SOME BOUNDS FOR OPTIMAL MANEUVERS AND PREDICTORS. (U)

SEP 78 H L REED
SOME BOUNDS FOR OPTIMAL MANEUVERS AND PREDICTORS

Harry L. Reed, Jr.

September 1978

Approved for public release; distribution unlimited.
A problem of some interest in the understanding of fire control systems is the following pure prediction problem. Given the class of target trajectories \mathbf{x} for which

$$\lim_{B \to \infty} \frac{1}{2B} \int_{-B}^{B} \mathbf{x}(t)^2 dt = a^2 \quad \text{where} \quad \mathbf{x} \in \mathbf{X}$$

and the class of predictors P which satisfy the causal principle, find
\[\varepsilon_1 = \sup_{x \in X} \inf_{p \in P} \varepsilon \]

and

\[\varepsilon_2 = \inf_{p \in P} \sup_{x \in X} \varepsilon \]

where

\[\varepsilon_2 = \frac{1}{2B} \int_{-B}^{B} \left[x(t + T) - y(t + T) \right]^2 dt \]

and \(y(t + T) \) is the predicted value of \(x(t + T) \) based on values of \(x(t - \tau) \) with \(\tau \geq 0 \).

It is shown that \(\varepsilon_1 = \varepsilon_2 \) for general \(N \). For the particular value of \(N = 2 \) which corresponds to a limited acceleration for the target, we have

\[\varepsilon_1 = \varepsilon_2 = \frac{2}{(\lambda T)^2} [|aT^2|] \approx 0.569[|aT^2|] \]

where \(\lambda \) is determined from the solution of an eigenvalue problem for a fourth-order differential equation.

The prediction algorithm \(p_a \) for which

\[\varepsilon_1 = \varepsilon(x_a, p_a) \]

is a linear operator and the optimal subclass of maneuvers \(x_a \) is based on a second-order correlation function

\[E[\hat{x}(t)\hat{x}(t + \tau)] = \int_{0}^{\infty} a(s)a(s + \tau) ds. \]

For the particular case of \(N = 2 \) we have

\[a(s) = \frac{a}{\sqrt{T}} \left[\cosh(\lambda(s - T/2)) - \frac{\sin(\lambda(s - T/2))}{\sin(\lambda T/2)} \right] \]

for

\[0 \leq s \leq T \]

and

\[a(s) = 0 \text{ otherwise.} \]

No restrictions were placed on \(X \) and \(P \) other than those stated above (i.e., \(X \) was not restricted to stationary processes and \(P \) was not restricted to linear operators).

It is further shown that the strategies given above are good approximations for the more general analysis in which hit probability is the performance measure. This is the case at least for "first cut" analyses.

Bounds such as this help avoid the expenditure of resources to achieve the impossible or to achieve marginally small improvements in fire control design.
TABLE OF CONTENTS

1. INTRODUCTION ... 5
2. LOWER BOUND ... 7
3. UPPER BOUND ... 10
4. THE EIGENVALUE PROBLEM 14
5. THE GENERAL PROBLEM 17
6. THE ALGORITHM p_0 18
7. CONCLUSIONS .. 20
 APPENDIX A ... 21
 APPENDIX B ... 23
 APPENDIX C ... 27
DISTRIBUTION LIST 31
1. INTRODUCTION

The goal of this paper is to give some insights into how well a fire control system can be expected to perform with noiseless information and how well a target can avoid being hit with limits on its ability to maneuver. Such a goal is very ambitious, so we shall make three simplifying assumptions:

- The tracking data are noiseless. This gives an advantage to the gun (see Reference 1) but is not too significant since optical and millimeter radar systems promise very accurate tracking and also since in many cases the errors from evasive maneuvers far exceed errors resulting from errors in state estimation.

