REGULARIZATION OF ILL-POSED PROBLEMS

C.W. Groetsch
Analysis and Optimization Branch
Structural Mechanics Division

September 1978
TECHNICAL REPORT AFFDL-TR-78-129
Final Report for Summer 1978

Approved for public release; distribution unlimited

AIR FORCE FLIGHT DYNAMICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433
NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

PAUL J. NIKOLAI CHARLES A. BAIR, Jr., Major, USAF
Project Scientist Chief, Analysis & Optimization Br.
Structural Mechanics Division

FOR THE COMMANDER

RALPH L. KUSTER, JR., Colonel, USAF
Chief, Structural Mechanics Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFFDL/STINFO, W-PAB, OH 45433 to help us maintain a current mailing list."

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.
Some examples of linear ill-posed problems in engineering are given and a general class of regularization methods for ill-posed linear operator equations is studied. Rates of convergence for the general method are established under various assumptions on the data. Applications are given to a number of iterative and noniterative regularization algorithms.
FOREWORD

This report describes work performed in the Air Force Flight Dynamics Laboratory during the summer of 1978. The research was supported by the Air Force Office of Scientific Research through the USAF-ASEE Summer Faculty Research Program (WPAFB), Contract F44620-76-C-0052, The Ohio State University Research Foundation, Columbus, Ohio.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>Generalized Inverses</td>
<td>5</td>
</tr>
<tr>
<td>III</td>
<td>A General Method</td>
<td>9</td>
</tr>
<tr>
<td>IV</td>
<td>Specific Methods</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>21</td>
</tr>
</tbody>
</table>
SECTION I

INTRODUCTION

The concept of a well-posed problem was formulated by Hadamard early in this century. In broad terms, a problem is well-posed in the sense of Hadamard if it has a unique solution which depends continuously on the data of the problem. Specifically, if T is a transformation from a metric space X into a metric space Y, then the problem

$$Tx = b$$

is said to be well-posed if

1. For each $b \in Y$ there is a solution $x \in X$,
2. The solution x is unique,
3. The solution x depends continuously on the "data" b.

A problem which is not well-posed is called "ill-posed." Ill-posed problems have been intensively studied during the last fifteen years, especially by Soviet mathematicians (see [12],[23]), because of their importance in many engineering applications (see [11] and [14] for specific areas of Air Force interest). In this report we will be concerned with linear ill-posed problems, that is, we will study the problem (1) where T is a linear operator on Hilbert space.

A typical problem of this type is the integral equation of the first kind.
\[
\int_{a}^{d} k(s,t)x(s)ds = b(t)
\]

where the kernel \(k \) is a member of \(L^2([a,d]x[a,d]) \) (the space of Lebesgue square integrable functions on the rectangle \([a,d]x[a,d]\)) and \(b \in L^2[a,d] \) (we allow \(a \) or \(d \) to be infinite). Such equations are notoriously ill-posed. For example, if \(k(s,t) = t + c \), then (2) can have a solution only if \(b \) is a linear function, violating (i). If \(k(s,t) = \sin(s) \) and \(b(t) = 2 \), then by the well-known orthogonality relations,

\[
\int_{0}^{\pi} k(s,t)(1 + \sin(ms))ds = b(t), \ m = 2, 3, ...
\]

which violates (ii). Far more serious is the fact that (iii) is violated for equations of type (2). Indeed, by the Riemann-Lebesgue lemma, for arbitrary \(A \),

\[
\int_{0}^{1} k(s,t) A \sin(mws)ds \to 0 \quad \text{as} \ m \to \infty,
\]

and hence solutions do not depend continuously on the data.

