Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
Table of Contents

1. Summary ... 1
2. Introducing mathematical semantics 2
3. Formalization through regular structures 10
4. Two special image algebras 34
5. The choice of language type for the study 50
6. Semantic maps 55
7. Special semantic maps 68
8. Conclusions 84
9. References .. 89
On Mathematical Semantics:
A Pattern Theoretic View

by

Ulf Grenander
Division of Applied Mathematics
Brown University
Providence, Rhode Island 02912

Reports in Pattern Analysis No. 71
July 1978
92 p.

This document has been approved for public release and sale in unlimited distribution.

Supported by the Office of Naval Research, Information Systems Program, under contract N00014-77-C-0248.
1. **Summary**

1.1. Mathematical semantics is introduced as the study of mappings between configuration spaces and image algebras.

1.2. An image algebra is synthesized using generators that are relations. This will serve as the semantic counterpart of a formal language. The image algebra is analyzed in terms of its similarity group, bond relations and connection type.

1.3. The semantic map is studied in terms of the morphisms of a category, the term used in its algebraic sense.

1.4. We present strategies for constructing semantic maps with special properties related to memory requirements.

1.5. Some examples are given, showing how the semantic categories can be constructed.
2. Introducing mathematical semantics.

2.1.1. Can mathematics contribute anything to the study of semantics and to the study of how semantics is learned (should be learned) by man (machines)? The word semantics is of fairly recent origin, dating back to the XIX century, but the subject itself goes back to the beginnings of philosophy. Most of the major figures in the history of philosophy devoted some of their thinking to the relation between words, sentences, grammar, and language, on the one hand, with phenomena in the real world on the other.

Such studies have traditionally been carried out by informal means and involved no explicit use of mathematics.

2.1.2. More recently attempts have been made to formalize semantic ideas, which can be seen in two disciplines, linguistics and computer science. In formal linguistics this seems to have been started at about the same time as when the study of syntax was formalized during the 1960's. The earliest reference that we are aware of is Katz-Fodor (1963), where syntactic structures were transformed into what has become know as K-F trees. The K-F trees are formal constructs attributing meaning to linguistic utterances.

Linguists have continued along this avenue of approach, which has resulted in a large literature. An important idea in this literature is the semantic net which has been applied many times. One has typically taken a subset of a natural language, usually English, and tried to formalize its semantics by a computer program. In this way one would hope that the logical discipline
and precision required when writing the program would bring out the basic difficulties clearly. An important contribution can be found in Woods (1970). The interested reader will find an up-to-date presentation of this approach in Simmons (1973).

2.1.3. These endeavors overlap to a considerable extent with work done in artificial intelligence, although the emphasis differs. In the latter the goal is often to build a question-answer program for some sufficiently narrow domain of discourse. The celebrated work by Winograd (1972) belongs in this group.

The many attempts that have been made in this direction aim at, not just a computer program, sometimes possibly of utilitarian value, but insight and understanding of semantic structures. In spite of skeptical comments to the contrary we believe that these efforts have indeed led to an increased understanding.

2.1.4. As far as we know mathematical formalization has not been employed except in a few publications. One is in Landewall (1971), where the mathematical tool is predicate calculus.

In 1977 the author together with P. Wegner organized a seminar series in formal semantics at Brown University. During this series the voluminous literature was surveyed, most of it from the linguistic and computer science journals. Formalization in mathematical terms seems to have been attempted only sporadically, and we came across little of mathematical content.
One reason why mathematics has been used so little is probably that no mathematical theory has been generally available for the analysis of semantic structures. We believe that pattern theory, as presented in Grenander (1976, 1978), offers a tool suitable for this purpose. The present paper is a continuation of work begun in the latter reference, section 2.4.

In particular we shall attempt to show that mathematical semantics can be expressed in terms of mappings of configuration spaces and image algebras. Such mappings are fundamental to pattern theory, just as morphisms are fundamental in algebra in general.

2.2.1. Our perspective is conformal to that of the early Wittgenstein in his Tractatus Logico-Philosophicus, except, of course, that we shall proceed in a mathematical formalized manner. Let us remind the reader of Wittgenstein's view of the issues that will concern us here. Some of his aphorisms have been reproduced in an Appendix.

Wittgenstein is often as obscure as he is thought provoking, perhaps intentionally. When he speaks of "things" for example, it is not clear if these are material objects or, say, sensory data.

The following interpretation is strongly influenced by Wedberg (1966), Chapter V, and von Wright (1957), pp.134-154.

2.2.2. The world consists of facts, T1.1-1.12 (this refers to the numbered sections of Tractatus). A fact is a collection of things related to each other, T2.0272, 2.031. The things make up the substance of the world, T2.021.
Some facts can be seen to be made up from other facts, others cannot be split up. The latter are the atomic facts.

2.2.3. Let us denote the set of things by T and consider a set O of operations. The operations act upon things and produce simple facts. An operation can operate on just one thing, or two things, and so on. It is a function with, say, n places (or arguments).

When we apply all operators to all combinations of things we get the set S of atomic facts. Wittgenstein probably does not assume that an operator with n places can be applied to any combination of n things. If this is so the operations are partial functions.

Another set U of operations acts upon atomic facts, from S, and results in composite facts. The set F of all such facts is the ontological base for understanding the world.

2.2.4. Of course Wittgenstein did not formalize his thinking in this way, perhaps he would be opposed to any formalization attempt. It would be too precise losing the "multi-dimensional" ambiguity.

2.2.5. A picture in Tractatus is a model of the world, grouping elements that correspond to things (T.2.13) into structures. A picture is also a fact, T. 2.141.

A proposition is made up of names. It is a fact, its elements are related to each other, T.3.14, and it is a picture of a possible grouping of things.
In some sense the structure of the picture should be "congruent" to the real situation it represents. "Congruent" does not mean identical, the correspondence can be more complicated.

This correspondence, if it could be articulated exactly, would associate meaning to propositions. It is likely that Wittgenstein did not have ordinary natural language in mind when he discusses propositions. Perhaps he meant "scientific language" or language as it ought to be.

2.2.6. A reader familiar with pattern theory will recognize the similarity between some of its basic concepts with the thinking in Tractatus. The generators correspond to things and operators, T∪O. The operators in O have arities, the number of places. Configurations correspond to facts and the connectors allowed in the configuration space correspond to the operators in U. The totality F is the configuration space.

2.2.7. In Sections 3-7 a mathematical formalization of semantics will be given expressed as mappings between two image algebras. The philosophical view of Tractatus has influenced our way of formalization.

In his later years Wittgenstein renounced Tractatus, the work of his growth. We shall have something to learn also from the later Wittgenstein, however, namely about learning semantics.

2.3.1. Our speaker/listener will be immersed in a world of sensory impressions. Based on these sensory data and with the aid of a priori knowledge he, the observer, makes statements
or receives statements about the state of the world expressed, we assume, in some formal language L. Since our approach will be abstract, we need not specify whether these statements are just declarative, affirmative, or whether they can be questions, expressing doubt, or be imperative, and so on.

The fact that we shall use examples where the statements look like simple English sentences should not be taken to mean that we are modelling the semantics of English, not even a subset of it. Our goal is to understand certain mathematical phenomena, not linguistic ones. If this can be achieved we hope that the results will in due time have applications to linguistics, but this would be too early to claim at present.

2.3.2. The observer's statements should be correlated to his view of the world. This view will be expressed formally as an image algebra to be examined in section 3. The image algebra should be mathematically consistent, as will be proved for the one we propose, but it need not be a "true" description of the world.

We are therefore operating on three levels. The "true" world, the formal description of the way the observer views the world, and the linguistic utterances prompted by the view. It is only the relation between the two latter levels that we shall study here.

2.4.1. All natural languages can be ambiguous. this has been pointed out so many times that we need not elaborate this trite fact any further. In context, and with access to linguistic deep structure, ambiguity may perhaps be removed. Whether this is so
or not, we shall simply require that the grammatical utterances have a unique semantic content.

Most of our attention will then be paid to the study of such semantic maps, their mathematical construction and analysis of their properties, especially of their memory requirements and limitations. This will be done in sections 6 and 7 and in the two papers that are planned to continue the present one.

2.4.2. When mathematics is applied to any subject matter one is forced to simplifications, sometimes drastic ones. This is certainly true here, a narrow range of situations will be analyzed in some depth at the cost of specializing assumptions. The abstract treatment is hoped to bring out the logical essence of the problem as clearly as possible. This will avoid vague generalities and bring into the open hidden assumptions, albeit at the price of restricting the scope of the results.

2.4.3. In order to pinpoint the concepts needed for the mathematical analysis our reasoning will be dialectic, arguing for and against adopting certain notions and assumptions. In this way we have arrived at a formalization that we hope will be useful for our later work.

2.5.1. The abduction machine analyzed in Grenander (1978), Chapter 7, creates syntactic hypotheses sequentially, tests them and accepts or rejects them. In a certain well-defined linguistic situation it was proved to yield ultimately a set of correct hypotheses.
In an old (unpublished) theorem the author once showed how syntactic abduction can be achieved for languages of a very general type. This theorem is, however, only of theoretical interest since the algorithm would be very slow due to the fact that it is too general, it does not exploit any underlying structure. Another drawback is that the learning would not be incremental. Therefore it will not be used in the following.

2.5.2. Is it possible to build an abduction machine for semantic hypotheses? This question will not be examined in this paper but its results prepares the ground for an attack on semantic learning in a later paper. Mathematically this amounts to identifying a relation from a finite set (consisting of productions for \(L \)) to the morphisms of a category. As far as we know this mathematical problem has never been studied up till now.

2.6. The reader is assumed to be familiar with the elements of pattern theory as described in section 1.1, 2.1, and 3.1 of Grenander (1976). It is not necessary to have read section 2.4 of Grenander (1978) on which this paper builds, nor is it assumed that the reader knows the results on syntactic abduction in Chapter 7 (ibid).
3. Formalization through regular structures.

3.1. Any coherent view of the world must be based on some notion of regularity. Otherwise it would be without laws and constancies, with nothing permanent to learn, no structure to discover.

This regularity need not be deterministic. On the contrary, many of the phenomena that we encounter in every day life are ruled by statistical laws only. Statistical regularity should therefore be allowed. The mathematical consequence of this is that the state space becomes more sophisticated.

3.2. To formalize a view of the world we need a precise notion of regularity. We shall show in the following that combinatory regularity (pattern theory) is logically conformal to the ideas of section 2.2.

3.3. Pattern theory is of algebraic nature and based on the idea of an image algebra

\(\mathcal{I} = \langle G, S, \mathcal{K}, R \rangle \)

An image algebra is made up of a set \(G \) of generators, from which configurations are formed following the rule of regularity, \(\mathcal{K} \). The group \(S \) of transformations of \(G \) onto \(G \), the similarities, expresses which generators are similar to each other. The set of regular configurations \(\mathcal{K}(\mathcal{K}) \), formed according to \(\mathcal{K} \), is divided into equivalence classes, the images, by means of the equivalence relation \(R \): the identification rule. The images form a partial universal algebra \(\mathcal{I} \) with respect to certain connection operations.
We now discuss the choice of each component in (3.1) for the purpose of this study.

3.4.1. The generators \(g \in G \) shall be thought of as relations in a general sense that will become clearer as we go along.

In section 6 we shall relate the image algebra to language. Formal linguistics is dominated by the finitistic attitude so that it would seem natural to assume that \(G \) is finite.

On the other hand, we would like to let the generators carry attributes such as location, orientation, frequency, time, etc. These are continuous in nature and we would be led to allow \(G \) to be infinite.

For the time being we shall choose the first alternative, \(\#(G) < \omega \), reserving the possibility of reversing our stand if later on this turns out to be necessary.

3.4.2. Generators shall carry two sorts of bonds, in-bonds and out-bonds, leading us to directed regularity. The out-arity shall be finite and, since \(G \) is finite, bounded over \(G \)

\[
(3.2) \quad \omega_{\text{out}}(g) \leq \omega_{\text{max}} < +\omega.
\]

We are less certain about the in-arities \(\omega_{\text{in}}(g) \). After having examined a large number of cases it is clear that generators should be allowed to accept many in-bonds. Whether this number should be bounded or not is not yet clear. We choose for the moment to make it unbounded

\[
(3.3) \quad \omega_{\text{in}}(g) = +\omega, \quad \forall g \in G.
\]
Note that all generators have in-bonds but not necessarily out-bonds.

The arities as well as the values "in", "out", associated with every bond belong to the bond structure. Sometimes the different out-bonds have different functions so that it will be necessary to indicate this by other bond structure parameters. This will be done by markers "1", "2", etc. We rule out the possibility that some markers are equal, at least for now. For the in-bonds no such markers will be used at present; again this may have to be modified when we have learnt more about the use of these regular structures.

3.4.3. To each bond is associated a bond value v, taking values in some set B. We suspect that it would be convenient to make these values subsets of G

$$v = 2^G,$$

but in the present paper this question will be left open.

For a given generator the bond values associated with out-bonds may differ, expressing their difference in function. The in-bond values, on the other hand, will be assumed to be the same. The rationale behind this assumption is that out-bonds express active properties of a generator (relation) that may vary from bond to bond. The in-bonds express passive properties that are constant for all in-bonds of the generator.

We are aware of examples where this assumption will lead to logical inconsistencies. A generator may accept two in-bonds...
belonging to two generators, that, viewed as unary relations, express properties that are not compatible with each other. Recalling the discussion in section 2, however, this will be allowed: the observer's view of the world need not be consistent with the "true" state of the world.

3.4.4. To be able to refer to the bonds of a given generator we need bond coordinates. Therefore we shall enumerate the out-bonds by \(1, 2, 3, \ldots \omega_{\text{out}}(q)\), with the convention that if some of them have already been marked by the bond structure parameters \(1, 2, \ldots r\), then this numbering will be adhered to for the bond coordinates. In configuration diagrams bond coordinates will be put inside parentheses.

