This report describes the first-year results of an investigation of fault-tolerant computer systems. A new method for measuring recovery time in fault-tolerant multiprocessors was developed. A complete characterization of optimally t-step recoverable systems was obtained, and certain graph transformations that simplify recovery analysis were studied. Some diagnosability properties of n-cube interconnection networks were derived. A study of fault tolerance in large connecting networks was initiated using a new concept of dynamic full access. A design theory based on recursive...
component expansion capabilities was developed for MSi/LSi systems. The use of similar recursive methods for test pattern generation was also initiated. Promising results were obtained for testing bit-sliced microprocessors and related components.
ANALYSIS AND DESIGN OF FAULT-TOLERANT COMPUTER SYSTEMS

Prepared by

John P. Hayes

Electronic Sciences Laboratory
University of Southern California
Los Angeles, California 90007

August 1, 1978
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>1. Research objectives</td>
<td>1</td>
</tr>
<tr>
<td>2. Research accomplishments</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Recovery modeling in multiprocessor systems</td>
<td>2</td>
</tr>
<tr>
<td>2.2 Communication networks for multi-microprocessors</td>
<td>4</td>
</tr>
<tr>
<td>2.3 Design and testing of MSI and LSI systems</td>
<td>7</td>
</tr>
<tr>
<td>2.4 References</td>
<td>11</td>
</tr>
<tr>
<td>3. Publications</td>
<td>13</td>
</tr>
<tr>
<td>4. Personnel</td>
<td>14</td>
</tr>
<tr>
<td>5. Interactions</td>
<td>15</td>
</tr>
<tr>
<td>6. Summary and future plans</td>
<td>16</td>
</tr>
<tr>
<td>Appendix: "Fault recovery in multiprocessor networks"</td>
<td>17</td>
</tr>
</tbody>
</table>
ABSTRACT

This report describes the first-year results of an investigation of fault-tolerant computer systems. A new method for measuring recovery time in fault-tolerant multiprocessors was developed. A complete characterization of optimally t-step recoverable systems was obtained, and certain graph transformations that simplify recovery analysis were studied. Some diagnosability properties of n-cube interconnection networks were derived. A study of fault tolerance in large connecting networks was initiated using a new concept of dynamic full access. A design theory based on recursive component expansion capabilities was developed for MSI/LSI systems. The use of similar recursive methods for test pattern generation was also initiated. Promising results were obtained for testing bit-sliced microprocessors and related components.
1. RESEARCH OBJECTIVES

The purpose of this research project is to develop methods for the analysis and synthesis of complex fault-tolerant computer systems. It is motivated by recent rapid developments in large-scale integration (LSI) technology, especially the introduction of microprocessors, which are expected to increase greatly the use of multiple computer systems that are required to be highly reliable. The research is particularly concerned with dynamic reconfiguration and recovery in the event of failures, topics which have received relatively little research attention in the past. It is intended to develop specific measure of the cost and complexity of reconfiguration and recovery, and to derive efficient fault tolerance algorithms based on these measures. Various graph theoretical and algebraic tools are used in this research, with the facility graph model [1], developed by the Principal Investigator, serving as a starting point. The special problems associated with the design of systems containing many microprocessors, particularly the problem of interprocessor communication, are also being investigated.
2. RESEARCH ACCOMPLISHMENTS

During 1977-78 results were obtained in three main areas:

(1) Recovery modeling in multiprocessor systems
(2) Communication networks for multi-microprocessors
(3) Design and testing of MSI and LSI systems

These results are described in detail in the following subsections.

2.1 Recovery modeling in multiprocessor systems \[2, 3\] \(^1\)

A new method for characterizing the recovery time of fault-tolerant multiprocessor systems was developed. The system is represented by a facility graph \(G_f\) in which nodes correspond to processors and edges correspond to communication links \[1\]. The fault-free nodes include nodes actively engaged in data processing and nodes acting as standby spares. A fault is represented by the removal of a node and its associated edges from \(G_f\). Faults are tolerated by reconfiguring the pattern of active and spare nodes in \(G_f\) so that there always exists an active subnetwork that is isomorphic, that is, has the same (logical) interconnection structure, as a certain minimum configuration \(G_b\) called the basic system. \(G_b\) can be taken as the minimum fault-free system needed to perform a particular set of tasks.

A system \(G_f\) is called \(k\)-fault-tolerant (\(k\)-FT) \(t\)-step recoverable (\(t\)-SR) if it can recover from up to \(k\) faults by changing the states of at most \(t\) fault-free nodes. \(k\) is clearly a measure of the amount of damage the

\(^1\)Reference \[3\] forms an appendix to this report.
system can tolerate. A state change e.g., from spare to active, typically involves the establishment of new logical paths in the system, and the transfer of programs and data between the affected nodes. If \(n \) state changes of average duration \(c \) are required to recover from a particular fault, then \(nc \) is the total recovery time. Thus the parameter \(t \) defined above is proportional to the maximum recovery time required by \(G_r \).

