CANONICAL CORRELATIONS WITH RESPECT TO A COMPLEX STRUCTURE

BY

STEEN A. ANDERSSON

TECHNICAL REPORT NO. 33
JULY 1978

PREPARED UNDER CONTRACT NO0014-75-C-0442
(NR-042-034)
OFFICE OF NAVAL RESEARCH

THEODORE W. ANDERSON, PROJECT DIRECTOR

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
CANONICAL CORRELATIONS WITH RESPECT TO A COMPLEX STRUCTURE

by

STEEN A. ANDERSSON*
University of Copenhagen

TECHNICAL REPORT NO. 33
JULY 1978

PREPARED UNDER CONTRACT NO.0014-75-C-0442
(NR-042-034)
OFFICE OF NAVAL RESEARCH

Theodore W. Anderson, Project Director

Reproduction in Whole or in Part is Permitted for
any Purpose of the United States Government.
Approved for public release; distribution unlimited.

Also issued as Technical Report No.132 under National Science Foundation
Grant MPS 75-09450 - Department of Statistics, Stanford University.

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

*Work was finished at Stanford University with support from the
Danish Natural Science Research Council.
1. Introduction

Let \(E \) be a vector space of dimension \(2p \) over the field of real numbers \(\mathbb{R} \). Let \(x_1, \ldots, x_N \) (\(N \geq 2p \)) be identically distributed independent observations from a normal distribution with mean value 0 and unknown covariance \(\Sigma \). That is, \(\Sigma \) is a positive definite form on the dual space \(E^* \) to \(E \). The maximum likelihood estimator \(\hat{\Sigma} \) for \(\Sigma \) is well-known to be given by

\[
\hat{\Sigma} (x_1, \ldots, x_N) = \left((x^*, y^*) \right) \frac{1}{N} \sum_{i=1}^{N} x^*(x_i) y^*(x_i); x^*, y^* \in E^*
\]

The distribution of \(\hat{\Sigma} \) is the Wishart distribution on the set \(\rho(E^*)_\mathbb{R} \) of positive definite forms on \(E^* \) with \(N \) degrees of freedom and parameter \(\frac{1}{N} \Sigma \). Suppose now that \(E \) is also a vector space over the field \(\mathbb{C} \) of complex numbers such that the restriction to the subfield of real numbers in \(\mathbb{C} \) is the original vector space structure on \(E \).

The dimension of \(E \) as a vector space over \(\mathbb{C} \) is then \(p \). The vector space \(E^* \) is then also a vector space over the complex numbers under the definition \(zx^* = x^* \circ \bar{z} = (x \to x^*(\bar{z}x)); x \in E \), \(x^* \in E^*, z \in \mathbb{C} \). The set \(\rho_{\mathbb{C}}(E^*)_\mathbb{R} = \{ \Sigma \in \rho(E^*)_\mathbb{R} | \Sigma(zx^*, y^*) = \Sigma(x^*, \bar{z} y^*), \forall x^*, y^* \in E^*, \forall z \in \mathbb{C} \} \) defines a null hypothesis in the statistical model described above. The condition \(\Sigma(zx^*, y^*) = \Sigma(x^*, \bar{z} y^*) \), \(\forall x^*, y^* \in E^*, \forall z \in \mathbb{C} \) is in Andersson [2] called the \(\mathbb{C} \)-property and in terms of matrices it has the formulation: For every basis \(e_1^*, \ldots, e_p^* \) for the complex vector space \(E^* \) the matrix for a \(\Sigma \) with the \(\mathbb{C} \)-property with respect to the basis \(e_1^*, \ldots, e_p^*, ie_1^*, \ldots, ie_p^* \) for the real vector space \(E^* \) has the form

\[
\begin{pmatrix}
\Pi & F \\
-F & \Pi
\end{pmatrix}
\]
The statistical problem of testing $\Sigma \in \mathcal{P}_c(E^*)$ versus $\Sigma \in \mathcal{P}(E^*)$ is invariant under the action of the group $GL_c(E)$ of complex one-to-one linear mappings onto the sample and parameter space $\mathcal{P}(E^*)$ given by

$$GL_c(E) \times \mathcal{P}(E^*) \rightarrow \mathcal{P}(E^*)$$

$$(f, \Sigma) \rightarrow \Sigma \circ (f^*xf^*)$$

where f^* is the dual mapping to $f \in GL_c(E)$. The restriction of the action to the subset $\mathcal{P}_c(E^*)$ is transitive. Since all tests invariant under (1.2) have a factorization through a maximal invariant function we shall find a representation of a maximal invariant function into K_+^p, describe the distribution as a density with respect to a restriction of the Lebesque measure and state an interpretation of this representation.

