STUDENTS FACULTY STUDY RESEARCH DEVELOPMENT FUTURE CAREER CREATIVITY COMMUNITY LEADERSHIP TECHNOLOGY FRONTIER DESIGN ENGINEERING APPLIED SCIENCE

INSTITUTE FOR MANAGEMENT SCIENCE AND ENGINEERING
SCHOOL OF ENGINEERING AND APPLIED SCIENCE

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE; ITS DISTRIBUTION IS UNLIMITED
OPTIMAL TIME INTERVALS FOR TESTING HYPOTHESIS ON COMPUTER SOFTWARE ERRORS

by

Ernest H. Forman
Nozer D. Singpurwalla

The George Washington University
School of Engineering and Applied Science
Institute for Management Science and Engineering

Program in Logistics
Contract N00014-75-C-0729
Project NR 347 020
Office of Naval Research

This document has been approved for public sale and release; its distribution is unlimited.
In this paper we discuss certain stochastic aspects of the software reliability problem. We shall first discuss an empirical stopping rule for debugging and testing computer software. We shall next present some results on choosing a time interval for testing the hypothesis that a software system contains no errors, given certain cost and risk constraints.
OPTIMAL TIME INTERVALS FOR TESTING HYPOTHESIS ON COMPUTER SOFTWARE ERRORS

by

Ernest H. Forman*
Nozer D. Singpurwalla

In this paper we discuss certain stochastic aspects of the software reliability problem. We shall first discuss an empirical stopping note for debugging and testing computer software. We shall next present some results on choosing a time interval for testing the hypothesis that a software system contains no errors, given certain cost and risk constraints.
1. Introduction and Summary

Research into improving and measuring computer software reliability has progressed along several different directions. Typical of these are structured programming, proofs of correctness of programs, and the stochastic analysis of software failure data [cf. Amster and Shooman (1975)].

In this paper we shall focus attention on certain decision-theoretic aspects of the software reliability problem. These aspects arise quite naturally when we consider a statistical analysis of software failure data. In particular, we shall develop a procedure for testing the hypothesis that a given software system contains no errors, and in the sequel, determine an optimal interval of time for which the software has to be exercised in order to test this hypothesis. The overall organization of our paper is as follows.

In Section 2, we shall briefly review a simple probabilistic model for describing software failures. This model is due to Jelinski and Moranda (1972) and has also been described by Lloyd and Lipow (1977) p. 516. In Section 3 we shall present some results pertaining to the estimation of the parameters of the model discussed in Section 2. We shall also present in Section 3 an empirical stopping rule which signals the end of the debugging phase for a given software system. This stopping rule has been recently proposed.
by us in the open literature [see Forman and Singpurwalla (1977)]. In Section 4 we shall discuss a test of the hypothesis that the software contains no more errors, and determine an optimal interval of time for which the program has to be exercised in order to test the hypothesis.

The material in Sections 2 and 3 can be regarded as expository, whereas the material in Section 4 is new and represents the raison d'être of this paper.

2. The Model by Jelinski and Moranda

Jelinski and Moranda (1972) have proposed a model for describing failures of computer software. Variations of this model have been considered by Shooman and others [Shooman et al. 1972a; Shooman 1972b, 1973] in several contexts. The applicability of this model for analyzing software failure data from the Apollo program and from a certain system of the U.S. Navy have been discussed by Jelinski and Moranda. Other applications of this model have been described by Moranda (1975).

Let us denote the initial error content in a large software system, such as an operating system, by \(N \); \(N \) is, of course, unknown. By assumption, the failure rate at any point in time is proportional to the residual number of errors in the software. Thus, if \(\tau_1, \tau_2, \ldots \), denote the time points at which software errors are detected and corrected, then the failure rate at any time point between \(\tau_{i-1} \) and \(\tau_i \) is \((N-i+1)\phi \), where \(\phi \) is some unknown constant of proportionality.

In Figure 2.1 we show the behavior of the failure rate for this "de-eutrophication" process.
Let $T_i = \tau_i - \tau_i-1$, $i = 1, 2, \ldots$, with $\tau_0 \geq 0$; then the distribution function of the times between failures T_i is $F(t_i) = P(T_i < t_i)$, where

$$F(t_i) = 1 - \exp(-Nq)$$

with $q > 0$, $t_i > 0$.

Let t_1, t_2, \ldots, t_n be the realizations of T_1, \ldots, T_n, respectively. Given t_1, t_2, \ldots, t_n, a natural objective is to estimate q and N. Note that n is always less than or equal to N. A more pragmatic objective is to obtain a "stopping rule" for debugging the software. The stopping rule should be such that we can be reasonably well assured that the software contains no errors. As will be pointed out in the next section, the above two objectives will be concurrently achieved.

