Title: Control of Dermatomycoses by Physical, Chemical and Biological Agents

Authors: H. J. Blumenthal and T. Hashimoto

Performing Organization:
Department of Microbiology, Loyola University
Stritch School of Medicine, 2160 S. First Ave.,
Maywood, Illinois 60153

Report Date: Oct. 30, 1978

Abstract:
Lytic enzymes from various biological courses have been shown to effectively kill arthrospores of I. mentagrophytes which are resistant to the lethal action of chemotherapeutic agents. The lytic principles of the enzymes seem to be 1:3-glucanases and chitinase. Unlike their hyphal form or microconidium, the substrates of these enzymes, glucans and chitin, comprised the bulk portion of the thick wall and the enzymes seem to be able to act directly from the surface of the cells causing injuries to the cell wall and the cytoplasmic membrane of the spores. At appropriate...
concentrations, dormant arthrospores could be killed by these enzymes within a few minutes. If used topically in combination with other drugs, these enzymes may prove to be useful antidermatomycotic agents. The relatively stable nature of these enzymes coupled with the commercial availability further enhances this possibility. A series of animal experiments are now underway to test this practical applicability. The effectiveness of glutaraldehyde as an antidermatophytic and antidermatomycotic agent are now being tested in guinea pigs and we expect that the results of the tests will become available in a few months.

During the course of this investigation, we found that the dermatophyte T. mentagrophytes accumulated enormous quantities of carotenoids only during arthrosporulation. Although the significance of this observation is not clear at this time, we are exploring a possibility that the accumulation of such pigments within arthrospores may be related to their resistance to ultraviolet light.

In another series of experiments, we isolated the cell wall of T. mentagrophytes arthrospores and chemically characterized its component. This is an essential step to test feasibility of using arthrospore walls as a source of vaccine and this possibility is being further explored in this laboratory.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
CONTROL OF DERMATOMYCOSIS BY PHYSICAL, CHEMICAL AND BIOLOGICAL AGENTS

by

H. J. Blumenthal and T. Hashimoto

Department of Microbiology
Loyola University Stritch School of Medicine
Maywood, Illinois 60153
Several lines of evidence listed below have led us to believe that the key to the radical cure of dermatomycoses and the control of ringworm infections in communal life is to develop effective methods that kill dermatophytic arthrospores in infected lesions or in our environment.

1. Arthrospores are the only dormant or resistant form of dermatophytes produced in lesions. The presence of abundant arthrospores in active and chronic lesions has been well documented in the literature.

2. Once arthrosporeulated, the dermatophyte *Trichophyton mentagrophytes* cells become extremely resistant to several antifungal agents commonly used in the chemotherapy of dermatomycoses (T. Hashimoto and H. J. Blumenthal, Appl. Environ. Microbiol. 35:273-277, 1978). In other words, most lesions containing arthrospores are highly recalcitrant to chemotherapy.

3. Arthrosporulation of the dermatophyte *T. mentagrophytes* is in fact significantly stimulated by the presence of sublethal doses of antifungal agents such as clotrimazole, nystatin and griseofulvin. (Eymaityoff and Hashimoto, 1978, submitted for publication in Can. J. Microbiol.) The use of insufficient doses of antifungal agents rapidly converts susceptible hyphae to resistant arthrospores.

4. Arthrospores are fully capable of germinating into infectious hyphae by the normal skin constituents. In fact, some of the aged arthrospores are quite capable of transforming into infectious hyphae in the presence of water only. (T. Hashimoto and H. J. Blumenthal, Infect. Immun. 18:479-486).

These observations may account for our common experience that the radical cure of dermatomycoses is difficult to achieve despite the extensive use of various chemotherapeutic agents. We now strongly believe that neither radical cure nor the control of ringworm infections in communal life would be possible unless effective methods for killing arthrospores are made available for general use.

Weighing these factors carefully we have decided to concentrate our research effort on the following two specific areas: (1) testing of various physical, chemical and biological agents on arthrospores of *T. mentagrophytes* and (2) elucidating the morphological and physiological basis of arthrospore resistance to various agents. The latter approach is considered important because such studies may provide useful clues to the development of effective arthroporocidal agents.
I. Physical, chemical and biological agents with arthrosporocidal activity-potential candidates for antidermatomycotic agents.