- The target is limited only in the r.m.s. value of the \(N \)-th derivative of its path. That is, the class of maneuvers \(\bar{x}_N \), is limited to those \(x(t) \) for which

\[
C_N^2 = \lim_{R \to \infty} \frac{1}{2R} \int_{-R}^{R} [x^{(N)}(t)]^2 dt. \tag{1.1}
\]

- The performance of the fire control is characterized by the r.m.s. prediction error

\[
e^2(x, p) = \lim_{R \to \infty} \frac{1}{2R} \int_{-R}^{R} [\hat{x}(t+T, p) - x(t+T)]^2 dt \tag{1.2}
\]

where \(T \) is the time of flight of the bullet, \(p \in P \), \(P \) is the class of prediction algorithm such that \(\hat{x} \) is the predicted value of \(x(t+T) \) given all data on \(x(t-s) \) for \(s > 0 \).

The last two assumptions are the closest concession we make to stationarity. The reason for averaging over time in Equation 1.2 is to provide a measure that does not encourage the target to make a one-time maneuver at the time of firing a single round but rather forces the target to avoid rounds fired at unknown times or to avoid bursts of rounds fired over time.

Finally, the use of an r.m.s. error gives an incomplete measure of effectiveness for maneuvers with statistics that do not allow an adequate measure of probability of hit from the r.m.s. error (see, for example, Reference 2). However, for optimal maneuvers, the r.m.s. error is a fairly good measure (see Section 5).

We shall omit the subscript \(N \) unless its particular value is important. The following is our overall strategy:

Let

\[
\varepsilon_0 = \sup_{x \in X} \inf_{p \in P} \varepsilon(x, p) \tag{1.3}
\]

\[
\varepsilon^0 = \inf_{p \in P} \sup_{x \in X} \varepsilon(x, p) \tag{1.4}
\]

\[
\tilde{\varepsilon}_0 = \varepsilon(x_0, p_0) = \sup_{x \in X_G} \inf_{p \in P} \varepsilon(x, p) \tag{1.5}
\]

\[
\tilde{\varepsilon}^0 = \sup_{x \in X} \varepsilon(x, p_0) \tag{1.6}
\]

where \(X_G \) is the class of stationary Gaussian maneuvers that satisfy Equation 1.1 and also satisfy

\[
\int_{-\infty}^{\infty} \frac{|\log| \Phi(w)||}{1 + w^2} \, dw < \infty \tag{1.7}
\]

where \(\Phi(w) \) is the power spectral density of the Nth derivative.

Since \(X_G \subset X \) and \(p_0 \in P \), we have

\[
\tilde{\varepsilon}_0 \leq \varepsilon_0 \leq \varepsilon^0 \leq \tilde{\varepsilon}^0 \tag{1.8}
\]

The argument that gives the middle inequality is a consequence of the properties of sup and of inf, is common knowledge in game theory, and is given in Appendix 1 for the benefit of the uninitiated.

We shall show that

\[
\tilde{\varepsilon}_0 = \tilde{\varepsilon}^0 \tag{1.9}
\]

and thus that

\[
\varepsilon_0 = \varepsilon^0 \tag{1.10}
\]

We shall also evaluate \(\varepsilon \) for \(N = 0, 1, \) and 2 and show how to evaluate it for higher values of \(N. \)

Equation 1.10 implies that in a game between two "smart" players, \(x_0 \) and \(p_0 \) are optimal strategies.

2. LOWER BOUND

For Gaussian maneuvers the optimal predictors are linear operators of the form (see Reference 3)

\[
\hat{x}(t+T, p_h) = \sum_{m=0}^{N-1} x^{(m)}(t) \frac{T^m}{m!} + \int_0^\infty h(s)x^{(N)}(t-s)ds
\]

Integration by parts gives

\[
x(t+T) - \hat{x}(t+T, p_h) = \int_0^\infty u_N(T-s)x^{(N)}(t+s)ds
\]

\[
- \int_0^\infty h(s)x^{(N)}(t-s)ds
\]

where

\[
u_0(t) = \delta(t)
\]

and for \(N > 0 \)

\[
u_N(t) = \frac{t^{N-1}}{(N-1)!} \quad \text{for } t > 0
\]

\[
= 0 \quad \text{for } t < 0.
\]

Again we shall use

\(f(t) \) for \(u_N(T-t) \)

and

\(a(t) \) for \(x^{(N)}(t) \)

unless the particular value of \(N \) is important to the argument at hand.

