EFFECTIVENESS OF RUST REMOVERS FOR USE AT NAVAL SHORE FACILITIES--ETC

SEP 78 E S MATSUI

UNCLASSIFIED

CEI-TN-1531

END

DATE FILMED
3-79

SEC
title: EFFECTIVENESS OF RUST REMOVERS FOR USE AT NAVAL SHORE FACILITIES

author: E. S. Matsui

date: September 1978

sponsor: Naval Facilities Engineering Command

program nos: YF54.593.012.01.001

CIVIL ENGINEERING LABORATORY
NAVAL CONSTRUCTION BATTALION CENTER
Port Hueneme, California 93043

Approved for public release; distribution unlimited.
The Civil Engineering Laboratory has appraised the relative merits of some of the available rust removers and converters to ascertain their suitability for Naval use. The test results indicate that coatings applied to test panels treated with the rust removers provided corrosion protection as good as that of coatings applied to the sandblasted control panels. Therefore, the rust removers are judged satisfactory for Naval use. All three rust converters investigated provided poor protection against corrosion, and their use is not...
The Civil Engineering Laboratory has appraised the relative merits of some of the available rust removers and converters to ascertain their suitability for Naval use. The test results indicate that coatings applied to test panels treated with the rust removers provided corrosion protection as good as that of coatings applied to the sandblasted control panels. Therefore, the rust removers are judged satisfactory for Naval use. All three rust converters investigated provided poor protection against corrosion, and their use is not recommended at the present time.
CONTENTS

INTRODUCTION .. 1
TEST PROCEDURE ... 1
 Panel Preparation .. 1
 CEL Exposure Locations ... 2
RATING OF COATING SYSTEMS 3
TEST RESULTS .. 4
 System 1 ... 4
 System 2 ... 5
 System 3 ... 5
 System 4 ... 6
 System 5 ... 6
 System 6 ... 7
 System 7 ... 7
 System 8 ... 8
 System 9 ... 8
 System 10 .. 9
 System 11 .. 9
 System 12 .. 10
 System 13 .. 10
 System 14 .. 11
DISCUSSION ... 11
CONCLUSIONS ... 12
ACKNOWLEDGMENTS .. 12
APPENDICES
 A - Coating Systems, Their Sources, and Film Thickness 13
 B - Rating Data For Rust Removers 16
INTRODUCTION

Proper preparation of the surface prior to painting is essential to achieve maximum life of a coating. The best quality paint will not perform effectively if applied on a poorly prepared surface. Painting over rusty or poorly prepared steel surfaces is regarded as poor practice and should be avoided. Abrasive blast cleaning is, by far, the most thorough and effective mechanical treatment. However, it is often impractical or impossible to do this because of environmental and economical reasons, location, or equipment limitations. Maintenance personnel are frequently required to resort to other methods of surface preparation.

One of the available methods is to use a chemical rust remover. Industry has introduced a variety of rust removers that can be applied over rusty surfaces to remove rust and mill scale from steel surfaces. Thus, it has become necessary to appraise the relative merits of some of these products to ascertain their suitability for use by the Navy.

In Fiscal Year 1972, the Civil Engineering Laboratory (CEL) included an investigation of 13 different rust removers or rust converters in work sponsored by the Naval Facilities Engineering Command. Ten rust removers and three rust converters were selected for this investigation. These rust removers and rust converters were applied to rusted steel test panels to remove or convert rust and were then top-coated with government specification coating (MIL-P-15328, TT-P-645, and TT-E-489E). The coated test panels were placed on exposure racks at the three CEL marine atmospheric exposure sites: Kaneohe, Hawaii; Kwajalein, Marshall Islands; and Port Hueneme, California. Their performances were compared with the same coating systems applied to sandblasted-to-white-metal steel test panels exposed simultaneously.

This report presents the results of 5 years of exposure at the three exposure sites.

TEST PROCEDURE

Panel Preparation

All test panels were of mild steel, 6x12x1/8 in., providing approximately 1 sq ft of overall area. The new test panels were washed with methyl ethyl ketone to remove any rust inhibitive oily substance on the surfaces, then placed on exposure racks at the Port Hueneme exposure site for 4 weeks to allow rusting to take place. During the rusting procedure the test panels were turned over each week to obtain uniform rusting.
Each rust remover or converter was applied on both sides of the 14 rusted test panels according to instructions provided by each manufacturer. Some of the rust removers or converters were applied differently than others, as required. The rust removers were then washed off with clean water and then rinsed with methyl ethyl ketone to remove the residual water from the test panels to dry them quickly.

After rust removal, all test panels were top coated with a government specification paint (MIL-P-15328, TT-P-645, and TT-E-489E) applied to both sides of the test panels by means of an automatic horizontal-transverse paint spraying machine, resulting in a uniform paint thickness for each set of panels. The control standard coating system was applied over white metal sandblasted steel* (System 14). After coating, the panels were dried as required. Appendix A lists the rust removers or converters, their sources, the coating systems, and their thickness.

To allow evaluation of adhesion loss and coating blistering associated with corrosion resulting from abrasion damage that exposes bare metal and to accelerate the weathering process, two diagonal cuts were made through the coating to expose the steel substrate. These scribes, made in the shape of an "X" on one side of the coated test panel, extended from about 1-3/8 in. from each corner. Four coated test panels, two scribed and two unscribed, from each coating system were exposed to the marine atmosphere at each of the three test sites, with the scribed side facing up.

CEL Exposure Locations

Each of the three marine atmospheric environments (Port Hueneme, Kaneohe, and Kwajalein) presents different combinations of weathering factors such as rainfall, temperature, humidity, solar radiation, wind, and salt spray in varying intensities and duration. Thus, these three different geographical locations provide an opportunity for simultaneous exposure studies of identical coatings under differing conditions.

Kwajalein. Kwajalein is located near the center of the tropical zone at 8°44' north latitude. The exposure racks are about 100 feet from the surfline at high tide and hold the test panels at a 45-degree angle to the horizontal, facing the prevailing east-northeast wind that carries large amounts of salt spray to the panels. Rainfall is plentiful, averaging over 10 in./mo during 8 months of the year; total annual rainfall is about 105 inches. The annual average temperature range is 81° to 83°F, and wind velocity is between 8 and 21 mph.

Kaneohe. The exposure racks at Kaneohe face east-northeast into the prevailing wind and are about 200 feet from the surf and up a knoll about 40 feet above sea level. The test panels are placed at a 45-degree angle to the horizontal. The wind often carries small amounts of fine sand, which has a slight abrasive action on the coating surfaces. This

The test area is at 21°21' north latitude near the northern edge of the tropical zone (the Tropic of Cancer is 23°27' north latitude). The Kaneohe test site has a slightly greater variation in temperature than does Kwajalein with average annual temperature ranging between 73° and 79°F. The monthly rainfall varies from 1 to 9 inches; annual total rainfall averages about 43 inches.

Port Hueneme. This test site is located on a pier where the specimens are exposed at a 45-degree angle to the horizontal, facing west. The pier runs parallel to a north-south rock jetty (breakwater), which is about 300 feet to the west of the pier. The surf breaks against this jetty, and the prevailing west wind carries ocean spray onto the test specimens. The wind carries a considerable amount of fine sand and dust, which has a slight abrasive action on the coating surfaces. Port Hueneme is at 34°7' north latitude (10°40' north of Tropic of Cancer). The annual average rainfall is about 12 inches and falls predominantly during 5 months in the winter. The average annual temperature is from 51° to 65°F.