Numerical methods for analyzing ill-posed linear problems are particularly important because a large number of engineering problems have the form (2). Consider for example the one dimensional heat equation.
\[\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}, \quad u(x,0) = h(x). \]

It is well known that the temperature distribution \(f(x) = u(x,T) \) at some time \(T > 0 \) can be expressed in terms of the initial temperature distribution \(h(x) \) by

\[f(x) = \frac{1}{2\sqrt{\pi T}} \int_{-\infty}^{\infty} \exp(-(x-\tau)^2/(4T))h(\tau)d\tau. \]

The "inverse" problem of determining the initial temperature distribution \(h(x) \), given the distribution \(f(x) \) at the later time, is of considerable interest and is an ill-posed problem of type (2).

Another problem of type (2) is the numerical differentiation problem. The nth derivative of a given function \(b(t) \) (with \(b(0) = b'(0) = \ldots = b^{(n-1)}(0) = 0 \)) satisfies

\[t \int_0^t \frac{1}{(n-1)!} (t-s)^{n-1} x(s)ds = b(t). \]

This problem has been studied extensively within the context of ill-posed problems by Cullum [3], Franklin [5] and others.

Another example is afforded by the work of Lee [13] and Provencher [18] on the determination of the molecular weight distribution of a solute from centrifuge data. In this example the molecular weight distribution \(f(m) \) satisfies

\[U(x) = \int_0^\infty \frac{2}{\lambda m^2} e^{-\lambda mx} f(m)dm \]

\[0 \leq e^{-\lambda m}. \]
where U is a function which is proportional to the measured concentration gradient and λ is a constant which is proportional to the square root of the rotor speed.

As a final example, we give the two dimensional integral equation

$$
\int_\Omega \frac{p(x', y') \, dx' \, dy'}{\sqrt{(x-x')^2 + (y-y')^2}} = \delta - f_1(x, y) - f_2(x, y)
$$

which was studied by Singh and Paul [21] and concerns the pressure distribution in the contact of nonconforming elastic bodies.

Integral equations of the first kind also arise in the determination of the shape of conducting bodies from backscattered electromagnetic radiation ([16],[17]), seismic prospecting [2], antenna theory [4], remote probing of the atmosphere ([22],[24]), medical tomography [6] and system identification ([1],[15]).
SECTION II
GENERALIZED INVERSES

We will henceforth assume that H_1 and H_2 are Hilbert spaces and that $T: H_1 \rightarrow H_2$ is a bounded linear operator. The inner product and norm in each space will be denoted by (\cdot, \cdot) and $\|\cdot\|$, respectively. The range and nullspace of T will be denoted by $R(T)$ and $N(T)$, respectively. Our task is to solve the ill-posed problem (1) for $x \in H_1$ given $b \in H_2$. Of course, if $b \notin R(T)$ then (1) is violated and there is no solution. In such a case we might reasonably adopt the more flexible attitude of replacing b in the right hand side of (1) by the point in $R(T)$ which is nearest to b. However, if $R(T)$ is not closed, such a closest point may not exist. We are then led to accept as a generalized solution any vector $u \in H_1$ which satisfies

$$Tu = Pb$$

where P is the projection of H_2 onto $R(T)$, the closure of $R(T)$. Any vector u satisfying (3) is called a least squares solution of equation (1). We note that a least squares solution will exist for any vector b whose projection onto $R(T)$ lies in $R(T)$, i.e., for all vectors b in the dense subspace $R(T) \oplus R(T)^\perp$ of H_2. It is not difficult to see that least squares solutions may also be characterized as vectors $u \in H_1$ which satisfy either of the conditions

$$\|Tu - b\| \leq \|Tx - b\|, \text{ for all } x \in H_1, \quad \text{(4)}$$

or

$$T^*Tu = T^*b$$

(5)
where \(T^* \) is the adjoint of \(T \) (see [7] for a proof of this and other simple facts pertaining to this section).

