FREQUENCY RESPONSE OF \(\alpha - \beta - \gamma \) TRACKERS

SEPTEMBER 1978

FINAL REPORT

Approved for public release; distribution unlimited

INSTRUMENTATION DIRECTORATE
US ARMY WHITE SANDS MISSILE RANGE
WHITE SANDS MISSILE RANGE, NEW MEXICO 88002
Destroy this report when no longer needed. Do not return it to the originator.

DISCLAIMER

The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.
FREQUENCY RESPONSE OF \(\alpha-\beta-\gamma\) TRACKERS

Authors: J. E. Steelman

Performing Organization: US Army White Sands Missile Range

Program Elements, Projects, Task Areas and Work Units: WSMR Task IE037A

Security Classification: Unclassified

Distribution Statement: Approved for public release; distribution unlimited.

Abstract:

The \(\alpha-\beta-\gamma\) tracking equations are written in compact form and then \(Z\) transformed. The resulting expressions for estimated position, estimated velocity, estimated acceleration, and predicted position are in terms of the measured position and \(Z\) (the \(Z\) transform variable). These equations are first solved for the ratio of output (an estimated or predicted quantity) to input (the measured position) and then \(Z\) is replaced by \(e^{j\omega T}\).
Block 20. ABSTRACT (Cont'd)

(ω is the radian frequency and T is the sample interval). After this change, the magnitude and phase for various output-input ratios is plotted as a function of ωT. Linear plots and Bode plots (especially useful for real-time control system design) are presented. Equations are given for the frequency at which the output is 0.707 of the input, for the minimum of the output to input ratio and for the overshoot (amount by which the output exceeds the input).

A synopsis of previously available statistical properties of α-β-γ trackers is also included.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>THE α-β-γ TRACKING EQUATIONS</td>
<td>1</td>
</tr>
<tr>
<td>PERFORMANCE MEASURES</td>
<td>2</td>
</tr>
<tr>
<td>"STANDARD" α-β-γ TRACKER</td>
<td>4</td>
</tr>
<tr>
<td>QD TRACKER</td>
<td>5</td>
</tr>
<tr>
<td>α-β TRACKER</td>
<td>5</td>
</tr>
<tr>
<td>Z TRANSFORMED α-β-γ TRACKER</td>
<td>6</td>
</tr>
<tr>
<td>FREQUENCY RESPONSE CURVES</td>
<td>8</td>
</tr>
<tr>
<td>DESIGN EXAMPLE</td>
<td>8</td>
</tr>
<tr>
<td>SOLUTION</td>
<td>8</td>
</tr>
<tr>
<td>ANALYTICAL EXPRESSIONS</td>
<td>16</td>
</tr>
<tr>
<td>SUMMARY AND CONCLUSIONS</td>
<td>18</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>19</td>
</tr>
</tbody>
</table>
INTRODUCTION

The α-β-γ tracker is a system of equations which use estimates of position, velocity, and acceleration to predict a new (updated) position, a new velocity and a new acceleration. Then the error between the measured position and the predicted position is used to improve (correct) the estimates. The parameter γ is associated with acceleration and if it is set to zero the α-β-γ tracker becomes an α-β tracker. In α-β trackers, acceleration is not estimated nor used in the predictor equations.

The α-β-γ tracker is especially well suited for computer algorithms. The α-β-γ algorithms require very little storage and a small number of computations and are well suited for real-time applications.

The Kalman tracking algorithms require much more storage and many more computations. However, the Kalman algorithms produce estimates with minimum rms error estimates given non-stationary measurement noise.

The standard α-β-γ tracker minimizes the exponentially weighted squared error between the data and parabolic line through the data.

The QD based α-β-γ tracker minimizes the squared error between the data and a parabolic line through the data--over some number of points and subject to slope and intercept conditions.