Let
\[\phi(s) = \lim_{R \to \infty} \frac{1}{2R} \int_{-R}^{R} a(t)a(t+s)dt. \]
2.6

Equations 1.1 and 1.7 allow us to write
\[\phi(s) = \int_{-\infty}^{\infty} a(t)a(t+s)dt \]
2.7

where
\[a(t) = 0 \quad t < 0 \]
2.8

and of course
\[C^2 = \int_{0}^{\infty} [a(t)]^2 dt. \]
2.9

Using
\[\phi(r-s) = \int_{-\infty}^{\infty} a(t+r)a(t+s)dt \]
2.10

\[= \int_{-\infty}^{\infty} a(t-r)a(t-s)dt \]
2.11

and
\[\phi(r+s) = \int_{-\infty}^{\infty} a(t-r)a(t+s)dt, \]
2.12

we can combine Equation 1.2 and 2.2 to write
\[\varepsilon^2 = \int_{-\infty}^{\infty} dt \left\{ \int_{0}^{\infty} \left[f(s)a(t+s) - h(s)a(t-s) \right] ds \right\}^2 \]
2.13

\[= \int_{0}^{\infty} dt \left\{ \int_{0}^{\infty} \left[f(s)a(t+s) - h(s)a(t-s) \right] ds \right\}^2 \]
2.14

\[+ \int_{-\infty}^{0} dt \left\{ \int_{0}^{\infty} f(s)a(t+s)ds \right\}^2. \]
2.14
To minimize with respect to p, we pick h to satisfy

$$
\int_0^\infty f(s)\alpha(t+s)ds = \int_0^\infty h(s)\alpha(t-s)ds \quad 2.15
$$

which puts the first term of the function in Equation 2.14 equal to zero.

To maximize with respect to x, we then pick a to maximize

$$
e^2 = \int_0^\infty dt \left\{ \int_0^\infty f(s)\alpha(t+s)ds \right\}^2
= \int_0^\infty dt \left\{ \int_0^\infty f(s)\alpha(s-t)ds \right\}^2
= \int_0^\infty dt \left\{ \int_0^\infty f(s+t)\alpha(s)ds \right\}^2. \quad 2.16
$$

To do this, we set

$$
\delta e^2 = 2 \int_0^\infty dt \int_0^\infty f(s+t)\alpha(s)ds \int_0^\infty f(r+t)\alpha(r)dr = 0 \quad 2.17
$$

subject to

$$
\int_0^\infty \alpha(r) \delta \alpha(r) = 0. \quad 2.18
$$

Therefore

$$
\alpha(r) = k \int_0^\infty dt \int_0^\infty f(r+t) f(s+t)\alpha(s)ds. \quad 2.19
$$

Multiplying Equation 2.19 by $\alpha(r)$ and integrating, we have

$$
e^2 = \frac{C^2}{k} \quad 2.20
$$

which shows that $k \gg 0$. Further

$$
e_0^2 = \frac{C^2}{k_0}
$$
where \(k_0 \) is the least eigenvalue of Equations 2.9 and 2.19.