RATING OF COATING SYSTEMS

Inspections were made of the exposed coatings annually and their performances rated. Photographs of the coatings were taken annually. The assigned ratings are tabulated in Appendix B. Ratings were assigned by CEL personnel in accordance with ASTM Standards, where applicable. A numerical rating system was used for recording the degree of protection given by a coating. A rating of 10 indicated complete protection, a rating of 0 indicated no protection. For example, if the metal substrate had lost protection over 10% to 20% of its surface the coating was given a rating of 8. In this report, a protection rating of 7 indicates coating failure and that maintenance or recoating is necessary. An E in the Appendix B tabulation indicates the rating was based on coating performance at the edges.

Chalking is evident as a removable powder evolving from the coating film at, or just beneath, the surface resulting from breakdown of polymer by the action of ultraviolet light. To determine the chalking rating, a 4-inch stroke is made with a clean, dry cloth across the surface of a coating. The spot of powder on the cloth is compared with photographic reference standards (ASTM Designation D659-44); the degree of chalking is then rated from 10 (no powder on the cloth) to 2 (the powder completely covers the spot). Because the amount of chalking present on the coating film at the rating time was affected by recent rainfall, the recorded rating represents a maximum rating for chalking.

The degree of rusting is rated in accordance with ASTM Designation D610-43 which provides photographic reference standards. Both Type I (rusting without blistering) and Type II (rusting with blistering) are rated from 10 (no rusting) to 0 (completely rusted).
The blister size is also designated 10 to 2: 10 indicates no blisters, 8 indicates the smallest blister easily seen with the unaided eye, and 6, 4, and 2 represent a progressively larger sized blister. Size 2 represents a blister diameter of about 1/4 in. Blister frequency is reported as dense (D), medium dense (MD), medium (M), and few (F), where "dense" represents complete surface coverage and "few" only occasional blisters. Thus, a rating of 2/M would represent blisters of 1/4-in. diameter, covering approximately one-fifth to one-quarter of the surface.

Undercutting is a type of coating deterioration in which adhesion of the coating film to the metal panel is destroyed by the formation of corrosion products. In most cases these products would be rust inasmuch as steel panels are used. Undercutting most frequently occurs at the scribes or edges of the panels where coating protection is least. Undercutting in these areas is rated 10 (no undercutting), or 8, 6, 4, 2, representing progressively greater areas affected by the undercutting. A rating of 5 would indicate that 50% of the designated area was affected by the undercutting.

TEST RESULTS

Observation during the rust remover applications and performance during the 5 years of exposure at the three CEL exposure sites are presented below. Three years of exposure at Kwajalein usually provide enough data so that inferior coating systems can be identified. However, longer term exposures are normally required to better identify superior coatings. After 5 years of exposure it is possible to select the best system or the superior systems that have continued to give satisfactory protection at Kwajalein. The coatings that fail during these additional 2 years can be ranked in protective quality, depending on whether they fail during the fourth or fifth years at Kwajalein and on the condition of the coatings at Kaneohe during these same periods.

System 1

This system consisted of a proprietary rust remover, Rustbuster #211, and three government specification coatings (wash primer MIL-P-15328, primer TT-P-645, and finish TT-P-489E).

Rustbuster #211 is a medium duty, general purpose grade of metal cleaner compared to the heavy duty rust remover used in System 2. The rust remover formed a dry film on the test panels 15 minutes after the application. The dried film, however, peeled back at the edges of some of the test panels. After 1 hour, a second application was made and left standing for another hour; the remaining rust was removed from the panels satisfactorily. Flash rust set in quickly unless the panels were rinsed with clean water and dried with methyl ethyl ketone. One coat of
the wash primer, two coats of the primer, and one coat of the finish coat were then applied. Total average dry-film thickness was 8 mils (0.008 in.).

Protection of unscribed panels provided by this system were fair to excellent (ratings of 8+, 9-, and 10) during the 5 years of marine atmospheric exposure at the Kwajalein, Kaneohe, and Port Hueneme test sites, respectively. The performances of the unscribed panels were almost as good as the sandblasted control standard system, System 14, which were rated 9-, 9-, and 10 during the same period of exposure.

Protection provided by this coating system to the scribed panels during the 5 years of exposure were fair to good (ratings of 8-, 8, and 9-) at the Kwajalein, Kaneohe, and Port Hueneme test sites, respectively. The performances of the scribed panels were as good as or slightly better than System 14 which were rated 7, 8+, and 8, respectively, at the three test sites during the same period of exposure. The rating of 7 of System 14 indicated failure of the control standard to protect the test panels from the corrosion attack during 5 years of exposure at Kwajalein.

System 2

This system consisted of a proprietary rust remover, Rustbuster HD, and the three government specification coatings.

Rustbuster HD, designed for heavy duty metal cleaning, was supplied by the same manufacturer as System 1. It was much easier to apply and did not peel off as did Rustbuster #211. System 2 also required two applications to remove the rust from the rusted test panels satisfactorily.

After rinsing with water and drying with methyl ethyl ketone, the panels were coated with the same three government specification coatings (one coat of MIL-P-15328, two coats of TT-P-645, and one coat of TT-E-489E) as the previous samples. Total dry-film thickness was 7.5 mils (0.0075 inch).

Protection of the unscribed panels provided by this system were fair to good (8+, 9-, and 9+) during the 5 years of exposure at the Kwajalein, Kaneohe, and Port Hueneme exposure sites, respectively. The protection provided by this system was slightly less than that provided by control standard System 14 during the same period.

The scribed panels coated with this system failed after 4 years of exposure at Kwajalein because of heavy rusting, blistering, and undercutting at the scribed areas. The performance of this system at Kaneohe and Port Hueneme was fair (8 and 8+, respectively) during the 5 years of exposure.

System 3

This coating system consisted of a proprietary rust remover (Devcon Rust Jelly) and three government specification coatings.

This product meets requirements of Military Specification MIL-C-10578C. The consistency of this product appeared to be very light, and when it dried the dried film appeared to have shrunk slightly, exposing
the unprotected edges of the panels. This rust remover required two coats to remove the rust from the rusted panels satisfactorily. After rinsing with water and drying with methyl ethyl ketone, the test panels were coated with one coat each of the three government specification coatings. Total dry-film thickness was 6.5 mils (0.0065 inch).

Protection of the unscribed panels provided by this system was good to excellent (ratings of 9, 9, and 10) during the 5 years of exposure at the Kwajalein, Kaneohe, and Port Hueneme exposure sites, respectively. The protection provided by this system was as good as that provided by the sandblasted control standard System 14 during the same period.

The protected panels failed after 2 years of exposure at Kwajalein. The protection provided by this system at the Kaneohe and Port Hueneme exposure sites was rated fair (8+ and 8, respectively) during the 5 years of exposure.

System 4

This coating system consisted of a proprietary rust remover (Acco Naval Rust-Removo) and the three previously described government specification coatings.

This material was heavy jelly-like and could not be just brushed on but needed to be patted on with a spatula and then spread with a brush to cover the surface of the test panels. A second coat applied after 1 hour of standing was required to remove the rust from the panels satisfactorily. Although the manufacturer claimed that the rust remover leaves rust-inhibitive film on the treated surface, flash rust appeared on the surface soon after the panels were rinsed with water and dried with methyl ethyl ketone. The panels were then coated with one coat each of the government specification coatings as for the previous systems. Total dry-film thickness was 6.5 mils (0.0065 inch).