The matrix for a complex linear mapping of E with respect to a basis of the form $e_1, \ldots, e_p, ie_1, \ldots, ie_p$, where e_1, \ldots, e_p is a basis for the complex vector space E is of the form

$$(1.3) \begin{pmatrix} A & B \\ -B & A \end{pmatrix}$$

The expression $\Sigma \circ (f^*xf^*)$ from (1.2) in matrix formulation becomes

$$(1.4) \begin{pmatrix} A & B \\ -B & A \end{pmatrix} \begin{pmatrix} \Pi_{11} & \Pi_{12} \\ \Pi_{12}' & \Pi_{22} \end{pmatrix} \begin{pmatrix} A' & -B' \\ B' & A' \end{pmatrix}$$

with respect to the dual basis $e_1^*, \ldots, e_p^*, ie_1^*, \ldots, ie_p^*$ in E^* to $e_1, \ldots, e_p, ie_1, \ldots, ie_p$ in E.

2
2. Representation of the maximal invariant

2.1. Lemma. Let Π be a positive definite form on the \mathbb{R}-space E. Then there exists a basis e_1, \ldots, e_p for the \mathbb{C}-space F such that the $2p \times 2p$ real matrix for Π with respect to e_1, \ldots, e_p, ie_1, \ldots, ie_p has the form

$$
\begin{bmatrix}
I & D_{\lambda} \\
D_{\lambda} & I
\end{bmatrix}
$$

where I is the $p \times p$ identity matrix and

$$
D_{\lambda} = \text{diag}(\lambda_1, \ldots, \lambda_p) \quad \text{with} \quad 1 > \lambda_1 > \cdots > \lambda_p > 0.
$$

Furthermore, the matrix D_{λ} is uniquely determined by Π; and if $\lambda_1 > \lambda_2 > \cdots > \lambda_p > 0$, then Π also determines the basis e_1, \ldots, e_p uniquely up to the sign of each basis vector.

Proof: Let e_1', \ldots, e_p' be a basis for the \mathbb{C}-space E and let

$$
\begin{bmatrix}
\Pi_{11} & \Pi_{12} \\
\Pi_{12}' & \Pi_{22}
\end{bmatrix}
$$

be the $2p \times 2p$ real matrix for Π with respect to e_1', \ldots, e_p', ie_1', \ldots, ie_p'. The assertion is then that there exists a nonsingular complex $p \times p$ matrix $Z_1 = A + iB$ such that

$$
\begin{bmatrix}
A' & B' \\
-B' & A'
\end{bmatrix}
\begin{bmatrix}
\Pi_{11} & \Pi_{12} \\
\Pi_{12}' & \Pi_{22}
\end{bmatrix}
\begin{bmatrix}
A & -B \\
B & A
\end{bmatrix} =
\begin{bmatrix}
I & D_{\lambda} \\
D_{\lambda} & I
\end{bmatrix}
$$

(2.3)
and that D_λ is unique; and in the case where $\lambda_1 > \ldots > \lambda_p > 0$, the columns of Z are unique up to multiplication with ± 1.

The equation (2.3) is equivalent to the complex matrix equations

$$
\overline{Z}_1^{'\frac{1}{2}} (\frac{1}{2} (\Pi_{11} + \Pi_{22}) + i \frac{1}{2} (\Pi_{12}^{'\prime} - \Pi_{12})) Z_1 = I
$$

(2.4)

$$
Z_1^{'\frac{1}{2}} (\frac{1}{2} (\Pi_{12} + \Pi_{12}) + i \frac{1}{2} (\Pi_{11} - \Pi_{22})) Z = D_\lambda
$$

If we define $Z = Z_1^{-1}$ and

$$
\phi = \frac{1}{2} (\Pi_{11} + \Pi_{22}) + i \frac{1}{2} (\Pi_{12}^{'\prime} - \Pi_{12})
$$