We took several different approaches to develop methods that effectively inactivate dermatophytic arthrospores in vitro and in vivo.

1. **Topical application of moist and warm temperature prior to and during active chemotherapy.**

The rationale behind this approach is based on our observation that dormant and activated arthrospores are able to germinate and transform into hyphae which are highly susceptible to antifungal chemotherapeutic agents. It appears to us that the continuous application of either topical or systemic chemotherapeutic agents to dried (most physicians advise to keep the lesions as dry as possible!) skin lesions is a futile attempt. This approach will be tested in an animal model and an in vivo experiment is now in progress.

2. **Topical application of chemicals with arthrosporocidal activity.**

The arthrosporocidal activity of dialdehyde (glutaraldehyde) has been thoroughly tested and established in our laboratory (Technical report #2). The therapeutic as well as antiseptic effect of this compound against arthrospore bearing lesions is now being evaluated in our laboratory.

3. **Topical application of enzymes that actively digest the cell wall of arthrospores.**

As described later, one of the cellular factors contributing to the poor penetrability of reagents into arthrospores appears to be the thick wall. It seems reasonable to search for enzymes that digest off the thick wall thus making arthrospores more susceptible to antifungal chemotherapeutics or unable to survive in osmotically unstable environments. Although we indicated this possibility in our earlier report, a more likely applicability of such enzymes in the treatment of dermatomycotic lesions emerged when we elucidated the structure and chemical composition of the wall of T. mentagrophytes arthrospores. The chemical analysis of purified cell wall of T. mentagrophytes revealed that glucans (mostly β:3 linked) and chitin are the major wall constituents. Interestingly, these glucan-chitin components are directly exposed to the surface of the wall and are readily accessible to the lytic activity of exogenous glucanase and chitinase. Based on this reasoning, we have tested the arthrosporocidal effects of various lytic enzymes and the results of such tests will be described in the following section.
Sporocidal Activity of Cell Wall Lytic Enzymes

METHODS OF EXPERIMENT

Gluculase (snail intestinal juice) was purchased from Endo Laboratories, and ε-1:3 glucanase was prepared from an imperfect fungus and provided by Dr. Nagasaki. These enzymes were relatively stable when stored at 4°C. (No significant loss of activity was seen for 6 months). Arthrospores were produced and purified according to the method described earlier (Technical Report #2).

Approximately 10^7 ml of arthrospores were mixed with enzyme solutions and incubated at 30°C for predetermined periods. In some experiments, the enzymes were diluted with 0.05 M citrate phosphate buffer (pH 5.5) to obtain desired concentrations. Aliquots of the mixture were filtered through Millipore filter (pore size 0.45 μm) and cells retained on the filter were washed with sterile Sabouraud dextrose broth. Washed cells were incubated in Sabouraud dextrose broth for 15 hours and the viability of enzyme treated arthrospores was determined microscopically as described earlier (Hashimoto and Blumenthal, Appl. Environment. Microbiol. 35:273-277, 1978). For each sample, a total of 200 spores was examined and the percentage of survived cells was calculated.

RESULTS

Typical survival curves of T. mentagrophytes arthrospores exposed to gluculase and purified ε-1:3 glucanase are shown below. Phase contrast photomicrographs of normal and gluculase treated arthrospores are shown in Fig. 2. The iso- cell walls of T. mentagrophytes arthrospores were highly susceptible to the lytic action of ε-1:3 glucanase (Fig. 3) and chitinase (data not shown) which were the two major lytic principles of gluculase.

SIGNIFICANCE

The susceptibility of fungal spores to lytic enzymes is dependent on their chemical composition as well as on their location within the wall. The whole spores may not be lysed by lytic enzymes when the substrate is surrounded by an impervious layer resistant to the enzymes. On the other hand, if the entire spore wall is made of materials sensitive to the lytic action of given enzymes, spores may be lysed rapidly regardless of its thickness. The ultrastructural and chemical studies showed that the majority, if not all, of the arthro-
Fig 1

ARTHROSPOROCIDAL ACTIVITY OF WALL LYtic ENZYMES

% SURVIVAL

TIME EXPOSED (MIN)

- Glusulase (Undiluted)
- Glusulase (5 X dilution)
- β-1:3 glucanase (1 mg/ml)
- Water
- Buffer (citrate phosphate, pH 5.5)
Fig. 2