Since all the in-bonds carry the same bond value, at least for now, we need not distinguish between them and shall not use any bond coordinates for them.

3.4.5. Consider a generator \(g\) with \(\omega_{\text{out}}(q) = \omega\), so that its (out-) bond coordinates are \(1, 2, \ldots \omega\). Let

\[
(3.5) \quad \pi : (1, 2, \ldots \omega) \rightarrow (i_1, i_2, \ldots i_\omega)
\]

be a permutation of the \(\omega\) first natural numbers. To each \(v\), \(1 \leq v \leq \omega\), correspond bond structure parameters \(B^S_v(q)\) and bond values \(B^V_v(q)\). If

\[
(3.6) \quad \begin{cases}
B^S_v(q) = B^S_{i_v}(q) \\
B^V_v(q) = B^V_{i_v}(q)
\end{cases}
\]

for all \(v\), the renumbering \(\pi\) does not affect the connectivity properties of \(g\). The set of all such permutations \(\pi\) forms
a subgroup \(\pi(g) \) of the symmetric group over \(\omega \) objects: the symmetry group of \(g \).

In the special case when all out-bonds of \(g \) carry distinct markers \(1, 2, \ldots, \omega \) the symmetry group consists of the identity element.

Note that in order that two generators be considered identical it is necessary that their homologue bonds agree as to structure and value. Bonds for \(g \) and \(g' \); \(B^S(g) = B^S(g') \); are homologue if they have the same bond coordinate.

\[g_1 \quad \text{(1)} \]
\[g_2 \quad \text{(1)} \]

\[g_1 \quad \text{(2)} \]
\[g_2 \quad \text{(2)} \]

Figure 3.1
In Figure 3.1 the symmetry group \(\pi(g_1) \) consists of the identity if \(A \neq B \), but \(\pi(g_2) \) is of order 2 allowing (2) and (3) to be exchanged without changing the connectivity properties of \(g_2 \).

3.4.6. Bonds shall take values in sets \(\mathcal{A}_v \subseteq \mathcal{A}, \ v \geq 0 \). Any generator shall have one and the same in-bond value for some \(\mathcal{A}_v \) and then its out-bonds, if there are any, shall be in \(\mathcal{A}_{v-1} \). The value of \(v \) expresses the level of abstraction of the generator \(g, \ell(g) = v \).

We have one partition of \(G \) into sets \(G^\omega_k \) where \(k = \omega_{\text{out}}(g) \). Another partition is induced by the level of abstraction into sets

\[
G_v^\ell = \{ g | \ell(g) = v \}; \ v = 0, 1, \ldots .
\]

We shall refer to generators from these classes as follows:

\[
\begin{align*}
g & \in G_0^\ell \quad \text{as "objects"} \\
g & \in G_1^\ell \quad \text{as "properties"} \\
g & \in G_2^\ell \quad \text{as "second level relations"} \\
g & \in G_3^\ell \quad \text{as "third level relations"} \\
& \ldots
\end{align*}
\]

To each \(g \) is associated a number, the level of abstraction, \(\ell = \ell(g) = v \) denoting the number of the set family \(\mathcal{A}_v \) to which the in-bonds belong.
Combining all the elements with the same out-arity we get

\[(3.9) \quad G^\text{out}_\mu = \{ q | \omega^\text{out}(q) = \mu \} \]

Lemma 3.1. \(G^\ell_O = G^\text{out}_O \); objects, and only objects, have out-arity 0.

Proof: If \(q \in G^\ell_O \) its in-bond values are in \(\mathcal{B}_O \). Since \(\mathcal{B}_O \) has no predecessor to which the out-bond values should belong, \(q \) can have no out-bonds, so that \(\omega^\text{out}(q) = 0 \), \(q \in G^\text{out}_O \), and \(G^\ell_O \subseteq G^\text{out}_O \).

On the other hand, if \(q \in G^\text{out}_O \), so that it has no out-bonds, then it cannot have in-bonds with values from any \(\mathcal{B}_v \), \(v \geq 1 \). Indeed, if it had then it must have out-bonds (with values from \(\mathcal{B}_{v-1} \)), see above. Hence \(q \in G^\ell_O \) which implies \(G^\text{out}_O \subseteq G^\ell_O \).

Q.E.D.

3.5.1. The similarities will be chosen as the set \(S \) of all permutations \(s: G \rightarrow G \) leaving bonds, i.e. bond structure and bond values, unchanged

\[(3.10) \quad B(sq) = B(q), \quad \forall q \in G. \]

It is immediately clear that the permutations \(s \) satisfying (3.10) form a group, the similarity group.

Since any \(s \) leaves the bond structure invariant, \(B^S(sq) = B^S(q) \), it follows that our definition of \(S \) is correct, see Grenander (1976), p. 9, except that (ii) (ibid) cannot yet be verified since the generator index has not been defined so far.

3.5.2. Since the present \(S \) leaves invariant, not only the bond structure as all similarities do, but also the bond values, it follows that the classification of any \(q \) in terms of the set
families \(\mathcal{S} \) is also \(S \)-invariant. A consequence is that the level of abstraction is \(S \)-invariant

\[(3.11) \quad \ell(g) = \ell(sg); \quad \forall g \in G, \quad \forall s \in S.\]

3.5.3. We now define a generator index class as the set of all \(g \)'s with the same \(B(g) \).

Lemma 3.2. This partition is the finest partition by any generator index.
Proof: If \(g_1 \) and \(g_2 \) both belong to the same \(\alpha \)-class we have

\[B(g_1) = B(g_2).\]

Appealing to (3.10) we see that

\[B(sg_1) = B(sg_2), \quad \forall s \in S,\]

which implies that the \(\alpha \)-classes are invariant, \(\alpha(sg_1) = \alpha(sg_2) \), and hence that \(\alpha \) is a legitimate generator index corresponding to the similarity group, see Grenander (1976), Chapter 1, Definition 1.1, (ii).

On the other hand, if \(\alpha' \) is some other generator index and \(\alpha(g_1) = \alpha(g_2) \) then by definition \(B(g_1) = B(g_2) \). The permutation \(s_0 \) of \(G \) that only permutes \(g_1 \) with \(g_2 \) is therefore a similarity; see (3.10). But all generator indices must be \(S \)-invariant so that \(\alpha'(sg_1) = \alpha'(s_0g_2) = \alpha'(g_2) \) and \(g_1, g_2 \) belong to the same \(\alpha' \)-class. This shows that \(\alpha \) classes are contained in \(\alpha' \)-classes.

Q.E.D.

Note that generators with the same index are of the same level of abstraction, since if two generators have the same index \(\alpha \), then they have the same in-bond values. These values then belong to the same set family \(\mathcal{S} \), which leads to the same level of abstraction.
3.5.4. Our choice of generator index could be criticized in that it is too narrow: in order that \(a(g_1) = a(g_2) \) hold we must have exactly the same bond structure and bond values for \(g_1 \) and \(g_2 \). When we exemplify our construction by concrete image algebra this will lead to a classification of generators into very small classes, perhaps too small to be natural. Some modification may be needed as we go along.

3.6.1. We now come to the rules \(\mathcal{A} \) of combinatorial regularity:

(3.12) \(\mathcal{A} = \langle \rho, \Sigma \rangle \)

with some bond relation \(\rho \), local regularity, and connection type \(\Sigma \), global regularity. In accordance with the discussion in section 2 we want our configurations to consist of relations combined together into a "formula". In order that the formula be computable we must choose \(\mathcal{A} \) so that all the connections that are allowed by \(\mathcal{A} \) make sense.

3.6.2. At first it seemed reasonable that the bond relation \(\rho \) ought to be chosen as INCLUSION. If we think of the generators as logical operators with domains and ranges we are led to operator configurations, see Grenander (1976), Chapter 2, Case 7.1, where INCLUSION was the natural choice.

After examining a number of special cases we have concluded, however, that the more restrictive relation \(\rho = \text{EQUAL} \) suffices; we choose this definition temporarily.
3.6.3. It is clear that EQUAL is a legitimate bond relation for the similarity group chosen. Indeed, if \(g_1 \) connects to \(g_2 \) via the bond-values \(\beta_1 \) and \(\beta_2 \), then \(\beta_1 \) must equal \(\beta_2 \). Applying the same similarity \(s \) to both \(g_1 \) and \(g_2 \) will not change the bond values. Hence \(sg_1 \) can connect to \(sg_2 \) via the same bonds, which shows that EQUAL is legitimate; see Grenander (1976), Chapter 2, p. 27.

3.6.4. This choice of \(\rho \) has implications for the levels of abstractions of connected generators.

Lemma 3.3. If a generator \(g_1 \) is connected by an out-bond to an in-bond of \(g_2 \) then

\[
(3.13) \quad \ell(g_1) = \ell(g_2) + 1.
\]

Proof: See Figure 3.2 where the \((k)\)th out-bond of \(g_1 \) is connected to an in-bond of \(g_2 \). The corresponding bond-values

![Figure 3.2](image-url)
are denoted by β_{1k} and β_{in} respectively. If g_2 is of abstraction level $\lambda = \lambda(g_2)$ it follows that $\beta_{\text{in}} \subseteq \mathcal{H}_\lambda$. But ρ requires, in order that the connection be regular, that $\beta_{1k} = \beta_{\text{in}}$ so that β_{1k} is also in \mathcal{H}_λ. Then the in-bond value of g_1 must be in the set family $\mathcal{H}_{\lambda+1}$ so that $\lambda(g_1) = \lambda+1$.

Q.E.D.

Lemma 3.4. The generators in any regular configuration c have POSET structure.

Proof: Consider a connected component of c with generators g_1, g_2, \ldots, g_n. All connections go from some level λ to some level $\lambda-1$. Defining $g_i > g_j$ if there is a connected chain

\[(3.14) \quad g_i \rightarrow g_{i_1} \rightarrow g_{i_2} \rightarrow \ldots \rightarrow g_j\]

it is clear that

\[(3.15) \quad \lambda(g_i) = \lambda(g_{i_1}) + 1 = \lambda(g_{i_2}) + 2 = \ldots\]

so that loops cannot occur. It follows easily that "\rightarrow" satisfies the postulates of a partial order.

Q.E.D.

Generators belonging to two connected components that are not connected to each other, are not ordered with respect to each other. Generators belonging to a connected component are not ordered with respect to each other if they are of the same level of abstraction. Even if they are of different levels it can happen that they are not comparable via "\prec".
3.7.1. The connection type Ξ has already been characterized by symmetric regularity: out-bonds can only connect to in-bonds. In this context only finite configurations will occur. The main restriction will be

\[(3.16) \quad \Xi: \text{all out-bonds must be connected.}\]

The reason for adopting (3.16) is that we view the out-bonds as active; the logical operator represented by a generator does not make sense unless its arguments are given.

This defines the configuration space in which we will be operating from now on

\[(3.17) \quad \mathcal{C}(\Phi) = \langle G, S, \Phi \rangle\]

3.7.2. It may be remarked that this connection type is not monotonic: if we open some of the bonds or delete some of the generators (and their bonds) from a regular configuration the resulting configuration is not always regular. The reason for this is that we may have opened up an out-bond belonging to the subconfiguration, and this violates (3.16).

Nevertheless we shall have occasion to deal with such subconfigurations. To get this configuration space we apply the functor \(_{\downarrow}\)on to our configuration space

\[(3.18) \quad \mathcal{C}(\Phi) = _\downarrow \mathcal{C}(\Phi)\]

see Grenander (1977). In \(\mathcal{C}(\Phi)\) all closed bonds satisfy \otimes but out-bonds may be left open.
3.7.3. Just as we need coordinates for a generator to be able to refer unambiguously to its bonds, we must have some way of numbering the generators in a configuration. A configuration will therefore be described as an indexed set \(\{ g_i; i=1,2,\ldots,n \} \) of generators, each of which has out-bonds with coordinates \((i,1),(i,2),\ldots,(i,0_i)\), with \(0_i = \omega_{\text{out}}(g_i); i=1,2,\ldots,n\). The in-bonds of \(g_i \) will have the coordinates \((i,1),(i,2),(i,3),\ldots \). When referring to a bond \((i,k)\) we must also specify whether it is an in- or out-bond.

Such configuration coordinates are discussed, but in a general setting, in Grenander (1977).

Strictly speaking a configuration is not entirely specified unless expressed via an unambiguous configuration coordinate system. Therefore two configurations \(c, \) with generators \(g_i; i=1,2,\ldots,n; \) and \(c', \) with generators \(g'_i; i=1,2,\ldots,n'; \) and with bonds denoted as described, are identical from the functional point of view if and only if

\[
\begin{align*}
(i) & \quad n=n' \\
(ii) & \quad g_i = g'_i; i=1,2,\ldots,n \\
(iii) & \quad \text{bonds connected in } c \text{ should have their homologues in } c' \text{ connected, and vice versa.}
\end{align*}
\]

Note that (ii) implies that \(B(g_i) = B(g'_i) \) with homologue bonds given by the coordinate system.

More about this in section 3.8 when identification is introduced via \(R \).
3.7.4. The cardinality of \(\mathcal{E}(\mathcal{A}) \) can never be more than denumerable, since we can enumerate \(\mathcal{E}(\mathcal{A}) \) by first a finite number of configurations in \(\mathcal{E}_1(\mathcal{A}) \), monatomic ones, then a finite number in \(\mathcal{E}_2(\mathcal{A}) \), biatomic ones, and so on.