Clearly \(t \geq k \). A case of particular interest, corresponding to a class of systems with minimum recovery time, is where \(t = k \). In such systems recovery from \(t \) faults is achieved by immediate replacement of each failed node by a fault-free spare. \(G_r \) is defined to be optimally \(t \)-SR with respect to an \(n \)-node basic system \(G_b \) if

1. \(G_r \) is \(t \)-FT/\(t \)-SR with respect to \(G_b \)
2. \(G_r \) contains the minimum number of nodes, viz. \(n + t \)
3. \(G_r \) contains the fewest edges among all systems satisfying conditions (1) and (2)

In [3] we prove that the optimal \(t \)-SR realization of every \(G_b \) is unique, and that it has a surprisingly simple structure. Figure 1a shows an example of a basic graph \(I_b \) consisting of four processors arranged in a ring. Figure 1b shows the corresponding optimal \(2 \)-SR graph \(I_2^{OPT} \). It consists of \(I_b \) with two additional spare nodes, labeled \(s_1 \) and \(s_2 \), and additional edges connecting \(s_1 \) and \(s_2 \) to all nodes, including each other. Every fault graph formed by removing one or two nodes from \(I_2^{OPT} \) contains a subgraph isomorphic to \(I_2 \) (the 2-FT property). Furthermore, each such subgraph can be chosen so that it differs from the original active subgraph in at most two nodes (the 2-SR property).
Figure 1. (a) A 4-node basic system I_b. (b) The corresponding optimal 2-SR system I_b^{OPT}.
Optimal t-SR systems have the disadvantage that the number of edges connected to some nodes (the node degree) may be very large. Since this represents the number of parallel data paths to a processor, it is often severely restricted by physical considerations, for example, microprocessor pin limitations. Thus nonoptimal fault-tolerant systems with limited node fanout are of interest. We have investigated a class of graph transformations, called line graph transformations, which lead to t-SR designs with nodes of lower degree than the corresponding optimal t-SR systems [3]. We have also shown that line graph transformations greatly simplify the computation of the parameters k and t.

2.2 Communication networks for multi-microprocessors [4]

An extensive survey of systems containing many microprocessors was completed. Two major communications structures for such systems were identified; the hierarchical bus organization represented by Cm* [5], and the n-cube organization proposed by several researchers [6, 7]. Most of the published work in this area deals with unimplemented paper designs with little analytical basis. System reliability and fault tolerance have also been largely ignored.

A network organization with a relatively sound analytical basis is the binary n-cube structure [7]. This contains 2^n processors whose logical interconnection structure can be represented by an n-dimensional cube. Figure 2a shows the structure of the 3-cube. We have investigated several aspects of the fault tolerance of n-cube networks. Using the approach of
Figure 2. (a) 3-cube network. (b) Implementation of a 3-cube network (c) States of the switch S.
Preparata et al. [8] we have shown that the diagnosability of an n-cube system is n for $n \geq 3$, where the diagnosability of a system is defined as the largest number k such that the system is one-step k-fault diagnosable [4].

N-cube arrays can be implemented using connecting networks of the type long used in telephone exchanges [9]. Figure 2b shows one such implementation of the 3-cube using twelve switches denoted S. Each S may be considered to have two states, the "through" and "cross" states depicted in Figure 2c. We have begun investigating the fault tolerance properties of connecting networks of this kind. A study of actual circuits used for S [10] indicates that most faults in the network can be modeled by switches that are stuck at the through state (s-a-T) or stuck at the cross state (s-a-X).

We have defined a connecting network N to have the dynamic full access property if each processor P_i can be connected to any other processor P_j via a finite (but unspecified) number of passes through the connecting network. This is a generalization of the usual full access property [9]. N is said to be k-fault tolerant (k-FT) with respect to the foregoing s-a-T/X fault model if the failure of k or fewer switches in N does not destroy the dynamic full access property. We have begun investigating the conditions for N to be k-FT. It is hoped that this work will lead to methods for designing efficient and fault-tolerant communication networks for large multi-microprocessor systems.

2.3 Design and testing of MSI and LSI systems [11, 12]

Most existing analytical tools are inadequate for dealing with digital components above the gate and flip-flop levels, which correspond
to small-scale integration (SSI) in current technology. There is at present
no adequate theory for the design or testing of MSI and LSI devices,
although the need for such a theory has long been recognized. Perhaps
the only LSI device for which a promising theory of testing is emerging
is the semiconductor random access memory (RAM) [13].