We have seen that if we consider least squares solutions instead of traditional solutions, then difficulty (1) is to a certain extent obviated. The problem of nonuniqueness, however, remains at this point. Indeed, if \(N(T) \neq \{0\} \) then there may be infinitely many least squares solutions, for if \(u \) is a least squares solution, then so is \(u + v \) for any \(v \in N(T) \). Fortunately, there is a natural way of selecting a least squares solution which is unique in a certain sense. We see from (5) that the set of all least squares solutions is a closed convex set. This set therefore contains a unique vector of smallest norm and it is this vector which we will accept as the unique generalized solution of equation (1). Let \(\mathcal{O}(T^+) = R(T) \oplus R(T) \).

The operator

\[
T^+: \mathcal{O}(T^+) \to H_1
\]

which associates with each \(b \in \mathcal{O}(T^+) \) the unique least squares solution of equation (1) with minimal norm is called the generalized inverse of \(T \). It is not difficult to show that \(T^+ \) is a closed linear operator (see [7]). If \(T^+ \) were continuous then problems (i), (ii), (iii) would be solved, at least for \(b \in \mathcal{O}(T^+) \). But alas this is not the case. It is not difficult to show that \(T^+ \) is continuous if and only if \(R(T) \) is closed. Unfortunately the range of an integral operator is closed if and only if its kernel is degenerate (see [7]). We are therefore led to seek approximations to \(T^+ \) by bounded linear
operators. Such approximations, when applied to b, are called regularizers of equation (1).
SECTION III
A GENERAL METHOD

We will denote the operator \(T^* T \) by \(\tilde{T} \) and the operator \(TT^* \) by \(\check{T} \). Note that \(\tilde{T} \) and \(\check{T} \) are self adjoint linear operators whose spectra lie in the interval \([0, ||T||^2]\). If \(0 \notin \sigma(\tilde{T}) \) (the spectrum of \(\tilde{T} \)), then by (5) we have \(T^+ = T^{-1} T^* \). In general, however, \(0 \in \sigma(\tilde{T}) \), but this last equation nevertheless leads us to seek approximations to \(T^+ \) by operators of the form \(U(\tilde{T})T^* \) where \(U \) is a continuous function on \([0, ||T||^2]\) which approximates the function \(f(t) = t^{-1} \) in some sense. Specifically, we will consider a family (net) of real valued functions \(\{U_\beta(t): \beta \in \mathbb{S}\} \), indexed by a subset \(\mathbb{S} \) of the positive real numbers with \(\infty \in \mathbb{S} \), where each \(U_\beta \) is continuous on \([0, ||T||^2]\) and such that

\[
|tU_\beta(t)| \leq M \quad \text{for all } t \text{ and } \beta \quad (6)
\]

and

\[
U_\beta(t) \to t^{-1} \quad \text{as } \beta \to \infty \text{ for each } t \neq 0. \quad (7)
\]

The following is proved in [7].

Theorem 1. Suppose \(b \in \mathcal{D}(T^+) \) and let \(x_\beta = U_\beta(\tilde{T})T^* b \). Then \(x_\beta \to T^+ b \) as \(\beta \to \infty \).

To this we now add,

Theorem 2. If \(b \notin \mathcal{D}(T^+) \), then \(\{x_\beta\} \) has no weakly convergent subnet.

Proof. Suppose \(\{x_{\beta_\nu}\} \) is a subnet of \(\{x_\beta\} \) which converges weakly to \(z \in H_1 \), denoted \(x_{\beta_\nu} \rightharpoonup z \). By the weak continuity of bounded linear operators we then have \(Tx_{\beta_\nu} \rightharpoonup Tz \).
Now,

\[Pb - Tx_B = Pb - T\hat{U}_B(\hat{T})^* b \]

\[= Pb - \hat{T}\hat{U}_B(\hat{T})Pb. \]

However, by (6) and (7), the operator \(\hat{T}\hat{U}_B(\hat{T}) \) converges pointwise to the projection of \(H_2 \) onto \(N(\hat{T}) = N(T^*) = R(T) \). Therefore \(Pb - Tx_B \to 0 \). It then follows that \(Pb = Tz \), a contradiction.