If we exclude the trivial case when \(G^o_0 = \phi \), as will always be done, we can never have \(\text{card}[\mathcal{E}(\mathcal{A})] < \infty \). Indeed if \(g \in G^o \) then

\[
(3.20) \quad c = \phi\underbrace{g,g,\ldots,g}_n \text{ times}
\]

is regular for any \(n \). In (3.20) \(\phi \) denotes the empty connector that does not close any bonds. That \(c \in \mathcal{E}(\mathcal{A}) \) follows from the fact that all out-bonds in \(c \) are connected (there are not any) and \(c \) holds trivially since no bonds are closed. Hence

\[\text{card}[\mathcal{E}(\mathcal{A})] = \text{denumerably infinite}. \]

3.7.5. The generators in \(G^o = G^o_0 \), the objects (see (3.8)), play a dominant role in regular configurations.

Lemma 3.5. All regular non-empty configurations contain objects.

Proof: Consider an arbitrary \(g \in c \) and let \(\ell \) be its level of abstraction. If \(\ell = 0 \) then \(g \) is an object and the assertion holds.

If \(\ell \geq 1 \) then it has out-bonds in \(\mathcal{A}_{\ell-1} \) and \(\mathcal{E} \) requires that they connect to some generator \(g' \) of level \(\ell-1 \). Either \(\ell-1 = 0 \) so that \(g' \) is an object, or we can repeat the argument; eventually we will arrive at some object in the configuration.

Q.E.D.
Remark 1. In the monotonic extension $\mathcal{E}(G)$ any nonatomic configuration is allowed; the level of its generator can then be positive so that configurations consisting entirely of generators more abstract than objects can occur in $\mathcal{E}(G)$.

Remark 2. A warning is motivated. "Object" need not represent an object in some material world. As usual, caution is required when mathematical entities are related to concepts used in common sense parlance.

A direct consequence of Lemma 3.5 is that the only nonatomic configurations in $\mathcal{E}(G)$ consist of an object.

3.7.6. The prime configurations in $\mathcal{E}(G)$ are easy to characterize.

Lemma 3.6. A configuration $c \in \mathcal{E}(G)$ is prime if and only if it is connected.

Proof: If c is not connected it can be viewed as the ϕ-connection of two non-empty and regular configurations c' and $c'' \in \mathcal{E}(G)$.

This follows immediately from the fact that the connected components of any c are regular: they satisfy Σ, since all out-bonds are connected, and ϕ holds trivially in them. But if $c = \phi(c', c'')$, c' and $c'' \in \mathcal{E}(G)$ not empty, then c is composite, not prime.

On the other hand if c is connected it cannot be expressed as $\phi(c', c'')$ with both c' and c'' non-empty and regular. Indeed, neither c' nor c'' can have any open out-bonds (this would violate the connection type Σ). But then $c = \phi$ which implies that c' and c'' are not connected to each other, against the assumption.

Q.E.D.
It is different for the notion reducible/irreducible.
A configuration is reducible if it has some regular proper
subconfiguration; otherwise it is irreducible.

Lemma 3.7. A regular configuration \(c \) is irreducible if and only
if it is monatomic and consists of a single object.

Proof: The "if" part is obvious. On the other hand if it is
not just an isolated object we can select one of its objects,
since Lemma 3.6 assures that it has at least one. Take the
subconfiguration consisting of this object in isolation. It is
regular, implying that \(c \) is reducible.

Q.E.D.

3.7.7. What are the "simplest" regular configurations?
Fixing a generator \(q \), let us demand that the configuration contain
\(q \) but has no (proper) regular subconfiguration also containing
\(q \). Such a configuration will be said to be a simple
\(q \)-configuration.

Lemma 3.8. A configuration \(c \in \mathcal{E}(q) \) is a simple \(q_1 \)-configuration
if and only if a) \(q_1 \) is the unique solution in \(c \) of

\[
(3.21) \quad \ell(q_1) = \max_{q \in c} \ell(q) \quad \text{and} \quad \ell(c) \quad (c = q_1)
\]

and, b) if all other \(q_i \in c \) satisfy \(q_i < q_1 \).

Proof: Assume that \(c \) is a simple \(q_1 \)-configuration with \(\ell(c) = \ell \)
and that it has another generator \(q_2 \) with \(\ell(q_2) = \ell \). No
descending chain (see 3.6.2) can lead from \(q_1 \) to \(q_2 \), so that
we can delete \(q_2 \) with its bonds from \(c \) without leaving any
out-bonds open. Hence a) holds.
Now assume that \(c \) has some generator \(q_i \) which is not subordinated to \(q_1 \) as in b). Then we can remove \(q_i \) with its bonds without leaving any out-bonds open: b) holds.

On the other hand, if \(c \) is a regular configuration for which a) and b) hold it cannot be reduced, still keeping \(g \) in it. To see that this is so, say that the reduced configuration leaves out \(q_i \) from \(c \). Since there is a descending chain from \(q_1 \) to \(q_i \) some out-bond will be left open, when we delete \(q_i \), unless the entire chain is deleted. But then \(g_0 \) is not in the reduced configuration, so that the condition is both necessary and sufficient.

Q.E.D.

Lemma 3.8 tells us that the simple \(g \)-configurations have the typical appearance of Figure 3.3, where \(\ell(c) = \ell(g) = 3 \) and \(c \) contains the two objects \(q_6 \) and \(q_7 \).

![Figure 3.3](image_url)
How many simple \(g \)-configurations are there? With \(N = \#(G) \) we get the crude upper bound

\[
(3.22) \quad N \times N^{\omega_{\max}} \times N^{\omega_{\max}} \times \ldots \times N^{\omega_{\max}}
\]

If \(\omega_{\max} > 1 \) this gives us the bound

\[
(3.23) \quad \frac{\omega_{\max} - 1}{N^{\omega_{\max}}}
\]

The number is certainly finite, but it can be extremely large if the abstraction level is big. This will have serious consequences for the ability to learn semantics later on.

3.7.8. Consider a configuration \(c \in \mathcal{Z}(\mathcal{A}) \) with a subconfiguration \(c_1 \in \mathcal{Z}(\mathcal{A}) \). Among the out-bonds of \(c_1 \) there may be some that are open. Close these bonds by adding the appropriate generators of \(c \), close the new out-bonds left open, and continue like this. Since \(c \) is finite the process will end with some regular subconfiguration \(c_1^* \). In extreme cases \(c_1^* = c_1 \) or \(c \) itself. We shall call \(c_1^* \) the minimal extension of \(c_1 \) in \(c \). The process can be shown to lead to a unique result.

Lemma 3.9. For a regular configuration containing the generator \(g \) the minimal extension \(g^* \) of the monatomic subconfiguration \(\{g\} \in \mathcal{Z}(\mathcal{A}) \) is a simple \(g \)-configuration.

Proof: The regular configuration \(g^* \) can have no (proper) regular subconfiguration containing \(g \) since if \(c' \) were one all the out-bonds of \(g \) must be closed, just as the out-bond from generators connected to the out-bonds of \(g \), and so on. But then the above procedure gives \(c' = g^* \), which proves the assertion.

Q.E.D.
As an example, with c as in Figure 3.3, we get q_1^* as in Figure 3.4(a) and q_2^* as in (b).

![Diagram](image)

Figure 3.4

Remark 1. It is clear that the minimal extension is a closure operation in the abstract sense (for a fixed c)

\[
(c_1^*)^* = c_1
\]

where the inclusion relation denotes the relation configuration-subconfiguration, not just inclusion of sets of generators. For fixed c the minimal extension maps a subset of $\mathcal{C}(A)$ into $\mathcal{C}(A)$.

Remark 2. The operation is also monotonic in the sense that, for fixed $c \in \mathcal{C}(A)$, $c_1 \subset c_2 \subset c$ implies $c_1^* \subset c_2^* \subset c$.

3.7.9. As in most pattern theory the homomorphisms between configuration spaces play an important role, see Grenander (1977).
In the present case this is certainly true for $\mathcal{E}(\mathcal{F})$ spaces. For $\mathcal{E}(\mathcal{F})$ they are less interesting since all its regular configurations lack open out-bonds. Therefore they can only be connected by the empty connector $\mathcal{C} = \emptyset$, meaning just disjoint union.

Consider now two configuration spaces of the type studied above with

\begin{align}
\mathcal{L}_1 &= \langle G_1, \mathcal{S}_1, \mathcal{R} \rangle \\
\mathcal{L}_2 &= \langle G_2, \mathcal{S}_2, \mathcal{R} \rangle
\end{align}

and with a surjective generator map $\mu : G_1 \to G_2$ preserving bonds $B(\mu g) = B(g)$ and where G_1 and G_2 have the "same" set families, in the sense that $\mu S^1 = S^2$.

Extend the definition of μ to $h : \mathcal{L}_1 \to \mathcal{L}_2$ by putting hc, $c \in \mathcal{L}_1$, equal to the configuration with same connection but where each g_1 in c is replaced by μg_1. We then have

Lemma 3.10. The configuration map $h : \mathcal{L}_1 \to \mathcal{L}_2$ is a homomorphism in the sense of Grenander (1977).

Proof: First recall how μ sets up a correspondence between the two similarity groups S_1 and S_2. Each similarity group consists of permutations leaving bonds invariant. But μ preserves bonds, so that the two groups are isomorphic, $S_1 \cong S_2$, although μ need not be bijective. Actually, both of them are the (full) symmetric group of the generator index classes in G_1 and G_2 respectively and these are bijectively related since μ is surjective.

To prove Lemma 3.10 let $c \in \mathcal{L}_1$ and consider sc, $s \in S_1$. To calculate $h(sc)$ we first have to permute the generators appearing in c according to the similarity c, and then replace
each generator \(q \) by \(\mu q \). But this leads to the same result as if we first replaced each generator by its \(\mu \)-map value and then permuted them by the isomorphic permutation in \(S_2 \): the two operations commute. Recall that the similarities just permute index classes that are defined in terms of equal bonds, and that bonds are preserved by our map.

Finally if \(c = \sigma(c_1, c_2) \), with \(c, c_1, c_2 \in \mathcal{C}_1 \), calculate \(hc_1 \) and \(hc_2 \) and combine them by the same connector \(\sigma \) as before. This is possible since bond values are preserved and \(\sigma \) is EQUAL; the connection type offers no restriction in the present case since \(\sigma \) is not changed. But \(\sigma(hc_1, hc_2) \) will then have exactly the connection of \(\sigma(c_1, c_2) \). Its generators have been exchanged according to the generator map \(\mu \). Hence \(\sigma(hc_1, hc_2) = hc \) as required for \(h \) to be a homomorphism.

Q.E.D.

Remark 1. In order that the conclusions of Lemma 3.10 hold it is not necessary to require that \(B(\mu g) = B(g) \). It suffices to ask that a) the bond structure remains the same, \(B^S(\mu g) = B^S(g) \), and b) that if \(\beta_i(g_1) = \beta_j(g_2) \) then \(\beta_i(\mu g_1) = \beta_j(\mu g_2) \).

Remark 2. Also the bond values just mentioned need of course not be exactly the same; it is enough if there exists a map \(\beta \rightarrow \beta' \) between the two bond value sets for \(G_1 \) and \(G_2 \) respectively such that the relation \(\beta_1 \sigma \beta_2 \) implies \(\beta'_1 \sigma \beta'_2 \). Here \(\beta_1 \) and \(\beta_2 \) refer to \(g_1 \) and \(g_2 \), while \(\beta'_1 \) and \(\beta'_2 \) refer to the homologue bonds of \(\mu g_1 \) and \(\mu g_2 \).

This fact will be useful later on.
One particular case of some interest later on is when in each index class of \(G_1 \) we single out one element \(q_\alpha \), a prototype, and define \(\mu \) as \(g \to q_\alpha \) if \(g \) belongs to \(G_\alpha \). It is easy to show that the conditions of Lemma 3.10 are satisfied and hence this generator map leads to a homomorphism between the two configuration spaces.

3.8.1. We are now ready to introduce the image algebra. The configurations play the role of "formulas," here satisfying the particular rules \(\mathcal{R} \) of combinatorial regularity that we have discussed in section 3.6. The images, on the other hand, express the "function" of these formulas.

In the present case the identification rule \(R \) (see Grenander (1976), section 3.1) will be chosen to make the functions coordinate free - the choice of coordinate system for describing configurations should be irrelevant.

To formalize this, consider two regular configurations \(c \) and \(c' \) with \(n \) generators \(q_1, q_2, \ldots, q_n \) in \(c \) and \(n' \) generators \(q'_1, q'_2, \ldots, q'_n' \) in \(c' \) respectively. The bond coordinates will be denoted by

\[
(k,j), \ j=1,2,\ldots,n_k \ \text{for} \ q_k; \ k=1,2,\ldots,n
\]

\[
(k',j), \ j=1,2,\ldots,n'_k \ \text{for} \ q'_k; \ k=1,2,\ldots,n'
\]

We shall let \(R \) identify \(c \) and \(c' \) if and only if (a) \(n=n' \), (b) there exists a permutation \((1,2,\ldots,n) \to (i_1,i_2,\ldots,i_n) \) such that \(q_k = q'_i \), \(k=1,2,\ldots,n \), (c) for each \(k \) we have \(n_k = n'_i \), (d) for each \(k \) there exists a permutation \((1,2,\ldots,n_k) \to (j_1,j_2,\ldots,j_{n_k}) \) such that the \(i^{th} \) bond of \(q_k \) equals in structure and value the
Lemma 3.11. This \(R \) is an identification rule for \(\mathcal{C}(P) \) and for \(\mathcal{C}(\hat{P}) \).