(2.5)

$$
\psi = \frac{1}{2} (\Pi_{12} + \Pi_{12}) + i \frac{1}{2} (\Pi_{11} - \Pi_{22})
$$

then (2.4) becomes

$$
\phi = \overline{Z}^{'\prime} Z
$$

(2.6)

$$\psi = Z^{'\prime} D_\lambda Z$$

Since ϕ respectively ψ is the matrix for a positive definite hermitian form respectively symmetric form on the C-space E, it follows from [3] that we can find a complex $p \times p$ diagonal matrix D and a complex nonsingular $p \times p$ matrix Y such that

$$
\phi = \overline{Y}^{'\prime} Y
$$

(2.7)

$$\psi = Y^{'\prime} D Y$$

By permutation we can obtain that the diagonal elements d_1, \ldots, d_p of D have the property $|d_1| \geq |d_2| \geq \ldots \geq |d_p|$. If we then multiply
the \(v^\text{th}\) row of \(Y\) with \(\exp[-i\theta_v/2]\), where \(d_v = |d_v|\exp[i\theta_v]\), \(v = 1, \ldots, p\), and call this new matrix for \(Z\), we obtain (2.6) with \(\lambda_v = |d_v|, v = 1, \ldots, p\). Since \(\Pi\) is positive definite, we have \(1 > \lambda_1 > \ldots > \lambda_p \geq 0\). The uniqueness follows from a rather elementary examination of the proof in [3] or from direct matrix calculation. Since every matrix of the form (2.1) with \(1 > \lambda_1 \geq \ldots > \lambda_p \geq 0\) is positive definite it follows from Lemma (2.1) that the mapping from \(\rho(E^*)_T\) onto \(\Omega = \{(\lambda_1, \ldots, \lambda_p) \in \mathbb{R}_+^p \mid 1 > \lambda_1 > \ldots > \lambda_p \geq 0\}\) determined from Lemma 2.1 is a maximal invariant function.

3. Canonical correlations with respect to a complex structure.

Interpretation.

It follows from Lemma 2.1 that there exists a basis \(e_1, \ldots, e_p\) for the \(C\)-space \(E\) such that the \(2p \times 2p\) matrix for \(\Sigma\) with respect to \(e^*_1, \ldots, e^*_p, ie^*_1, \ldots, ie^*_p\) has the form (2.1). In (2.1) \(D_\lambda\) is unique; and if \(\lambda_1 > \ldots > \lambda_p > 0\), the basis \(e^*_1, \ldots, e^*_p\) for the \(C\)-space \(E^*\) is unique up to a sign for each element. \(\lambda_1\) is called the \(j\)-th theoretical canonical correlation of \(\Sigma\) with respect to the complex structure, and \(e^*_j\) is called the \(j\)-th theoretical canonical linear form of \(\Sigma\) with respect to the complex structure \(j = 1, \ldots, p\). Let \(x \in E^*\) have coordinates \((\alpha_1, \ldots, \alpha_p, \beta_1, \ldots, \beta_p)\) with respect to \(e^*_1, \ldots, e^*_p, ie^*_1, \ldots, ie^*_p\). Then

\[
\Sigma(x^*, x^*) = \sum_{i=1}^p \alpha_i^2 + \sum_{i=1}^p \beta_i^2 + 2 \sum_{i=1}^p \lambda_i \alpha_i \beta_i
\]

(3.1)

\[
\Sigma(ix^*, ix^*) = \sum_{i=1}^p \alpha_i^2 - \sum_{i=1}^p \beta_i^2 - 2 \sum_{i=1}^p \lambda_i \alpha_i \beta_i
\]

(3.2)
Consider the problem of maximizing $\Sigma(x^*, ix^*)$ under the conditions $\Sigma(x^*, x^*) = \Sigma(ix^*, ix^*) = 1$. This is equivalent to maximizing

$$\Sigma \sum \lambda_i (\alpha_i^2 - \beta_i^2)$$

subject to the conditions

$$\sum \alpha_i^2 + \sum \beta_i^2 = 1$$

and

$$\sum \lambda_i \alpha_i \beta_i = 0 .$$

If we suppose that $\lambda_1 > \lambda_2 > \ldots > \lambda_p > 0$, we get by using Lagrange's multipliers that the maximum point is achieved at $\alpha_1 = \pm 1$, $\alpha_2 = \ldots = \alpha_p = \beta_1 = \ldots = \beta_p = 0$, and the maximum value is λ_1. By induction it follows that $\pm e^*_j$ are the only linear forms uncorrelated with e^*_1, \ldots, e^*_{j-1} for which $\Sigma(\alpha^*_j, e^*_j) = \Sigma(i\alpha^*_j, i\alpha^*_j) = 1$ and $\Sigma(e^*_j, i\alpha^*_j)$ is maximal. The maximum values are λ_j, $j = 1, \ldots, p$.

