. The thermogram shown in Figure 12B reveals that no exothermic reaction occurs between anhydrous Li₂SO₃ and lithium. The exotherm at 450°C corresponds to the thermal decomposition of the sulfite. It should be noted that this nonreaction between lithium and Li₂SO₃, confirmed by a second thermogram where the Li₂SO₃·H₂O was dehydrated five days at 120°C under vacuum, contrasts with the very exothermic reaction reported by Dey.

\[\text{Li} + S + \text{Cathode Mix} \]

A thermogram of the behavior of a mixture of lithium with sulfur and a 4:1 mix of Shawinigan black-Teflon gives rise to a very small exotherm after the sulfur melts. At 153°C a large exotherm occurs apparently the result of Li₂S formation producing a 78°C temperature increase in the cell.

\[\text{Li} + \text{propylene carbonate (PC)} \]

No exothermic reactions were observed over the 25°-250°C temperature range investigated.

\[\text{Li} + \text{PC} + \text{LiAsF}_6 \]

The thermogram of the Li-PC-LiAsF₆ mixture is shown in Figure 13. Comparison with Figure 5A reveals that the PC does not prevent the very exothermic reaction between Li and LiAsF₆. The reaction occurs at 216°C as it did in the absence of PC. The temperature increase immediately causes an endothermic pressure burst to occur, rupturing the o-ring seal of the Perkin Elmer cell.

\[\text{Li} + \text{AN} \]

Several thermograms of lithium and AN revealed slowly increasing exotherms with large amounts of heat associated with the reaction. Unfortunately, with increasing temperatures, the "welded" cell could not maintain the pressures produced. This gave rise to leaks and spurious endotherms. The thermogram carried out in the Perkin Elmer o-ring cell is shown in Figure 14. Before the pressure burst occurs, it can be seen that the temperature rise is slow, unlike some of the previous thermal runaways observed.

\[\text{Li} + \text{AN} + \text{PC} \]

The o-ring cell was filled in the following order: PC, lithium, AN. No exothermic reaction was observed from 25°C to the melting point of lithium. Two different mixtures (1.22 mg Li-41.4 mg PC - 13.5 mg AN) and (1.92 mg Li - 19.7 mg PC - 14.9 mg AN) gave the same behavior, that is, the melting of lithium initiated an exothermic reaction which immediately produced a pressure burst. It appears that PC prevented the lithium from reacting with AN perhaps by formation of a Li₂CO₃ film. PC and AN were unreactive to 200°C whereupon a pressure burst occurred.

Li + S + SO\(_2\) + AN

Thermal analysis revealed that SO\(_2\) prevented reaction between Li and AN. However, SO\(_2\) does not prevent the very exothermic lithium-sulfur reaction. A large exotherm occurs at 147°C approximately the same temperature as the Li-S thermogram. The temperature increase immediately produced a pressure burst in the o-ring cell.

Li + LiAsF\(_6\) + SO\(_2\) + AN

Isothermal heating at 130°C for 15 minutes produced no exothermic reaction of any kind. The low temperature exotherm observed in the Li-LiAsF\(_6\) reaction was not visible nor were any Li-AN reactions, confirming the passivating effect of SO\(_2\). This is further illustrated by the DSC curve in Figure 15 where an exothermic reaction at the melting point of lithium initiates a pressure burst.

Li + LiAsF\(_6\) + AN

A nonexplosive broad exotherm characteristic of a slow reaction between lithium and AN starts at 75°C and continues to the melting of lithium. Another broad exotherm is observed starting at 221°C. Although possibly a Li-LiAsF\(_6\) reaction, this latter exotherm is not characteristic of the explosive exotherm observed in the absence of AN. Presumably the kinetics of the reaction is slowed by a simultaneous Li-AN reaction, depletion of most of the lithium or that LiAsF\(_6\) is now less concentrated at the lithium surface due to partial solution.