Proof: That \(R \) is an equivalence is obvious. Also, if \(c \) and \(c' \) are regular, and if they are \(R \)-equivalent, \(cRc' \), then \(c \) and \(c' \) have the same unconnected bonds, related by a permutation. These are the external bonds, same for \(c \) and \(c' \). We shall then in the following assume that the coordinates have been permuted, if necessary, so that the external bonds are the same for each coordinate. Further, if again \(cRc' \), then if we apply the same similarity \(s \) to \(c \) and to \(c' \) we can relate \(sc \) and its bonds to \(sc' \) and its bonds by the same permutation as for \(c \) and \(c' \).

Hence \((sc)R(sc') \). Finally, if \(c_1Rc_1' \) and \(c_2Rc_2' \), where all four configurations are regular, then \(c_1 \) and \(c_1' \) have the same external bonds, related by some permutation, and similarly for \(c_2 \) and \(c_2' \). Connect \(c_1 \) and \(c_2 \) into some regular configuration \(c = \sigma(c_1, c_2) \). We now connect \(c_1' \) and \(c_2' \) by the same \(\sigma \) expressed in the coordinate system mentioned above. It follows that \(c' = \sigma(c_1', c_2') \) is also regular, since bonds connected in \(c \) correspond to bonds connected in \(c' \), and vice versa. The bond relation is therefore satisfied for all closed bonds in \(c' \). The connection of \(c' \) is also in \(\Sigma \). But the new \(c' \), now known to be regular, consists of the same generators as \(c \), and with the same connections, related by permutations as described. Hence \(cRc' \) which shows that \(R \) has all the properties of an identification rule.

Q.E.D
Combining Lemma 3.11 with the properties shown for \(\sigma \) and \(\Sigma \) we have proved

Theorem 3.1. With \(\mathcal{E}(\mathcal{A}) \) and \(R \) as given above \(\mathcal{F} = \langle \mathcal{E}(\mathcal{A}), R \rangle \) is an image algebra and so is \(\mathcal{F} = \langle \mathcal{E}(\mathcal{A}), R \rangle \).

In the following all perceptions of the world will be expressed in image algebras of this form.

3.8.2. Any \(S \)-invariant class of images forms a pattern. Among these are those generated by a template \(I_0 \)

\[
(3.27) \quad P(I_0) = \{sI_0 \mid \forall s \in S \} \subset \mathcal{F}
\]

Two patterns \(P(I_1) \) and \(P(I_2) \) of the form in (3.27) are either identical or disjoint.

Two distinct images in a pattern describe different perceptions of the world, since otherwise they would be identified by \(R \), but they have the same logical structure. That this is so follows from the fact that they are made up of generators, say \(g \) for \(I_1 \), and then \(sg \) for \(I_2 \), that have the same generator index and play the same logical, but not substantial, role.
4. Two special image algebras

4.1. The construction of the image algebra in the last section is based on simple pattern-theoretic ideas. Nevertheless, it takes some experience of manipulating configuration spaces and their images before one becomes familiar with such structures. To facilitate this for the reader we now present two fairly simple examples, the first completely abstract, the second with an intuitive interpretation.

They will appear quite different from each other but, as we shall show in section 4.4, they are closely related to each other.

4.2.1. Let G_1 consist of the 12 abstract generators in Table 4.1. As identifiers we have chosen simply the letters of the alphabet and as bond values Roman numerals.

The out-arithies of these generators vary between 0 and 5, the objects with $\omega_{\text{out}} = i = 0$ consisting of the two generators k and l.

The levels of abstraction vary between $i=0$, for the two objects, to $i=3$ for a and b. The two partitions $\{G_1^0\}$ and $\{G_1^i\}$ are given in Tables 4.3 and 4.4.

The bond values are from the sets \mathcal{F}, as described in section 3.4.6 and tabulated in Table 4.2. One need not specify the in-bond values of the generators of maximum level of abstraction since no out-bond can connect to them. This is why the cells for β_{in} are empty for the two first rows of Table 4.1.
TABLE 4.1

GENERATORS FOR \(S_1 \)

<table>
<thead>
<tr>
<th>number</th>
<th>identifier</th>
<th>level</th>
<th>(\beta_{in})</th>
<th>(\omega_{out})</th>
<th>(\beta_{out1})</th>
<th>(\beta_{out2})</th>
<th>(\beta_{out3})</th>
<th>(\beta_{out4})</th>
<th>(\beta_{out5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>I</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>c</td>
<td>2</td>
<td>I</td>
<td>1</td>
<td>II</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>2</td>
<td>III</td>
<td>1</td>
<td>II</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>e</td>
<td>2</td>
<td>III</td>
<td>1</td>
<td>II</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>f</td>
<td>1</td>
<td>II</td>
<td>5</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>7</td>
<td>g</td>
<td>1</td>
<td>II</td>
<td>3</td>
<td>V</td>
<td>V</td>
<td>VI</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
<td>1</td>
<td>II</td>
<td>1</td>
<td>VI</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>i</td>
<td>1</td>
<td>II</td>
<td>4</td>
<td>VI</td>
<td>VI</td>
<td>V</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>j</td>
<td>1</td>
<td>VII</td>
<td>1</td>
<td>VI</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>k</td>
<td>0</td>
<td>VI</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>l</td>
<td>0</td>
<td>VI</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

TABLE 4.2

SET FAMILY \(\mathcal{A}_v \) FOR \(S_1 \)

<table>
<thead>
<tr>
<th>(\mathcal{A}_0)</th>
<th>{V, VI}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{A}_1)</td>
<td>{II, IV, VII}</td>
</tr>
<tr>
<td>(\mathcal{A}_2)</td>
<td>{I, III}</td>
</tr>
</tbody>
</table>
TABLE 4.3

<table>
<thead>
<tr>
<th>(u)</th>
<th>(\mathcal{G}^u_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>({k, \ell})</td>
</tr>
<tr>
<td>1</td>
<td>({f, g, h, i, j})</td>
</tr>
<tr>
<td>2</td>
<td>({c, d, e})</td>
</tr>
<tr>
<td>3</td>
<td>({a, b})</td>
</tr>
</tbody>
</table>

TABLE 4.4

<table>
<thead>
<tr>
<th>(u)</th>
<th>(\mathcal{G}^u_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>({k, \ell})</td>
</tr>
<tr>
<td>1</td>
<td>({b, c, d, e, h, j})</td>
</tr>
<tr>
<td>2</td>
<td>({a})</td>
</tr>
<tr>
<td>3</td>
<td>({g})</td>
</tr>
<tr>
<td>4</td>
<td>({i})</td>
</tr>
<tr>
<td>5</td>
<td>({f})</td>
</tr>
</tbody>
</table>
When the out-arity exceeds one we need generator coordinates to keep bonds apart, and this has been done by numbers 1,2,... marking the out-bonds. In-bonds are treated as identical, for any given generator, and therefore need no coordinates.

This is of course a quite small generator space. Actually, if we calculate the generator classes, putting the generator index equal to a constant, we see that each generator constitutes its own generator class, with the exception that d and e belong to the same class, a(d) = a(e).

For this reason we have a poor group of similarities, only allowing a permutation of d and e. This is not a typical situation, but occurred since we chose a very simple example.

4.2.2. We can now combine the generators a,b,c,... following the rules \mathcal{F} of combinatory regularity. We get, for example the regular configuration (a) consisting of the generators k, occurring twice, q, ξ, and j. It contains the objects, of type k and ξ, and is of abstraction level one due to the occurrence of the generators q and j. To prove that (a) satisfies $\mathcal{F} = \{q, x\}$ we first note from Table 4.1 that $\omega_{\text{out}}(k) = \omega_{\text{out}}(\xi) = 0$, so that k and ξ have no out-bonds. Also that q has three out-bonds, all indicated in the diagram, and j has one out-bond, also shown.

Since all these four out-bonds are closed in the diagram the connection type ξ is satisfied. Now look at the four closed bonds in the diagram, for example the one from q to the upper k. From 4.1 we find that the first out-bond of q has bond value V, and that the in-bond value of k is V, equality holds and ρ is
CONFIGURATION DIAGRAMS OVER G_1
satisfied for this bond. In the same way we check the other bonds and conclude that \(\mathcal{G} \) holds: (a) is a regular configuration. It is not a simple \(\mathcal{G} \)-configuration since \(j \) can be dropped without destroying the regularity. However, with \(j \) deleted, the resulting subconfiguration is \(\mathcal{G} \)-simple.

Another example is given in (b) with \(n(c) = 7 \). It consists of the generators \(k \), occurring twice, \(e \), twice, and \(g, h, \) and \(i \). It is of abstraction level two, due to the occurrences of \(e \). If we delete the bottom \(e \) and \(h \) we get an \(\mathcal{G} \)-simple subconfiguration.

4.3.1. Let us now look at a more interesting example with the 34 generators listed in Table 4.5 together with their levels, out-arithities, and bond values.

In addition the table contains identifiers, but now in the form of English word(s), intended to give the reader a concrete idea of the purpose of this regular structure. The idea is to formalize hand motions of two individuals working with a few things made of metal. This should be compared to the discussion in section 3.7 of Grenander (1976) on motion studies, and to Case 3.6.4 (anatomical patterns), ibid.

A few remarks will be in order. The in-bond values \(F \) and \(F' \) never occur among out-bond values. This implies that the generators 8-18 and 23-26 never accept out-bonds from other generators.

We have two generators right and right' that seem to play the same role and analogously for left and left'. This is not so,
however. The generator $g = \text{right}$ connects to $g = \text{arm}$, but not to hand. The generator right', on the other hand, connects to hand, but not to arm. We have thought of an arm as being made up of various parts, one of them being a hand. It is then not appealing to allow the same unary relation (property) to be applicable to both, on various levels of abstraction.

The vagueness of every day language tends to conceal such subtle semantic distinctions, but one of the advantages of the abstract approach is that it forces precision upon us.

This is of more general significance than may be immediately obvious. If we decided, against the reasoning just given, that a generator, for example right, should be allowed to connect to generators of different levels of abstraction we would have to modify the assumptions in 3.4.6. This can certainly be done, and with little effort, but for the time being this does not seem to be motivated.

The generator grasp, of out-arity three, should be read as "grasp something between finger$_1$ and finger$_2$". The markers are the bond coordinates. The generator press, of out-arity four, should be read "press something$_1$ against something$_2$ using finger$_3$ and finger$_4$". The remaining generators need no explanation.

4.3.2. The set families \mathcal{S}_v are given in Table 4.6, and the partitions according to level and out-arity in Tables 4.7-8 respectively.

The index classes are easily calculated; see the discussion in section 3.5. There are 15 of them given in Table 4.9.
<table>
<thead>
<tr>
<th>number identifier</th>
<th>level</th>
<th>β_{in}</th>
<th>ω_{out}</th>
<th>β_{out1}</th>
<th>β_{out2}</th>
<th>β_{out3}</th>
<th>β_{out4}</th>
<th>β_{out5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>individual 1</td>
<td>3</td>
<td>2</td>
<td>H</td>
<td>H</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>individual 2</td>
<td>3</td>
<td>2</td>
<td>H</td>
<td>H</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>left</td>
<td>3</td>
<td>-1</td>
<td>H</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>right</td>
<td>3</td>
<td>-1</td>
<td>H</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>horizontal</td>
<td>3</td>
<td>-1</td>
<td>H</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>vertical</td>
<td>3</td>
<td>-1</td>
<td>H</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>arm</td>
<td>2</td>
<td>H</td>
<td>1</td>
<td>G</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>idle</td>
<td>3</td>
<td>F'</td>
<td>1</td>
<td>G</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>strongly</td>
<td>2</td>
<td>F'</td>
<td>1</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>weakly</td>
<td>2</td>
<td>F'</td>
<td>1</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>clockwise</td>
<td>2</td>
<td>F'</td>
<td>1</td>
<td>D</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>counterclockwise</td>
<td>2</td>
<td>F'</td>
<td>1</td>
<td>D</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>left'</td>
<td>2</td>
<td>F'</td>
<td>1</td>
<td>G</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>right'</td>
<td>2</td>
<td>F'</td>
<td>1</td>
<td>G</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>horizontal'</td>
<td>2</td>
<td>F'</td>
<td>1</td>
<td>G</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>vertical'</td>
<td>2</td>
<td>F'</td>
<td>1</td>
<td>G</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>down</td>
<td>2</td>
<td>F'</td>
<td>1</td>
<td>E</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>up</td>
<td>2</td>
<td>F'</td>
<td>1</td>
<td>E</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>hand</td>
<td>1</td>
<td>G</td>
<td>5</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>-</td>
</tr>
<tr>
<td>grasp</td>
<td>1</td>
<td>C</td>
<td>3</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>rotate</td>
<td>1</td>
<td>D</td>
<td>1</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>press</td>
<td>1</td>
<td>E</td>
<td>4</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>-</td>
</tr>
<tr>
<td>brass</td>
<td>1</td>
<td>F</td>
<td>1</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>steel</td>
<td>1</td>
<td>F</td>
<td>1</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>little</td>
<td>1</td>
<td>F</td>
<td>1</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>big</td>
<td>1</td>
<td>F</td>
<td>1</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>thumb</td>
<td>0</td>
<td>B</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>index finger</td>
<td>0</td>
<td>B</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>middle finger</td>
<td>0</td>
<td>B</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ring finger</td>
<td>0</td>
<td>B</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>little finger</td>
<td>0</td>
<td>B</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>bolt</td>
<td>0</td>
<td>A</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>nut</td>
<td>0</td>
<td>A</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>cylinder</td>
<td>0</td>
<td>A</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 4.6

<table>
<thead>
<tr>
<th></th>
<th>SET FAMILY \mathcal{A}_v FOR \mathcal{F}_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{A}_0</td>
<td>${A, B}$</td>
</tr>
<tr>
<td>\mathcal{A}_1</td>
<td>${C, D, E, F, G}$</td>
</tr>
<tr>
<td>\mathcal{A}_2</td>
<td>${H, F'}$</td>
</tr>
</tbody>
</table>

Table 4.7

<table>
<thead>
<tr>
<th>ν</th>
<th>G_v^k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>27, 28, 29, 30, 31, 32, 33, 34</td>
</tr>
<tr>
<td>1</td>
<td>19, 20, 21, 22, 23, 24, 25, 26</td>
</tr>
<tr>
<td>2</td>
<td>7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18</td>
</tr>
<tr>
<td>3</td>
<td>1, 2, 3, 4, 5, 6</td>
</tr>
</tbody>
</table>

Table 4.8

<table>
<thead>
<tr>
<th>μ</th>
<th>$G^{(\mu)}_\nu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>27, 28, 29, 30, 31, 32, 33, 34</td>
</tr>
<tr>
<td>1</td>
<td>3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 23, 24, 25, 26</td>
</tr>
<tr>
<td>2</td>
<td>1, 2</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>19</td>
</tr>
</tbody>
</table>
TABLE 4.9

<table>
<thead>
<tr>
<th>α</th>
<th>Gα</th>
<th>#(Gα)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3,4,5,6</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>13,14,15,16</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>9,10</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>11,12</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>17,18</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>23,24,25,26</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>27,28,29,30,31</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>32,33,34</td>
<td>3</td>
</tr>
</tbody>
</table>

The reader may be interested in recognizing the common characteristics, in every-day language, of generators with the same index α. It is also of interest to compare the index classes with the map μ in Table 4.9 and the relation β → β' in Table 4.11.