In Section 4 we show how this eigenvalue problem is related to an eigenvalue problem for a system of differential equations and we evaluate \(k_0 \) for \(N = 0, 1, \) and \(2. \)

3. UPPER BOUND

Even though the class \(\mathcal{X} \) is only constrained by

\[
C^2 = \lim_{R \to \infty} \frac{1}{2R} \int_{-R}^{R} |a(t)|^2 dt
\]

we can define

\[
\phi(s) = \lim_{R \to \infty} \frac{1}{2R} \int_{-R}^{R} a(t)a(t+s) dt
\]

and know that

\[
\phi(w) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \phi(s) e^{-iws} ds \geq 0.
\]

Now we shall use the predictor which was defined in the previous section by Equation 2.15 for the particular \(\alpha(r) \) given in Equation 2.19. Then Equations 1.7, 2.2, and 3.1 give (for any \(x \))

\[
\varepsilon^2(x,p_0) = \int_0^\infty dr \int_0^\infty ds \left\{ f(s)f(r)\phi(r-s) - 2f(s)h(r)\phi(r+s) + h(r)h(s)\phi(r-s) \right\}.
\]

Using

\[
\phi(r) = \int_{-\infty}^{\infty} |w| e^{iwr} dw,
\]

we can derive

\[
\varepsilon^2(x,p_0) = \int_{-\infty}^{\infty} |F(w)|^2 \phi(w) dw.
\]
where

\[H(w) = \int_{0}^{\infty} h(t) e^{-iwt} dt \] \hspace{1cm} 3.6

and

\[F(w) = \int_{0}^{\infty} f(t) e^{-iwt} dt \] \hspace{1cm} 3.7

We shall show that

\[|\overline{F}(w) - H(w)|^2 = \frac{1}{k_0} \] \hspace{1cm} 3.8

and thus that

\[\varepsilon^2(x, p_0) = \frac{1}{k_0} \int_{-\infty}^{\infty} \phi(w) dw = \frac{c^2}{k_0} \] \hspace{1cm} 3.9

for all \(x \in \mathcal{X} \).

To do that, we first take the Fourier transform of Equation 2.15 to get

\[\int_{0}^{\infty} e^{-iwt} dt \int_{0}^{\infty} f(s) \alpha(t+s) ds = H(w)A(w) \] \hspace{1cm} 3.10

where

\[A(w) = \int_{0}^{\infty} \alpha(t) e^{-iwt} dt \] \hspace{1cm} 3.11

Some manipulation of the left hand side of Equation 3.10 gives

\[\int_{0}^{\infty} e^{-iwt} dt \int_{0}^{\infty} f(s) \alpha(t+s) ds = \int_{0}^{\infty} e^{-iwt} dt \int_{0}^{\infty} f(s) \alpha(t) ds - \int_{0}^{\infty} e^{-iwt} dt \int_{0}^{\infty} f(s) \alpha(t+s) ds \]

\[= \overline{F}(w)A(w) - \int_{0}^{\infty} e^{iwt} \int_{0}^{\infty} f(s) \alpha(s-t) ds \]

\[= \overline{F}(w)A(w) - \int_{0}^{\infty} e^{iwt} \int_{0}^{\infty} f(t+r) \alpha(r) dr \] \hspace{1cm} 3.12
Therefore

\[|F(w) - H(w)|^2 = |B(w)/A(w)|^2 \tag{3.13} \]

where

\[B(w) = \int_{-\infty}^{\infty} e^{iwt} \beta(t) dt \tag{3.14} \]

\[\beta(t) = \int_{0}^{\infty} f(t+r)a(r)r t \geq 0 \tag{3.15} \]

\[= 0 \quad t < 0 \]

We then have

\[|B(w)|^2 = B(w)\overline{B(w)} = \int_{-\infty}^{\infty} e^{iwp} \int_{0}^{\infty} \beta(q)\overline{\beta(p+q)} dq \tag{3.16} \]

Note that this convolution is an even function of \(p \) so that

\[|B(w)|^2 = \int_{-\infty}^{\infty} e^{iwp} \int_{0}^{\infty} \beta(q)\beta(|p|+q) dq \tag{3.17} \]