The unscribed coating system provided good to excellent protection (ratings of 9, 9+, and 10, respectively) during the 5 years of exposure at Kwajalein, Kaneohe, and Port Hueneme test sites. The protection provided by this system was as good as that provided by control standard System 14 during the same period.

The scribed panels failed after 4 years of exposure at Kwajalein. The protection was fair (8+ and 8, respectively) at the Kaneohe and Port Hueneme test sites during the 5 years of exposure.

System 5

This coating system consisted of a proprietary rust remover (Rust-clean 3764) and the same three government specification coatings.

This product was also in gel form but lighter and easier to apply than the Acco Naval Rust-Removo. It adhered better on the edges of the panels but removed the rust more slowly than the Rust-Removo. This product meets Military Specification MIL-C-19647A. Three government
specification coatings were applied after rinsing the panels with water and drying with methyl ethyl ketone. Total dry-film thickness was 6.5 mils (0.0065 inch).

Protection of the unscribed panels provided by this system were good to excellent (ratings of 9, 9, and 10, respectively) during the 5 years of exposure at Kwajalein, Kaneohe, and Port Hueneme. The protection provided by this system was as good as that provided by control standard System 14 during the same period of exposure.

The scribed panels failed after 4 years of exposure at Kwajalein. The protection was fair at Kaneohe and Port Hueneme (ratings of 8+ and 8+, respectively) during the 5 years of exposure.

System 6

This coating system consisted of a proprietary rust remover (Oakite Jelcid) and three government specification coatings.

This product meets Military Specifications MIL-STD-107E and MIL-M-10578C Type II. This product is a heavy-bodied liquid material. It was applied by brush but can be applied with a roller. Two applications were made, the second after 1 hour of standing. After the panels were rinsed with water and dried with methyl ethyl ketone, remaining rust spots were sanded manually. One coat each of the three government specification coatings were then applied as for the previous systems. Total dry-film thickness was 6.5 mils (0.0065 inch).

Protection of unscribed panels provided by this coating system were good to excellent (ratings of 9, 9, and 10, respectively) during 5 years of exposure at Kwajalein, Kaneohe, and Port Hueneme. This system also provided protection as good as control standard System 14 during the same period of exposure.

The scribed panels failed after 4 years of exposure at Kwajalein. The protection was fair (ratings of 8+ and 8, respectively) at Kaneohe and Port Hueneme during the 5 years of exposure.

System 7

This coating system consisted of a proprietary rust remover (Naval Jelly) and the three government specification coatings.

This product was also a heavy-bodied liquid. It was applied by brushing and removed the rust in the same way as the Oakite Jelcid. Second applications were made after 1 hour of standing. This product removed the rust more effectively than other rust removers tested. No re-rusting of the panels occurred after the rust remover was rinsed with water and dried with methyl ethyl ketone. One coat each of the government specification paints were applied on the treated test panels. Total dry-film thickness was 6.5 mils (0.0065 inch).

This coating system provided fair to excellent protection (ratings of 8, 8+, and 10-, respectively) to the unscribed panels during the 5 years of exposure at Kwajalein, Kaneohe, and Port Hueneme.
The scribed panels failed after 4 years of exposure at Kwajalein. The system provided fair protection (ratings of 8 and 8) to the scribed panels at Kaneohe and Port Hueneme during 5 years of exposure.

System 8

This coating system consisted of a proprietary rust converter (Carboline Rustcon 230) and a government specification finish coat (TT-E-489E).

Unlike the previously discussed rust remover samples, this product was classified as a rust converter because it was claimed that this product will produce a protective coating upon application by chemically converting the tightly adhering rust to a protective coating and provide a sound base for subsequent painting. This product was applied over a brush-off sandblasted rusty surface as recommended by the manufacturer. After the rust converter was dried, two coats of government specification finish coat (TT-E-489E) were applied. This system differed from other systems in that wash primer and primer were omitted as recommended by the manufacturer. Total dry-film thickness was 6.0 mils (0.006 inch).

This product provided very poor protection to the unscribed panels as well as the scribed panels during the 5 years of exposure at the three CEL test sites. The unscribed panels failed during the third and fifth year of exposure at Kaneohe and Kwajalein, respectively, because of heavy rust and blistering. The system provided fair protection (rating of 8) to the unscribed panels at Port Hueneme during the 5 years of exposure.

The scribed panels failed only after 1 year of exposure at Kwajalein and Kaneohe and failed after 4 years of exposure at Port Hueneme because of heavy rust, blisters, and tuberculation.

System 9

This coating system consisted of a proprietary rust remover (Manganesed-Phospholene No. 7) and three government specification coatings.

This product is a very light liquid and can be applied by brushing, spraying, or dipping. This product required 2 hours of continuous brushing before rust was satisfactorily removed from the surface. This product reacted with the metal surface and left a gray surface after the treatment which is said to act as a protective film against re-rusting of the surface and enhances paint adhesion. This product meets Military Specifications MIL-STD-107E and MIL-M-10578C. It recommends sanding-off rust and mill scale from the surface prior to application if they are too heavy. After rinsing with water and drying with methyl ethyl ketone, the treated panels were coated with one coat each of the three government specification coatings. Total dry-film thickness was 7.0 mils (0.007 inch).
This product provided fair and excellent protection (ratings of 8+, 8+, and 10-) to the unscribed panels during the 5 years of exposure at Kwajalein, Kaneohe, and Port Hueneme, respectively. The scribed panels failed after 4 years of exposure at Kwajalein because of heavy rusting and blistering along the scribed areas. It provided fair protection (rating of 8) during the 5 years of exposure at Kaneohe and Port Hueneme.

System 10

This coating system consisted of a proprietary rust remover (Turco Metal Glo #3H) and the three government specification coatings. This product was a viscous liquid, slightly in gel form and required 2 hours of continuous application with a stiff bristle brush to loosen the rust from the test panels. The treated panels required some sanding of the remaining rust after rinsing off the rust remover with water. This product was not an effective rust remover compared to other rust removers under investigation. After rinsing with water and drying with methyl ethyl ketone, the treated panels were coated with one coat each of the government specification coatings as other systems. Total dry-film thickness was 6.5 mils (0.0065 inch).

The conditions of the unscribed panels were fair to excellent (ratings of 8+, 9, and 10-) during the 5 years of exposure at Kwajalein, Kaneohe, and Port Hueneme, respectively. The scribed panels failed after 4 years of exposure at Kwajalein because of heavy rusting and blistering. The condition of the scribed panels at Kaneohe and Port Hueneme was fair (ratings of 8) at the end of 5 years of exposure.

System 11

This coating system consisted of a proprietary rust remover (Far Best #5703) and the same three government specification coatings. This product, a viscous liquid and in slightly gel form, was similar to the previous rust remover, Turco Metal Glo #3H. The product was too mild and required continuous brushing with a stiff bristle brush to remove heavy rusting from the panels. It was an ineffective rust remover and required sanding of some remaining rust from the surface. After the treated panels were rinsed with water and dried with methyl ethyl ketone, they were coated with one coat each of the government specification coatings. Total dry-film thickness was 7.0 mils (0.007 inch).