The similarities are now many more than in the first example. The group S of similarities is the direct product of full symmetric groups of order 2,4,1,1,4,...; see the last table. Hence

\[(4.1) \quad #(S) = 2!4! \cdots \approx 1.6 \cdot 10^8\]
4.3.3. Combining the generators thumb, index finger, grasp, bolt, brass we get the regular configuration in Figure 4.2(a). Another one is shown in (b). A more complicated case is given in (c) with \(n(c) = 13 \). The sub-configuration \(c' \) inside the dotted contour is regular, and can be thought of as a macro-generator, see Grenander (1976), p. 32. The whole configuration is of abstraction level three.

Two macro-generators \(c'' \) and \(c''' \) appear in (d), where two individuals are at work together. This configuration is also of abstraction level 3.

The configuration \(c_1 \) in the figure, in (e), is simply related to the one \(c_2 \) in (a): they are similar, \(c_1 = sc_2, s \in S \).

Regular configurations as above, and the resulting images in \(\mathcal{Y}_2 \), describe hand motions of one or two individuals. It would be misleading, however, to say that such images mean certain motions in the physical world. To do this we would need another formalization of the physical worlds since in our way of thinking semantics means a correspondence between two regular structures: it is hierarchically organized.

As pointed out in section 2 we do not necessarily assume that the perception of the world of our observer is logically consistent. As a matter of fact the term "logically consistent" requires that second regular structure just mentioned, which may be absent. Without introducing it we should not worry too much if we encounter images in \(\mathcal{Y}_2 \) with individuals with five thumbs, or two individuals sharing an arm.
CONFIGURATION DIAGRAMS OVER \(G_2 \)

Figure 4.2

(a) thumb

index

grasp

bolt

brass

(b) thumb

index

grasp

b bolt

rotate

clockwise

(c) left'

thumb

index

hand

press

nut

little

ring

bolt

left

arm

horizontal
(f)
\[
\text{little f.} \quad \rightarrow 1 \quad \text{grasp} \quad 3 \quad \text{>1} \quad \text{nut} \quad 0 \quad \leftarrow \quad \text{big}
\]
\[
\text{thumb} \quad \leftarrow 2
\]

(g)
\[
\text{little f} \quad \rightarrow 1 \quad \text{grasp} \quad 3 \quad \text{>1} \quad \text{cylinder} \quad 0 \quad \leftarrow \quad \text{steel}
\]
\[
\text{middle f.} \quad \leftarrow 2
\]

(h)
\[
\text{thumb} \quad \rightarrow 1 \quad \text{grasp} \quad 3 \quad \text{>1} \quad \text{cylinder} \quad 0 \quad \leftarrow \quad \text{little}
\]
\[
\text{ring f.} \quad \leftarrow 2
\]
If we want to remove such images from the algebra it can be done by labelling in-bonds by markers; at the present stage this does not seem necessary.

The last configurations (f), (g), (h) are similar and belong to the same pattern as the one in (a). This can be checked using Table 4.10 specifying the similarity group S.

4.4. To establish a correspondence between our two configuration spaces (as well as the related image algebras) we consider the following generator map $\mu: G_2 \rightarrow G_1$ together with

Table 4.10

<table>
<thead>
<tr>
<th>g</th>
<th>μg</th>
<th>g</th>
<th>μg</th>
<th>g</th>
<th>μg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>13</td>
<td>e</td>
<td>25</td>
<td>j</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>14</td>
<td>e</td>
<td>26</td>
<td>j</td>
</tr>
<tr>
<td>3</td>
<td>b</td>
<td>15</td>
<td>e</td>
<td>27</td>
<td>k</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>16</td>
<td>e</td>
<td>28</td>
<td>k</td>
</tr>
<tr>
<td>5</td>
<td>b</td>
<td>17</td>
<td>e</td>
<td>29</td>
<td>k</td>
</tr>
<tr>
<td>6</td>
<td>b</td>
<td>18</td>
<td>e</td>
<td>30</td>
<td>k</td>
</tr>
<tr>
<td>7</td>
<td>c</td>
<td>19</td>
<td>f</td>
<td>31</td>
<td>k</td>
</tr>
<tr>
<td>8</td>
<td>d</td>
<td>20</td>
<td>g</td>
<td>32</td>
<td>l</td>
</tr>
<tr>
<td>9</td>
<td>e</td>
<td>21</td>
<td>h</td>
<td>33</td>
<td>l</td>
</tr>
<tr>
<td>10</td>
<td>e</td>
<td>22</td>
<td>i</td>
<td>34</td>
<td>l</td>
</tr>
<tr>
<td>11</td>
<td>e</td>
<td>23</td>
<td>j</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>e</td>
<td>24</td>
<td>j</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

the table of the associated bond value map $\beta \rightarrow \beta'$; see Tables 4.10-11.
Referring to Remark 2 in 3.7.9 we can verify that \(\eta \) generates a homomorphism \(h: \mathcal{E}_2 \to \mathcal{E}_1 \). We just have to check that, (a), \(\eta \) preserves bond-structure, \(B^S(\eta g) = B^S(g) \), using Table 4.9 together with Tables 4.5 and 4.1, and that, (b), the bond values behave as required in the quoted Remark 2.

Applying this homomorphism for example to (a) in Figure 4.2, we get the \(\mathcal{E}_1 \)-configuration (a) in Figure 4.1. In the same way the \(\mathcal{E}_2 \)-configuration (b) in Figure 4.2 is carried over into (b) in Figure 4.1.

As all homomorphisms, \(h \) loses information: a \(\mathcal{E}_1 \)-configuration (or in \(\mathcal{E}_1 \)) is less informative, although topologically the same, compared to a \(\mathcal{E}_2 \)-configuration (or one in \(\mathcal{E}_2 \)).
5. The choice of language type for the study.

5.1.1. In accordance with the discussion in section 2, and with the stated reservations, we shall choose the type of language to be used by the speaker/listener as finite state. We can be quite brief when discussing these languages, they are so well known.

5.1.2. The grammar \mathcal{G} will be based on a vocabulary $V = V_T \cup V_N$. Here V_T is the terminal vocabulary consisting of the words to be used. We shall sometimes use Greek or Roman letters to denote the elements of V_T, and occasionally common words in English. In the latter case we have to watch out so that we do not forget that they should be treated abstractly, not representing a subset of real English.

The non-terminal vocabulary V_N consist of syntactic variables, or states. They will be denoted by numbers 1, 2, 3, ..., F, where F indicates the final state. We shall use the convention that 1 is the start state.

5.1.3. The productions in \mathcal{G} can always be given in canonical form as

$$(5.1) \quad i \cdot j, \ x \in V_T, \ i, j \in V_N .$$

We can read (5.1) as "the state i goes into j while writing the terminal symbol x". Sometimes it will be convenient to let x in (5.1) indicate a finite string instead, $x \in V_T^*$, but this will not affect the generative power of the grammar.
5.1.4. Just as in Grenander (1978), Chapter 8, we shall
assume that the grammar has been reduced to deterministic form
so that any productions in $\%$ of the form
\[
\begin{align*}
 i \cdot j & \\
 i \cdot k & \\
\end{align*}
\]
(5.2)
must coincide, $j=k$. This makes parsing of sentences unambiguous,
so that if $x_1 x_2 x_3 \ldots x_n$ is grammatical it has a unique parsing
into
\[
\begin{align*}
 I \cdot i_1 \cdot i_2 \cdot \ldots \cdot i_{n-1} \cdot F \\
 x_1 \cdot x_2 \cdot x_3 \ldots x_n
\end{align*}
\]
(5.3)
In (5.3) we have parsed the sentence into successive productions
\[
I \cdot i_1, i_1 \cdot i_2, \ldots, i_{n-1} \cdot F.
\]

5.1.5. The set $L \subseteq V_T^*$ of finite strings produced like this
constitutes the language generated by the language, $L = L(\%)$.

With the same procedure for producing strings, but not
requiring that the state $i_o=1$ or $i_n=F$, we get grammatical phrases
\[
\begin{align*}
 i_o \cdot i_1 \cdot i_2 \cdot \ldots \cdot i_n \\
 x_1 \cdot x_2 \cdot x_3 \ldots x_n
\end{align*}
\]
(5.4)
They need not belong to the language, but will be of linguistic
significance anyway.

5.2. Equivalently the language can be represented by a
finite automaton that we shall often present in diagrammatic
form. To clarify the notation consider the finite automaton
given by the simple wiring diagram in Figure 5.1.
The corresponding grammar has

\[
\begin{align*}
V_T &= \{a, b, c\} \\
V_N &= \{1, 2, 3, 4, F\}
\end{align*}
\] (5.5)

and the productions in the table

<table>
<thead>
<tr>
<th>Table 5.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 → a 2</td>
</tr>
<tr>
<td>1 → b 3</td>
</tr>
<tr>
<td>2 → c 2</td>
</tr>
<tr>
<td>2 → b F</td>
</tr>
</tbody>
</table>

It is obviously deterministic. It generates for example sentences parsed as

\[
\begin{align*}
1_a 2_c 2_c 2_b F \\
1_b 3_c b 3_c 4_a F \\
1_b 3_c 4_a F \\
1_b 3_c 4_a F
\end{align*}
\] (5.6)
and phrases like

\[c^2 c^2 \]

(5.7)

\[c b c 3 4 \]

\[3 4 3 c b \]

5.3. Another equivalent way of representing finite state languages is via regular expressions from formal logic. Such expressions are built from concatenation, finite repetition (indicated by a star), union, and parentheses to indicate order of execution.

The language generated by the wiring diagram in Figure 5.1, for example, can then be written as

(5.8) \[L = (ac^*b) \cup (bc(bc)^*a) \]

It is clear \(#(L) = +\infty \) if and only if the regular expression contains at least one star. This is the only case of interest for us and will be assumed throughout this paper.

5.4.1. For the following it is of paramount importance that finite state languages, as well as many other formal languages, can be viewed as combinatory regular structures; see Grenander (1976), Sections 2.4 and 3.2.

The generators will then be represented by the productions of \% (not by words!) They have \(\omega_{in} = \omega_{out} = 1 \), with the in-bond value given by the state \(i \) to be rewritten in (5.1) and the out-bond value as \(j \), the resulting state. Further \(\rho = \text{EQUAL} \) and \(\Sigma = \text{LINEAR} \).
The identification rule R to be used then identifies two regular configurations (grammatical phrases) if they consist of the same string of terminal symbols and have the same external in-bond value and the same external out-bond value. Remember that the finite automaton was assumed to be deterministic; then each image consists of a single configuration.

5.4.2. Strictly speaking, this image algebra represents not just L, but all grammatical phrases in L. When we want to limit ourselves to just L, we need two more generators, one g' with $\omega_{\text{in}}(g') = 0$, $\omega_{\text{out}}(g') = 1$ with out-bond value 1, and another one, g^F, with $\omega_{\text{in}}(g^F) = 1$, $\omega_{\text{out}}(g^F) = 0$ with the in-bond value F. We shall then let \mathcal{I}_2 be the image algebra consisting of all images in \mathcal{I} with out-arity zero. \mathcal{I}_2 will reappear in the next section as the secondary image algebra in semantic relations.

If we apply the function Mon, the monotonic extension functor, to the above \mathcal{I} and \mathcal{I}_2 we get new images consisting of grammatical phrases and unions of unconnected grammatical phrases.
6. Semantic maps

6.1.1. We shall now try to formalize in algebraic form the ideas on semantics from section 2. To begin with we shall do this in a fairly general setting, attempting to bring out clearly the major problems that confront us in our task. Gradually we shall specialize by bringing in restrictions on the semantic maps, and in section 7 we can examine the detailed structure of some semantic schemes.

6.1.2. In our view semantics is relative: it relates two or more regular structures to each other. Consider therefore two image algebras

\begin{equation}
\begin{cases}
\mathcal{I}_1 = \langle c_1, R_1 \rangle \\
\mathcal{I}_2 = \langle c_2, R_2 \rangle
\end{cases}
\end{equation}

We want to "explain" \(\mathcal{I}_2 \) in terms of \(\mathcal{I}_1 \) by relating images from \(\mathcal{I}_2 \) to some in \(\mathcal{I}_1 \). To distinguish between them, let us speak of \(\mathcal{I}_1 \) as the primary image algebra and of \(\mathcal{I}_2 \) as the secondary one.