3. **Parameter Estimation and an Empirical Stopping Rule**

As is discussed in detail by Forman and Singpurwalla (1977), the estimation of N and q, and the development of a stopping rule are based upon an analysis of the behavior of the likelihood function $L(q, N)$, where
\[
L(\phi, N) = \prod_{i=1}^{n} (N-i+1)\phi \exp(-(N-i+1)\phi).
\]

Let \(L(\phi, N) \) denote the natural logarithm of \(L(\phi, N) \), \(T = \sum_{i} t_i \)
and \(k = \sum_{i} (i-1)t_i \).

Since \(N \) takes only integer values, the unique maximum likelihood estimator of \(N \), say \(\hat{N} \), is that value of \(N \) which simultaneously satisfies

\[
n \log \left(\frac{(N-1)T-k}{TN-k} \right) + \log \left(\frac{N}{N-n} \right) \geq 0
\]

and

\[
n \log \left(\frac{(N+1)T-k}{TN-k} \right) + \log \left(\frac{N-n+1}{N+1} \right) \geq 0,
\]

Given \(\hat{N} \), the maximum likelihood estimator of \(\phi \), is

\[
\hat{\phi} = \frac{n}{TN-k}.
\]

3.1 Properties of the Maximum Likelihood Estimators. The estimators given by Equations (3.1) and (3.2) are quite straightforward to obtain, and have been discussed by Jelinski and Moranda (1972) and by Shooman (1973). However, the fact that when \(n \) is much smaller than \(N \), \(\hat{N} \) is highly misleading has been grossly overlooked. Specifically, when the quantity \(k/T \) is small, \(\hat{N} \) tends to be unrealistically large, and furthermore, a slight decrease in \(k/T \) leads to a disproportionately large increase in \(\hat{N} \). Thus, for small values of \(k/T \), the maximum likelihood estimator of \(N \), \(N \) is very unstable, and may lead to erroneous conclusions.

As \(k/T \) becomes large, that is, if the times between failures during the latter stages of testing are greater than those during the earlier stages, \(\hat{N} \) tends to be close to \(n \), the observed number of failures. Thus \(\hat{N} \) is an indicator of the fact that the program is close to being debugged, and
should therefore provide us with a stopping rule. However, as has been
pointed out by Forman and Singpurwalla (1977), it is possible that \(\hat{N} \approx n \)
and yet the true value \(N \) may be far from \(\hat{N} \). Thus \(\hat{N} \approx n \) is not
always conclusive of the fact that the program is close to being debugged
and, therefore, has to be interpreted with caution. For a more conclusive
analysis we will have to examine the behavior of the likelihood function in
greater detail. This is discussed in the next section.

3.2 The Relative Likelihood Functions and a Stopping Rule. The
relative likelihood function of \(N \), \(R(N) \) is defined as

\[
R(N) = \frac{L(N, \hat{\phi}(N))}{L(N, \phi)}
\]

where

\[
\hat{\phi}(N) = \frac{n}{TN-k}.
\]

Note that the shape of \(R(N) \) is a function of \(n \), \(k \), and \(T \).
We will need to compare \(R(N) \) with the normal relative likelihood function
of \(N \), \(R_{\text{normal}}(N) \) defined as

\[
R_{\text{normal}}(N) = \exp \left[-\frac{1}{2} \left(\hat{N} - N \right)^2 / \text{Var}(\hat{N}) \right]
\]

where

\[
\text{Var}(\hat{N}) = \frac{n}{\left(\sum_{i=1}^{n} \frac{1}{\hat{N} - i + 1} \right)^2} - \left(\sum_{i=1}^{n} \frac{1}{\hat{N} - i + 1} \right)^2.
\]

In the light of our previous discussions, plus some Monte Carlo
analyses performed by Forman (1974), we shall propose the following steps
which constitute a stopping rule.
1. Compute \(\hat{N} \), the maximum likelihood estimator of \(N \) using Equation (3.1).

2. If \(\hat{N} \ll n \), proceed to Step 3; if \(\hat{N} > n \), observe another failure interval \(t_{n+1} \), and go back to Step 1 above.

3. Compute \(R(N) \) and \(R_{normal}(N) \) for various values of \(N \), and see if the plots of \(R(N) \) and \(R_{normal}(N) \) are in good agreement with each other. If the two plots show a large disparity, then \(\hat{N} \) is a misleading estimator of \(N \). When this happens, observe another failure interval \(t_{n+1} \) and repeat the above steps. If the plots of \(R(N) \) and \(R_{normal}(N) \) show good agreement, then \(\hat{N} \approx n \) is a good estimator of \(N \) and we do not have to test the software further to obtain \(t_{n+1} \).

An example illustrating the application of the above stopping rule to some real data on software failures is given in Forman and Singpurwalla (1977).