We have observed that a significant property of components at all
complexity levels is expansibility, which is the ability of components of
a given type to be interconnected in a systematic way to form larger
components of the same type [12]. The larger component performs the same
operation as its constituent elements, but processes more and/or bigger
operands. Many MSI and LSI design rules are merely recipes for component
expansion, e.g., how to build a 1-out-of-N decoder using 1-out-of-n
decoders where \(N > n \), or how to build an \(N \times M \) RAM using \(n \times m \) RAM IC's
where \(N > n \) or \(M > m \) [14]. Expansibility plays a particularly important
role in the architecture of microcomputers. The major design problems
revolve around the number, size and interconnections of the ROM's, RAM's
and IO interface circuits used, problems which are intimately associated with
the expansibility of these components. With bit-slice architecture the CPU
(microprocessor) becomes an expandable design component. Two main expansion
techniques have been identified, expansion by composition and by replication
[12]. Expansion methods, which correspond to design rules, can be concisely
defined by recursive equations. For example, a typical MSI component, a
ripple-carry adder can be defined as follows:

\[
\begin{align*}
\text{Basis: } & \quad \text{ADD}_0:1(x_0, y_0, c_{\text{in}}) = x_0 y_0 + x_0 c_{\text{in}} + y_0 c_{\text{in}}, \quad \text{ADD}_0:1(x_0, y_0, c_{\text{in}}), \\
& \quad \text{ADD}_0:n+1(x_0:n, y_0:n, c_{\text{in}}) = \text{ADD}_0:1(x_0, y_0, \text{ADD}_0:n(x_1:n, y_1:n, c_{\text{in}})), \\
& \quad \text{ADD}_1:n(x_1:n, y_1:n, c_{\text{in}}),
\end{align*}
\]
Here \(x_i \) and \(y_i \) denote input data lines, and \(c_i \) denotes a carry line.

We have proposed a classification scheme for expansion algorithms based on three parameters: the presence of feedback, the use of constant inputs or outputs, and the logical depth of the interconnections used. We have shown that most standard components can be expanded using FS2 algorithms which allow neither feedback nor constant input/output values, and which require two (the minimum number) logic levels. Some other useful expansion methods have also been identified [12].

We have also demonstrated that recursive techniques can be used for test pattern generation. As a simple illustration consider the \(n \)-input AND function \(\text{AND}^n \). Let \(T^n(x_0, x_1, \ldots, x_{n-1}) \) be a Boolean function denoting the (unique) set of test patterns for stuck-type faults in \(\text{AND}^n \): \(T^n(X) = 1 \) if and only if \(X \) is a test pattern. We can define the tests for \(\text{AND}^n \) recursively as follows.

Basis:

\[
T^2(x_0, x_1) = \overline{x_0}x_1 + x_0 \overline{x_1} + x_0x_1
\]

\[
T^{n+1}(x_0, x_1, \ldots, x_n) = T^n(x_0, x_1, \ldots, x_{n-1})x_n + x_0x_1 \ldots x_{n-1}x_n
\]

We have started to extend this test generation philosophy to obtain efficient and systematic test procedures for MSI/LSI systems. Besides leading to analytic testing methods, this approach has the added advantage of being relatively independent of such factors as word size, making it possible to analyze all members of a family of components simultaneously.

We have carried out a study (unpublished) of the feasibility of this general approach for testing bit-sliced microprocessors. We use as the basic component the 1-bit processor cell \(M \) shown in Figure 3. \(M \) has most of the major features of a commercial bit-sliced microprocessor, such as the Intel 3002 2-bit processor [14] or the Am2901 4-bit processor [16].
Figure 3. Processor cell M used for analyzing bit-sliced microprocessors.
(only the shift function and the status flags have been omitted). It contains two registers A and T and two complex combinational circuits, a multiplexer and an arithmetic-logic unit ALU. Using the most general functional fault model, which allows arbitrary functional changes in the individual registers and combinational circuits, we have shown that M can be tested with \(t \approx 100 \) test patterns. Furthermore, a k-bit processor array constructed from \(k \) copies of M can also be tested with \(t \) tests, independent of \(k \), and the array tests can be easily derived from those of the individual cell.

2.4 References

3. PUBLICATIONS

The following documents were sponsored wholly or in part by Grant No. AFOSR-77-3342.

4. PERSONNEL

The following people were associated with the research effort reported here.

Principal Investigator
John P. Hayes

Research Assistants
John P. Shen
Thirumalai Sridhar
Raif Yanney

Note: R. Yanney received no financial support from Grant No. AFOSR-77-3152.
5. INTERACTIONS

Meetings with Air Force Personnel

J. P. Hayes met with Dr. Joseph Bram, AFOSR Directorate of Mathematical and Information Sciences, in Los Angeles, on January 30, 1978. Current progress and future plans for the project being reported here were reviewed.