THE α-β-γ TRACKING EQUATIONS

The α-β-γ tracking Equations (1) through (6) are:

Corrector (or Estimator) Equations:

\[\bar{x}_n = x_{np} + \alpha(x_n - x_{np}) \] \hspace{1cm} (1)

\[\bar{v}_n = v_{np} + \frac{\beta}{t} (x_n - x_{np}) \] \hspace{1cm} (2)

\[\bar{a}_n = a_{np} + \frac{\gamma}{t^2} (x_n - x_{np}) \] \hspace{1cm} (3)
Predictor Equations:

\[x_{np} = \bar{x}_{n-1} + \bar{v}_{n-1}T + \frac{1}{2} \bar{a}_{n-1}T^2 \]
\[v_{np} = \bar{v}_{n-1} + \bar{a}_{n-1}T \]
\[a_{np} = \bar{a}_{n-1} \]

where

\[x_n \] = measured quantity,
\[\bar{x}_{n}, \bar{v}_{n}, \bar{a}_{n} \] = estimated quantities,
\[x_{np}, v_{np}, a_{np} \] = predicted quantities,
\[\bar{x}_{n-1}, \bar{v}_{n-1}, \bar{a}_{n-1} \] = estimates from previous step, and
\[T \] = step size.

The Equations (1) through (6) are in a form that can be efficiently programed on a computer.

Substituting Equations (5) and (6) into (2) and (3) yields another form:

\[\bar{x}_n = x_{np} + \alpha (x_n - x_{np}) \]
\[\bar{v}_n = \bar{v}_{n-1} + \bar{a}_{n-1}T + \frac{8}{T} (x_n - x_{np}) \]
\[\bar{a}_n = \bar{a}_{n-1} + \frac{\alpha}{T^2} (x_n - x_{np}) \]
\[x_{np} = \bar{x}_{n-1} + \bar{v}_{n-1}T + \frac{1}{2} \bar{a}_{n-1}T^2 \]

PERFORMANCE MEASURES [1]

One performance measure is the ratio of output variance to input variance with noise as the only input. These ratios are defined by

\[k_x(O) = \frac{\text{steady-state variance in position output}}{\text{variance in raw position input}}, \]
\[k_v(O) = \frac{\text{steady-state variance in velocity output}}{\text{variance in raw position input}}, \]
\[k_a(O) = \frac{\text{steady-state variance in acceleration output}}{\text{variance in raw position input}}. \]

The equations for these variance reduction factors are
\[k_x(O)Y^2 = 2\beta Y(2a^2 + 2\beta - 3a\beta) - \alpha Y^2(4 - 2a - \beta) \quad \text{, (11)} \]
\[k_v(O)Y^2T^2 = 4\beta^3 Y - 4\beta^2 Y^2 + 2Y^3(2 - \alpha) \quad \text{, (12)} \]
\[k_a(O)Y^2T^4 = 4\beta Y^3 \quad \text{, (13)} \]

where
\[Y^2 = Y[\alpha(2\beta + Y) - 2Y](4 - 2a - \beta) \quad \text{, (14)} \]

One transient performance measure \(D^2 \) is obtained from the response of the tracker to a unit step input of velocity. Ideally, the position output would be a ramp, the velocity output would be a constant, and the acceleration output would be zero for \(t > 0 \). The \(D^2 \) measures are the sums of the squared error between the ideal response and the actual response:
\[D_x^2 = 2\gamma(2 - \alpha)(1 - \alpha)^2 \quad \text{, (15)} \]
\[D_v^2T^2 = 2\gamma[\alpha^2(2 - \alpha) + 2\beta(1 - \alpha)] + (\gamma^2/8)(2 - \alpha) - (\gamma^2/4)[2(4 - 3\alpha)(2 - \alpha) + \alpha\beta] \quad \text{, (16)} \]
\[D_a^2T^4 = \alpha Y^2(4 - 2a - \beta) + (Y^3/2)(2 - \alpha) \quad \text{, (17)} \]