4. A Test of the Hypothesis that the Software Contains No Errors and an Optimal Time Interval for Testing

Let us assume that a given software has been subjected to the debugging process and that all the steps of our proposed stopping rule have been satisfactorily undertaken. A potential user of this program will be interested in answers to the following two questions.

1. What is the assurance that the program contains no more errors?

2. How much additional testing should be done in order to achieve a specified assurance?

Clearly, an answer to the above questions will be a function of the risks that the user is willing to take, the cost of testing, and the consequences of software failure during its operation.
In what follows, we shall attempt to answer the above questions in a quantitative manner. We shall attempt to answer the first question by formulating it as a problem of testing hypothesis.

4.1 Testing of the Hypothesis. Let \(N^* \) denote the number of errors which are remaining in a debugged program. Let our null hypothesis be \(H_0 \), where

\[
H_0 : N^* = 0,
\]

versus the alternative hypothesis \(H_1 \), where

\[
H_1 : N^* = r, \quad r = 1, 2, \ldots.
\]

In order to test the above hypotheses, we shall exercise the software for an additional \(t_a \) units of time, and reject \(H_0 \) if a failure is encountered. Note that for such a test, the probability of rejecting the null hypothesis when it is true, is zero, since, when \(N^* = 0 \), we will not encounter any failures. Thus, for our test the so-called Type I error is zero.

Let \(\beta \) denote the power of our test; that is, \(\beta \) is the probability of rejecting the null hypothesis when it is false. Since

\[
\beta = P[T < t_a | N = r] = 1 - \exp(-\phi r t_a), \tag{4.1}
\]

the power of the test can be made as large as is desired by increasing \(t_a \).

If the user is willing to specify a \(\beta \), then we can calculate \(t_a \) by choosing \(r = 1 \). When this is done, our test procedure will have a power of at least \(\beta \).

For convenience, we shall denote the dependence of \(t_a \) on \(\beta \) by \(t_a(\beta) \).

To summarize, our test of hypothesis will proceed along the following lines.
The user will specify a β, the power of the test, and given β, we shall determine $t_a(\beta)$ using Equation (A.1). We shall test the software for $t_a(\beta)$ period of time, and accept H_0 if no failures are encountered during that period; otherwise, we shall reject it.

4.2 Choosing t_a Based on Cost Considerations. We can also choose the t_a discussed above based on cost considerations and the mission time t_m.

Let C_1 be the cost per unit time for testing the software; suppose that C_1 is a constant. Let C_2 be the cost incurred by the failure of the software during the mission time t_m; C_2 is also assumed to be a constant. Later on, we shall assume that C_1 changes with time. Three outcomes are possible:

i. The software fails during the additional testing time t_a, in which case the total cost is

$$C_1 t$$

where t is the time at which failure occurs;

ii. The software does not fail during the additional testing time, but fails during its operation at some time t; when this happens, the total cost is

$$C_1 t_a + C_2$$

$$t_a \leq t < t_a + t_m$$

iii. No failure of the software is encountered; the total cost is

$$C_1 t_a$$

$$t_a + t_m < t.$$
The total expected cost is therefore

\[E(C) = \int_{0}^{t_{a}} C_{1} t e^{-\phi t} dt + \int_{t_{a}}^{t_{m}} (C_{1} t_{a} + C_{2}) e^{-\phi t} dt + \int_{t_{a} + t_{m}}^{\infty} C_{1} t_{a} e^{-\phi t} dt. \]

In order to solve for \(t_{a} \), we shall minimize \(E(C) \). Since

\[\frac{d}{dt} E(C) = e^{-\phi t_{a}} \left[C_{1}^{-\phi C_{2}} \left(1 - e^{-\phi t_{m}} \right) \right] \]

we claim that when \(C_{1} > \phi C_{2} \left(1 - e^{-\phi t_{m}} \right) \), the value of \(t_{a} \) at which \(E(C) \) is minimized is zero. That is, when the cost of testing is much larger than the cost of an operational failure, no additional testing is necessary. However, a potential user may still wish to test the program for \(t_{a}(\beta) \) units of time and be assured that the power of his test is at least \(\beta \).

If, on the contrary, \(C_{1} < \phi C_{2} \left(1 - e^{-\phi t_{m}} \right) \), then \(t_{a} = \infty \) minimizes \(E(C) \). This means that we should test exercise the software for an indefinite amount of time. Here, again, a potential user may test for \(t_{a}(\beta) \) units of time and get an assurance that the power of his test is at least \(\beta \).

The assumption that \(C_{1} \) is a constant may not be realistic in many situations. In addition to this, this assumption may lead us to the case of indefinite testing as is shown above. We shall now relax this assumption and explore the consequences.