J. P. Hayes met with Mr. Armand Vito of RADC (ISCA) in Marina Del Rey, California on April 6, 1978 to discuss research topics of mutual interest.

J. P. Hayes visited RADC, Rome, New York, May 12-13, 1978. He met with Mr. Murray Kesselman (ISCA) who provided him with a detailed overview of Air Force research interests in the areas of computer architecture and fault-tolerant computing. He also met with Lt. Michael Troutman (ISCA) and discussed the Air Force sponsored Total System Design (TSD) and Multi-Microprocessor System (MMS) projects. Dr. Hayes had an opportunity to see some of RADC's research facilities, including its QM-1 and STARAN computers.

Attendance at FTCS-8

J. P. Hayes and R. Yanney attended the 1978 International Symposium on Fault-Tolerant Computing (FTCS-8) in Toulouse, France, June 21-23, 1978. This is the major annual conference on research in fault tolerance. Approximately 350 researchers from 25 countries attended FTCS-8. The paper "Fault recovery in multiprocessor networks" (see Appendix) was presented at this conference.
6. SUMMARY AND FUTURE PLANS

We have developed a new model for measuring the recovery time of a fault-tolerant system based on the facility graph concept. Necessary and sufficient conditions for an arbitrary system to be k-step recoverable were obtained. A survey of communication networks for multi-microprocessors was carried out. The diagnosability of the n-cube interconnection network was characterized. An analysis of the fault tolerance properties of connecting networks was initiated using the concept of dynamic full access. A design theory for MSI/LSI systems based on a formal definition of recursive expansibility was developed. It was shown that this approach can be used for test pattern generation for a variety of complex systems including bit-sliced microprocessors.

In the area of reconfiguration and recovery we propose to investigate strategies for achieving fault tolerance in distributed systems when the individual processors have limited information about the system as a whole. We also intend to study graceful degradation in such systems. We propose to continue our analysis of communication networks for multi-microprocessors, with the aim of completely characterizing their fault tolerance properties. We plan to extend our analysis of bit-sliced microprocessors to include all the features of real systems. We further aim to extend it to other bit-sliced components such as microprogram sequencers and RAM's so that ultimately we can automatically generate a near-optimal test set for complete microcomputers that use bit-slicing technology. Finally, we hope to use our knowledge of the test requirements of bit-sliced microcomputers to analyze non-bit-sliced systems.
APPENDIX
FAULT RECOVERY IN MULTIPROCESSOR NETWORKS *

John P. HAYES
Department of Electrical Engineering
University of Southern California
Los Angeles, California 90007 USA

Raif YANNEY
Hughes Aircraft Company
Culver City, California 90230 USA

ABSTRACT

A method for characterizing dynamic reconfiguration and recovery in fault-tolerant networks of processors is proposed. A network is represented by a graph G, whose nodes correspond to processors and whose edges correspond to communication links. Each node or edge has three major states: active, inactive (spare) and failed. G tolerates a fault F by activating spare nodes and edges to reconfigure the system to tolerate F. Necessary and sufficient conditions for G to be optimally t-SR are obtained. A t-step recoverable (t-SR) system is a system that contains t spare nodes and the minimum number of edges that permit t-step recovery from all tolerated faults. Necessary and sufficient conditions for G to be optimally t-SR with respect to an arbitrary graph G_r are obtained.

II. RECOVERY MODEL

Following [5], a computer system is described by a (facility) graph whose nodes represent (micro-) processors and whose edges represent communication paths. All nodes are assumed to be of the same type and to have the same processing abilities. Edges are assumed to be undirected. A fault is represented by the removal of nodes and edges from the graph.

Definition 1: A basic graph G_b is a graph that represents the minimum system configuration needed to perform a certain set of tasks. Thus a basic system cannot tolerate any faults.

Definition 2: A redundant graph G_r with respect to a basic graph G_b is one that contains G_b as a proper subgraph. In other words, a proper subgraph G_r of G_b is isomorphic to G_b, denoted $G_r \subseteq G_b$. G_r is viewed as a fault-tolerant realization of G_b.

At any time, some subgraph $G_r \subseteq G_b$ of G_b represents an active system engaged in data processing. The remaining part of G_b, denoted $G_r^c \subseteq G_b^c$, represents either unused (spare) or unusable (faulty) components. Thus every node x of G_b can be viewed as having three possible states:

1. active, that is $x \in G_r$
2. spare
3. faulty.

Definition 3 [5]: G_0 is a k-fault-tolerant (k-FT) with respect to G_b if the removal of any k nodes (and the edges connected to those nodes) from G_b results in a graph that contains G_0.