The final performance measure \(A^2 \) is obtained from the response of the tracker to a unit step input of acceleration. Ideally, the position output would
be a parabola, the velocity output would be a ramp and the acceleration output would be a constant. The A^2 measures are sums of the squared error between the ideal response and the actual response:

$$A^2_x = \alpha(4 - 2\alpha - \beta)(1 - \alpha)^2$$

$$A^2_y = (\alpha/4)(\beta - 2\alpha)^2(4 - 2\alpha - \beta) + (\gamma/8)(2 - \alpha)(4 - 2\alpha - \beta)^2$$

$$A^2_z = \alpha\beta^2(4 - 2\alpha - \beta) + (\gamma/2)[2\alpha^2 - (2 - \alpha)\beta](4 - 2\alpha - \beta)$$

Finally, Simpson determined that all these performance measures are minimized if

$$2\beta - \alpha(\alpha + \beta + \gamma/2) = 0$$

Note that Equation (21) is one equation in three unknowns and does not completely specify the design.

"STANDARD" $\alpha-\beta-\gamma$ TRACKER

If the error between the sampled data and a parabolic line approximating the data is squared, weighted exponentially, and minimized, α, β, and γ are found [2] in terms of a parameter, θ. Kahlilas calls this tracker "critically damped."

$$\alpha = 1 - \theta^3$$

$$\beta = \frac{3}{2}(1 - \theta)(1 + \theta)$$

$$\gamma = (1 - \theta)^3$$

\[k_x(0) = \frac{(1 - \theta)}{(1 + \theta)^5} (19 + 24\theta + 16\theta^2 + 6\theta^3 + \theta^4) \]
(25)

\[k_y(0) = \frac{(1 - \theta)^3}{(1 + \theta)^5} \left(-\frac{49 + 50\theta + 13\theta^2}{2} \right) \]
(26)

\[k_a(0) = 6 \frac{(1 - \theta)^5}{(1 + \theta)^5} \]
(27)

QD TRACKER [5]

The QD tracker minimizes the sum of the squared error between \(m \) data points and a polynomial passing through the data—subject to intercept and slope constraints. For a "second order" QD, the polynomial is a quadratic and [6]

\[\alpha = \frac{60m^2}{10m^3 + 33m^2 + 23m - 6} \]
(28)

\[\beta = \frac{2\alpha}{m} \]
(29)

\[\gamma = \frac{2\alpha}{m^2} \]
(30)

α-β TRACKER

The system of Equations (1) through (6) can be converted to an α-β tracker by setting \(\gamma = 0 \). Then all of Simpson's results reduce to those given by Benedict and Bordner [7].

If the error between the sampled data and a straight line approximating the data is squared, weighted exponentially, and minimized, \(\alpha \) and \(\beta \) are found (see Reference [2]) in terms of \(\theta \).

\[
\alpha = 1 - \theta^2 \\
\beta = (1 - \theta)^2
\]

Morrison (see Reference [3]) calls such a tracker "a fading memory polynomial of degree 1." He gives (see Reference [4]) the variance reduction factors in terms of \(\theta \).

\[
k_x(0) = \frac{1 - \theta}{(1 + \theta)^3} (5 + 4\theta + \theta^2) \quad (31)
\]

\[
k_v(0) = \frac{2(1 - \theta)^3}{(1 + \theta)^3} \quad (32)
\]

Z TRANSFORMED } \alpha{-}\beta{-}\gamma \text{ TRACKER

Substituting Equation (10) into Equations (7) through (9) and taking the Z transform yields

\[
(Z + \alpha - 1)\bar{X}_n + (\alpha - 1)\bar{V}_n + [(\alpha - 1)/2]T^2\bar{A}_n = \alpha X_n \quad , \quad (33)
\]

\[
\beta\bar{X}_n + (Z + \beta - 1)\bar{V}_n + (\beta/2 - 1)T^2\bar{A}_n = \beta X_n \quad , \quad (34)
\]

\[
\gamma\bar{X}_n + \gamma\bar{V}_n + (Z + \gamma/2 - 1)T^2\bar{A}_n = \gamma X_n \quad . \quad (35)
\]