Now using Equation 2.19, we have

\[\int_{0}^{\infty} \beta(q)\beta(|p|+q) dq = \int_{0}^{\infty} dq \int_{0}^{\infty} f(q+r)a(r) dr \]

\[\times \int_{0}^{\infty} f(q+|p|+s)a(s) ds \]

\[= \frac{1}{k_0} \int_{0}^{\infty} a(|p|+s)a(s) ds \tag{3.18} \]
and finally

\[|B(w) \overline{B}(w)| = \frac{1}{k_0} \int_{-\infty}^{\infty} e^{ipw} dp \int_{0}^{\infty} a(|p| + s) a(s) ds \]

\[= \frac{1}{k_0} |A(w) \overline{A}(w)| \]

3.19

and we have from Equation 3.13 and 3.5 that

\[e^2(x, p_0) = \frac{C^2}{k_0} \]

as advertised in Equation 3.9.

Another approach to Equation 3.8 is to show that

\[B(w) = \frac{1}{\sqrt{k_0}} \overline{A}(w) \]

3.20

which can be shown by showing that

\[B(t) = \frac{1}{\sqrt{k_0}} a(t). \]

3.21

To do this, we combine Equation 2.19 and 3.15 to get

\[B(t) = \int_{0}^{\infty} f(t+r) dr \int_{0}^{\infty} k_0 dq \int_{0}^{\infty} f(r+q) f(s+q) a(s) ds \]

\[= k_0 \int_{0}^{\infty} f(t+r) dr \int_{0}^{\infty} f(r+q) B(q) dq \]

3.22

Thus \(B(t) \) satisfies the same integral equation as \(a(t) \). In the next section we relate this integral equation to the eigenvalue problem for a differential equation. This eigenvalue problem has only one linearly independent solution (see Appendix 2) and so we can write

\[B(t) = \gamma a(t) \]

3.23
Then
\[\int_0^\infty [\beta(t)]^2 dt = \gamma^2 \int_0^\infty [\alpha(t)]^2 dt \] 3.24

which gives
\[\int_0^\infty \left(\int_0^\infty f(t+r) \alpha(r) dr \right)^2 dt = \gamma^2 \int_0^\infty [\alpha(t)]^2 dt \] 3.25

using the definition of \(\beta(t) \) and which can be rewritten as
\[
\int_0^\infty \alpha(r) dr \int_0^\infty f(t+r) dt \int_0^\infty f(t+s) \alpha(s) ds
\]
\[
= \gamma^2 \int_0^\infty [\alpha(t)]^2 dt
\]

and finally (from Equation 2.19)
\[
\frac{1}{k_o} \int_0^\infty [\alpha(r)]^2 dr = \gamma^2 \int_0^\infty [\alpha(t)]^2 dt
\] 3.27

which gives
\[\gamma = \frac{1}{\sqrt{k_o}} \] 3.28

4. THE EIGENVALUE PROBLEM

We have
\[\int_0^\infty \alpha^2(r) = C^2 \] 4.1

and
\[
\alpha(r) = k_o \int_0^\infty dt \int_0^\infty u(T-r-t)u(T-s-t) \alpha(s) ds
\]
\[
= k_o \int_0^{T-r} dt \int_0^{T-t} \frac{(T-r-t)^{N-1}}{(N-1)!} \frac{(T-s-t)^{N-1}}{(N-1)!} \alpha(s) ds
\]
4.2

for \(r \leq T \).
We also have $k_0 > 0$, and k_0 is the least eigenvalue of this system of equations.

If $r > T$

$$u(T-r-t) = 0 \text{ since } t > 0$$

and thus

$$a(r) = 0 \text{ for } r > T \quad 4.3$$

If $N = 0$

$$u(r) = \delta(r)$$

and

$$a(r) = k_0 \int_0^\infty dt \int_0^\infty \delta(T-r-t)\delta(T-s-t)a(s)ds$$

$$= k_0 a(r)$$

So for $N = 0$

$$k_0 = 1 \quad 4.4$$

and

$$\varepsilon_0 = C \quad 4.5$$

Let $N \geq 1$. We can differentiate Equation 4.2 to get for $0 \leq t \leq T$

$$a^{(2N)} = (-1)^N k_0 a \quad 4.6$$

$$a^{(M)}(T) = 0 \text{ for } M=0 \text{ to } N-1 \quad 4.7$$

$$a^{(M)}(0) = 0 \text{ for } M=N \text{ to } 2N-1 \quad 4.8$$

The uniqueness of the solution to this system of equations is shown in Appendix 2.