It is assumed that the systems of interest contain a mechanism for continuous self-diagnosis. For example, each node may be regularly tested by one or more of its neighboring nodes. The precise manner in which diagnosis is achieved is not of direct interest here. Once a faulty active node is detected, a process of recovery is initiated which involves replac-
and must be included in G^*. The manner in which the new active subsystem G^* is determined constitutes the recovery strategy. In this paper aspects of recovery are considered that are largely independent of the particular recovery strategy employed. Not that recovery is sometimes confused with reconfiguration, a process of reconfiguring around the faulty nodes. The possible changes of state that a node can experience during system operation are illustrated in Fig. 1.

![State diagram for a system node](image)

Fig. 1. State diagram for a system node.

The recovery process often involves a considerable amount of information transfer among the system nodes. For example, a spare node s that is being activated to replace a defective node x must be provided with all information defining the functions of x, as well as the status of x at the last known error-free checkpoint. This information is transferred to s from x or from some other processor that stores the status of x, e.g., a system supervisor. The number of fault-free nodes whose state or identity is changed when forming G^* from G is taken as a measure of system recovery time, and leads to the following definition.

Definition 4: G^* is t-step recoverable (t-SR) with respect to G if G^* is t-FT with respect to G, and G^* can recover from any fault affecting $k \leq t$ nodes by changing the state or identity of at most t fault-free nodes.

In many cases recovery can be accomplished by replacing the k faulty nodes of G^* by k spare nodes. Spare nodes are assumed to be fault-free when they are first activated; they may subsequently become faulty and require replacement. It may also be necessary to replace active nodes as well, either by changing active nodes to spares, or requiring an active node to assume the identity of another active node. The parameter t defined above is independent of the recovery strategy R used and the choice of the initial active configuration G^*. It states that some R and G^* exist making t-step recovery possible for all sequences of up to t faults.

Example 1: Consider the graphs shown in Fig. 2. H is clearly 1-FT with respect to H, since if G_0 comprises nodes B and C, the system can recover in one step by replacing the faulty node B (C) by the spare node D (A). Note that if the subgraph consisting of A and B is chosen as G^*, recovery requires two steps in the event of the failure of node B. In this case, the active node A must also be replaced by one of the spare nodes C or D.

![Example of a system H, that is 1-step recoverable with respect to H.](image)

Fig. 2. Example of a system H, that is 1-step recoverable with respect to H.

The calculation of the fault tolerance recovery measures k and t for arbitrary graphs G^* and G, is very difficult. In order to find out if G^* tolerates a given fault F, it is necessary to determine if the graph G^* representing the faulty system contains a subgraph isomorphic to G. This is the well-known subgraph isomorphism problem. It may be necessary to examine all subgraphs of G, that are isomorphic to G^*, in order to determine if G^* is t-SR with respect to G. While the general subgraph isomorphism problem is computationally very complex, efficient (polynomial time) algorithms are known for many special classes of graphs, while efficient heuristic procedures are known for the general case [7].

III. OPTIMAL t-STEP RECOVERY

It is clearly desirable that G^* and G^* should share as many unaltered nodes as possible in order to minimize the recovery time. The fastest recovery will be achieved when none of the fault-free active nodes of G^* are affected in forming G^*, i.e., exactly t spare nodes are used to replace the t faulty nodes.

Definition 5: G^* is optimally t-SR with respect to the n-node system G if

1. G^* is t-step recoverable with respect to G;
2. G^* contains the minimum possible number of nodes, namely, $n + t$;
3. G^* contains the fewest edges among all redundant systems satisfying (1) and (2).

We now show that every nontrivial connected basic system G^* has a unique and easily-characterized optimal t-SR realization G^*. Theorem 1: Let G^* be formed from G, as follows. Introduce t spare nodes s^1, s^2, \ldots, s^t, and introduce edges connecting each s^i to every node in G, and the t-l nodes y^i, where $i \neq j$. G^* is optimally t-SR with respect to G if and only if $G^* \cong G^*$.

Proof: First we show that G^* is t-SR if G^* is the original active subsystem. Let x be any faulty node. x can be replaced in one step by any spare node s^i, since s^i is adjacent to all the nodes that are adjacent to x. Any sequence of t node failures can be tolerated similarly, since every node in G^*, including the original spares, can be replaced by a spare in one step. Thus the spare allows t faulty nodes in G^* to be replaced in t steps, implying that G^* is t-SR with respect to G.