CONCLUSION

From the DSC studies, the following conclusions can be summarized:

1. Thermal runaways produced by the exothermic reaction occurring between two solid chemicals can be initiated at different temperatures. A good example is the reaction of lithium and sulfur.

2. Welded cells and o-ring cells were found inadequate for studying volatile liquids beyond the melting point of lithium. Spot welding invariably gives rise to a leaking cell. A better welding technique or a different cell design may be adequate for future studies.

3. The proper choice of electrolyte salts may be essential in the safety of some lithium cells.

4. In reactions involving lithium with some solids, the presence of moisture may produce low temperature exotherms involving water and lithium. However, moisture may also severely reduce the exothermicity of another reaction. This is illustrated in Figures 10A and 10B.

5. Several hazardous conditions may result from extremely exothermic reactions that involve lithium with either initial cell components or cell discharge products.

6. Some components have beneficial effects by reducing or preventing exothermic reactions. SO\(_2\) and PC both prevent the Li-AN reaction. AN may reduce the kinetics of the Li-LiAsF\(_6\) reaction and water hinders the Li-Li\(_2\)S\(_2\)O\(_3\) combustion.
FIGURE 13 DSC THERMOGRAM OF 1.39 MG OF LITHIUM, 2.10 MG OF LiAsF₆ AND 31.0 MG OF PROPYLENE CARBONATE. 10°C/MIN; 20.0 MCAL/SEC/IN
FIGURE 15 DSC THERMOGRAM OF 2.30 MG OF LITHIUM, 10.1 MG LiAsF$_6$ AND 38 MG OF SO$_2$ SATURATED AN
DISTRIBUTION

Defense Documentation Center
Cameron Station
Alexandria, VA 22314

Institute for Defense Analyses
R&E Support Division
400 Army-Navy Drive
Arlington, VA 22202

Naval Material Command
Attn: Code 08T223
Washington, DC 20360

Office of Naval Research
Attn: G. Neece (Code ONR 472)
800 N. Quincy Street
Arlington, VA 22217

Naval Research Laboratory
Attn: Dr. Fred Saalfeld (Code NRL 6100)
A. Simon (Code NRL 6130)
4555 Overlook Avenue, S. W.
Chemistry Division
Washington, DC 20360

Naval Postgraduate School
Attn: Dr. William M. Tolles (Code 612)
Dr. Oscar Biblarz
Monterey, CA 93940

Naval Air Systems Command
Attn: Dr. H. Rosenwasser (Code NAVAIR 301C)
E. Nebus (Code NAVAIR 5332)
Washington, DC 20361

Naval Electronic Systems Command
Attn: A. H. Sobel (Code PME 124-31)
Washington, DC 20360
Naval Sea Systems Command
Attn: Capt J. H. Spiller, (Code PMS 407)
 F. Butler (Code PMS 40764)
 M. Murphy (Code NAVSEA 0331C)
 S. J. Matesky (Code NAVSEA 0331J)
 J. W. Murrin (Code NAVSEA 0331)
 Code NAVSEA 9823
 S. R. Marcus (Code NAVSEA 03B)
 W. W. Blaine (Code NAVSEA 033)
 Code NAVSEA 09G12
Washington, DC 20362

Strategic Systems Project Office
Attn: K. N. Boley (Code NSP 2721)
 M. Meserole (Code NSP 2722)
Department of the Navy
Washington, DC 20360

Naval Air Development Center
Attn: J. Segrest (Code AVTD 3043)
 W. McLaughlin (Code 2043)
Warminster, PA 18974

Naval Civil Engineering Laboratory
Attn: Dr. W. S. Haynes (Code L-52)
 F. Rosell
Port Hueneme, CA 93040

Naval Intelligence Support Center
Attn: Dr. H. Ruskie (Code 362)
Washington, DC 20390

Naval Ocean Systems Center
Attn: Code 922
 J. McCartney (Code 251)
 Dr. S. D. Yamamoto (Code 513)
San Diego, CA 92152