Writing Equations (33) through (35) in matrix form and using Cramer's rule yields

\[
\bar{X}_n = \frac{Z[\alpha(Z - 1)^2 + (\beta + \gamma/2)(Z - 1)] + \gamma}{\Delta} \quad , \quad (36)
\]

\[
\bar{V}_n = \frac{Z[\beta(Z - 1)^2 + \gamma(Z - 1)]}{T\Delta} \quad , \quad (37)
\]

\[
\bar{A}_n = \frac{Z\gamma(Z - 1)^2}{T^2\Delta} \quad , \quad (38)
\]
\[
\frac{X_{np}}{X_n} = \frac{(a + b + \gamma/2)(Z - 1)^2 + (b + 3/2 \gamma)(Z - 1) + \gamma}{\Delta},
\]
where
\[
\Delta = (Z - 1)^3 + \alpha(Z - 1)^2 + (b + \gamma/2)Z(Z - 1) + \gamma Z.
\]

\section*{STABILITY}

For an \(\alpha-\beta\) tracker, the characteristic equation is [8]
\[
\Delta = (1 - \alpha) + (\alpha + \beta - 2)Z + Z^2.
\]

Stability requirements are [8]
\[
\begin{align*}
\alpha > 0, \\
\beta > 0, \\
2\alpha + \beta < 4.
\end{align*}
\]

Stability constraints for an \(\alpha-\beta-\gamma\) tracker may be obtained by expanding Equation (40) and applying the constraints given in Jury [9]:
\[
\begin{align*}
0 < \alpha < 2, \\
2\alpha + \beta < 4, \\
\alpha \beta + \alpha \gamma/2 - \gamma > 0, \\
\gamma > 0.
\end{align*}
\]

Note that Inequalities (42), (43), and (44) imply Expression (45), and that Expressions (45), (47), and (48) imply that \(\beta > 0\) (Expression (43)). Finally, observe that setting \(\gamma = 0\) reduces the \(\alpha-\beta-\gamma\) expressions to the \(\alpha-\beta\) results.

For the \(\alpha-\beta-\gamma\) tracker, Relations (45) through (48) are necessary and sufficient. Expression (47) may be replaced by the more convenient sufficient (but not necessary) condition of (49):
\[
\alpha \beta > \gamma.
\]

FREQUENCY RESPONSE CURVES

To find the frequency response for any one of the transfer functions (36) through (40), replace Z by $e^{j\omega T}$ and plot the magnitude and phase. (Recall that the frequency response of digital filters is periodic with period 2π in ωT. Only a half period is shown in the plot.)

A linear plot of $|X_n/X_n|$ and phase of X_n/X_n is shown in Figure 1. The same plot on a log-log scale is shown in Figure 2. Note that the curves of Figure 2 are Bode plots and can be used in control system design. A design example for using Figure 2 follows.

DESIGN EXAMPLE

1. Select the sample time for a standard (critically damped) α-β-γ tracker with $\alpha = .1$ if the tracker must pass 5 Hz.

2. Determine the attenuation of a 60 Hz signal for this sample time.

3. Determine the frequency of the first maximum response above the desired pass band.

SOLUTION

1. Use 3 dB down as the edge of the pass band. From the graph, $x(.1)$ is 3 dB down at $\omega T = .135$.

$$T = \frac{.135}{2\pi(5)} = .0043 \text{ second}$$

Thus, the signal must be sampled 235 times per second (or faster) if 5 Hz is to be attenuated no more than 3 dB.

2. $\omega T = \frac{60}{5} \times .135 = 1.62$.

From the graph, $x(.1)$ at $\omega T = 1.62$ is about 23 dB down.