This semantic map, \(\text{sem} : \mathcal{I}_2 \to \mathcal{I}_1 \), defined on some subset \(\mathcal{I}_2 \subset \mathcal{I}_2 \), shall be uniquely defined. Otherwise our "explanation" would be ambiguous. This is something we have decided to avoid; see section 2.4. We shall then say that \(\text{sem} \) is adequate for \(\mathcal{I}_2 \) relative to \(\mathcal{I}_1 \).

The inverse of \(\text{sem} \) need not be unique. A given primary image \(I \) can correspond to a set (with several elements)

\begin{equation}
\text{sem}^{-1}(I) \subset \mathcal{I}_2
\end{equation}
Sometimes it is better to start the analysis of a semantic
scheme via this inverse map $\text{sem}^{-1}: \mathcal{I}_1 \rightarrow \mathcal{I}_2$. When the secondary
image algebra is a language, $\text{sem}^{-1}(I)$ consists of all grammatical
utterances that "mean" I, and sem^{-1} expresses the linguistic
strategy of the speaker.

6.2.1. In this paper we shall always let the primary
image algebra be a relation image algebra, as discussed in
section 3. The secondary image algebra shall consist of a
finite state language $L(\mathcal{I})$, viewed as a regular structure;
see 5.4.

Since we have $\text{card}(\mathcal{I}_1) = \text{card}(\mathcal{I}_2)$, both being denumerably
infinite, there is of course no problem with the existence of
semantic maps adequate for \mathcal{I}_2 relative to \mathcal{I}_1. Indeed, there
always exist bijective maps $\mathcal{I}_1 \rightarrow \mathcal{I}_2$, and infinitely many of
them.

6.2.2. The trouble is that a semantic map, even though
adequate, even bijective, is of little interest unless it has
additional structure. If it is given just as a list of pairs
$(I_2, I_1), I_2 \in \mathcal{I}_2, I_1 \in \mathcal{I}_1$, and with no more a prioristic knowledge,
it could not possibly be learnt from finite experience, nor could
it be remembered using a finite memory.

To supply this missing structure we shall exploit the
combinatory regularity of the two image algebras.

6.3. Let us approach this topic from a trivial example.
Say that G_1 consists entirely of objects. Then any image in \mathcal{I}_1
is just a set of generators each of which has out-arity zero, so that they cannot be connected to each other.

To describe such primary images it suffices to introduce the finite state language with $V_T = G_1$, $V_N = \{1, F\}$ and all productions of the form $1 \rightarrow F$ or $1 \rightarrow 1$, $g \in G_1$. This language has the regular expression G_1.

If $I_2 = g_1, g_2, \ldots, g_n$ with $n(g)$ occurrences of the word g, $g \in G_1$, then the semantic map

$$\text{sem}(I_2) = \text{image with } n(g) \text{ generators } g, g \in G_1$$

is obviously adequate. The inverse $\text{sem}^{-1}(I_1)$ gives us all strings over G_1 of length n with $n(g)$ occurrences of g, in arbitrary order; it is not unique.

6.3.2. A reader is certainly entitled to object to this example being too simple-minded: real semantics is infinitely more complicated. And this is just why we picked the example. As soon as we allow connections in the primary image algebra, syntactic constraints will be forced upon us in order to make the semantics adequate.

Consider another example, still quite simple, with the generators in G_1 given in Table 6.1. An arbitrary image in T_1 then consists of, say, r α-generators, to $m_{11}, m_{12}, \ldots, m_{1r}$ of which a γ-generator connects respectively, in addition to s β-generators, to $m_{21}, m_{22}, \ldots, m_{2s}$ of which δ-generators are attached; see Figure 6.1 where $r=3, m_{11}=1, m_{12}=0, m_{13}=2$ and $s=2, m_{21}=3, m_{22}=0$.
A language suitable to describe such images is easy to construct and we exhibit one in terms of the wiring diagram of its finite automaton in Figure 6.2.

This language will now be supplied with a semantic map as follows. Given a grammatical sentence, for each time we pass the branch $2 \overset{\alpha}{\rightarrow} 3$ we add a generator α to the configuration diagram. For each time we pass the branch $3 \overset{\gamma}{
ightarrow} 3$ we add and connect a generator γ to the last α introduced. Each time we pass the branch $4 \overset{\delta}{\rightarrow} 5$ we add a generator δ to the configuration, and for each pass through $5 \overset{b}{\rightarrow} 5$ we add and connect a generator β to the last β. For other branches in the figure we do not modify the configuration.

This defines $\text{sem}(I_2)$, uniquely on \mathcal{I}_2. It is also clear that sem is surjective. Given a primary image I_1 let us enumerate its generators of level 0, first the α's and then the β's. After any occurrence of an α we put the γ's attached to it; similarly for the β's and δ's. With this arrangement pass through the diagram in Figure 6.2 writing terminal symbols successively. If no α is present in I_1, we go to 4, writing a γ; otherwise to 2 writing an x, and then to 3 writing an a. If the α has one or several

<table>
<thead>
<tr>
<th>number</th>
<th>identifier</th>
<th>level</th>
<th>β_{in}</th>
<th>ω_{out}</th>
<th>β_{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>α</td>
<td>0</td>
<td>A</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>β</td>
<td>0</td>
<td>B</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>γ</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>β</td>
</tr>
<tr>
<td>4</td>
<td>δ</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>β</td>
</tr>
</tbody>
</table>

Table 6.1
Figure 6.1
Here $V_T = \{a, b, d, g, x, y\}$, $V_N = \{1, 2, 3, 4, 5, F\}$ and the productions are the rewriting rules $1 : x \rightarrow 2$, and so on, along the branches.
γ's attached, loop through \(g \) \(3 \) the same number of times. If any more \(α \) is present go back to 2 and so on; else go to 4 and behave in the same way.

This will produce a grammatical sentence \(I_2 \), \(I_2 \in \text{sem}^{-1}(I_1) \).

For Figure 6.1, for example, we get the sentence

(6.4) \[I_2 = xagayagqxbdddybx \]

6.4.1. In the sentence (6.4) the words \(a, b, q, d \) indicate, in the way we have described, the occurrence of the "related" generators \(α, β, γ, δ \). The other words \(x, y \) play a different role, they indicate what connections are established between the relations (\(G_1 \)-generators).

Often we shall let \(V_T \) consist of two disjoint sets \(V_{\text{name}} \) and \(V_{\text{conn}} \). When we do this, each \(q \in G_1 \) shall correspond to a set \(\text{name}(q) \subset V_{\text{name}} \). The inverse \(\text{name}^{-1} \) tells us which generator a name \(\in V_{\text{name}} \) represents. The words in \(V_{\text{conn}} \) the connectives (used in a different sense from ordinary syntax), are needed for carrying topological information.

6.4.2. It should be unnecessary to warn the reader that this is not supposed to model natural language, where no such clear-cut distinction between names and connectives can be made. Our view is entirely abstract, and speculative rather than empirical.

6.4.3. The last example brings out what is the essential difficulty in establishing semantic maps. Finite state language, considered as a regular structure, has connection type \(V_2 = \text{LINEAR} \); see 5.4.1. Our relation image algebra on the other hand has a much more flexible connection type \(V_1 \).
Although we shall stay with finite state languages we cannot avoid reminding the reader that with context-free languages we get a more powerful topology, namely $\Sigma = \text{TREE}$; see Grenander (1976), section 2.6. Still more powerful is the connection type for context-sensitive languages which allows cycles, just as in our primary image algebra. This should be looked into more carefully in our future work.

6.5.1. The last example contains a clue for the understanding of semantic maps more generally. To make this clear let us return to the wiring diagram in Figure 6.2. For a given grammatical sentence I_2 we start with the empty configuration at state 1. If the first word in I_2 is x we go to 2, keeping the empty configuration. If the next word in I_2 is a, then we go to state 3 and add a to the empty configuration. If the next word in I_2 is g then we connect the generator γ to the generator in our monatomic configuration. We now have a biatomic configuration, this is processed, and we continue until we have reached and used the last word in I_2. Then we have a configuration c from C_1: the corresponding image $R_1(c) = \text{sem}(I_2)$.

This is a sequential process, mapping configurations in C_1 into others in the same space. Which configuration map will be applied during each step of the process depends upon what branch we are passing through in the wiring diagram.

6.5.2. This leads us to a concept that is fundamental for the following analysis.

Definition 6.1. By a semantic (finite-state) processor from C_2 to C_1 we shall mean a collection of sets $C_1 \subseteq C_2$, with $C_1 = \emptyset$.

\(C_\Phi = \mathcal{P}_1 \), with some connectors \(\sigma_{ij}(x) : C_i \to C_j \mid x \in V_T \), (where \(\sigma_{ij} \) stands for a connector that may or may not contain new generators)

and the processing rules

a) We start at state 1 with \(C = \Phi \)

b) A sentence \(x_1 x_2 \ldots x_n \in L(\mathcal{P}) \) is processed left-to-right

c) At any transition back to state 1 \(C \) is made equal to \(\Phi \) again.

Although we shall study only finite state languages in this paper, the definition has been formulated in such a way that it should be possible to adapt it for more powerful languages.

6.5.3. To gain some intuitive understanding of the role of this definition, let us return to the example in section 6.3.

Introduce the subsets of \(\mathcal{P}_1 \)

\[
\begin{cases}
C_1 = \Phi \\
C_2 = \text{configurations with } r \text{ a's, } r \geq 0, \text{ for each of which may be attached a number of } \gamma \text{'s} \\
C_3 = \text{same as } C_2 \text{ except that } r \geq 1 \\
C_4 = C_2 \\
C_5 = \text{same as } C_2 \text{ but followed by at least one } \beta, \text{ all the } \beta \text{'s may have } \delta \text{'s attached} \\
C_F = \mathcal{P}_1
\end{cases}
\]

In this example all the \(C_i \)-classes consist of regular \(\mathcal{P}_1 \)-configurations, but this need not always be true. More about this later.

The associated configuration maps given by connectors \(\sigma_{ij}(x) \) are defined if \(i \xrightarrow{x} j \) is a branch in the diagram
\[
\begin{aligned}
\sigma_{12}(x) &= \sigma_{13}(y) = \sigma_{24}(x) = \sigma_{22}(y) = \sigma_{34}(x) = \sigma_{44}(y) = \\
&= \sigma_{54}(y) = \sigma_{55}(F) = \text{identity} \\
\sigma_{23}(a) &= \text{add unconnected } a \text{ to configuration} \\
\sigma_{33}(g) &= \text{connect new } g \text{ to last } a \\
\sigma_{45}(b) &= \text{add unconnected } b \text{ to configuration} \\
\sigma_{55}(d) &= \text{connect new } d \text{ to last } b
\end{aligned}
\]

(6.6)

Remark 1. Since we interpret branching back to state 1 as meaning "begin a new (unconnected) component of the configuration to be calculated", we could have let, for example, the branch 3 \rightarrow 4 go to 1 instead. Remember that to describe unions of unconnected sub-configurations we need no syntactic information in addition to what is already contained in the sentence to describe the sub-configurations.

Remark 2. In the successive evolution of the \(c \)'s we may have to refer to generators and bonds, which will be done in terms of the configuration coordinates.

Remark 3. The processor used seems to be related to the concept of tree automata.

6.6.1. Given a semantic processor \(\mathcal{C}_2 \rightarrow \mathcal{C}_1 \) we can extend the configuration maps \(\sigma_{ij}(x) \) to be defined for phrases \(u \) (in \(\mathbb{L}(\mathcal{C}) \)) by putting \(\sigma_{ij}(u) = \text{undefined} \) if \(u \) is not grammatical, and if \(u \) is the grammatical phrase (5.4) with \(i_0 = i, i_n = j \),

\[
\sigma_{ij}(u) = \sigma_{i_{n-1}i_n}(x_n) \cdots \sigma_{i_{i_{o-1}i_o}}(x_{i_{o-1}}) \sigma_{i_o i_{i_{o+1}}}(x_{i_{o+1}})
\]

(6.7)

Due to associativity (6.7) is well-defined, and since \(\mathcal{C} \) is deterministic the string \(i_0, i_1, i_2, \ldots, i_n \) is unique and hence also
(6.7). To the empty string \(u = \emptyset \) we associate \(\phi_{ij}(u) = \text{identity} \).

6.6.2. With the extended semantic map, the configuration map \(\phi_{1F} \) represents our semantic map for configurations. In \(\mathcal{F}_2 \) configurations and images coincide, but this is usually not the case in \(\mathcal{F}_1 \). We get for the image algebras after \(R_1 \)-identification has been carried out in \(\mathcal{F}_1 \)

\[
(6.8) \quad \mathcal{F}_2 \rightarrow \mathcal{F}_1: \text{sem}(I_2) = R_1[\phi_{1F}(I_1)].
\]

6.6.3. We have obtained the semantic map by sequentially unwrapping the meaning of the given sentence. This should be compared with the way Wegner (1968) views executing a program as the successive transformation of information structures. In the present case the information structures are configurations from \(\mathcal{F}_1 \). At each step old bonds may be closed and new generators be added. The out-bonds of the new generators may be left open or be closed immediately. In the example the latter was the case.

The semantic processor still involves operations of too general a nature. In the next section we shall narrow down the choice further.

6.7. Before doing this we mention the following simple and elegant result which serves to bring out more clearly the algebraic structure of the problem of mathematical semantics.

Theorem 6.1. The extended semantic processor forms a category.

Proof: Introduce the objects (in the terminology belonging to categories) \(C_i \) and the classes, possibly empty, of morphisms \(C_i \rightarrow C_j \).
(6.9) \[K_{ij} = \{ \sigma_{ij}(u) | u \in V_T^* \} \]

It is clear that \(K_{ii} \) contains the identity map \(C_i \cdot C_i: \text{id}_{C_i} \).