Naval Ship Engineering Center
Attn: A. Himy (Code 6157D)
Washington, DC 20360

Naval Weapons Center
Attn: Dr. E. Royce (Code 38)
 Dr. A. Fletcher (Code 3852)
 M. H. Ritchie (Code 5525)
 R. Dettling (Code 4575)
China Lake, CA 93555
Naval Weapons Support Center
Attn: D. G. Miley (Code 305)
Electrochemical Power Sources Division
Crane, IN 47522

Naval Coastal Systems Center
Attn: Library
Panama City, FL 32407

Naval Underwater Systems Center
Attn: T. Black (Code 3642)
J. Moden (Code SB332)
Newport, RI 02840

David W. Taylor Naval Ship Research and Development Center
Attn: A. B. Neild (Code 2723)
W. J. Levendahl (Code 2703)
J. Woerner (Code 2724)
H. R. Urbach (Code 2724)
Annapolis Laboratory
Annapolis, MD 21402

Scientific Advisor
Attn: Code AX
Commandant of the Marine Corps
Washington, DC 20380

Air Force of Scientific Research
Attn: R. A. Osteryoung
Directorate of Chemical Science
1400 Wilson Boulevard
Arlington, VA 22209

Frank J. Seiler Research Laboratory, AFSC
Attn: Capt. J. K. Erbacher (Code FJSRL/NC)
Lt. Col. Lowell A. King (Code FJSRL/NC)
USAF Academy, CO 80840

Air Force Materials Laboratory
Wright-Patterson AFB
Dayton, OH 45433

Air Force Aero Propulsion Laboratory
Attn: W. S. Bishop (Code AFAPL/POE-1)
J. Lander (Code AFAPL/POE-1)
Wright-Patterson AFB, OH 45433
NSWC/WOL TR 78-156

DISTRIBUTION (Cont.)

Air Force Rocket Propulsion Laboratory
Attn: Lt. D. Ferguson (Code MKPA)
Edwards Air Force Base, CA 93523

Office of Chief of Research and Development
Department of the Army
Attn: Dr. S. J. Magram
Energy Conversion Branch
Room 410, Highland Building
Washington, DC 20315

U. S. Army Research Office
Attn: B. F. Spielvogel
P. O. Box 12211
Research Triangle Park, NC 27709

HQDA-DAEN-ASR-SL
Attn: Charles Scuilla
Washington, DC 20314

U. S. Development and Readiness Command
Attn: J. W. Crellin (Code DRCDE-L)
5001 Eisenhower Avenue
Alexandria, VA 22333

U. S. Army Electronics Command
Attn: A. J. Legath (Code DRSEL-TL-P)
E. Brooks (Code DRSEL-TL-PD)
G. DiMasi
Fort Monmouth, NJ 07703

Army Material and Mechanical Research Center
Attn: J. J. DeMarco
Watertown, MA 02172

USA Mobility Equipment R and D Command
Attn: J. Sullivan (Code DRXFB)
Code DRME-EC
Electrochemical Division
Fort Belvoir, VA 22060
NSWC/WOL TR 78-156

DISTRIBUTION (Cont.)

Edgewood Arsenal
Attn: Library
Aberdeen Proving Ground
Aberdeen, MD 21010

Picatinny Arsenal
Attn: M. Merriman (Code SARPA-FR-S-P)
 Dr. B. Werbel (Code SARPA-FR-E-L-C)
 A. E. Magistro (Code SARPA-ND-D-B)
U. S. Army
Dover, NJ 07801

Harry Diamond Laboratory
Attn: A. A. Benderly (Code DRXDO-RDD)
 W. Kuper (Code DRXDO-RDD)
 J. T. Nelson (Code DRKDO-RDD)
 C. Campanguolo
Department of Army Material
Chief, Power Supply Branch
2800 Powder Mill Road
Adelphi, MD 20783

Department of Energy
Attn: L. J. Rogers (Code 2101)
Division of Electric Energy Systems
Washington, DC 20545