3. The first undesired maximum occurs at

$$\omega = \frac{2\pi - .04}{1} = 1452/\text{second}$$

or

$$f = 231 \text{ Hz}$$
Fig. 1. $\frac{Xn}{Xn}$ and phase $\frac{Xn}{Xn}$ for $\alpha = 0.1, 0.3, \& 0.488$
Fig. 2. Log $|X_n/X_n|$ and phase X_n/X_n for $\alpha = 1.3, 3.9, 4.88$.
If the 23 dB of attenuation at 60 Hz is insufficient and a critically damped tracker is desired, then α must be decreased. Of course, decreasing α will increase the overshoot.

If the phase characteristic of \bar{X}_n/X_n is unsatisfactory, then the phase characteristic of X_{np}/X_n should be examined. Figure 3 reveals that the magnitude curve for X_{np}/X_n is very similar to the magnitude curve for X_n/X_n, but the phase is monotonically decreasing.

Figure 4 exhibits the magnitude and phase of \bar{X}_n/X_n and the magnitude and phase of $200T^2 \bar{X}_n/X_n$ on the same log-log axes. Note that the magnitude characteristics are very similar for ωT above 0.2.

Figure 5 compares the QD, α-β, and α-β-γ trackers on the same log-log axes. The values of α, β, and γ used in these cases are shown in Table 1.

TABLE 1. α-β-γ VALUES FOR FIGURE 5

<table>
<thead>
<tr>
<th></th>
<th>STANDARD α-β-γ</th>
<th>STANDARD α-β</th>
<th>QD</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>β</td>
<td>0.0356</td>
<td>0.0267</td>
<td>0.0362</td>
</tr>
<tr>
<td>γ</td>
<td>0.0014</td>
<td>0</td>
<td>0.00219</td>
</tr>
</tbody>
</table>

The m required to produce $\alpha = 0.3$ is 16.6. Table 2 shows the more typical $m = 21$ values and Figure 6 compares the 3 trackers for the same α.

TABLE 2. α-β-γ VALUES FOR FIGURE 6

<table>
<thead>
<tr>
<th></th>
<th>STANDARD α-β-γ</th>
<th>STANDARD α-β</th>
<th>QD</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.246</td>
<td>0.246</td>
<td>0.246</td>
</tr>
<tr>
<td>β</td>
<td>0.0231</td>
<td>0.0173</td>
<td>0.0234</td>
</tr>
<tr>
<td>γ</td>
<td>0.00072</td>
<td>0</td>
<td>0.0011</td>
</tr>
</tbody>
</table>
Fig. 3. Log $|\frac{X_{np}}{X_n}|$ and phase of $\frac{X_{np}}{X_n}$ for $\alpha = 3$.
Fig. 4. Magnitude and phase of \(\overline{x_n}/x_n \), \(7VT \), and \(200T^2 \overline{a_n}/x_n \) for \(\alpha = .3 \).
Fig. 5. Comparison of $\alpha - \beta - \gamma$, $\alpha - \beta$ and QD Trackers for $\alpha = .3$
Fig. 6. Comparison of $\alpha-\beta-\gamma$, $\alpha-\beta$ and QD Trackers for $\alpha = .246$
ANALYTICAL EXPRESSIONS

The plots of Figures 1 through 6 contain all the frequency domain information. However, analytic expressions for the minimum and maximum of \(|\bar{x}_n/x_n| \) and the associated frequencies, and the frequency at which \(|\bar{x}_n/x_n| = 0.707 \) would be convenient and useful. The minimum of \(|\bar{x}_n/x_n| \) occurs at \(\omega T = \frac{\pi}{2} \) and is given by Equation (50):

\[
\frac{\bar{x}_n}{x_n}\bigg|_{\text{min}} = \frac{2a - \beta}{4 - 2a - \beta}.
\] (50)

Note that Equation (50) is independent of \(\gamma \).