Before treatment

10 min treatment by gluculase
Fig 3

LYSIS OF ARTHROSPORE WALLS BY β 1:3 GLUCANASE

% INITIAL O.D. vs TIME (MIN)
spore wall of T. mentagrophytes is made of β-1,3 glucans and chitin, and these components are directly exposed to the surface of the wall suggesting an easy accessibility of glucanase and chitinase to the major cell wall components. Since electron microscopy of gluculase or β-1,3 glucanase killed arthrospores demonstrated that they still retained a considerable amount of the wall materials, it appears that the injuries in the cytoplasmic membrane resulting from the partial disintegration of the wall are the primary cause of death of enzyme treated arthrospores. These observations coupled with the relatively stable nature of the enzymes, make these enzymes prospective therapeutic agents in the topical treatment of dermatomycoses. Very recently, a possibility of systemic and topical use of wall lytic enzymes for the treatment of deep seated and superficial mycotic infections has been proposed by Davies and Pope (Nature 173:235-236, 1978).

II. Structural and physiological properties uniquely associated with arthrosporulation of T. mentagrophytes.

In order to find some unique structural and physiological characters that may be responsible for the resistance of dermatophytic arthrospores, we examined T. mentagrophytes arthrospores by means of electron microscopy and analyzed the chemical composition of certain subcellular components. The results so far obtained indicate that there are at least two structural components that characteristically associated with arthrospores. It may be plausible that the inhibition of the development of these structures or the specific destruction of these cellular components might lead to the rapid killing of arthrospores.

1. Arthrospore wall.

Electron microscopy of T. mentagrophytes clearly revealed that the wall of arthrospores is several times thicker than that of vegetative hyphae. During arthrosporulation, cells synthesize a thick new wall layer immediately beneath the existing hyphal wall. By the time spores became mature most of the outer wall was lost and the cytoplasm was surrounded by a new thick (sometimes it exceeds 1 μm!) wall synthesized de novo during sporulation. During this ultrastructural study, we experienced considerable difficulties in fixing and embedding mature arthrospores. We attributed these difficulties to the thick wall of arthrospores. The penetration of the fixatives and other reagents seemed to be hampered by the impervious wall. This speculation was confirmed by our subsequent observation that the spheroplasts of arthrospores could be readily fixed for thin sectioning. Although further
experimentation is needed to draw a more definitive conclusion, the resistance of arthrospores to various antifungal agents may well be related to the presence of the unique spore wall.

2. Lipid and carotenoid granules.

One of the most striking observations made during this study was the demonstration of carotenoid pigments within the lipid granules of \textit{T. mentagrophytes} arthrospores. In \textit{T. mentagrophytes} these pigments were shown to occur only in arthrospores. No trace of such pigments was found in either the hyphal or microconidial form of this dermatophyte. Although the significance of these pigments in the resistance of arthrospores is not immediately clear, we believe that these observations are highly significant because carotenoid pigments in plants are considered to be vital for the protection of the photosynthetic apparatus from ultraviolet injury. In view of this possible significance the full technical detail related to this work will be included in this report.

\textbf{MATERIALS AND METHODS}

\textbf{Fungus strain.} \textit{T. mentagrophytes} ATCC 26323 was used throughout this investigation.

\textbf{Preparation of arthrospores.} Arthrospores of \textit{T. mentagrophytes} were produced by a slight modification of the method described earlier. Approximately 0.15 to 0.2 ml of a microconidial suspension (2 x 10^6 spores per ml of distilled water) was inoculated on a cellulose dialysis membrane (Union Carbide Corp., New York, N.Y.), which had been placed on Sabouraud dextrose agar (Difco Laboratories, Detroit, Mich.) containing 0.1% sodium acetate. The dialysis membrane was previously boiled in 1% sodium bicarbonate solution for 10 min rinsed with distilled water, and subsequently sterilized by autoclaving. After the inoculated plates were incubated at 37°C for 36 h, 2 ml of Sabouraud dextrose broth (Difco) was added aseptically over the dialysis membrane. By this time, hyphae emerging from microconidia adhered to the membrane, and the addition of the broth caused no separation of hyphae from the membrane. The plates were placed in a large covered glass jar (21 cm diameter, 25 cm high) and further incubated under saturated humidity at 37°C for an additional week. By the end of the incubation period, essentially all hyphae were transformed into arthrospores.