The conditions of the unscribed panels were fair to excellent (ratings of 8+, 9, and 10-) during the 5 years of exposure at Kwajalein, Kaneohe, and Port Hueneme, respectively. The scribed panels failed after 3 years of exposure at Kwajalein because of heavy rust and blistering along the scribed areas. Protection of the scribed panels at Kaneohe and Port Hueneme were fair (ratings of 8) during the 5 years of exposure.
System 12

This coating system consisted of a proprietary rust converter (Ospho) and three government specification coatings used in the previous systems.

This product is also classified as a rust converter because the manufacturer claimed that this product reacts with existing rust and converts it to an inert iron phosphate which acts as a protective film against further corrosion of the substrate. Although the manufacturer recommends letting the product stand overnight after application, it appeared to react fairly rapidly with the rust when applied on the test panels. However, rust began to reappear when the treated surface was rinsed with water. The three government specification coatings were then applied to the treated panels. Total dry-film thickness was 6.5 mils (0.0065 inch).

The conditions of the unscribed panels were fair to good (ratings of 8, 8+, and 9-) during the 5 years of exposure at Kwajalein, Kaneohe, and Port Hueneme, respectively.

The scribed panels, however, failed after 3 years of exposure at Kwajalein and Kaneohe because of heavy rusting and blistering. The scribed panels at Port Hueneme were fair (rating of 8) during the 5 years of exposure.

System 13

This coating system consisted of a proprietary rust converter (Actan) and the same government specification coatings as the previous coating systems.

This product is also classified as a rust converter because the manufacturer claims that it "reacts with iron-oxide (rust) and forms a protective barrier, metallo-organic coating, on metallic substrate and passivates the ferrous surface from further corrosion." It can be applied by brushing, rolling, or spraying. The treated panels were left outside for 7 days as directed by instructions provided. The panels were then rinsed with water, dried, and the three government specification coatings were applied. Total dry-film thickness was 6.5 mils (0.0065 inch).

Conditions of the unscribed panels were fair to good (ratings of 8, 9, and 8+) during the 5 years of exposure at Kwajalein, Kaneohe, and Port Hueneme, respectively.

The scribed panels, however, failed after only 1 year of exposure at Kwajalein and after 4 years of exposure at Port Hueneme because of heavy rusting, blistering, and undercutting along the scribed areas. These panels did not fail (rating of 8+) at Kaneohe during the 5 years of exposure. The failure of the rust converter to protect the Kwajalein and Port Hueneme panels was similar to Systems 8 and 12, which also used rust converters.
System 14

This coating system consisted of the three government specification coatings, wash primer MIL-P-15328, primer TT-P-645, and finish coat TT-E-489E. The specification coatings were the same as those of the previous systems except that the coatings were applied over the sandblasted-to-white steel panels instead of over rust remover- or converter-treated panels. This system was prepared as a control standard for comparison with the performance of other systems. Total dry-film thickness was 7.0 mils (0.007 inch).

Conditions of the unscribed panels were good to excellent (ratings of 9-, 9-, and 10) during the 5 years of exposure at Kwajalein, Kaneohe, and Port Hueneme, respectively.

The scribed panels failed after 4 years of exposure at Kwajalein. Condition of the scribed panels was fair (rating of 8- and 8) during the 5 years of exposure at Kaneohe and Port Hueneme, respectively.

DISCUSSION

Except for the rust converters - Systems 8, 12, and 13 - most of the rust removers were claimed to be applicable not only for removing rust from steel and cast iron surfaces but also capable of removing corrosion product or tarnish from aluminum, stainless steel, chrome, copper, bronze, and brass surfaces. Some of these products were also recommended for removing rust stains from porcelain, concrete, or marble, although such claims were not investigated under this work.

Number of applications and time required to remove the rust from the surfaces depends on the thickness and degree of corrosion. All rust removers tested here required two applications or continuous scrubbing with a bristle brush to remove the rust satisfactorily. Most of these rust removers were left standing overnight before rinsing down with water. Removal of the rust from vertical surfaces was very difficult because most of the rust removers slowly slid down from the top to the bottom while standing.

Most of the rust removers contained phosphoric acid to remove the rust plus detergent, wetting agents, or organic solvents to assist in removing soil and oil. Phosphoric acid cleaning is an excellent time-tested method of removing oil and rust. The phosphoric acid etches the surface and chemically reacts with it producing a thin layer of iron phosphate. This thin layer temporarily retards re-rusting of the treated areas and provides a sound base for subsequent coatings. However, during the experiment, the flash rust appeared in most instances soon after rinsing with clean water. After 5 years of the atmospheric exposure, however, the results indicated that the slight amount of flash rust did not affect the performance of the coating systems seriously, and the test panels were protected as well as the sandblasted-to-white control standard panels were.
Rust converter Systems 8, 12, and 13 did not provide good protection during the 5 years of exposure at the three CEL test sites. Some of the scribed panels treated with the rust converter failed soon after 1 year of exposure at Kwajalein, as shown in Appendix B. However, the idea of developing an effective corrosion-preventive coating such as a rust converter is a good one, and a need exists for such a product in the Navy for maintenance and cost reduction. Therefore, development or research on such products should be encouraged.

CONCLUSIONS

1. Most of the rust removers tested under this work removed the rust very slowly from the test panels, and the time required to remove the rust varied among the rust removers tested. In most cases, the rust removers needed to be left standing overnight to remove the rust satisfactorily.

2. In most instances, flash rust reappeared after rinsing off the rust removers. However, reappearance of the flash rust did not affect the performance of the coating systems seriously, and the cleaning systems provided protection as good as that provided by the sandblasted control panels. Therefore, as a group, any of these rust removers tested were judged satisfactory for Navy use.

3. All three rust converters tested provided poor protection compared to that provided by the rust removers. Therefore, their use is not recommended at the present time.

ACKNOWLEDGMENTS

The author expresses his appreciation to the personnel of the Public Works Department, Marine Corps Air Station, Kaneohe Bay, Hawaii, and to the personnel of the Construction and Utilities Division, Headquarters, Kwajalein Missile Range for their cooperation, assistance, and interest in the long-term marine atmospheric exposure test being conducted in the Pacific area.
Appendix A