Now let $N=1$

$$\ddot{a} = -k_0 a$$
\[\ddot{a}(0) = \alpha(T) = 0 \]

\[\alpha = \sqrt{\frac{2}{T}} \cdot C \cos \left(\frac{\pi}{2T} t \right) \]

\[k_o = \left(\frac{\pi}{2T} \right)^2 \]

\[\varepsilon_o = \frac{2}{\pi} \cdot CT \]

Finally let \(N = 2 \)

\[\dddot{a} = k_o \alpha \]

\[\dddot{a}(0) = \dddot{a}(0) = \dddot{a}(T) = \alpha(T) = 0 \]

(The classical problem of the vibration of a clamped rod.)

Letting \(k_o = \lambda_o^4 \), we have

\[1 + \cosh (\lambda_o T) \cos (\lambda_o T) = 0 \]

\[\lambda_o T \approx 1.875 \]

\[\alpha = \frac{C}{\sqrt{T}} \left\{ \frac{\cosh[\lambda_o (t - T/2)]}{\cosh[\lambda_o T/2]} \right\} \]

\[- \frac{\sin[\lambda_o (t - T/2)]}{\sin[\lambda_o T/2]} \]

\[\varepsilon_o \approx \frac{2}{\lambda_o^2} \left(\frac{1}{2} \cdot CT^2 \right) \]

\[\approx 0.569 \left(\frac{1}{2} \cdot CT^2 \right) \]
5. THE GENERAL PROBLEM

In this section we shall see how far we can go using hit probability rather than the r.m.s. criterion. In doing this, we shall have to give up the neatness of finding an exact answer. On the other hand, we shall find bounds on the problem, and these bounds will be shown to bracket the problem closely enough for many "first analyses."

Let us discuss the problem where \(x(t) \) has a single spatial dimension. Associated with a class of maneuvers is a probability distribution function

\[
u(x(t + T) - \hat{x}(t + T, p) \mid x(t - s), s \geq 0)\]

That is, \(u \) is the distribution of the error between the future position and the predicted future position given the past. Let \(y \) be this error in future position. We can average over time to find a distribution function

\[
u(y \mid x, p). \]

The probability of hit \(q \) is

\[
q(x, p) = \int_{-\ell/2}^{\ell/2} du(x \mid x, p),
\]

where \(\ell \) is the size of the target. The pilot wishes to keep \(q \) small. His goal might be

\[
q^o = \inf_{x \in X} \sup_{p \in P} q(x, p). \]

Likewise, the gunner might try for

\[
q^o = \sup_{p \in P} \inf_{x \in X} q(x, p). \]

The set \(X \), the set \(P \), the set \(X_0 \), the maneuver \(X_0 \), the prediction algorithm \(P_0 \), and the error \(\varepsilon_0 \) are as defined in Section 1.

We can define

\[
\tilde{q}^o = \tilde{q}^o(\varepsilon_0 / \ell) = q(x_0, P_0) = \frac{1}{\sqrt{2\pi} \varepsilon_0} \int_{-\ell/2}^{\ell/2} e^{-\xi^2/(2\varepsilon_0^2)} d\xi \]

17
Since x_o is Gaussian, p_o maximizes the hit probability as well as it minimizes the error. Thus
\[q^o < \tilde{q}^o. \]

We can also define
\[\tilde{q}_o = \inf_x q(x, \tilde{p}_o), \]
where \tilde{p}_o is a variant of the algorithm p_o and will be described in Section 6.