In the proof above we have used the fact that \(U_B(\hat{T})T^* = T^* U_B(\hat{T}) \). This is easy to see if \(U_B \) is a polynomial. In the general case the identity follows from the Weierstrass approximation theorem. Using the fact that bounded sets in Hilbert space are weakly compact, we have:

Corollary 3. If \(b \in \mathcal{D}(T^+) \), then \(||x_B|| \to \infty \) as \(B \to \infty \).

Theorem 1 and Corollary 3 demonstrate dramatically the unequivocal nature of the approximations \(\{ x_B \} \).

Several authors have established rates of convergence for various approximations to \(T^+b \) under the stronger assumption that \(Pb \in R(T) \) (see [20], [9], [10]). We see from Corollary 3 that the very least we must require to get convergence at all is that \(Pb \in R(T) \). In order to strengthen this condition only slightly and thereby obtain a rate of convergence we note that

\[R(T) = R(T P_{N(T)}) \]

and, in the pointwise sense,
\[p(T) = \lim_{v \to 0^+} T_v. \]

It therefore seems reasonable to replace the hypothesis \(b \in \mathcal{D}(T^+) \), i.e., \(P_b \in \mathcal{R}(T) \), by the hypothesis \(P_b \in \mathcal{R}(T) \) for some \(v > 0 \). In order to gauge the rate of convergence we will replace (7) by the stronger condition

\[T^v |1 - tU_\beta(t)| \leq \omega(\beta, v) \quad \text{for} \quad v > 0 \quad (8) \]

where \(\omega(\beta, v) \to 0 \) as \(\beta \to \infty \) for each \(v > 0 \) (the case \(v = 1 \) was considered in [8]).

Lemma 4. If \(v > 0 \), then \(\mathcal{R}(T^v) \subseteq N(T) \).

Proof. Suppose \(\{f_n\} \) is a sequence of continuous real valued functions on \([0, ||T||^2]\) such that \(f_n(t) \to t^{v-1} \) for \(t \neq 0 \) and \(tf_n(t) \) is uniformly bounded (for example, we may take \(f_n(t) = t^{v-1} \) for \(t \geq 1/n \) and \(f_n(t) = n^{2-v}t \) for \(0 \leq t \leq 1/n \)). Let \(\{E_n\} \) be the resolution of the identity generated by the self-adjoint operator \(\tilde{T} \). By the bounded convergence theorem we then have

\[T^v \mathbf{y} = \int_0^\infty t^2 \text{d} E_\mathbf{y} = \int_0^\infty t^2 \text{d} E_\mathbf{y} = \lim_{n \to \infty} \int_0^\infty t^2 \text{d} E_\mathbf{y} = \lim_{n \to \infty} \int_0^\infty t^2 \text{d} E_\mathbf{y} = \lim_{n \to \infty} \tilde{T} f_n(T) \mathbf{y} \in N(T) \#

We now state a rate of convergence result. The vector \(T^v b \) will be denoted by \(\mathbf{x} \) and the error \(\mathbf{x} - \mathbf{x}_\beta \) by \(\epsilon_\beta \).
Theorem 5. If \(P_b = T\tilde{\nu}w \), where \(\nu > 0 \), then \(\| e_\beta \| \leq \omega(\beta, \nu) \| w \| \).

Proof. Since \(Tx = P_b = T\tilde{\nu}w \) and since \(x - \tilde{\nu}w \in N(T) \), we see that \(x = \tilde{\nu}w \). Now,

\[
x_\beta = U_\beta(\hat{T})T^*_b = U_\beta(\hat{T})T^*P_b = U_\beta(\hat{T})Tx = U_\beta(\hat{T})\tilde{\nu}^{\nu+1}w.
\]

Therefore \(e_\beta = x - x_\beta = \tilde{\nu}(I - U_\beta(\hat{T})T)w \).

By the Spectral Mapping Theorem and Radius Formula, we then have

\[
\| e_\beta \| \leq \omega(\beta, \nu) \| w \|. \quad \#\]

In our next result we become more cavalier in our assumptions on the data.