COATING SYSTEMS, THEIR SOURCES, AND FILM THICKNESS
<table>
<thead>
<tr>
<th>System No.</th>
<th>Trade Name</th>
<th>Type</th>
<th>Source</th>
<th>Coating System</th>
<th>Use</th>
<th>No. of Coats</th>
<th>Total Thickness (mil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rustbuster #211</td>
<td>Rust Remover</td>
<td>Permaspray Mfg. Corp. League City, TX 77573</td>
<td>Rustbuster #211</td>
<td>Rust Remover</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MIL-P-15328</td>
<td>Wash Primer</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TT-P-645</td>
<td>Primer</td>
<td>2</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TT-E-489E</td>
<td>Finish</td>
<td>2</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOTAL 8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Rustbuster HD</td>
<td>Rust Remover</td>
<td>Permaspray Mfg. Corp. League City, TX 77573</td>
<td>Rustbuster HD</td>
<td>Rust Remover</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MIL-P-15328</td>
<td>Wash Primer</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TT-P-645</td>
<td>Primer</td>
<td>2</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TT-E-489E</td>
<td>Finish</td>
<td>2</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOTAL 7.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Devcon Rust Jelly</td>
<td>Rust Remover</td>
<td>California Hardware Co. 500 East 1st Street Los Angeles, CA 90022</td>
<td>Devcon Rust Jelly</td>
<td>Rust Remover</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MIL-P-15328</td>
<td>Wash Primer</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TT-P-645</td>
<td>Primer</td>
<td>2</td>
<td>2.5*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TT-E-489E</td>
<td>Finish</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*TOTAL 6.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Acco Rust-Removo #R301</td>
<td>Rust Remover</td>
<td>General Industrial Co. 1780 Montrose Avenue Chicago, IL 60613</td>
<td>Acco Rust-Removo #R301</td>
<td>Rust Remover</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MIL-P-15328</td>
<td>Wash Primer</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TT-P-645</td>
<td>Primer</td>
<td>1</td>
<td>2.5*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TT-E-489E</td>
<td>Finish</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*TOTAL 6.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Rust Clean 3764</td>
<td>Rust Remover</td>
<td>Octagon Process, Inc. 590 River Road Edgewater, NJ 07020</td>
<td>Rust Clean 3764</td>
<td>Rust Remover</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MIL-P-15328</td>
<td>Wash Primer</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TT-P-645</td>
<td>Primer</td>
<td>1</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TT-E-489E</td>
<td>Finish</td>
<td>2</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*TOTAL 6.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Oakite Jelicid</td>
<td>Rust Remover</td>
<td>Oakite Products, Inc. 544 South 6th Avenue City of Industry, CA 91744</td>
<td>Oakite Jelicid</td>
<td>Rust Remover</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MIL-P-15328</td>
<td>Wash Primer</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TT-P-645</td>
<td>Primer</td>
<td>1</td>
<td>2.5*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TT-E-489E</td>
<td>Finish</td>
<td>2</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*TOTAL 6.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Naval Jelly</td>
<td>Rust Remover</td>
<td>Meredith Separation Co. Naval Jelly Bldg. 310 West 9th Street Kansas City, MO 64105</td>
<td>Naval Jelly</td>
<td>Rust Remover</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MIL-P-15328</td>
<td>Wash Primer</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TT-P-645</td>
<td>Primer</td>
<td>1</td>
<td>2.5*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TT-E-489E</td>
<td>Finish</td>
<td>2</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*TOTAL 6.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System No.</td>
<td>Trade Name</td>
<td>Type</td>
<td>Source</td>
<td>Coating System</td>
<td>Use</td>
<td>No. of Coats</td>
<td>Total Thickness (mil)</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
<td>-----------</td>
<td>--</td>
<td>--------------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>8</td>
<td>Rustcon 230</td>
<td>Converter</td>
<td>Carboline Company 328 Hanley Industrial Ct. St.</td>
<td>Rustcon 230</td>
<td>Converter-Primer</td>
<td>1</td>
<td>2.5+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Louis, MO 63144</td>
<td>TT-E-489E</td>
<td>Finish</td>
<td>2</td>
<td>3.75</td>
</tr>
<tr>
<td>9</td>
<td>Manganese-Phospholene No. 7</td>
<td>Rust Remover</td>
<td>Western Reserve Laboratories 1348 St. Clair Avenue Cleveland 14, OH 44114</td>
<td>MP-7 MIL-P-15328 TT-P-645 TT-E-489E</td>
<td>Rust Remover Wash Primer Primer Finish</td>
<td>2 1 1 2</td>
<td>6.5+</td>
</tr>
<tr>
<td>10</td>
<td>Turco Metal Glo #3H</td>
<td>Rust Remover</td>
<td>Turco Products Division (Purex Corp. Ltd.) 24600 South Main Street Wilmington, CA 90744</td>
<td>Turco Metal Glo #3H MIL-P-15328 TT-P-645 TT-E-489E</td>
<td>Rust Remover Wash Primer Primer Finish</td>
<td>2 1 1 2</td>
<td>7.0+</td>
</tr>
<tr>
<td>11</td>
<td>Far Best #5703</td>
<td>Rust Remover</td>
<td>Far Best Corporation 6715 McKinley Avenue Los Angeles, CA 90001</td>
<td>Far Best #5703 MIL-P-15328 TT-P-645 TT-E-489E</td>
<td>Rust Remover Wash Primer Primer Finish</td>
<td>2 1 1 2</td>
<td>7.0+</td>
</tr>
<tr>
<td>12</td>
<td>Ospho</td>
<td>Converter</td>
<td>Rusticide Products Co. 3125 Perkins Avenue Cleveland, OH 44114</td>
<td>Ospho MIL-P-15328 TT-P-645 TT-E-489E</td>
<td>Converter Wash Primer Primer Finish</td>
<td>2 1 1 2</td>
<td>6.5+</td>
</tr>
<tr>
<td>13</td>
<td>Actan</td>
<td>Converter</td>
<td>Centerchem, Inc. Empire State Bldg. Suite 6208 350 Fifth Avenue New York, NY 10001</td>
<td>Actan MIL-P-15328 TT-P-645 TT-E-489E</td>
<td>Converter Wash Primer Primer Finish</td>
<td>2 1 1 2</td>
<td>6.5+</td>
</tr>
<tr>
<td>14</td>
<td>Control</td>
<td>Sandblasted-to-White Metal</td>
<td>San Diego Coatings Co. 2646 Main Street San Diego, CA 92113</td>
<td>Control MIL-P-15328 TT-P-645 TT-E-489E</td>
<td>Wash Primer Primer Finish</td>
<td>1 1 2</td>
<td>7.0+</td>
</tr>
</tbody>
</table>
Appendix B