Suppose that the cost of testing is \(C_{1}(t) \), where \(C_{1}(t) \) is a convex non-decreasing function of \(t \). Let us denote the derivative of \(C_{1}(t) \) evaluated at \(t = 0 \) by \(C_{1}'(0) \).
We can now verify that when
\[C_1'(0) \geq \phi C_2 \left(1 - e^{-\phi t_m} \right) \]
\(t_a = 0 \) will minimize \(E(C) \). If this happens, we can choose \(t_a(\beta) \) as our additional test time.

If on the contrary
\[C_1'(0) < \phi C_2 \left(1 - e^{-\phi t_m} \right) \]
then \(t_a = C_1^{-1} \left[\phi C_2 \left(1 - e^{-\phi t_m} \right) \right] \) will minimize \(E(C) \); \(C_1^{-1}(\cdot) \) is the inverse of \(C_1(\cdot) \).

As an example, if \(C_1(t) = C_1 e^{at} \), for some \(a > 0 \), then,
\[
t_a = \frac{1}{a} \log \left[\frac{C_2 e^{-\phi t_m}}{C_1} \right].
\]

For the above situation, if \(t_a > t_a(\beta) \), and should we test for \(t_a \) units of time, then we will not only be minimizing the total expected cost, but will also achieve a power of at least \(\beta \). If \(t_a < t_a(\beta) \), then \(C_1 \left(e^{at_a(\beta)} - e^{at_a} \right) \) represents the increase in the cost of testing to achieve a power of at least \(\beta \).
REFERENCES

The George Washington University
Program in Logistics
Distribution List for Technical Papers

The George Washington University
Office of Sponsored Research Library
Vice President H. F. Bright
Dean Harold Liebowitz
Mr. J. Frank Doughtyday

ONR
Chief of Naval Research
(Codes 200, 430D, 1021P)
Resident Representative

OPNAV
OP 40
INCO, Logistics
Navy Dept Library
OP-911
OP 904

Naval Aviation Integrated Log Support
NAVCOSSACT

Navy Command Systems Support Activity Tech Library
Navy Electronics Lab Library
Navy Facilities Eng Cmd Tech Library

Navy Ordinance Station
Louisville, Ky.
Indian Head, Md.

Navy Ordinance Systems Command Library
Navy Research Branch Office
Boston
Chicago
New York
Pasadena
San Francisco

Navy Research Lab
Tech Info Div
Library, Code 2029 (ONRL)

Navy Ship Engg Center
Hyattsville, Md.

Navy Ship Res & Dev Center

Naval Sea Systems Command
Tech Library
Code 073

Naval Supply Systems Command
Library
Capt W. T. Nash

Naval War College Library
Newport

NUPERS Tech Library

FMSO
Integrated Sea Lift Study

USN Amn Depot Earle

USN Postgrad School Monterey
Library
Dr. Jack R. Borsting
Prof C. R. Jones

US Marine Corps
Commandant
Deputy Chief of Staff, R&D

Marine Corps School Quantico
Landing Force Dev Ctr
Logistics Officer

Armed Forces Industrial College
Armed Forces Staff College
Army War College Library
Carlisle Barracks

Army Cmd & Gen Staff College

US Army HQ
LTC George L. Slyman
Army Trans Mat Command

Army Logistics Mgmt Center
Fort Lee

Commanding Officer, USALDSRA
New Cumberland Army Depot

US Army Inventory Res Ofc
Philadelphia

HQ, US Air Force
AFAIMS-3

Griffiss Air Force Base
Reliability Analysis Center

Maxwell Air Force Base Library

Wright Patterson Air Force Base
HQ, AF Log Command
Research Sch Log

Defense Documentation Center
National Academy of Science
Maritime Transportation Res Board Library

National Bureau of Standards
Dr. E. W. Cannon
Dr. Joan Rosenblatt

National Science Foundation

National Security Agency

WSEG
British Navy Staff

Logistics, OR Analysis Establishment
National Defense Hqtrs, Ottawa

American Power Jet Co
George Chernowitz

ARCON Corp

General Dynamics, Pomona

General Research Corp
Dr. Hugh Cole
Library

Planning Research Corp
Los Angeles

Rand Corporation
Library

Carnegie-Mellon University
Dean H. A. Simon
Prof G. Thompson

Case Western Reserve University
Prof B. V. Dean
Prof John R. Isbell
Prof M. Mesarovic
Prof S. Zacks

Cornell University
Prof R. E. Bechhofer
Prof R. W. Conway
Prof J. Kiefer
Prof Andrew Schultz, Jr.

Cowles Foundation for Research
Library
Prof Herbert Scarf
Prof Martin Shubik

Florida State University
Prof R. A. Bradley

Harvard University
Prof K. J. Arrow
Prof W. G. Cochran
Prof Arthur Schellek, Jr.

New York University
Prof G. Morgenstern

Princeton University
Prof A. W. Tucker
Prof J. W. Tukey
Prof Geoffrey S. Watson