Lemma 6. If \(P_b = \tilde{\nu}w \) where \(\nu \geq 1 \), then \(\| e_\beta \|^2 \leq \omega(\beta, \nu-1) \| T e_\beta \| \| w \| \).

Proof. As in the previous proof we find that \(x = T\tilde{\nu}^{\nu-1}w \). Also,

\[
x_\beta = U_\beta(\hat{T})T^*_b = U_\beta(\hat{T})T^*\tilde{\nu}w = T^*U_\beta(\hat{T})\tilde{\nu}w.
\]

Therefore \(e_\beta = x - x_\beta = T^*(I - U_\beta(\hat{T})T)\tilde{\nu}^{\nu-1}w \), and

\[
\| e_\beta \|^2 = (e_\beta, T^*(I - U_\beta(\hat{T})T)\tilde{\nu}^{\nu-1}w)
\]

\[
= (T e_\beta, (I - U_\beta(\hat{T})T)\tilde{\nu}^{\nu-1}w) \leq \omega(\beta, \nu-1) \| w \| \| T e_\beta \|. \quad \#\]

Theorem 7. If \(P_b = \tilde{\nu}w \) where \(\nu \geq 1 \), then \(\| e_\beta \|^2 \leq \omega(\beta, \nu) \omega(\beta, \nu-1) \| w \| \).

Proof. In Lemma 6 we saw that

\[
e_\beta = T^*(I - U_\beta(\hat{T})T)\tilde{\nu}^{\nu-1}w,
\]
therefore

\[\tilde{e}_{\beta} = T^*T^\nu(I - U_{\beta}(\hat{T})\tilde{T})w. \]

We then have

\[||Te_{\beta}||^2 = (Te_{\beta},e_{\beta}) = (T^\nu(I - U_{\beta}(\hat{T})\tilde{T})w,Te_{\beta}) \]

\[\leq \omega(\beta,\nu)||Te_{\beta}||, \text{ i.e., } ||Te_{\beta}|| \leq \omega(\beta,\nu). \]

Substituting into the result of Lemma 6 completes the proof.

In the next section we will give a number of examples of specific computational techniques to which the above results apply.

We have avoided for long enough the problem of polluted data. We now take up this question. Suppose that the data \(b \) is the result of measurements so that instead of \(b \) we have in our possession a corrupted version \(b^c \) satisfying \(||b - b^c|| \leq c \). We operate on the vector \(b^c \) to obtain the approximations \(x^c_{\beta} \) given by

\[x^c_{\beta} = U_{\beta}(\hat{T})b^c. \]

Let \(\phi(\beta) = \sup\{|tU_{\beta}(t)| : t \in [0,||T||^2]\} \), and recall that \(\phi(\beta) \) is bounded (by (6)).

Lemma 8. \(||Tx_{\beta} - Tx^c_{\beta}|| \leq \epsilon \phi(\beta). \)

Proof.

\[\tilde{T}(x_{\beta} - x^c_{\beta}) = \tilde{T}U_{\beta}(\hat{T})^* (b - b^c), \text{ therefore} \]

\[||Tx_{\beta} - Tx^c_{\beta}||^2 = (\tilde{T}(x_{\beta} - x^c_{\beta}),x_{\beta} - x^c_{\beta}) \]

\[= (\tilde{T}U_{\beta}(\hat{T})^* (b - b^c),x_{\beta} - x^c_{\beta}) \]

\[= (\tilde{T}U_{\beta}(\hat{T})(b - b^c),T(x_{\beta} - x^c_{\beta})) \]

13
\[
\leq \phi(\beta) \|b - b^\epsilon\| \|T(x_\beta - x_\beta^\epsilon)\|
\leq \epsilon \phi(\beta) \|T x_\beta - T x_\beta^\epsilon\|.
\]

Suppose now that \(g(\beta) = \sup\{|U_\beta(t)|: t \in [0, \|T\|^2]\} \). We note that

\[g(\beta) \to \infty \text{ as } \beta \to \infty. \tag{9} \]

Indeed, if this were not the case, then there would be a constant \(L \) such that \(|U_\beta(t)| < L \) for all \(t \) and \(\beta \). But then \(|tU_\beta(t)| \leq Lt \to 0 \) as \(t \to 0 \), contradicting (7).