Department of Energy
Attn: Dr. A. Landgrebe (Code MS E-463)
Energy Research and Development Agency
Division of Applied Technology
Washington, DC 20545

Headquarters, Department of Transportation
Attn: R. Potter (Code GEOE-3/61)
U. S. Coast Guard, Ocean Engineering Division
Washington, DC 20590

NASA Headquarters
Attn: Code RRM
Washington, DC 20546

NASA Goddard Space Flight Center
Attn: G. Halpert (Code 711)
 T. Hennigan (Code 716.2)
Greenbelt, MD 20771
NSWC/WOL TR 78-156

DISTRIBUTION (Cont.)

NASA Lewis Research Center
Attn: J. S. Fordyce (Code MS 309-1)
H. J. Schwartz (Code MS 309-1)
2100 Brookpark Road
Cleveland, OH 44135

NASA Scientific and Technical Information Facility
Attn: Library
P. O. Box 33
College Park, MD 20740

National Bureau of Standards
Metallurgy Division
Inorganic Materials Division
Washington, DC 20234

Battelle Memorial Institute
Defense Metals & Ceramics Information Center
505 King Avenue
Columbus, Ohio 43201

Bell Laboratories
Attn: Dr. J. J. Auborn
600 Mountain Avenue
Murray Hill, NJ 07974

Brookhaven National Laboratory
Attn: J. J. Egan
Building 815
Upton, NY 11973

California Institute of Technology
Attn: Library
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91103

Argonne National Laboratory
Attn: H. Shimotake
R. K. Steunenberg
L. Burris
9700 South Cass Avenue
Argonne, IL 60439

Johns Hopkins Applied Physics Laboratory
Attn: Library
R. Rumpf
Howard County
Johns Hopkins Road
Laurel, MD 20810

36
NSWC/WOL TR 78-156

DISTRIBUTION (Cont.)

Oak Ridge National Laboratory
Attn: K. Braunstein
Oak Ridge, TN 37830

Sandia Laboratories
Attn: R. D. Wehrle (Code 2522)
 B. H. Van Domelan (Code 2523)
Albuquerque, NM 87115

Catholic University
Attn: Dr. C. T. Moynihan (Physics)
Chemical Engineering Department
Washington, DC 20064

University of Tennessee
Attn: G. Mamantov
Department of Chemistry
Knoxville, TN 37916

University of Florida
Attn: R. D. Walker
Department of Chemical Engineering
Gainesville, FL 32611

Applied Research Laboratory
Attn: Library
Penn State University
University Park, PA 16802

Catalyst Research Corporation
Attn: G. Bowser
 N. Issacs
 F. Tepper
1421 Clarkview Road
Baltimore, MD 21209

ESB Research Center
Attn: Library
19 W. College Avenue
Yardley, PA 19067

EIC Corporation
Attn: J. R. Driscoll
 G. L. Holleck
55 Chapel Street
Newton, MA 02158
Eagle-Picher Industries, Incorporated
Attn: D. R. Cottingham
J. Dines
D. L. Smith
J. Wilson
Electronics Division, Couples Department
P. O. Box 47
Joplin, MO 64801

Eagle-Picher Industries, Incorporated
Attn: P. E. Grayson
Miami Research Laboratories
200 Ninth Avenue, N. E.
Miami, OK 74354

Electrochemical Corporation
2485 Charleston Road
Mountain View, CA 04040

Eureka Advance Science Division
Attn: D. Ryan
L. Raper
P. O. Box 1547
Bloomington, IL 61701

Foote Mineral Company
Attn: H. R. Grady
Exton, PA 19341

General Electric Company
Attn: R. D. Walton
R. Szwarc
Neutron Devices Department
P. O. Box 11508
St. Petersburg, FL 33733

Gould, Incorporated
Attn: S. S. Nielsen
G. R. Ault
40 Gould Center
Rolling Meadows, IL 60008