The canonical correlations $\lambda_1, \ldots, \lambda_p$ with respect to the complex structure can be found as the positive roots of the equation

$$\left| \begin{array}{cc}
\Sigma_{12} + \Sigma_{12} & \Sigma_{22} - \Sigma_{11} \\
\Sigma_{22} - \Sigma_{11} & -\Sigma_{12} - \Sigma_{12}
\end{array} \right| - \lambda \left| \begin{array}{cc}
\Sigma_{11} + \Sigma_{22} & \Sigma_{12} - \Sigma_{12} \\
\Sigma_{12} - \Sigma_{12} & \Sigma_{11} + \Sigma_{22}
\end{array} \right| = 0$$

where

$$\Sigma = \begin{pmatrix}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{12} & \Sigma_{22}
\end{pmatrix} ,$$

with respect to a basis of the form $f^*_1, \ldots, f^*_p, if^*_1, \ldots, if^*_p$.

6
4. The distribution of the empirical canonical correlations with respect to a complex structure.

The estimator \(\hat{\Sigma}(x_1, \ldots, x_N) \) for \(\Sigma \) in the observations point \((x_1, \ldots, x_N)\) is given in the introduction. Suppose that \(\Sigma \in \mathcal{P}_c(E^*)_r \) and let \(e_1^*, \ldots, e_p^* \) be a basis for \(E^* \) such that the \(2p \times 2p \) matrix for \(\Sigma \) with respect to the basis \(e_1^*, \ldots, e_p^*, ie_1^*, \ldots, ie_p^* \) is the \(2p \times 2p \) identity matrix. The distribution of \(\hat{\Sigma} \) in terms of matrices is a Wishart distribution with a representation as a density with respect to the restriction of the Lebesgue measure to all positive definite \(2p \times 2p \) matrices \(\mathcal{P}(\mathbb{R}^{2p})_r \) as follows

\[
(4.1) \quad c \cdot |\det \Theta|^{(N-2p-1)/2} \exp\{- \frac{1}{2} \text{tr}(\Theta)\} d\Theta, \quad \Theta \in \mathcal{P}(\mathbb{R}^{2p})_r.
\]

The canonical correlations and linear forms (with respect to the complex structure) of \(\hat{\Sigma}(x_1, \ldots, x_N) \) is called the empirical canonical correlations and linear forms with respect to the complex structure.

The classical theory of canonical correlations is due to Hotelling [4]. We shall find the distribution of these. If we define \(\Phi \) and \(\Psi \) from the \(2p \times 2p \) real matrix \(\Theta \), as in formula (2.5), we have a one-to-one and onto mapping between \(\mathcal{P}(\mathbb{R}^{2p})_r \) and \(\mathcal{P}(\mathbb{C}^p)_r \times S(\mathbb{C}^p) \), where \(\mathcal{P}(\mathbb{C}^p)_r \) respectively \(S(\mathbb{C}^p) \) denotes the set of positive definite hermitian respectively symmetric \(p \times p \) complex matrices, with Jacobian 1. Furthermore, (2.6) defines a one-to-one mapping from \(\text{GL}_+(\mathbb{C}^p) \times \Omega \) into \(\mathcal{P}(\mathbb{C}^p)_r \times S(\mathbb{C}^p) \), where \(\text{GL}_+(\mathbb{C}^p) \) is the subset of all nonsingular \(p \times p \) complex matrices with a positive real part in the first row and \(\Omega = \{ (\lambda_1, \ldots, \lambda_p) \in \mathbb{R}^p | 1 > \lambda_1 > \ldots > \lambda_p > 0 \} \).
The complementary to the image (which is an open set) of this mapping has Lebesgue measure 0; and therefore from our distribution point of view, we can forget this. To find the Jacobian of this mapping defined by (2.6), we proceed as in [1]. The method is due to Hsu [5]. We have

\[d\Phi = (d\overline{Z}')Z + \overline{Z}'(dz) \]

\[d\Psi = (dz')\Lambda Z + Z'(d\Lambda)Z + Z'\Lambda(dz) \]

and we shall find the absolute value of the determinant of the linear mapping \((dZ,d\Lambda) \rightarrow (d\Phi,d\Psi)\) defined by (4.2). This is a composition of

(a) \[
\begin{pmatrix}
\frac{dZ}{d\Lambda} \\
\frac{d\Lambda}{d\Lambda}
\end{pmatrix}
\rightarrow
\begin{pmatrix}
(dZ)Z^{-1} \\
d\Lambda
\end{pmatrix}
= \begin{pmatrix}
d\Phi \\
d\Lambda
\end{pmatrix},
\]

(b) \[
\begin{pmatrix}
\frac{dW}{d\Lambda} \\
\frac{d\Lambda}{d\Lambda}
\end{pmatrix}
\rightarrow
\begin{pmatrix}
d\overline{W}' + dW \\
dW'\Lambda + d\Lambda + \Lambda dW
\end{pmatrix}
= \begin{pmatrix}
d\Psi \\
dX
\end{pmatrix},
\]