As usual, we have
\[\tilde{q}_o < q_o < q^o < \tilde{q}^o, \]
but this time we have not been able to collapse this chain of inequalities. In fact we are only able to find a lower bound $z(\tilde{p}_o / \tilde{q})$ such that
\[z < \tilde{q}_o < q_o < q^o < \tilde{q}^o. \]

Nevertheless, these bounds may well still be useful for first estimates since they provide a variation of no more than 70 percent. A tabulation of the lower bound z and the upper bound \tilde{q}^o and their ratio is given in Table 1.

6. THE ALGORITHM \tilde{p}_o

Define the algorithm \tilde{p}_o to be
\[\tilde{x}(t + T, \tilde{p}_o) = y_o + \tilde{x}(t + T, p_o). \]

Then
\[u(y \mid x, \tilde{p}_o) = u(y - y_o \mid x, p_o). \]

The value y_o is the value that maximizes
\[q(y_o, x, p_o) = \int_{y=-l/2}^{y=l/2} du(y - y_o) x, p_o. \]

From Appendix C we have
<table>
<thead>
<tr>
<th>$z(\varepsilon)$</th>
<th>ε</th>
<th>$\bar{q}^\varepsilon(\varepsilon)$</th>
<th>\bar{q}^ε/z</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>∞</td>
<td>.000</td>
<td>1.382</td>
</tr>
<tr>
<td>.05</td>
<td>5.557</td>
<td>.072</td>
<td>1.434</td>
</tr>
<tr>
<td>.10</td>
<td>2.669</td>
<td>.149</td>
<td>1.486</td>
</tr>
<tr>
<td>.15</td>
<td>1.721</td>
<td>.229</td>
<td>1.524</td>
</tr>
<tr>
<td>.20</td>
<td>1.225</td>
<td>.317</td>
<td>1.585</td>
</tr>
<tr>
<td>.25</td>
<td>.935</td>
<td>.407</td>
<td>1.628</td>
</tr>
<tr>
<td>.30</td>
<td>.775</td>
<td>.481</td>
<td>1.605</td>
</tr>
<tr>
<td>.35</td>
<td>.622</td>
<td>.578</td>
<td>1.652</td>
</tr>
<tr>
<td>.40</td>
<td>.548</td>
<td>.639</td>
<td>1.597</td>
</tr>
<tr>
<td>.45</td>
<td>.461</td>
<td>.722</td>
<td>1.604</td>
</tr>
<tr>
<td>.50</td>
<td>.354</td>
<td>.843</td>
<td>1.685</td>
</tr>
<tr>
<td>.55</td>
<td>.335</td>
<td>.864</td>
<td>1.571</td>
</tr>
<tr>
<td>.60</td>
<td>.316</td>
<td>.886</td>
<td>1.477</td>
</tr>
<tr>
<td>.65</td>
<td>.296</td>
<td>.909</td>
<td>1.399</td>
</tr>
<tr>
<td>.70</td>
<td>.274</td>
<td>.932</td>
<td>1.332</td>
</tr>
<tr>
<td>.75</td>
<td>.250</td>
<td>.954</td>
<td>1.273</td>
</tr>
<tr>
<td>.80</td>
<td>.224</td>
<td>.975</td>
<td>1.218</td>
</tr>
<tr>
<td>.85</td>
<td>.194</td>
<td>.990</td>
<td>1.165</td>
</tr>
<tr>
<td>.90</td>
<td>.158</td>
<td>.998</td>
<td>1.109</td>
</tr>
<tr>
<td>.95</td>
<td>.112</td>
<td>1.000</td>
<td>1.053</td>
</tr>
<tr>
<td>1.00</td>
<td>.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>
\[q(x, \overline{y}) = \sup_{y_0} q(y_0, x, p) \geq z(\sigma / \xi) \geq z(\overline{c} / \xi) \] \hspace{1cm} 6.4

where \(\sigma \) is the standard deviation around the mean. The last inequality follows since \(z \) is a monotonically decreasing function and since \(\sigma \) minimizes the r.m.s. error.