GT & E Laboratory
Attn: N. Marihcic
E. Peled
40 Sylvan Road
Waltham, MA 02154
Honeywell, Incorporated
Attn: Library
R. Walk
W. Ebner
Dr. P. M. Shah
Defense Systems Division
Power Sources Center
104 Rock Road
Horsham, PA 19044

Hughes Aircraft Company
Attn: Library
Dr. L. H. Fentnor
Aerospace Groups
Missile Systems Group
Tucson Engineering Laboratory
Tucson, AZ 85734

KDI Score, Incorporated
Attn: L. A. Stein
F. DeMarco
K. K. Press
200 Wight Avenue
Cockeysville, MD 21030

Lockheed Missiles and Space Company, Incorporated
Attn: Library
Lockheed Palo Alto Research Laboratory
3251 Hanover Street
Palo Alto, CA 94304

P. R. Mallory and Company, Incorporated
Attn: G. F. Cruze
B. McDonald
D. Linden
Battery Division
South Broadway
Tarrytown, NY 10591

P. R. Mallory and Company, Incorporated
Attn: Library
Dr. A. N. Dey
Dr. H. Taylor
Laboratory for Physical Science
Burlington, MA 01803

Power Conversion, Incorporated
70 MacQuesten Parkway S.
Mount Vernon, NY 10550
DISTRIBUTION (Cont.)

Union Carbide Battery Products Division
Attn: R. A. Powers
P. O. Box 6116
Cleveland, OH 44101

Wilson Greatbatch LTD.
Attn: Library
1000 Wehrle Drive
Clarence, NY 14030

Yardney Electric Corporation
Attn: Library
A. Beachielli
82 Mechanic Street
Pawcatuck, CT 02891

Callery Chemical Company
Attn: Library
Callery, PA 16024

Kawecki Berylco Industries, Incorporated
Attn: J. E. Eorgan
R. C. Miller
Boyertown, PA 19512

Rockwell International
Attn: Dr. Samuel J. Yosim
Atomics International Division
8900 DeSoto Avenue
Canoga Park, CA 91304

Union Carbide
Attn: Library
Nuclepore Corporation
7035 Commercial Circle
Pleasantown, CA 94566

Ventron Corporation
Attn: L. R. Frazier
10 Congress Street
Beverly, MA 01915
Stanford University
Attn: C. John Wen
Center for Materials Research
Room 249, McCullough Building
Stanford, CA 94305

EDO Corporation
Attn: E. P. DiGiannantonio
Government Products Division
2001 Jefferson Davis Highway
Arlington, VA 22202

Perry International, Incorporated
Attn: R. A. Webster
117 South 17th Street
Philadelphia, PA 19103

Ford Aerospace and Communications Corporation
Attn: R. A. Harlow
M. L. McClanahan
Metallurgical Processes
Advanced Development-Aeronutronic Division
Ford Road
Newport Beach, CA 92663

Globe Union Incorporated
Attn: Dr. R. A. Rizzo
5757 N. Green Bay Avenue
Milwaukee, WI 53201

University of Missouri, Rolla
Attn: Dr. J. M. Marchello
210 Parker Hall
Rolla, MO 65401

RAI Research Corporation
Attn: Dr. Carl Perini
225 Marcus Boulevard
Hauppauge, NY 11787
TO AID IN UPDATING THE DISTRIBUTION LIST
FOR NAVAL SURFACE WEAPONS CENTER, WHITE
OAK TECHNICAL REPORTS PLEASE COMPLETE THE
FORM BELOW:

TO ALL HOLDERS OF 5NSWC/WOL/TR 78-156
by William P. Kilroy, Code R-33
DO NOT RETURN THIS FORM IF ALL INFORMATION IS CURRENT

A. FACILITY NAME AND ADDRESS (OLD) (Show Zip Code)

NEW ADDRESS (Show Zip Code)

B. ATTENTION LINE ADDRESSES:

C.

☐ REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT.

D.

NUMBER OF COPIES DESIRED ______________________