Unfortunately, an exact solution for the frequency where \(|\bar{x}_n/x_n| = 0.707 \) would require the symbolic solution of a cubic equation. However, setting \(|\bar{x}_n/x_n| = 1 \) results in an algebraically tractable expression. The exact solution is given in Equation (51) and a good approximation is given in Equation (52):

\[
\omega T = \arccos(1 - \beta),
\] (51)

or

\[
\omega T = \sqrt{\beta}.
\] (52)

Now observe that the frequency response from the point where \(|\bar{x}_n/x_n| = 1 \) to the minimum is nearly a straight line on the log curve. Thus, approximating the response by a straight line should give a reasonable result. This procedure results in

\[
\omega T = \sqrt{\beta} 10^{-0.15 \frac{\ln(\pi/\sqrt{2b})}{\ln(a/2)}}.
\] (53)

The same procedure was used to estimate the -6 dB point (-0.15 in the exponent of (53) becomes -0.3) with the results shown in Table 3.

TABLE 3. APPROXIMATE VERSUS EXACT \(\omega T \) FOR -6 DB

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>Approximate</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1</td>
<td>.194</td>
<td>.196</td>
</tr>
<tr>
<td>.3</td>
<td>.65</td>
<td>.65</td>
</tr>
<tr>
<td>.488</td>
<td>1.18</td>
<td>1.20</td>
</tr>
</tbody>
</table>
An exact solution for ωT which yields a maximum is algebraically intractable. Examination of Figure 1 reveals that the maximum of $|X_n/X_n|$ occurs near the midpoint of the 0 to $|X_n/X_n| = 1$ line segment. Thus, ωT_{max} is approximately 1/2 of the ωT which yields $|X_n/X_n| = 1$.

$$\omega T_{\text{max}} = \sqrt{\beta/2}$$ \hspace{1cm} (54)

Instead of calculating the maximum of $|X_n/X_n|$, it is more convenient and useful to find the overshoot. The overshoot is defined as overshoot = maximum - 1. At ωT_{max}, the overshoot is approximately

$$\text{overshoot} = \frac{M}{D} + \frac{M^2 + N^2}{2D^2}$$ \hspace{1cm} (55)

where

$$M = \frac{3}{8} \beta^2 (1 - \alpha)(n + \beta/3)$$ \hspace{1cm} (56)

$$N^2 = \frac{\beta^3 (1 - \alpha)^2 n^2}{16}$$ \hspace{1cm} (57)

$$D = n^2 + \frac{\beta^3}{8}$$ \hspace{1cm} (58)

with

$$n = \frac{\alpha \beta}{2} - \gamma + \frac{3}{8} \beta^2$$ \hspace{1cm} (59)

Note that increasing γ decreases n and thus increases the overshoot—provided that $\gamma < \alpha \beta/2$. Table 4 compares the exact overshoot with the approximation of Equation (55).

TABLE 4. APPROXIMATE AND EXACT OVERSHOOT

<table>
<thead>
<tr>
<th>α</th>
<th>.1</th>
<th>.3</th>
<th>.488</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact Overshoot</td>
<td>0.269</td>
<td>0.232</td>
<td>0.192</td>
</tr>
<tr>
<td>Approximate Overshoot</td>
<td>0.275</td>
<td>0.261</td>
<td>0.237</td>
</tr>
</tbody>
</table>
The approximate and exact ωT_{\max} are compared in Table 5.

TABLE 5. APPROXIMATE AND EXACT ωT_{\max}

<table>
<thead>
<tr>
<th>α</th>
<th>.1</th>
<th>.3</th>
<th>.488</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact ωT_{\max}</td>
<td>0.0402</td>
<td>0.13325</td>
<td>0.2440</td>
</tr>
<tr>
<td>Approximate ωT_{\max}</td>
<td>0.0419</td>
<td>0.13338</td>
<td>0.2366</td>
</tr>
</tbody>
</table>

SUMMARY AND CONCLUSIONS

The frequency domain response of an α-β-γ tracker provides information which is useful for the design of an α-β-γ tracker. The Bode plot is very helpful if the α-β-γ tracker is to be incorporated into a control system.