RATING DATA FOR RUST REMOVERS
<table>
<thead>
<tr>
<th>System No.</th>
<th>Exposure Site</th>
<th>Years Exposed</th>
<th>Uncured Panels</th>
<th>Blistering</th>
<th>Undercutting</th>
<th>Chalking</th>
<th>Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kameko</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>8</td>
<td>10</td>
<td>9(E)</td>
</tr>
<tr>
<td>2</td>
<td>Kameko</td>
<td>2</td>
<td>4</td>
<td>10</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>3</td>
<td>Kameko</td>
<td>3</td>
<td>5</td>
<td>10</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>4</td>
<td>Kameko</td>
<td>4</td>
<td>8</td>
<td>10</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>5</td>
<td>Kameko</td>
<td>5</td>
<td>10</td>
<td>8</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>6</td>
<td>Kameko</td>
<td>6</td>
<td>10</td>
<td>8</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>7</td>
<td>Kameko</td>
<td>7</td>
<td>10</td>
<td>8</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>8</td>
<td>Kameko</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>9</td>
<td>Kameko</td>
<td>9</td>
<td>10</td>
<td>8</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>10</td>
<td>Kameko</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>11</td>
<td>Kameko</td>
<td>11</td>
<td>10</td>
<td>8</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>12</td>
<td>Kameko</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>13</td>
<td>Kameko</td>
<td>13</td>
<td>10</td>
<td>8</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>14</td>
<td>Kameko</td>
<td>14</td>
<td>10</td>
<td>8</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>15</td>
<td>Kameko</td>
<td>15</td>
<td>10</td>
<td>8</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>16</td>
<td>Kameko</td>
<td>16</td>
<td>10</td>
<td>8</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>17</td>
<td>Kameko</td>
<td>17</td>
<td>10</td>
<td>8</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>18</td>
<td>Kameko</td>
<td>18</td>
<td>10</td>
<td>8</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>19</td>
<td>Kameko</td>
<td>19</td>
<td>10</td>
<td>8</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>20</td>
<td>Kameko</td>
<td>20</td>
<td>10</td>
<td>8</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>21</td>
<td>Kameko</td>
<td>21</td>
<td>10</td>
<td>8</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>22</td>
<td>Kameko</td>
<td>22</td>
<td>10</td>
<td>8</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>23</td>
<td>Kameko</td>
<td>23</td>
<td>10</td>
<td>8</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>24</td>
<td>Kameko</td>
<td>24</td>
<td>10</td>
<td>8</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>25</td>
<td>Kameko</td>
<td>25</td>
<td>10</td>
<td>8</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>26</td>
<td>Kameko</td>
<td>26</td>
<td>10</td>
<td>8</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>27</td>
<td>Kameko</td>
<td>27</td>
<td>10</td>
<td>8</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>28</td>
<td>Kameko</td>
<td>28</td>
<td>10</td>
<td>8</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>29</td>
<td>Kameko</td>
<td>29</td>
<td>10</td>
<td>8</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>30</td>
<td>Kameko</td>
<td>30</td>
<td>10</td>
<td>8</td>
<td>9(E)</td>
<td>8</td>
<td>9(E)</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>System No.</th>
<th>Exposure Site</th>
<th>Years Exposed</th>
<th>Unscribed Panels</th>
<th>Scribed Panels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Protection</td>
<td>Chalking</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>3</td>
<td>Kwajalein</td>
<td>1</td>
<td>9+</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Me</td>
<td>3</td>
<td>9-</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Port Hueneme</td>
<td>4</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Me</td>
<td>5</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Kaneohe</td>
<td>1</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Me</td>
<td>3</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Port Hueneme</td>
<td>4</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Me</td>
<td>5</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Kwajalein</td>
<td>1</td>
<td>9+</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Me</td>
<td>2</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Port Hueneme</td>
<td>3</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Me</td>
<td>4</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Kaneohe</td>
<td>5</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Me</td>
<td>1</td>
<td>9+</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Kaneohe</td>
<td>2</td>
<td>9+</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Me</td>
<td>3</td>
<td>9+</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Port Hueneme</td>
<td>4</td>
<td>9+</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Me</td>
<td>5</td>
<td>9+</td>
<td>6</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>System No.</th>
<th>Exposure Site</th>
<th>Years Exposed</th>
<th>Unscribed Panels</th>
<th>Scribed Panels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Protection</td>
<td>Chalking</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>9+</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>9</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>9</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>9</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>9+</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>9</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>9</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>9</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>10</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>10</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>10</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>10</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>9+</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>9</td>
<td>6</td>
<td>8/F(E)</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>9</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>9</td>
<td>8</td>
<td>9(E)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>10</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>10</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>10</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>10</td>
<td>6</td>
<td>10</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>System No.</th>
<th>Exposure Site</th>
<th>Years Exposed</th>
<th>Unscribed Panels</th>
<th>Scribed Panels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Protection</td>
<td>Chalking</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>Kwajalein</td>
<td>9</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>8+</td>
<td>6</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>6</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>8</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Kaneko</td>
<td>9</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>6</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>8</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>8+</td>
<td>8</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>8+</td>
<td>6</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>4</td>
<td>2(D)(E)</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>4</td>
<td>2(D)(E)</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>2(D)(E)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>8</td>
<td>2/F(E)</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>6</td>
<td>2/M(E)(E)</td>
<td>6(E)</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>6</td>
<td>2/M(E)(E)</td>
<td>6(E)</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>2/M(E)(E)</td>
<td>6(E)</td>
<td>4(E)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>9+</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>6</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>6</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>8+</td>
<td>6</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>6</td>
<td>8/F(E)</td>
<td>9(E)</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>System No.</th>
<th>Exposure Site</th>
<th>Years Exposed</th>
<th>Unscribed Panels</th>
<th>Scribed Panels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Protection</td>
<td>Chalking</td>
</tr>
<tr>
<td>1</td>
<td>Kwajalein</td>
<td></td>
<td>9±</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>8±</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>Kaneohe</td>
<td></td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>8±</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>8±</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>8±</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>Port Hueneme</td>
<td></td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>8±</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>10±</td>
<td>6</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>System No.</th>
<th>Exposure Site</th>
<th>Years Exposed</th>
<th>Unscribed Panels</th>
<th>Scribed Panels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Protection</td>
<td>Chalking</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>Kwajalein</td>
<td>1</td>
<td>9+</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>9-</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>8+</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>Kaneohe</td>
<td>1</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>Port Hueneme</td>
<td>1</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>Kwajalein</td>
<td>1</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>8+</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>8+</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>8+</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>Kaneohe</td>
<td>1</td>
<td>9+</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>8+</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>8+</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>8+</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>Port Hueneme</td>
<td>1</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>9-</td>
<td>6</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>System No.</th>
<th>Exposure Site</th>
<th>Years Exposed</th>
<th>Unscribed Panels</th>
<th>Scribed Panels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Protection</td>
<td>Chalking</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>1</td>
<td>Kwajalein</td>
<td>1</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>8</td>
<td>8</td>
<td>6/F(E)</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>8</td>
<td>8</td>
<td>6/F(E)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>8</td>
<td>6</td>
<td>6/D(E)</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>8-</td>
<td>6</td>
<td>6/D(E)</td>
</tr>
<tr>
<td>13</td>
<td>Kaneohe</td>
<td>1</td>
<td>9+</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>Kaneohe</td>
<td>5</td>
<td>9-</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Port</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hueneme</td>
<td>3</td>
<td>9-</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>9-</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>8+</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>1</td>
<td>9+</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Kuajalein</td>
<td>3</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>9-</td>
<td>8</td>
</tr>
<tr>
<td>14</td>
<td>Kaneohe</td>
<td>1</td>
<td>9+</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>9-</td>
<td>8</td>
</tr>
<tr>
<td>14</td>
<td>Port</td>
<td>1</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Hueneme</td>
<td>2</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>10</td>
<td>6</td>
</tr>
</tbody>
</table>