The arthrospores were readily removed from the cellulose membrane by gently scraping with a spatula. The harvested arthrospores were washed in distilled water three times by means of centrifugation (1,500 x g, 15 min). In some experiments, young hyphae or arthrosporulating
Hyphae were collected similarly from the cellulose surface after specified periods of incubation, washed, and stored as described above.

Quantitation of arthrospore formation. The degree of arthrospore formation was determined according to the method of Timberlake and Turian. Cells removed from the membrane culture were placed on a glass microscope slide and examined microscopically using an oil immersion objective (x100, numerical aperture 1.25; Nikon). The percentage of hyphal tips containing arthrospores was determined after examining 200 tips.

Extraction and quantitation of pigments. The pigments were repeatedly extracted from cells with methyl alcohol at 25°C. The extracts containing pigments were pooled and saponified in methanol at 25°C for 15 h. The pigmented fraction was collected in hexane by means of phase separation technique. The epiphase fraction containing pigments was concentrated under vacuum. When the pigments were not used immediately, they were stored under vacuum in the dark at -20°C.

The relative amounts of carotenoid pigments contained in cells undergoing arthroporation were determined by measuring absorbance at 460 nm of the pigments collected in hexane, and was expressed as percentage relative to the amount of pigments obtained from mature arthrospores (8 days old).

Thin-layer chromatography. The pigment solution in hexane was applied on alumina thin-layer sheets (no. 6063, Eastman Organic Chemicals, Rochester, N.Y.), or on silica gel thin-layer sheets (no. 6061, Eastman Organic Chemicals). Development of thin-layer plates was carried out at 25°C in the following solvent systems: hexane-benzene-n-butanol (10:1:1) or hexane-benzene (10:1.5). Colorless spots were visualized either by illumination of chromatograms with UV light (Mineralight, model RS2, equipped with filter no. 20119 for short wave length and no. 20118 for long wave length: Ultraviolet Products, Inc., San Gabriel, Calif.) or spraying with the reagents specified below. To ascertain the nature of the pigments, chromatograms were sprayed with various reagents as specified in Table 2. Authentic carotenoids, such as α and β carotene, were purchased from Sigma Chemical Co. (St. Louis, Mo.). Lycopene was isolated from tomato according to the method described by Weedor (22). Phytoene and phytofluene were similarly prepared from Rhodotorula rubra.

Carr-Price test for carotenoids. The Carr-Price test for carotenoids was performed by spraying chromatograms with 20% antimony trichloride (J. T. Baker Chemical Co., Phillipsburg, N.J.) in chloroform.
Spectroscopy. For spectroscopic study of individual carotenoids, the extract was streaked on thin-layer plates and distinctly separated lines of pigments after development were eluted in hexane. Absorption spectra of individual carotenoids in hexane were examined in a Cary 15 spectrophotometer.

Reagents. All chemicals used in the present investigation were of reagent quality. All solvents were either chromatographic or spectroscopic quality, depending on the purpose of the experiments and were used without further purification.

Dry-weight determination. Dry weight of cells on extracted materials was determined by desiccating samples in preweighed aluminum planchets over P₂O₅ placed in vacuum at 25°C for 72 h.

Cytological techniques. The light microscope appearance of the wet-mounted cells was examined with either an ordinary or phase-contrast microscope using oil immersion objectives. Photomicroscopy was made on panchromatic film (Kodak Plus X) with a Nikon camera equipped with an automatic exposure system. Thin sections and freeze-etched replicas of arthrospores were prepared by the methods described earlier. Specimens were examined with a Hitachi HU-11A electron microscope operating at 50 kV.

RESULTS

Identification and characterization of pigments. The thin-layer chromatographic and spectroscopic properties of the pigments extracted from mature (8 days old) arthrospores of _T. mentagrophytes_ are shown in Table 1. The results of various color reactions performed directly on thin-layer chromatograms are summarized in Table 2. The characteristic color of these pigments on thin-layer chromatogram sheets tended to fade when the pigments were desiccated in air or exposed to intensive light. Although it was not possible to firmly establish the identification of a few minor pigments because of the lack of certain authentic carotenoids, the data presented in Tables 1 and 2 are compatible with our conclusion that the majority of the pigments occurring in arthrosporulating _T. mentagrophytes_ are indeed carotenoid in nature. It is clear from Table 3 that the pigments isolated from arthrospores of _T. mentagrophytes_ were not xanthomemagn. To our knowledge, this is the first demonstration of carotenoid pigments in the group of dermatophytic fungi.