Equations (50), (53), and (55) present results which also are useful in the design of α-β-γ trackers.
REFERENCES

DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Organization</th>
<th>Number of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEWS-NR-A</td>
<td>1</td>
</tr>
<tr>
<td>CCNC-TWS</td>
<td>2</td>
</tr>
<tr>
<td>STEWS-NR-D</td>
<td>4</td>
</tr>
<tr>
<td>STEWS-PL</td>
<td>1</td>
</tr>
<tr>
<td>STEWS-PT-AL</td>
<td>3</td>
</tr>
<tr>
<td>STEWS-QA</td>
<td>1</td>
</tr>
<tr>
<td>STEWS-ID</td>
<td>1</td>
</tr>
<tr>
<td>STEWS-ID-D</td>
<td>1</td>
</tr>
<tr>
<td>STEWS-ID-O</td>
<td>1</td>
</tr>
<tr>
<td>STEWS-ID-E</td>
<td>1</td>
</tr>
<tr>
<td>STEWS-ID-P</td>
<td>1</td>
</tr>
<tr>
<td>STEWS-ID-T</td>
<td>1</td>
</tr>
<tr>
<td>STEWS-ID-A</td>
<td>2</td>
</tr>
<tr>
<td>STEWS-PT-AM</td>
<td>1</td>
</tr>
</tbody>
</table>

Commander
US Army Test and Evaluation Command
ATTN: DRSTE-AD-I
Aberdeen Proving Ground, Maryland 21005

Commander
Army Materiel Development and Readiness Command
ATTN: DRCAD-P
5001 Eisenhower Avenue
Alexandria, Virginia 22333
<table>
<thead>
<tr>
<th>Organization</th>
<th>Number of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director of Research and Development, Headquarters, US Air Force, Washington, DC, 20315</td>
<td>1</td>
</tr>
<tr>
<td>Director, US Naval Research Laboratory, Department of the Navy, ATTN: Code 463, Washington, DC, 20390</td>
<td>1</td>
</tr>
<tr>
<td>Commander, Air Force Cambridge Research Center, L. G. Hanscom Field, ATTN: AFCS, Bedford, Massachusetts, 01731</td>
<td>1</td>
</tr>
<tr>
<td>Commander, US Naval Ordnance Test Station, ATTN: Technical Library, China Lake, California, 93555</td>
<td>2</td>
</tr>
<tr>
<td>Director, National Aeronautics and Space Administration, ATTN: Technical Library, Goddard Space Flight Center, Greenbelt, Maryland, 20771</td>
<td>2</td>
</tr>
<tr>
<td>Commander, Air Proving Ground Center, ATTN: PGBAP-1, Eglin Air Force Base, Florida, 32542</td>
<td>1</td>
</tr>
<tr>
<td>Commander, Pacific Missile Test Center, Point Mugu, California, 93041</td>
<td>1</td>
</tr>
<tr>
<td>Commanding Officer, Naval Air Missile Test Center, Point Mugu, California, 93041</td>
<td>2</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Organization</th>
<th>Number of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of the Chief Research and Development Department of the Army Washington, DC 20310</td>
<td>3</td>
</tr>
<tr>
<td>Commanding Officer US Army Electronics Command Meteorological Support Activity ATTN: Technical Library Fort Huachuca, Arizona 85613</td>
<td>2</td>
</tr>
<tr>
<td>Commanding Officer US Army Ballistics Research Laboratories Aberdeen Proving Ground, Maryland 21005</td>
<td>1</td>
</tr>
<tr>
<td>Commanding Officer US Army Research Office P. O. Box 12211 Research Triangle Park, North Carolina 27709</td>
<td>1</td>
</tr>
<tr>
<td>Commander Atlantic Missile Range Patrick Air Force Base, Florida 32925</td>
<td>1</td>
</tr>
<tr>
<td>Commanding Officer US Army Aviation Test Activity Edwards Air Force Base, California 93523</td>
<td>1</td>
</tr>
<tr>
<td>Defense Documentation Center Cameron Station Alexandria, Virginia 22314</td>
<td>12</td>
</tr>
</tbody>
</table>