a = filiform blistering.
DISTRI BUTION LIST

AF ENV IRON. HEALTH LAB McClellan AFB CA
AF B (AVIATION), Wright-Patterson OH; AFCEC/CR, Tyndall FL; CESCH, Wright-Patterson; HQ Tactical Air Cmnd (R. E. Fisher), Langley AFB VA; MAC/DE (Col. P. Thompson) Scott, IL; SAMSO/NMN, Norton AFB CA; Stinfo Library, Offutt NE
AAP NAVORDSTA IN D HD DET PW ENGRNG DIV, McAlester, OK; NAVORDSTA IN D HD DET, NAT RES
MGCR (Forester) McAlester OK
ARMY - CERL. Library, Champaign IL
ARMY COASTAL ENGR RsCH CEN Fort Belvoir VA; R. Jachowski, Fort Belvoir VA
ARMY CORPS OF ENGINEERS MRD-Eng. Div., Omaha NE; Seattle Dist. Library, Seattle WA
ARMY CRREL Constr. Engr Res Branch, (Aamot)
ARMY ENG DIV HNDED-CS, Huntsville AL; Hnked-Sr. Huntsville, AL
ARMY ENG WATERWAYS EXP STA Library, Vicksburg MS
ARMY ENGR DIST. Library, Portland OR
ARMY ENV IRON HYGIENE AGCY Water Qual Div (Doner), Aberdeen Prog Ground, MD
ARMY MATERIALS & MECHANICS RESEARCH CENTER Dr. Lenoe, Watertown MA
ARMY MOBIL EQP R&D COM Mr. Cesavco, Fort Belvoir MD
ARMY TRANSPORTATION SCHOOL MA JT Sweeney, Code ATSP CD-TE Fort Eustis VA
ARMY-PLASTEC Picatinny Arsenal (A M Anzalone, SMUPA-IRM-D) Dover NJ
ASST SECRETARY OF THE NAVY Spec. Assist Energy (P. Waterman), Washington DC
BMDSC Code 41-1 (CDR Nicholas) Wash, DC
BUREAU OF COMMERCIAL FISHERIES Woods Hole MA (Biological Lab. Lib.)
BUREAU OF RECLAMATION Code 1512 (C. Selander) Denver CO
CINCLANT Civil Engr. Supp. Plans, Off Norfolk, VA
CINCPAC Fac Engng Div (J44) Makalapa, HI
CNAVRES Code 13 (Dir. Facilities) New Orleans, LA
CM Code MAT-0813, Washington, DC; NMAT 081246 (Dietterle) Wash, DC
CNO Code NOP-964, Washington DC; Code OP 323, Washington DC; Code OP 413 Wash, DC; OP 987 J. Boosman), Pentagon
COMCRPAC Operations Off, Makalapa HI
COMFLEACT, OKINAWA Commander, Kadena Okinawa; PWO, Kadena, Okinawa
COMNAVBEACHPIPHRETRAGRU ONE San Diego CA
COMNAVAMARJANAS Code N4, Guam
COMOCEANSYSPSC SCE, Pearl Harbor HI
DEFENSE DOCUMENTATION CTR Alexandria, VA
DEFENSE INTELLIGENCE AGENCY Dir., Washington DC
DLCHE Army Logistics Mgt Center, Fort Lee, VA
DNA STTL, Washington DC
DOE Dr. Cohen, Dr. Vanderryn, Washington, DC; FCM (WE UTT) Washington DC
DTNSRDC Code 172 (M. Krenzke), Bethesda MD
DTNSRDC Code 284 (A. Rufolo), Annapolis MD
DTNSRDC Code 4111 (R. Gierich), Bethesda MD
DTNSRDC Code 4121 (R. Rivers), Annapolis, MD
DTNSRDC Code 42, Bethesda MD
ENERGY R&D ADMIN. INEL Tech. Lib. (Reports Section), Idaho Falls ID
FLCOMBATRACELANT PWO, Virginia Bch VA
FMFLANT CEC Offr, Norfolk VA
GSA Fed. Sup. Serv. (FMBP), Washington DC
HEDSUPPACP PWO, Taipei, Taiwan
HQ UNCUSFK (Crompton), Korea
KWA JALEIN MISRAN BMDSC-RKL-C
MARINE CORPS BASE Camp Pendleton CA 92055; Code 43-260, Camp Lejeune NC; M & R Division, Camp Lejeune NC; PWO, Camp S. D. Butler, Kawasaki Japan

24
NAVACENCOM - PAC DIV. Code 09DG (Donovan), Pearl Harbor, HI; Code 402, RDT&E, Pearl Harbor HI; Commander, Pearl Harbor, HI

NAVACENCOM - SOUTH DIV. Code 90, RDT&ELO, Charleston SC: Dir., New Orleans LA: ROICC (LCDR R. Moeller), Contracts, Corpus Christi TX

NAVACENCOM - WEST DIV. 102, 112: AROICC, Contracts, Twentynine Palms CA; Code 04B; OIP 20; RDT&ELO Code 2011 San Bruno, CA

NAVACENCOM CONTRACT AROICC, Point Mugu CA: AROICC, Quantico, Point Mugu CA; Code 05, TRIDENT. Bremerton WA: Dir. Eng. Div. Falmouth, Australia; Eng Div dir, Southwest Pac, Manila, PE OICC, Southwest Pac, Manila, PE OIC/ROICC, Balboa Canal Zone; ROICC (Ervin) Puget Sound Naval Shipyard, Bremerton, WA; ROICC (LCDR J.G. Leech), Subic Bay, R.P.; ROICC AAF Guam; ROICC LANT DIV., Norfolk VA; ROICC Off Point Mugu, CA; ROICC, Diego Garcia Island; ROICC, Keflavik, Iceland; ROICC, Pacific, San Bruno CA

NAVFORCARIB Commander (N42), Puerto Rico

NAVHOSP LTR. Elsbernd, Puerto Rico

NAVNAV Mag, Guam

NAVIMO OIC, Philadelphia PA

NAVNUWPUR MUSE DET Code NPU-50 Port Hueneme, CA

NAVOICEANO Code 1600 Bay St. Louis, MS; Code 3432 (J. DePalma), Bay St. Louis MS

NAFLOATSNSCSN Code 52 (H. Talbington) San Diego CA: Code 5224 (R Jones) San Diego CA; Code 6565 (Tech. Lib.), San Diego CA; Code 6700; San Diego, CA; Code 7511 (PWO) San Diego, CA; SGE (Code 6600), San Diego CA

NAVORDSTA PWO, Louisville KY

NAVPEOFF Code 30, Alexandria VA

NAVPETRES Director, Washington DC

NAVPSGSO1 LCDR K.C. Kelley Monterey CA

NAVPHIBASE CO, ACB 2 Norfolk, VA; Code S3T, Norfolk VA; Dir. Amphib. Warfare Brd Staff, Norfolk, VA; Harbor Clearance Unit Two, Little Creek, VA; OIC, UCT ONE Norfolk, VA

NAVRADREFTAC PWO, Kami Seya Japan

NAVREGMDEN Chief of Police, Camp Pendleton CA: Code 3041, Memphis, Millington TN; PWO Newport RI; PWO Portsmouth VA; SGE (J. Kaye), SGE (LCDR B.E. Thurston), San Diego CA; SGE, Camp Pendleton CA; SGE, Guam

NAVSCOLECSCOFF C55 Port Hueneme, CA: C44A (R. Chittenden), Port Hueneme CA; CO, Code C44A Port Hueneme, CA

NAVSEASYSCOM Code 0325, Program Mgr, Washington DC; Code OIC (L.T.R. MacDougall), Washington DC; Code SEA OIC Washington, DC

NAVSEC Code 6034 (Library), Washington DC

NAVSECGRAUT FAC Off., Galeta Is. Canal Zone; PWO, Edzell Scotland; PWO, Puerto Rico; PWO, Torri Sta., Okinawa

NAVSHIPPEFFAC Library, Guam; SGE Subic Bay

NAVSCHPD: CO Marine Barracks, Norfolk, Portsmouth VA: Code 202.4, Long Beach CA; Code 202.5 (Library) Puget Sound, Bremerton WA; Code 380, (Wood) Norfolk, Portsmouth, VA; Code 400, Puget Sound; Code 400.03 Long Beach, CA; Code 404 (L T J. Riccio), Norfolk, Portsmouth VA; Code 410, Mare Is., Vallejo CA; Code 440 Portsmouth N.; Code 440 Norfolk; Code 440 Puget Sound, Bremerton WA; Code 440.4, Charleston SC; Code 450, Charleston SC; Code 453 (Util. Supr), Vallejo CA; L.D. Vivian, Library, Portsmouth NH; PWD (Code 400), Philadelphia PA; PWO, Mare Is.; PWO, Puget Sound, SGE, Pearl Harbor HI; Tech Library, Vallejo, CA