Lemma 9. \(\|x_\beta - x_\beta^\epsilon\| \leq \epsilon \sqrt{g(\beta)\phi(\beta)} \).

Proof. Since \(x_\beta - x_\beta^\epsilon = T^* U_\beta(\hat{T})(b - b^\epsilon) \), we have, by use of Lemma 8,

\[
\|x_\beta - x_\beta^\epsilon\|^2 = (x_\beta - x_\beta^\epsilon, T^* U_\beta(\hat{T})(b - b^\epsilon))
= (T(x_\beta - x_\beta^\epsilon), U_\beta(\hat{T})(b - b^\epsilon))
\leq \epsilon^2 \phi(\beta) g(\beta).
\]

Suppose now that \(P\beta = \hat{T}w \) (we could also use the other hypotheses considered above, but we choose to consider this simple case to illustrate the ideas). By the triangle inequality we have

\[
\|x - x_\beta^\epsilon\| \leq \|x - x_\beta\| + \|x_\beta - x_\beta^\epsilon\|.
\]

Lemma 9 and Theorem 7, then give

Theorem 10. If \(P\beta = \hat{T}w \), then
\[||x - x^c_\beta|| \leq (||w||\omega(\beta,1)\omega(\beta,0))^{\frac{1}{2}} + \varepsilon(g(\beta)\phi(\beta))^{\frac{1}{2}}.\]

The first term on the right hand side of this inequality goes to zero as \(\beta \to \infty \). However, by (9) and (7), the second term becomes infinitely large as \(\beta \to \infty \). This illustrates the classic dilemma in the numerical treatment of ill-posed problems. Even if computations are performed exactly, small errors in the data may eventually grow and overpower the approximations.

In view of Theorem 10, the question naturally arises as to whether it is ever possible to obtain convergent approximations even if the data can be measured as precisely as desired. Specifically, is there an effective way of choosing a "stopping parameter" \(\beta(\varepsilon) \) such that \(e_{\beta(\varepsilon)} \to 0 \) as \(\varepsilon \to 0 \)? This problem of choice of regularization parameters is of great importance and still has not been satisfactorily answered. For the wide class of methods considered here the question is particularly difficult, for as we shall see in the next section, the parameter may take on discrete or continuous values depending upon the specific method under consideration.
SECTION IV
SPECIFIC METHODS

In this section we will consider some specific choices for the functions \{U_\beta(t)\} and we will find functions \omega(\beta, \nu) which determine rates of convergence. The index set \(S \) in all examples below will be either the set of nonnegative reals or nonnegative integers. In the discrete case, the parameter \(\beta \) will be denoted by \(n \).

As a first example we consider Showalter's integral formula [19]:

\[T^*b = \int_0^\infty \exp(-uT)T^*bdu. \]

The functions \(U_\beta \) for this example have the form

\[U_\beta(t) = \int_0^\beta \exp(-ut)du \]

and may be motivated in terms of Borel summability [7]. It is not difficult to see that a function \(\omega(\beta, \nu) \) satisfying (8) is given by

\[\omega(\beta, \nu) = \beta^{-\nu} \quad (\nu > 0). \]

The choice \(U_\beta(t) = (t + \beta^{-1})^{-1} \) leads to Tychonov's regularization of order zero [23]. Here one can readily verify that

\[\omega(\beta, \nu) = \beta^{-\nu} \quad \text{for } 0 < \nu \leq 1. \]