The way we have extended the original semantic map in Definition 6.1 to \(V_T^* \) it follows directly that

(6.10) \[\sigma_{ik}(u) \circ \sigma_{kj}(v) = \sigma_{ij}(uv) \in K_{ij} \]

where \(uv \) stands for the concatenation of the strings \(u \) and \(v \).

Hence the semantic processor forms a category.

Q.E.D.

6.7.1. Consider a configuration \(cc \cdot C_i \) with content(\(c \)) = \((q_1, q_2, \ldots, q_n) \), subscripts are the coordinates of the generators, and bonds \(\beta_{k\ell}, k=1,2,\ldots,n, \ell=1,2,\ldots, o_{\text{out}}(q_k)+1 \). The in-bond of any \(q_k \) has been represented by a single value of \(\ell \), since the values and structural parameters of in-bonds (for one and the same generator) have been assumed to be the same.

Let \(u \) be an arbitrary grammatical phrase starting at the state \(i \) ending at \(j \), and with the string of arbitrary finite length \(x_1x_2\ldots \in V_T^* \). When we apply the corresponding connector \(\sigma_{ij}(x_1x_2\ldots) \) to \(c \) some of \(c \)'s bonds will be connected and the rest will not. Denote by \(T_i(c) \) the table of the bonds belonging to \(c \) that can be connected for some grammatical phrase \(u \) starting at \(i \).

Each entry of \(T_i(c) \) will consist of three parts. One is the bond coordinate, another consists of bond-structure parameters, and the third is the bond value. During the sequential process we need only keep in memory content(\(c \)) and \(T_i(c) \).
6.7.2. The memory requirement will therefore depend upon how large the tables \(\text{content}(c) \) and \(T_i(c) \) are. The behavior of \#(\text{content}(c)) \) is easy to find.

Lemma 6.1. We have for \(c' = c_{ij}(i_{u_j})c \)

\[
(6.11) \quad \text{content}(c') = \text{content}(c) \cup \text{content}[c_{ij}(i_{u_j})]
\]

The proof is immediate, since connectors can only add, not delete generators.

The relation (6.11) implies that

\[
(6.12) \quad \#(c') = \#(c) + \#(c_{ij}(i_{u_j})].
\]

The behavior of the size of \(T_i(c) \) depends on the particular semantic map and can differ drastically from case to case as will be seen in the next section.
7. Special semantic maps.

7.1.1. For a given primary image algebra it is easy to construct a scheme that maps any regular configuration into a finite string over a finite vocabulary, in such a way that this string uniquely determines the configuration.

We shall illustrate how this is done via the image algebra in 6.3.2. Choose V_n as consisting of the symbols $\alpha, \beta, \gamma, \delta, I, II$. In other words, we use the elements in G_1 together with two demarcation symbols called I and \square.

If content(c) = (q_1, q_2, \ldots, q_n) we start the string by $q_1q_2\ldots q_n II$. If the first out-bond of q_1 goes to q_i we concatenate the string $q_1q_2\ldots q_i I$. If the next out-bond goes to q_j we concatenate $q_1q_2\ldots q_j I$, and so on. After the last out-bond of q_1 we use the symbol \square again, then continue with the out-bonds in q_2, and so on, until the entire configuration has been exhausted. When no out-bonds exist no symbol is used between occurrences of \square. We do not use I at the end of the bonds of a generator.

The configuration in Figure 6.1, for example, will be mapped into the string

\[(7.1) \quad \text{aayyydd\square\square\square\square\square\square\square\square\square}\]

\[\text{IIaayy}\text{IIaayy}\square\square.\]

The decoding is easy. The substring before the first occurrence of II gives us content(c). The substrings between successive occurrences of II give us the out-bond connections of each
generator. Recall that the out-arithies are known from G_1, so the references will be unambiguous.

7.1.2. This will give us very long strings, even for simple configurations, such as in Figure 6.1.

We have not specified the syntax of the language. The language is certainly not the entire V^*_1, since most of the elements of this set are not coded representations of elements in G_1. Instead the combinatory regularity R_1 induces syntactic constraints for the coded strings.

We mention parenthetically the reason why we had to refer to generators by strings $g_1g_2...g_i$, rather than just by g_i. If the configuration to be talked about contains two identical generators equal to g, say, the latter way of referring to them would be ambiguous. In Figure 7.1 the image in (a) clearly differs from the one in (b), although both are built on the same generator and with connection $c \rightarrow a,b \rightarrow a$. To specify that b be bonded to a is ambiguous since there are two a's.

![Figure 7.1](image-url)
This is not always the case, see Figure 7.2. Here it does not matter to which a-generator we connect the out-bond of b, since R_1 will identify the two resulting configurations.

If we could exclude situations like the one in Figure 7.1, we would make our task to construct adequate semantics easier. That would be to avoid a difficulty that seems to be intrinsic to the whole topic, so that we have to face up to the problem in some way.

![Figure 7.2](image-url)

7.2.1. Rather than pursuing ad hoc schemes as in (7.1), it is more attractive to start from the other end, with a given semantic map, consider its memory requirement and relate this to R_1. We shall also introduce semantic maps with special structure.

Definition 7.1. A semantic map is called backward looking if any $\sigma_{ij}(x)$ connects new out-bonds (if any at all) to generators already in c, $c \in C_1$.

Figure 7.2

7.2.1. Rather than pursuing ad hoc schemes as in (7.1), it is more attractive to start from the other end, with a given semantic map, consider its memory requirement and relate this to R_1. We shall also introduce semantic maps with special structure.

Definition 7.1. A semantic map is called backward looking if any $\sigma_{ij}(x)$ connects new out-bonds (if any at all) to generators already in c, $c \in C_1$.

This is not always the case, see Figure 7.2. Here it does not matter to which a-generator we connect the out-bond of b, since R_1 will identify the two resulting configurations.

If we could exclude situations like the one in Figure 7.1, we would make our task to construct adequate semantics easier. That would be to avoid a difficulty that seems to be intrinsic to the whole topic, so that we have to face up to the problem in some way.

![Figure 7.2](image-url)

7.2.1. Rather than pursuing ad hoc schemes as in (7.1), it is more attractive to start from the other end, with a given semantic map, consider its memory requirement and relate this to R_1. We shall also introduce semantic maps with special structure.

Definition 7.1. A semantic map is called backward looking if any $\sigma_{ij}(x)$ connects new out-bonds (if any at all) to generators already in c, $c \in C_1$.

This is not always the case, see Figure 7.2. Here it does not matter to which a-generator we connect the out-bond of b, since R_1 will identify the two resulting configurations.

If we could exclude situations like the one in Figure 7.1, we would make our task to construct adequate semantics easier. That would be to avoid a difficulty that seems to be intrinsic to the whole topic, so that we have to face up to the problem in some way.

![Figure 7.2](image-url)

7.2.1. Rather than pursuing ad hoc schemes as in (7.1), it is more attractive to start from the other end, with a given semantic map, consider its memory requirement and relate this to R_1. We shall also introduce semantic maps with special structure.

Definition 7.1. A semantic map is called backward looking if any $\sigma_{ij}(x)$ connects new out-bonds (if any at all) to generators already in c, $c \in C_1$.

Similarly we could speak of forward looking semantic maps, but this notion will not be more than mentioned in this paper.

7.2.2. As an example of a backward looking semantic map the one in 6.3 can be mentioned. The only connectors $\sigma_{ij}(x)$ that introduce new generators in Figure 6.2 are $\sigma_{23}(a)$, $\sigma_{33}(g)$, $\sigma_{45}(b)$, $\sigma_{55}(d)$ and they all connect the new generators to old ones.

Lemma 7.1. If the semantic map is backward looking we have $\text{sem}(^1u^i) \subseteq \mathcal{C}_1$ for any grammatical phrase starting at state 1.

Proof: Any semantic map, in the sense we use the term, automatically leads to local regularity for $\text{sem}(^1u^i)$. Indeed, $\text{sem}(^1u^i) \subseteq \mathcal{C}_1$. But the configurations in \mathcal{C}_1 belong to \mathcal{C}_1 so that all closed bonds satisfy \mathcal{R}_1. Therefore it is only necessary to verify global regularity. But each connector in the semantic unwrapping of $^1u^i$ either does not contain any generator, or if it does, all their out-bonds are connected immediately. Therefore all the out-bonds of $\text{sem}(^1u^i)$ are closed and \mathcal{R}_1 holds.

Q.E.D.

7.2.3. Any grammatical phrase $^1u^i$ now means a regular configuration, an important fact that will facilitate the learning of the semantics. The reason for this is that, given a sentence $x_1x_2\ldots x_n \in L$, we can consider each initial phrase $u_k = x_1x_2\ldots x_k$, starting with small values of k, and attempt to learn the meaning of each new branch in the wiring diagram.
This makes sense only if, as here, each l_{uk}^i is meaningful in \mathcal{C}_1, not just in \mathcal{C}_1 where the configurations do not always make sense to the observer.

7.3.1. To build up a semantic category, see Theorem 6.1, we must construct the connectors $c_{ij}(x)$, but so far we have only seen some simple examples of how this can be done.

To penetrate our problem deeper we shall use the concept of bonding function which maps syntactic information (from the sentence in \mathcal{C}_2) into topological information (for the perceived configuration in \mathcal{C}_1). We believe that this concept will be of fundamental importance in further work on mathematical semantics.

We first give the formal definition of a bonding function, and then illustrate its use by examples.

7.3.2. With $B = B_{in}$ = the set of bond values (for G_1) introduce the set

$$D = B \cup (B \times B) \cup (B \times B \times B) \cup \ldots \triangle D_1 \cup D_2 \cup D_3 \cup \ldots$$

and a set ϕ of functions ϕ defined on subsets of D. Denote by $D(\phi)$ the domain of such a bonding function ϕ, $D(\phi) \subseteq D$.

A bonding function will always be associated with a bond value $\beta \in B$, and we shall assume that for $\delta = (b_1, b_2, \ldots, b_n) \in D_n$ the bonding function takes values in the set

$$\Lambda_n(\beta) = \{i | b_i = \beta\}.$$

The purpose of the bonding function is to select one of the bonds of the generators introduced that have the in-bond value β. The set $\Lambda_n(\beta)$ can consist of all the integers 1, 2, \ldots, n. We shall
make sure that no problem arises from the possibility
\[\Delta_n(\delta) = \phi \] by restricting the domain \(D(\phi) \) appropriately.

7.3.3. Recall that the topology of \(\mathcal{W}_1 \)-configurations
typically looks as Figure 3.3 with the generators arranged in
layers of increasing level of abstraction. This makes it
natural to attempt to organize the syntax \(\mathcal{W} \) and the syntactic
map \(\mathsf{sem} \) in a similar way. Passing through the wiring diagram
we would first handle the objects, level 0, then the properties,
level 1, and connect them to the objects, and so on. The
connections will be established by bonding functions attached
to the branches of the wiring diagram.

Say that we have a branch \(i \to j \) that whose connector functions
on level \(k \), \(k \geq 1 \). To this branch we associate at most one
generator, say \(q \in G_k^\mathcal{W} \) and with \(\omega_{\text{out}}(q) = \omega \), the out-bond values
being \(\beta_1, \beta_2, \ldots, \beta_\omega \), as well as \(\omega \) bonding function \(\phi_1, \phi_2, \ldots, \phi_\omega \).
Here \(\phi_r \) should be associated with the bond value \(\beta_r \). We allow the
degenerate cases when a branch is associated with no generator,
only bond functions, or with no generator and no bond function.

Then the connector \(\phi_{ij}(x) \) should be formed by connecting the
\(r \)th out-bond of \(q \) to generator number \(\phi_r(\delta) \) in the previous level
\(k-1 \). The vector \(\delta = (\beta'_1, \beta'_2, \ldots, \beta'_n) \) describes the in-bond values
of the subconfiguration consisting of the generators of level \(k-1 \),
enumerated in the order they have been generated.

In order that this make sense we must ensure that \(\delta \in D(\phi) \)
which will be done in the following by restricting the selection
of any bonding function by what branches precede the current
branch in the wiring diagram.
7.4.1. To make the above more intuitive consider the image algebra in 4.2 restricted to generators of levels 0 and 1. Choose \(L \) with \(V_T = \{\alpha, \beta, \gamma, \delta\} \), and \(V_N = \{1, 2, \ldots 10, 11, F\} \) with the wiring diagram in Figure 7.3.

To create a semantic map we shall use the bonding functions given in Table 7.2 and interpret the grammatical productions according to Table 7.1.