Kinetics of growth, arthrosporulation and pigment formation. Under our experimental conditions, arthrosporulation began as soon as the maximum hyphal growth had been attained and intracellular pigment granules became evident upon the completion of multiple segmentation of hyphae (Fig. 4). During the maturation of arthrospores, cells transformed from rectangular to oval shape and formed short
TABLE 1. Thin-layer chromatographic and spectroscopic characteristics of epiphasic carotenoids found in *T. mentagrophytes* arthrospores

<table>
<thead>
<tr>
<th>Identification</th>
<th>Alumina</th>
<th>Silica gel</th>
<th>Absorption maxima in hexane (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solvent A<sup>a</sup></td>
<td>Solvent B</td>
<td>Solvent A</td>
</tr>
<tr>
<td>Ergosterol (non-carotenoid)</td>
<td>0.28</td>
<td>0</td>
<td>0.48</td>
</tr>
<tr>
<td>Identifiable spot</td>
<td>0.32</td>
<td>0</td>
<td>0.51</td>
</tr>
<tr>
<td>Lycoerpene</td>
<td>0.40</td>
<td>0.02</td>
<td>0.77</td>
</tr>
<tr>
<td>Identifiable spot</td>
<td>0.47</td>
<td>0.09</td>
<td>0.80</td>
</tr>
<tr>
<td>Neurosporene</td>
<td>0.57</td>
<td>0.09</td>
<td>0.80</td>
</tr>
<tr>
<td>γ-Carotene</td>
<td>0.57</td>
<td>0.06</td>
<td>0.80</td>
</tr>
<tr>
<td>δ-Carotene</td>
<td>0.61</td>
<td>0.14</td>
<td>0.84</td>
</tr>
<tr>
<td>Identifiable spot</td>
<td>0.67</td>
<td>0.14</td>
<td>0.84</td>
</tr>
<tr>
<td>β-Carotene</td>
<td>0.67</td>
<td>0.20</td>
<td>0.84</td>
</tr>
<tr>
<td>Phytofluene</td>
<td>0.75</td>
<td>0.33</td>
<td>0.87</td>
</tr>
<tr>
<td>Phytoene</td>
<td>0.78</td>
<td>0.59</td>
<td>ND<sup>b</sup></td>
</tr>
</tbody>
</table>

^a Figures in parentheses represent values reported by others (3, 5). Major peaks are underlined.

^b Solvent A: hexane—benzene—heptane (10:1:1).

^c Solvent B: hexane—benzene (10:1:5).

^d ND, Not detectable.

TABLE 2. Color reaction of epiphasic carotenoids of *T. mentagrophytes* arthrospores with various reagents

<table>
<thead>
<tr>
<th>Identification</th>
<th>Color</th>
<th>Carotene-free test for carotenoids<sup>a</sup></th>
<th>2 N NaOH<sup>b</sup></th>
<th>70% KOH<sup>b</sup></th>
<th>0.5% Mg acetate<sup>c</sup> methanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergosterol (non-carotenoid)</td>
<td>Colorless</td>
<td>-</td>
<td>-</td>
<td>Red</td>
<td>-</td>
</tr>
<tr>
<td>Identifiable spot</td>
<td>Yellow</td>
<td>+</td>
<td>-</td>
<td>Blue</td>
<td>-</td>
</tr>
<tr>
<td>Lycoerpene</td>
<td>Pink</td>
<td>+</td>
<td>-</td>
<td>Blue</td>
<td>-</td>
</tr>
<tr>
<td>Identifiable spot</td>
<td>Light pink</td>
<td>±</td>
<td>-</td>
<td>Blue</td>
<td>-</td>
</tr>
<tr>
<td>Neurosporene</td>
<td>Yellow</td>
<td>-</td>
<td>-</td>
<td>Blue</td>
<td>-</td>
</tr>
<tr>
<td>γ-Carotene</td>
<td>Orange</td>
<td>+</td>
<td>-</td>
<td>Blue</td>
<td>-</td>
</tr>
<tr>
<td>δ-Carotene</td>
<td>Yellow</td>
<td>+</td>
<td>-</td>
<td>Blue</td>
<td>-</td>
</tr>
<tr>
<td>Identifiable spot</td>
<td>Orange</td>
<td>+</td>
<td>-</td>
<td>Blue</td>
<td>-</td>
</tr>
<tr>
<td>β-Carotene</td>
<td>Light yellow</td>
<td>±</td>
<td>-</td>
<td>Blue</td>
<td>-</td>
</tr>
<tr>
<td>Phytofluene</td>
<td>Colorless</td>
<td>-</td>
<td>-</td>
<td>Yellow</td>
<td>-</td>
</tr>
<tr>
<td>Phytoene</td>
<td>Colorless</td>
<td>-</td>
<td>-</td>
<td>Yellow</td>
<td>-</td>
</tr>
</tbody>
</table>