In order to obtain approximations with this rate for \(\nu > 1 \) we may use extrapolated regularization [9]. That is, for a given \(\beta > 0 \) we set
and define Richardson extrapolants by

\[U_{\beta}^{(j)}(t) = \frac{2^j U_{\beta}^{(j-1)}(t) - U_{\beta}^{(j-1)}(t)}{2^j - 1}, \quad j = 1, 2, \ldots. \]

It is not difficult to show (see [9, lemma 2.1]) that for \(k = 0, 1, 2, \ldots \)

\[t^{k+1} |1 - t U_{\beta}^{(k)}(t)| = \prod_{i=0}^{k} \left(\frac{t}{2^i \beta t + 1} \right) \leq \beta^{-k-1}. \]

Therefore, for the \(k \)th extrapolant we may apply Theorem 7 with
\[\omega(\beta, k) = \beta^{-k-1}, \quad k = 1, 2, \ldots, \]
to obtain the rate \(\beta^{-k+\frac{1}{2}} \) (see [9, Theorem 3.2]).

We now consider some iterative regularization methods. Below, \(\alpha \) will be a parameter satisfying \(0 < \alpha < 2 \| T \|^{-2} \).

If the functions \(U_n(t), n = 0, 1, 2, \ldots \) are defined by

\[U_n(t) = \alpha \sum_{k=0}^{n} (1 - \alpha t)^k \]

then (6) and (7) are satisfied and one can show that

\[n^\nu t^\nu |1 - t U_n(t)| = n^\nu t^\nu |1 - \alpha t|^{n+1} \]

is uniformly bounded. From this we find that the rate of convergence of the iterative process

\[x_0 = \alpha T^* b, \quad x_{n+1} = (I - \alpha T) x_n + \alpha T^* b \]
is determined by the function \(\omega(n, \nu) = n^{-\nu} \).

Newton's method for approximating \(\mathbf{t}^{-1} \) leads to the sequence of functions defined by

\[
U_0(t) = a, \quad U_{n+1}(t) = U_n(t)(2 - tU_n(t)).
\]

For this sequence of functions it is not difficult to see that

\[
t^\nu|1 - tU_n(t)| = O(2^{-\nu n}) \quad \text{for } \nu > 0.
\]

Therefore the rate of convergence of the corresponding iterative method is determined by the function \(\omega(n, \nu) = 2^{-\nu n} \).

Showalter and Ben-Israel [20] have extrapolated on the previous method to obtain methods with a higher rate of convergence. For a positive integer \(p \geq 2 \) they define the hyperpower methods in terms of the sequence

\[
U_0(t) = a, \quad U_{n+1}(t) = U_n(t) \sum_{k=0}^{p-1} (1 - tU_n(t))^k.
\]

For these methods the results above may be used to obtain the convergence rate \(O(p^{-\nu n}) \).

In [11] Lardy considered the approximations

\[
x_0 = 0, \quad \tilde{T}x_n + x_n = x_{n-1} + T^*b, \quad n = 1, 2, ...
\]

to \(T^*b \), where \(T \) is an unbounded operator. We may apply the results above in the case of a bounded operator if we define the functions

\[
U_n \text{ by}
\]
One can verify, as in the first iterative example above, that the function \(\omega(n, \nu) = n^{-\nu} \) determines a rate of convergence.

The iterative method

\[
x_0 = T^* b, \quad x_{n+1} = x_n + (T^* b - T x_n)/(n + 2),
\]

was investigated in [10]. The appropriate functions \(U_n \) are given by

\[
U_n(t) = \sum_{k=1}^{n} (t + 1)^{-k}.
\]

This leads to the iterative method

\[
x_0 = T^* b, \quad x_{n+1} = x_n + (T^* b - T x_n)/(n + 2).
\]

Following the analysis given in [10] one can show that the rate of convergence of this method is governed by the function \(\omega(n, \nu) = (\log n)^{-\nu} \).
REFERENCES

22. O.N. Strand and E.R. Westwater, Statistical estimation of the numerical solution of a Fredholm integral equation of the first kind, J.A.C.M. 15(1968), 100-114.