NAVSTA CO Naval Station, Mayport FL; CO Roosevelt Roads P.R. Puerto Rico; Engr. Dir., Rota Spain; Maint. Div., Guantanamo Bay Cuba; Maint. Div. Dir/Code 531, Rodman Canal Zone; PWD (L JTG P M. Motolencini), Puerto Rico; PWO Midway Island; PWO, Guantanamo Bay Cuba; PWO, Keflavik Iceland; PWO, Mayport FL; ROICC Rota Spain; ROICC, Rota Spain; SGE, Guam; SGE, San Diego CA; SGE, Subic Bay, R.P.; Utilities Engr Off. (LTJG A.S. Ritchie), Rota Spain

NAVBASE ENS S. Dove, Groton, CT; LTJG D.W. Peck, Groton, CT; SGE, Pearl Harbor HI

NAVSBSCOL L T J A. Nelson Groton, CT

NAVSPFPAC Code 30, San Diego CA

NAVSPREPCN PWO, White Oak, Silver Spring, MD

NAVTECHTRACEN SGE, Pensacola FL

NAVSPREPCN Code 2636 (W. Bonner), China Lake CA: PWO (Code 26), China Lake CA; ROICC (Code 702), China Lake CA
LEHIGH UNIVERSITY BETHLEHEM, PA (MARINE GEOTECHNICAL LAB., RICHARDS); Bethlehem PA (Linderman Lib. No. 30, Flecksteiner)

LIBRARY OF CONGRESS WASHINGTON, DC (SCIENCE & TECH DIV)

MAINE MARITIME ACADEMY (Wyman) Castine ME; CASTINE, ME (LIBRARY)

MICHIGAN TECHNOLOGICAL UNIVERSITY Houghton, MI (Haas)

MIT Cambridge MA; Cambridge MA (Rm 10-500, Tech. Reports, Engr. Lib.)

NATL ACADEMY OF ENG. ALEXANDRIA, VA (SEARLE, JR.)

NEW MEXICO SOLAR ENERGY INST. Dr. Zwibel Las Cruces NM

NY CITY COMMUNITY COLLEGE BROOKLYN, NY (LIBRARY)

NYSE ENERGY OFFICE Library, Albany NY

OREGON STATE UNIVERSITY (CE Dept Grace) Corvallis, OR; CORVALLIS, OR (CE DEPT, HICKS); Corvallis

OR (School of Oceanography)

PENNSYLVANIA STATE UNIVERSITY STATE COLLEGE, PA (SNYDER)

PURDUE UNIVERSITY Lafayette, IN (Altscheffl); Lafayette, IN (CE Engr. Lib)

CONNECTICUT Hartford CT (Dept of Plan. & Energy Policy)

SAN DIEGO STATE UNIV. I. Nooramy San Diego, CA

SCRIPPS INSTITUTE OF OCEANOGRAPHY LA JOLLA, CA (ADAMS); San Diego, CA (Marina Phy. Lab. Spiess)

SEATTLE U Prof Schwager Seattle WA

SOUTHWEST RSC INST R. DeHart, San Antonio TX

STANFORD UNIVERSITY Engr Lib, Stanford CA; STANFORD, CA (DOUGLAS)

STATE UNIV. OF NEW YORK Buffalo, NY

TEXAS A&M UNIVERSITY COLLEGE STATION, TX (CE DEPT); College Station TX (CE Dept. Herbich)

UNIVERSITY OF CALIFORNIA BERKELEY, CA (CE DEPT, GERWICK); Berkeley CA (B. Bresler); Berkeley CA (E. Pearson); DAVIS, CA (CE DEPT, TAYLOR); M. Duncan, Berkeley CA

UNIVERSITY OF DELAWARE Newark, DE (Dept of Civil Engineering, Chesnon)

UNIVERSITY OF HAWAII HONOLULU, HI (SCIENCE AND TECH. DIV.)

UNIVERSITY OF ILLINOIS Metz Ref Rm, Urbana IL; URBANA, IL (DAVISON); URBANA, IL (LIBRARY)

URBANA, IL (NEWARK); Urbana IL (CE Dept, W. Gamble)

UNIVERSITY OF MASSACHUSETTS (Heronemus), Amherst MA CE Dept

UNIVERSITY OF MICHIGAN Ann Arbor MI (Richalt)

UNIVERSITY OF NEBRASKA-LINCOLN Lincoln, NE (Ross Ice Shelf Proj.)

UNIVERSITY OF PENNSYLVANIA PHILADELPHIA, PA (SCHOOL OF ENGR & APPLIED SCIENCE, ROLL)

UNIVERSITY OF TEXAS Inst. Marine Sci (Library); Port Arkansas TX

UNIVERSITY OF TEXAS AT AUSTIN AUSTIN, TX (THOMPSON); Austin, TX (Brenn)

UNIVERSITY OF WASHINGTON Dept of Civil Engr (Dr. Mattick), Seattle WA; SEATTLE, WA (OCEAN ENG RSC LAB, GRAY); Seattle WA (E. Linger)

UNIVERSITY OF WISCONSIN Milwaukee WI (Cr of Great Lakes Studies)

URS RESEARCH CO. LIBRARY SAN MATEO, CA

ALFRED A. YEE & ASSOC. Honolulu HI

AMFTEK Offshre Res. & Engr Div

ARVID GRANT OLIMPIA, WA

ATLANTIC RICHFIELD CO. DALLAS, TX (SMITH)

AUSTRALIA Dept. PW (A. Hicks), Melbourne

AWWA RSC FOUNDATION R. Heaton, Denver CO

BECHEL CORP. SAN FRANCISCO, CA (PHELPS)

BELGIUM HAECON, N.V., Ghent

BETHLEHEM STEEL CO. Dismuke, Bethlehem, PA

BROWN & CALDWELL E. M Saunders Walnut Creek, CA

BROWN & ROOT Houston TX (D. Ward)

CANADA Can-Dive Services (English) North Vancouver; Mem Univ Newfoundland (Chori). St Johns; Nova Scotia

Rsch Found, Corp. Dartmouth, Nova Scotia; Surveyor, Nenninger & Chenenever Inc., Montreal

CF BRAUN CO Du Bouchet, Murray Hill, NJ

CHEMED CORP Lake Zurich IL (Dearborn Chem. Div. Lib.)

COLUMBIA GULF TRANSMISSION CO. HOUSTON, TX (ENG. LIB.)

DILLINGHAM PRECAST F. McHale, Honolulu HI

DRAWO CORP Pittsburgh PA (Giannino); Pittsburgh PA (Wright)

DURLACH, O'NEAL, JENKINS & ASSOC. Columbia SC

NORWAY DET NORSKE VERITAS (Library), Oslo

28
BRYANT ROSE Johnson Div. UOP, Glendora CA
BULLOCK La Canada
CAPT MURPHY Sunnyvale, CA
GREG PAGE EUGENE, OR
R.F. BESIER Old Saybrook CT
R.Q. PALMER Kaitua, HI
SMITH Gulfport, MS
T.W. MERIEL Washington DC
C.E.C Morris, Donald G., LT