^a - No change in color, ±, weakly positive; +, positive.

^b Xanthomoneum became purple when sprayed with 2 N NaOH.

^c Xanthomoneum and xanthone derivatives turned to purple to violet.

^d Phytoene strongly absorbed UV light. Phytofluene fluoresced under long-wavelength UV light.
TABLE 3. Some major differences between carotenoid and quinone pigments:

<table>
<thead>
<tr>
<th>Pigment</th>
<th>Absorption spectra (elevated light)</th>
<th>Carr-Price test</th>
<th>Alkaloid solubility (2 N NaOH)</th>
<th>Color change in</th>
<th>R, (TLC) in</th>
<th>near ultraviolet (\beta)-carotene</th>
<th>one (37^\circ)C one (37^\circ)C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carotenoid (\alpha) or (\beta)-carotene</td>
<td>Usually three characteristic peaks</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td><1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xanthonegmarin'</td>
<td>One broad peak</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td><1.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Results expressed as −, no change in color; +, positive.

* Rate of flow on thin layer chromatographic (TLC) sheet (ticl).

* A representative quinone pigment from \(\alpha \)-carotene (cooker provided by Y. Nishimaki).

Fig. 4

Carotenoid pigment formation during arthrosporulation of \(T. \) mentagrophytes. The appearance of cells is depicted in the upper graph, and the relationship of carotenoid formation to arthrosporulation is shown in the lower graph.
chains or were released as single cells as a result of disarticulation of connecting septa (Fig. 4). During this maturation process, arthrospores continuously accumulated intracellular pigments, reaching a maximum in about 8 days.

Although carotenoid pigments could not be demonstrated in any states of growth (hyphae or microconidia) other than during arthrosporulation, carotenogenesis does not seem to be an essential event for either the induction or the completion of arthrosporulation. Complete arthrosporulation took place when this fungus was grown on Sabouraud-sodium acetate medium at 39°C (data not shown). Downy strains, naturally occurring asporogenic variants of T. mentagrophytes, were able neither to arthrosporulate nor to form carotenoid pigments under all conditions we tested. Light was not required for the induction of carotenoid biosynthesis in arthrosporulating T. mentagrophytes.

SIGNIFICANCE AND DISCUSSION

The data presented in Table 1 and 2 clearly indicate that the pigments associated with arthrosporigenesis of T. mentagrophytes are carotenoids and not quinone derivatives. In addition to the positive test for carotenoids (Carr-Price test) and the typical carotenoid three-peak light absorption spectra (Table 1), the insolubility of the pigments in 2 N NaOH and their failure to change color in alkali or in magnesium acetate solution render it highly unlikely that these pigments from T. mentagrophytes arthrospores are quinone derivatives as generally reported for dermatophytes. The authentic fungal quinone pigment xanthomengin reacted quite differently from the T. mentagrophytes pigments in both the physical and chemical tests (Table 3).

Considering the rather ubiquitous occurrence of carotenoid pigments in fungi, it is not surprising to find carotenoids in a dermatophyte. However, the unusual finding that carotenogenesis in this fungus occurs only during arthrosporulation suggests a reason why carotenoid pigments have not been previously detected in T. mentagrophytes. Recent studies (R. Emyanitoff, Ph.D. dissertation, Loyola University, 1978) have shown that the induction of arthrosporulation in this dermatophyte is possible only under specific nutritional and physiological conditions and that arthrospores would not be formed under most routine growth conditions. Mares et al. recently observed either yellow or orange substance in T. mentagrophytes growing under a condition which, in our judgement, was conducive to arthrosporulation. Without attempting chemical analysis, they assumed the pigment to be a "compound of quinone structure since similar substances are common in the pigmented strains of dermatophytes." In fact, many strains of derma-