Consider the sentence

\[(7.4) \quad I_2 = \alpha \delta \gamma \beta \beta\]

with the parsing

\[(7.5) \quad 1, 2, 3, 4, 5, 10, F \]

It is grammatical.
Figure 7.3
<table>
<thead>
<tr>
<th>branch</th>
<th>connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>i \ x \ j</td>
<td>(\phi_{ij}(x))</td>
</tr>
<tr>
<td>1 (\alpha) 2, 2 (\alpha) 2, 2 (\beta) 3 9 (\alpha) 2</td>
<td>(\phi_1)</td>
</tr>
<tr>
<td>3 (\delta) 4, 4 (\delta) 4, 4 (\gamma) 5 5 (\alpha) 6, 6 (\alpha) 7, 7 (\alpha) 8</td>
<td>(\phi_2)</td>
</tr>
<tr>
<td>8 (\alpha) 9, 9 (\beta) F 5 (\beta) 10</td>
<td>(\phi_3', \phi_4', \phi_5', \phi_6', \phi_7)</td>
</tr>
<tr>
<td>3 (\alpha) 3</td>
<td>(\phi_8', \phi_9', \phi_{10})</td>
</tr>
<tr>
<td>3 (\gamma) 3</td>
<td>(\phi_{11})</td>
</tr>
<tr>
<td>3 (\gamma) 3</td>
<td>(\phi_{12})</td>
</tr>
<tr>
<td>5 (\gamma) 11</td>
<td>(\phi_{13}', \phi_{14}', \phi_{15}', \phi_{16})</td>
</tr>
<tr>
<td>all others</td>
<td>no change</td>
</tr>
</tbody>
</table>
Table 7.2

<table>
<thead>
<tr>
<th>Bonding function ϕ</th>
<th>Definition of ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_1</td>
<td>Add unconnected l</td>
</tr>
<tr>
<td>ϕ_2</td>
<td>Add unconnected k</td>
</tr>
<tr>
<td>ϕ_i', $i=3,4,5,6,7$</td>
<td>Add f and connect $b_{out,i-2}$ to $(i-2)^{th}$ of last k</td>
</tr>
<tr>
<td>ϕ_i', $i=8,9,10$</td>
<td>Add g and connect $b_{out,i-7}$ to $(i-7)^{th}$ of last l</td>
</tr>
<tr>
<td>ϕ_{11}</td>
<td>Add h and connect to last l</td>
</tr>
<tr>
<td>ϕ_{12}</td>
<td>Add j and connect to last l</td>
</tr>
<tr>
<td>ϕ_i', $i=13,14,15,16$</td>
<td>Add i and connect $b_{out,1}$ and $b_{out,2}$ to last two l's and $b_{out,3}$ and $b_{out,4}$ to last two k's</td>
</tr>
</tbody>
</table>
To unwrap the meaning of I_2 we get by successively applying the connectors formed by using the bonding functions in the tables:

\[
\begin{align*}
1_\alpha^2 & \quad \raisebox{0.5cm}{\includegraphics[width=1cm]{circle.png}} \\
1_\alpha^2 \beta^3 & \quad \raisebox{0.5cm}{\includegraphics[width=1.5cm]{square.png}} \\
1_\alpha^2 \beta^3 \gamma^4 & \quad \raisebox{0.5cm}{\includegraphics[width=2cm]{triangle.png}} \\
1_\alpha^2 \beta^3 \gamma^4 \delta^5 & \quad \raisebox{0.5cm}{\includegraphics[width=2.5cm]{pentagon.png}} \\
1_\alpha^2 \beta^3 \gamma^4 \delta^5 \theta^1 & \quad \raisebox{0.5cm}{\includegraphics[width=3cm]{hexagon.png}} \\
\end{align*}
\]

The last transition $10 \div F$ does not change the image. Now a more complicated example is

\[
(7.6) \quad I_2 = \alpha^8 \beta^6 \gamma^4 \delta^2 \gamma^3 \alpha^4 \beta^8
\]

parsed into

\[
(7.7) \quad 1_\alpha^2 \beta^3 \gamma^4 \delta^5 \theta^1 \alpha^6 \beta^3 \gamma^5 \alpha^5 \alpha^7 \alpha^8 \beta^9 \theta^5
\]

Applying the same unwrapping procedure we see that $\text{sem}(I_2) = I_1$ given in Figure 7.4.
Remark 1. The connectors used in the example have two properties that we will meet under more general conditions. Each bonding function connects all out-bonds (if any at all) of new generators to in-bonds of old generators; the resulting semantic map is backwards looking.

Remark 2. Any bonding function in Table 7.2 is defined in terms of the 1st, 2nd, ... of the last in-bonds with a given value. This may not be immediately obvious since Table 7.2 appears to mention certain generators rather than their in-bonds. Referring to Table 4.1, the last two rows, we see however that this amounts to the same thing in the present example. In other, more general cases, this distinction must be kept in mind.

Such bonding functions, depending only upon the order in which generators and bonds have been introduced will be said to employ ordered reference.

7.4.2. Now return to the wiring diagram in Figure 7.3. A state can be identified with the set of strings u^i leading
from 1 to i. Actually, Nerode's theorem tells us that if we use as states the congruence classes over \(V_T \) we get the minimal wiring diagram.

A semantic map, given in terms of such bonding functions that were mentioned in the last two remarks, depends crucially upon the numbers

\[
(7.8) \quad N_i(\beta) = \min \{ q's \text{ introduced by any } 1^i \text{ with } \beta_\text{in}(q) = \beta \}, \quad \beta \in B, i \in V_N.
\]

In (7.8) the minimum is taken over all phrases starting in 1 and ending in i.

In our example we have

\[
(7.9) \quad \begin{cases}
N_1(\beta) = 0, \text{ all } \beta \\
N_2(I) = N_2(II) = N_2(III) = N_2(IV) = N_2(V) = 0, N_2(VI) = 1 \\
N_3(I) = N_2(II) = N_2(III) = N_2(IV) = N_2(V) = 0, N_2(VI) = 2 \\
\ldots
\end{cases}
\]

as can be verified going back to Table 4.1, fourth column.

The numbers \(N_i(\beta) \) tell us how much topological information we have built up at state i expressed in terms of a lower bound for the number of potential in-bonds.

7.4.3. A related set of numbers are the \(\lambda_\beta(\phi) \) of a bonding function \(\phi \) employing ordered references. It means

\[
(7.10) \quad \lambda_\beta(\phi) = \max \{ \text{number of steps backwards of references to } \beta \text{-values for } \phi \}
\]

In the example we have
\[
\begin{align*}
\lambda_\beta(\phi_1) &= \lambda_\beta(\phi_2) = 0 \\
\lambda_V(\phi_i) &= \pm 2, \lambda_\beta(\phi_i) = 0; i = 3, 4, 5, 6, 7 \\
\lambda_V(\phi_i) &= \pm 7, \lambda_\beta(\phi_i) = 0 \text{ all other } \beta; \quad i = 8, 9 \\
\lambda_{V1}(\phi_{10}) &= 3, \lambda_\beta(\phi_{10}) = 0 \text{ all other } \beta; \\
\ldots
\end{align*}
\]

(7.11)

The lag tells us how far back we have to remember potential in-bonds of generators that have already been unwrapped.

7.5. Leaving the example, consider now the connectors constructed as above. Does it lead to a semantic category as in Theorem 6.1? An answer is given by

Theorem 7.1. Consider a backward looking strategy and assume that for any branch \(i \xrightarrow{\phi} j \) in the wiring diagram any associated bonding function \(\phi \) with bond value \(\beta \) satisfies

\[
(7.12) \quad \lambda_\beta(\phi) \leq N_i(\beta).
\]

Then the construction leads to a semantic category and range

\[
(\text{sem}) \subset \mathcal{F}_1.
\]

Proof: We construct the connectors \(\sigma_{ij}(x) \) directly by executing the commands in the bonding functions \(\phi \) belonging to the branch \(i \xrightarrow{\phi} j \). Each time we have zero or one generator whose out-bonds have to be connected. The bonding functions do this without ambiguity since only one generator is concerned as far as out-bonds go.

With the aid of the \(\sigma_{ij}(x) \) connectors we can now build up the classes \(C_i \), starting with the empty configuration at state 1.
and connecting more generators or closing bonds as commanded by the \(a_{ij}(x) \). We have to make sure that these classes are subsets of \(\mathcal{C}_1 \); see Definition 6.1.

This is so; in the present case we can even assert that \(C_i \subseteq \mathcal{C}_1 \subset \mathcal{C}_1 \): all the configurations that we unwrap sequentially are regular. As for global regularity this follows from what was said in the proof of Lemma 7.1.

Local regularity does not follow quite as directly. Indeed, it could happen when we build up the classes \(C_i \) that the value of a connector, when applied to the current configuration, is not defined. But such a connector is made up by bonding functions, each \(\phi \) of which only refers backwards a certain number of steps in the order of reference. If fewer generators with the relevant in-bond had been introduced so far the procedure would fail. Condition (7.12) insures that this cannot happen: we have access to the required number of relevant in-bonds in our list of potential ones. Therefore \(\phi \) is always defined, the bond can be closed without violating \(\rho \), and the new configuration will be regular.

Q.E.D.

7.6. It is obvious how a forward looking strategy would be organized. This will not be done, but we shall have occasion to study strategies looking both forward, for some bonding functions, and backward for others. Theorem 7.1 will then have to be modified.
Since lags can then be both positive and negative we also need a function given as the maximum of the absolute value of the negative lags involved; we will use both \(\lambda^+_\beta(\phi) \) as before and the new \(\lambda^-\beta(\phi) \).

We also need an analogue of the numbers \(N_i(\beta) \) in (7.8) and introduce

\[
M_i(\beta) = \min \#(q' \text{ introduced by any } i u^F \text{ with } \beta_{in}(q) = \beta); \beta \in B, j \in V_N.
\]

There will now be two conditions

\[
(7.14) \begin{cases}
\lambda^+_\beta(\phi) \leq N_i(\beta) \\
\lambda^-\beta(\phi) \leq M_i(\beta)
\end{cases}
\]

in order that our construction yield a semantic category.

Note that we can no longer assert that \(C_i \subseteq \mathcal{C}_1 \), only that \(C_i \subseteq \mathcal{C}_1 \).

7.7. What we have learnt so far about mathematical semantics will enable us to approach the mathematical study of learning semantics; this will be reported in a following paper.

It is clear, however, that we should also return to the questions discussed in sections 6 and 7 and probe deeper, in order to get a fuller understanding of how semantic maps work. In particular we should examine under what conditions \(\text{sem} \) is adequate for the entire perceived image algebra: when is \(\text{range(sem)} = \mathcal{C}_1 \)? We do not yet have any method for answering this important question.
8. Conclusions.

8.1.1. Mathematical semantics in the sense we understand it is relative: it refers one algebraic structure \(\mathcal{T}_2 \), which may be, but need not be, a formal language, to another structure \(\mathcal{T}_1 \).

8.1.2. These structures are expressed in terms of combinatorial regularity in the pattern theoretic sense. We have constructed an image algebra \(\mathcal{T}_1 \) for this purpose with relations as generators.

8.1.3. A semantic map attaches to each grammatical phrase (or more generally image in \(\mathcal{T}_2 \)) a morphism from a category (in the algebraic sense), whose objects are configuration sub-spaces in \(\mathcal{T}_1 \).

8.1.4. The morphisms represent connectors that are given in terms of bonding functions that connect bonds of generators belonging to respective connectors.

8.1.5. We have given sufficient conditions in order that a finite state language can be "explained" by a semantic category relation to \(\mathcal{T}_1 \).

8.2.1. We are now ready to proceed to the next phase of this study in which we will be done in three steps.

8.2.2. First, we shall implement some more substantial instances of semantic categories on the computer. The purpose is not to develop large software systems for any practical use, but to increase our intuitive understanding of the mathematical constructs that we have introduced in the present paper. Hand simulation is impractical, if at all possible, of the regular structures we hope to deal with, because of their complexity.
The resulting programs will also be used later for studying the learning of semantics.

8.2.3. Second, we shall investigate how semantic categories can be learnt, and try to construct incremental learning schemes involving only moderate computational effort.

8.2.4. We shall examine in greater detail the mathematical properties of semantic categories and their maps. In particular we want to determine the range of \(\text{sem} \) and find conditions for it to be the whole \(\mathcal{F}_1 \). We shall also study the probabilistic aspects of \(\mathcal{F}_1 \), which has not yet been done; this is needed for 8.2.1, in addition to its intrinsic interest. Functors on semantic categories also require study, for example, those that correspond to generator maps.
Appendix

For the reader's convenience a selection of Wittgenstein's aphorisms is given from Tractatus and with the original numbering.

1. The world is everything that is the case.

1.1 The world is the totality of facts, not of things.

1.11 The world is determined by the facts, and by these being all the facts.

1.12 For the totality of facts determines both what is the case, and also all that is not the case.

1.2 The world divides into facts.

2.01 An atomic fact is a combination of objects (entities, things).

2.021 Objects form the substance of the world. Therefore they cannot be compound.

2.0272 The configuration of the objects forms the atomic fact.

2.03 In the atomic fact objects hang one in another, like the links of a chain.

2.032 The way in which objects hang together in the atomic fact is the structure of the atomic fact.

2.12 The picture is a model of reality.

2.13 To the objects correspond in the picture the elements of the picture.

2.141 The picture is a fact.

2.15 That the elements of the picture are combined with one another in a definite way, represents that the things are so combined with one another.
2.21 The picture agrees with reality or not; it is right or wrong, true or false.

2.22 The picture represents what is represents, independently of its truth or falsehood, through the form of representation.

2.221 What the picture represents is its sense.

2.222 In the agreement or disagreement of its sense with reality, its truth or falsity consists.

2.224 It cannot be discovered from the picture alone whether it is true or false.

3.14 The propositional sign consists in the fact that its elements, the words, are combined in it in a definite way.

The propositional sign is a fact.

3.2 In propositions thoughts can be so expressed that to the objects of the thoughts correspond the elements of the propositional sign.

3.201 These elements I call "simple signs" and the proposition "completely analyzed".

3.202 The simple signs employed in propositions are called names.

3.203 The name means the object. The object is its meaning.

3.21 To the configuration of the simple signs in the propositional sign corresponds the configuration of the objects in the state of affairs.
3.22 In the proposition the name represents the object.

3.25 There is one and only one complete analysis of the proposition.

4.021 The proposition is a picture of reality, for I know the state of affairs presented by it, if I understand the proposition, without its sense having been explained to me.

4.026 The meanings of the simple signs (the words) must be explained to us, if we are to understand them.

4.031 One name stands for one thing, and another for another thing, and they are connected together. And so the whole, like a living picture, presents the atomic fact.
9. References

G.H. von Wright (1957): Logik, filosofi och språk, Bonniers, Stockholm.