Let G^* be any optimal t-SR system. We now show that G^* contains a subgraph isomorphic to G^*, hence $G^* \cong G^*$. Let G^* be the initial active subsystem of G^*, so that $G^* \cong G$. Let the t nodes of G^* be designated s^1, s^2, \ldots, s^t. It remains to show that each s^i is adjacent to every node of G^*. Suppose by way of contradiction that s^i is not adjacent to y^j. There are two possible cases:

Case 1: $y^j \notin G^*$. (Since G^* is nontrivial, G^* contains at least two nodes.) Let $y^j \in G^*$ and let y^j and y^j be adjacent. Suppose that a sequence of t node failures occurs affecting y^j and each of the spare nodes activated to replace y^j. At some point s^i must be used to replace y^j, since G^* is t-SR and only t spare nodes are available, including s^i. However s^i is not adjacent to y^j and y^j is an edge of G^*, hence s^i cannot replace y^j. Consequently G^* is not t-SR, a contradiction. Thus s^i must be adjacent to every node of G^*.

Case 2: $y^j \in G^*$. i.e., $y^j = s^i$. Again consider a sequence of node failures. After fewer than t failures either s^i or y^j must be activated. Say s^i. s^i has at least one neighbor z^j which is part of the currently active system. Suppose that all subsequent faults involve z^j and its replacements. Eventually s^i will be the only nonfaulty spare node available to
replace \(s' \). Since \(s' \) is not adjacent to \(s'' \) (which is now part of the active subsystem), \(s' \) cannot take the role of \(s'' \), hence \(G'' \) cannot tolerate the \(t \)-fault in question, a contradiction. Thus \(s'' \) is adjacent to every node \(s'' \neq s'' \).

We have shown therefore that the spare nodes of \(G'' \) are connected to every node of \(G'' \) so \(G'' \) and \(G'' \) are isomorphic. Hence every optimal \(t \)-SR system is isomorphic to \(G'' \).

Example 2: Fig. 3a shows a basic graph \(I \), and Fig. 3b shows the corresponding optimal 2-SR system \(I'' \) obtained by the procedure described in Theorem 1.

![Fig. 3. (a) A basic graph \(I \). (b) The corresponding optimal 2-SR graph \(I'' \).](image)

Optimal \(t \)-SR systems can also be characterized in terms of their clique graphs. Let \(K \) denote a complete graph of \(n \) nodes, i.e., an \(n \)-node graph containing all possible edges.

Definition 6 [8]: A clique of a graph \(G \) is a maximal complete subgraph of \(G \). The clique graph \(K(G) \) of \(G \) is the intersection graph formed by the cliques of \(G \), i.e., there is a one-to-one correspondence between the cliques of \(G \) and the nodes of \(K(G) \), and two nodes in \(K(G) \) are adjacent if and only if the intersection of the corresponding cliques in \(G \) is non-empty.

Theorem 2: If \(G \) is an optimal \(t \)-SR realization of some \(G \), then \(K(G) \) is complete.

Proof: Suppose \(K(G) \) is not complete. Then \(G \) has two cliques \(C \) and \(C \) which have no node in common. There exists a spare node in the initial configuration of \(G \), which is not adjacent to any nodes in \(C \) or \(C \). Hence \(G \) cannot be isomorphic to \(G'' \) and so, by Th. 1, it is not optimally \(t \)-SR, a contradiction. Hence \(K(G) \) must be complete. \(\square \)

Fig. 4 shows the clique graphs for \(H \) and \(P \) from Figs. 2 and 3, respectively. \(H \) has three cliques isomorphic to \(K \). Since two of these cliques are disjoint, \(K(H) \) is not complete. \(P \) has four cliques isomorphic to \(K \), hence \(K(P) \) is \(K \). Note that the optimal 1-SR graph for \(H \), in

![Fig. 2 is \(K \), and \(K(K) = K \).](image)

IV. GENERALIZED \(t \)-STEP RECOVERY

The optimal \(t \)-SR design considered in the preceding section have the disadvantage that the maximum node degree in \(G'' \) can be very large. If \(G \) contains \(n \) nodes then the spare nodes \(s \), in \(G'' \) have degree \(n - t - 1 \), which is the maximum possible degree in an \((n+t)\)-node graph. Node degree corresponds to the number of input/output ports of a processor, or its fanout, and this is usually limited by physical considerations. In the case of microprocessors, the number of parallel data paths that can be connected to the microprocessor is severely restricted by integrated circuit pin limitations. Thus it is of interest to consider nonoptimal redundant systems in which node degree is limited.

In the definition of \(t \)-SR given earlier it was assumed that the system was required to tolerate up to \(t \) faults. We now give a more general definition in which the number of faults tolerated and the number of recovery steps are distinguished.

Definition 7: \(G \) is \(k \)-fault tolerant \(t \)-step recoverable (k-FT/\(t \)-SR) with respect to \(G' \), if \(G' \) can recover from up to \(k \) faults in \(G \) in at most \(t \) recovery steps, that is, by changing node states or identities at most \(t \) times.