tophytes are known to produce pigments which are of quinone derivatives. Among these, the most common pigment is xanthoxin, the major pigment produced by T. mentagrophytes. Xanthoxin was subsequently found in many other strains of dermatophytes as well as in other fungi. It appears that the unique association of carotenogenesis with arthrosporulation and an a priori assumption by some workers that dermatophytes produce only quinone type pigments are jointly responsible for undue delay in demonstrating carotenoids in dermatophytes. It is anticipated that with the elucidation of specific conditions for arthrosporulation, similar carotenoids may be found in other dermatophytic fungi.

Despite the intimate association of carotenogenesis and arthrosporulation in this fungus, the former does not seem to be an essential event for the completion of arthrospore formation, although the properties of arthrospores with or without carotenoids need further examination. Morphologically normal arthrospores could be produced when the fungus was arthrosporulated at 39°C instead of 37°C. Such arthrospores were almost completely devoid of carotenoid pigments (Hashimoto and Mock, unpublished data).

III. Preparation of the cell walls of T. mentagrophytes hyphae and arthrospores as possible sources of vaccine.

The existence, in man, of specific acquired immunity to superficial cutaneous infections (dermatomycoses) has been debated since Bloch and Massini reported that guinea pigs became resistant to reinfections following the first experimental Trichophyton infection. Although there are numerous reports that immunization against dermatomycoses is an ineffective and unpractical approach to the prophylaxis of dermatomycoses (reviewed by Grappel et al., Immunology of Dermatophytes and Dermatophytosis, Bacteriol. Rev. 38, 222-250, 1974), the data obtained from a recent human experimentation do indicate that individuals experimentally infected with T. mentagrophytes spores become either immune to reinfection or at least become more resistant to reinfection (Jones et al. Arch. Dermatol. 109:840-848, 1974).

Since arthrospores of dermatophytes are now considered the primary source of infection in man, we strongly feel that the problems of acquired immunity and prophylaxis against dermatomycoses should be reexamined at this time. No workers in the past have explored the pathogenic or immunological roles of arthrospores in ringworm infections. We believe that if arthrospores introduced to skin wounds are arrested before transforming into ineffective hyphae by either specific antibodies or cell mediated immunity, such individuals are less likely to develop active infections. Because dermatophytic arthrospores are characterized by the presence of thick cell walls and these walls are the first cellular component coming in contact with
the host defense system, we reasoned that the immunological and chemical characterization of arthrospore cells merits a thorough investigation.

Isolation and purification of *T. mentagrophytes* arthrospore walls.

Probably because of the unusual thickness and spherical shape of the wall, our attempts to disrupt arthrospores of *T. mentagrophytes* by means of several conventional methods (sonication, grinding, Mickle technique and freeze and thawing) were proven to be ineffective. We found that repeated passages through a French pressure cell (Aminco, J4-3339) using 40,000 psi caused the complete disruption of mature arthrospores. In most cases, 7-10 passages were sufficient to break more than 99% of arthrospore populations. Arthrospore walls were separated from broken cells by repeated centrifugation at 4°C and the walls were further purified by gradient centrifugation in renografin. Purified cell walls were free from ergosterol (membrane constituent) and RNA (ribosomes). Electron microscopy of wall preparations confirmed that the preparation is essentially free from cytoplasmic materials.

Chemical composition.

For the analytical methods, see our earlier publication (Wu-Yuan and Hashimoto, J. Bacteriol. 129:1584-1592, 1977). The chemical analysis of purified cell walls of *T. mentagrophytes* arthrospores revealed the following composition.

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>3%</td>
</tr>
<tr>
<td>Neutral sugars* (as glucose)</td>
<td>53%</td>
</tr>
<tr>
<td>Chitin</td>
<td>30%</td>
</tr>
<tr>
<td>Lipid</td>
<td>< 1.0%</td>
</tr>
<tr>
<td>Others</td>
<td>15%</td>
</tr>
</tbody>
</table>

* Glucose is the major monosaccharide in this wall. Mannose and galactose are also present as minor components.

We are now accumulating a large quantity of purified cell walls of *T. mentagrophytes* arthrospores for more thorough chemical analyses and immunological characterization.