(c) \[
\begin{pmatrix}
\frac{dY}{d\Lambda} \\
\frac{dX}{d\Lambda}
\end{pmatrix}
\rightarrow
\begin{pmatrix}
\overline{Z}'dYZ \\
Z'dXZ
\end{pmatrix}
= \begin{pmatrix}
d\Phi \\
d\Psi
\end{pmatrix}.
\]

The Jacobians are \(|\det Z|^{-2p}, |\det Z|^{2(2p+2)}\) respectively

\[
c_1 \prod_{i=1}^p \lambda_i \prod_{i<j} (\lambda_i^2 - \lambda_j^2) \text{ for (a), (c) respective (b). Since}
\]

\[
\text{tr}(\Theta) = 2 \text{ tr}(\Phi) = 2 \text{ tr}(\overline{Z}'Z) \text{ and } |\det 0| = |\det \overline{Z}'Z|^2 \prod_{i=1}^p (1 - \lambda_i^2)
\]

(4.1) is transformed to the distribution

\[
c_2 \cdot |\det \overline{Z}'Z|^{N-p}
\]

\[
\exp\left\{-\frac{1}{2} \text{ tr}(\overline{Z}'Z)\right\} \prod_{i=1}^p \lambda_i (1 - \lambda_i^2)^{(N-2p-1)/2} \prod_{i<j} (\lambda_i^2 - \lambda_j^2) dZ \otimes d\lambda
\]
on $GL_+ (\mathbb{C}^p) \times \Omega$. Integrating over $Z \in GL_+ (\mathbb{C}^p)$, we get the distribution of $f_1 = \lambda_1^2, \ldots, f_p = \lambda_p^2$:
\begin{equation}
(4.4) \quad c_3 = \frac{\prod_{i=1}^{p} (1 - f_i)^{(N-2p-1)/2} \prod_{i<j} (f_i - f_j) df_1 \cdots df_p}{N-2p-1/2}.
\end{equation}

On $\Omega = \{(f_1, \ldots, f_p) \in \mathbb{R}^p | 1 > f_1 > \ldots > f_p > 0\}$. Formula (13) in [1], p. 324, for $p_1 = p-1$ and $p_2 = p$ gives the normings constant c_3, namely,
\begin{equation}
(4.5) \quad c_3 = \frac{\prod_{i=1}^{p-1} (1 - f_i)^{(N-2p-1)/2} \Gamma(\frac{1}{2}(N-1-i))}{\Gamma(\frac{1}{2}(N-p-1)) \Gamma(\frac{1}{2}(p-1)) \Gamma(\frac{1}{2}(p+1-i))}.
\end{equation}
REFERENCES

Office of Naval Research Contract N00014-75-C-0442 (NR-042-034)

Report Documentation Page

<table>
<thead>
<tr>
<th>Report Number</th>
<th>33</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Canonical Correlations with Respect to a Complex Structure</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Steen A. Andersson</td>
</tr>
<tr>
<td>Performing Organization Name and Address</td>
<td>Department of Statistics, Stanford University, Stanford, California</td>
</tr>
<tr>
<td>Controlling Office Name and Address</td>
<td>Office of Naval Research, Statistics & Probability Program Code 436, Arlington, Virginia 22217</td>
</tr>
<tr>
<td>Monitoring Agency Name and Address (If different from Controlling Office)</td>
<td></td>
</tr>
<tr>
<td>Report Date</td>
<td>July 1978</td>
</tr>
<tr>
<td>Number of Pages</td>
<td>10</td>
</tr>
<tr>
<td>Distribution Statement (of this Report)</td>
<td>Approved for public release; distribution unlimited.</td>
</tr>
<tr>
<td>Distribution Statement (of the abstract entered in Block 20, if different from Report)</td>
<td></td>
</tr>
<tr>
<td>Supplementary Notes</td>
<td>Issued also as Technical Report No. 132 under National Science Foundation Grant MPS 75-09450 - Department of Statistics, Stanford University</td>
</tr>
<tr>
<td>Key Words</td>
<td>Canonical correlations, complex structure, maximal invariants, distribution of empirical canonical correlations with respect to complex structure</td>
</tr>
<tr>
<td>Abstract</td>
<td>Suppose a 2p-variate multivariate normal distribution is of the form of a p-variate complex distribution. The set of such distributions is invariant with respect to a group of linear transformations. The invariants of the set of all 2p-variate distributions with respect to this group are obtained and interpreted. The distribution of the sample invariants is found.</td>
</tr>
</tbody>
</table>