In general, \(k \leq t \). When \(k = t \) the system will also be called simply \(t \)-SR conforming with the earlier definition.

Example 3: Fig. 5 shows three different 1-FT realizations of the basic graph \(C_\text{12} \), which is the cycle with 12 nodes. Fig. 5a shows the optimal 1-FT/1-SR graph as defined by Th. 1. Note that the central "spare" node has degree 12. Fig. 5b shows another 1-FT/1-SR version of \(C_\text{12} \) which contains two spare nodes and so is nonoptimal; however, its maximum node degree is only 6. The graph in Fig. 5c is the 1-FT realization of \(C_\text{12} \) which, as proven in [5], contains the minimum number of edges. It also has the smallest possible node degrees, however, it is 8-SR.
Thus there are fundamental tradeoffs involving the number of spares, the maximum node degree, and the maximum number of recovery steps t.

In the remainder of this paper, we examine a special class of graphs called line graphs for which fault analysis is relatively easy. Moreover, an arbitrary graph can readily be converted into a line graph by the addition of nodes and edges [8]. First we define and characterize line graphs.

Definition 8 [8]: The line graph of a graph G, denoted $L(G)$, is a graph whose nodes are in one-to-one correspondence with the edges of G. Two nodes in $L(G)$ are adjacent if and only if the corresponding edges of G are adjacent. If H is a line graph, then there exists a graph G such that $L(G)$ is isomorphic to H. G is called the root graph of H and will be denoted by $L^{-1}(H)$.

It is obvious that every graph has a line graph, however it is not necessary for every graph to be a line graph of another graph. Very efficient algorithms are known for determining if G is a line graph and, if it is, for generating its root graph [9]. Line graphs have been studied extensively; the following theorem summarizes their major characteristics. Let K_n denote the star graph [8] which contains $n!+1$ nodes, and n edges, with n of the nodes joined to the remaining node.

Theorem 3 [8]: Properties of line graphs.

(a) If G_1 and G_2 are any two nontrivial connected graphs except K_2 and $K_{1,3}$, then $L(G_1)$ is isomorphic to $L(G_2)$ if and only if G_1 is isomorphic to G_2.

(b) G is isomorphic to $L(G)$ if and only if G is a cycle.

(c) If G is a line graph then the edges of G can be partitioned into complete subgraphs $\{C_i\}$ in such a way that no node lies in more than two of the subgraphs, and there is a one-to-one correspondence between $\{C_i\}$ and the nodes of $L^{-1}(G)$.

(d) Line graphs of regular graphs with degree d are regular with degree $2(d-1)$.

Example 4: Fig. 5 illustrates Th. 3c. The complete subgraphs $\{C_i\}$ in the line graph $L(J)$ correspond to the nodes $\{x_i\}$ in its root graph J.

Def. 8 implies that we can define a function L that transforms a graph into its line graph, and a function L^{-1} that transforms a line graph into its root graph. The following notation is also useful

$$L^{i+1}(G) = L(L^i(G))$$

$$L^{-1}(i+1)(G) = L^{-1}(L^{-1}(G))$$

where $i \geq 1$. Menon [10] has shown that $L^{-1}(G)$ has fewer nodes than G if G is not a cycle or a path, hence $L^{-1}(G)$ is usually simpler than G. We will now show that if a redundant system G, is a line graph, many of its properties pertaining to fault tolerance can be determined with less computation from $L^{-1}(G)$.

Theorem 4: If G_s is k-FT with respect to G_w, then $L(G_s)$ is k-FT with respect to $L(G_w)$.

Proof: Th. 3c implies that a one-to-one correspondence exists between the nodes $\{x_i\}$ of G_w and a subset $\{C_i\}$ of the complete subgraphs of $L(G_w)$ where the $\{C_i\}$ include all nodes of G_w. Suppose a k-fault in $L(G_w)$ effectively eliminates a set S of k nodes to form a new graph H. Let C_1, C_2, \ldots, C_j be any set of $j \geq k$ members of $\{C_i\}$ that contain S, and let H'' be the result of removing C_1, C_2, \ldots, C_j from $L(G_w)$. There are j nodes x_1, x_2, \ldots, x_j in G_w such that x_i corresponds to C_i in $L(G_w)$ for $i = 1, 2, \ldots, j$. If G'' is the result of removing these j nodes from G_w, then
Lemma 4. Let G be a graph with an f^t-FT realization $L(G)$. Then $L(G)$ is f^t-FT with respect to $L(G)$.

Proof: Let $L(G)$ be an f^t-FT realization of G. Then $L(G)$ is an f^t-FT realization of G. Hence $L(G)$ is f^t-FT with respect to $L(G)$.

Note that the converse of Lemma 4 is false.

Theorem 5: If G is k-SR with respect to G', then $L(G)$ is k-FT and k-SR with respect to $L(G)$ where d is the largest degree of any node in G.

Proof: As in the proof of Theorem 4, every set of k nodes in $L(G)$ is contained in a complete subgraph $C = \{c_1, c_2, \ldots, c_k\}$ which correspond to nodes $X = \{x_1, x_2, \ldots, x_k\}$ in G. Since G is k-SR, G' can recover from the removal of X in at most k steps, i.e., by changing the state or identity of at most k fault-free nodes. Every clique in $L(G)$ contains at most d nodes. Hence $L(G)$ can recover from a k-fault in C by deactivating at most kd fault-free nodes in C, i.e., by removing C, and by changing the states or identities of at most kd fault-free nodes in C. Hence $L(G)$ can recover from a k-fault in at most $2kd$ steps.

Example 5: Figs. 7a and 7b show two line graphs P_2 and P_3. Consider the problem of determining values of k and t such that P is k-FT/t-SR with respect to P'. The problem is greatly simplified if we replace P and P' by their root graphs $L^r(P)$ and $L^r(P')$ which appear in Figs. 7c and 7d, respectively. By Th. 1, $L^r(P)$ is optimally 1-SR with respect to $L^r(P')$. The maximum node degree of $L^r(P)$ is three, hence by Th. 5, P is 1-FT/3-SR with respect to P'. Theorem 5 and 4 can also be used to construct k-FT/t-SR systems with nodes of lower degree than the corresponding optimal t-SR systems, the case of regular basic graphs. (A graph is regular if all its nodes have the same degree d.) The reduction in the node degree of G becomes more apparent as d increases. The following example illustrates this.

Example 6: Suppose a 1-FT realization of a certain regular graph Q, is required where Q has 20 nodes of degree 8. Fig. 8a shows $L^r(Q)$. (We omit the diagram for Q because of its complexity.) Using Th. 1 the graph $L^r(Q)$ shown in Fig. 8b can be constructed. $L^r(Q)$ is an (optimal) 1-SR realization of $L^r(Q)$. Now construct the line graph Q' of $L^r(Q)$, which by Th. 5, is a 1-FT/9-SR realization of the original system Q. Q' has 23 nodes, and 12 is its maximum node degree. While Q' has far more spare nodes than the optimal 1-SR realization of Q, the latter contains nodes with degree 20.
John P. Hayes was born in Newbridge, Ireland on March 3, 1944. He received the B.E. degree from the National University of Ireland, Dublin, in 1965 and the M.S. and Ph.D. degree from the University of Illinois, Urbana, in 1967 and 1970, respectively, all in electrical engineering.

From 1965 to 1967 he was with the Digital Computer Laboratory at the University of Illinois, where he participated in the design of the ILLIAC 3 computer. In 1967 he joined the Switching Systems Group at the Coordinated Science Laboratory of the University of Illinois, where he worked in the area of fault diagnosis of digital systems. From 1970 to 1972 he was a member of the Operations Research Group at the Shell Benelux Computing Centre of the Royal Dutch/Shell Company in the Hague, the Netherlands, where he was involved in operations research and software development. Since 1972 he has been with the Department of Electrical Engineering and Computer Science at the University of Southern California, Los Angeles, where he is currently an Associate Professor. His research interests include fault-tolerant computing, computer architecture, switching theory, and microprocessor/microcomputer-based systems. He was Technical Program Chairman of the 1977 International Symposium on Fault-Tolerant Computing (FTCS-7). He is the author of the book Computer Architecture and Organization (New York, McGraw-Hill, 1978).

Dr. Hayes is a member of IEEE, ACM and Sigma Xi.

Raf Yanney was born in Cairo, Egypt on February 29, 1944. He received the B.S. degree in electrical engineering from Cairo University in 1965, the M.S. degree in electrical engineering from Pratt Institute, Brooklyn, New York in 1970, and the Engineer degree in electrical engineering from the University of Southern California, Los Angeles, California in 1975. He is currently studying for his Ph.D. in electrical engineering at the University of Southern California.

Mr. Yanney joined the Department of Neurology, Cornell University Medical College, New York as a research associate in 1975, a position he held until 1973. He joined Hughes Aircraft Company, Culver City, California in 1973, first as a member of the technical staff and then as a staff engineer. His responsibilities with Hughes Aircraft Company include the analysis and design of fault tolerant digital systems and self-diagnosable digital systems. His main interests are computer architecture, fault diagnosis of digital systems and fault tolerant systems. He is a member of IEEE and Sigma Xi.

REFERENCES