Since the middle inequality in Equation 6.4 holds for all \(x \), we have
\[\overline{q} \geq z(\overline{c} / \xi). \] \hspace{1cm} 6.5

7. CONCLUSIONS

With respect to the r.m.s. criterion and the r.m.s. bound on an Nth derivative, the duel between a gunner and a target is a game with a saddle point which can be precisely defined and hence stable strategies exist for both players.

If hit probability is used as the criterion, we have been unable to define a saddle point precisely. However, we can find bounds that show that the difference between the performance for such a saddle point and the saddle point for the r.m.s. case may well be small enough to use the r.m.s. criterion as a good "first analysis."
APPENDIX A

First consider ε_0. We note that for each $\delta \geq 0$ there exists an x_δ such that

$$\inf_p \varepsilon(x_\delta, p) \geq \varepsilon_0 - \delta$$

which follows from the definition of sup.

Thus

$$\varepsilon(x_\delta, p) \geq \varepsilon_0 - \delta$$

for all p which follows from the definition of inf.

Likewise, there exists a p_δ such that

$$\varepsilon(x, p_\delta) \leq \varepsilon_0 + \delta$$

for all x.

Thus

$$\varepsilon_0 - \delta \leq f(x_\delta, p_\delta) \leq \varepsilon_0 + \delta$$

for all δ and thus

$$\varepsilon_0 \leq \varepsilon_0.$$
APPENDIX B*

Statement of Problem.

Let \(k > 0 \) be such that the differential equation

\[
\begin{align*}
 x^{(2n)} &= (-1)^n k x \\
 x^{(m)}(T) &= 0 \quad (m=0,1,\ldots,n-1) \\
 x^{(m)}(0) &= 0 \quad (m=n,n+1,\ldots,2n-1)
\end{align*}
\]

has a nontrivial solution. Prove that this solution is unique up to constant multiples.

Proof.

The proof consists in showing that for any two nontrivial solutions \(x \) and \(y \) the equality sign in Schwarz's inequality

\[
\left(\int_0^T x y \, dt \right)^2 \leq \int_0^T x^2 \, dt \int_0^T y^2 \, dt
\]

holds, which occurs if and only if \(y = cx \), \(c \) a constant.

To this end, we note first that

\[
\int_0^T x y \, dt = \frac{1}{k} \int_0^T x^{(n)} y^{(n)} \, dt. \quad (B-1)
\]

This follows from

*The analysis in this appendix was provided by Mr. Walter O. Egerland of the Ballistic Modeling Division, Ballistic Research Laboratory.
\[\int_0^T xy \, dt = \frac{(-1)^n}{k} \int_0^T x^{(2n)} y \, dt \]

\[= \frac{(-1)^n}{k} \left\{ yx^{(2n-1)} \bigg|_0^T - \int_0^T x^{(2n-1)} y' \, dt \right\} \]

\[= \frac{(-1)^{n+1}}{k} \int_0^T x^{(2n-1)} y' \, dt \]

\[= \frac{(-1)^{n+j}}{k} \int_0^T x^{(2n-j)} y^j \, dt, \quad j=1,2,\ldots,n \quad (B-2) \]

Next, we write the identify

\[xy = x(0)y(0) + \int_0^t (x'y + xy') \, dt, \]

and find successively

\[xy = x(0)y(0) + \frac{(-1)^n}{k} \int_0^t (x'y^{(2n)} + y'x^{(2n)} dt \]

\[= x(0)y(0) + \frac{(-1)^n}{k} \left\{ y^{(2n-1)} x' + x^{(2n-1)} y' \right\} \]

\[- \int_0^t (y^{(2n-1)} x'' + x^{(2n-1)} y'') dt \right\} \]

\[= \ldots \]

\[= x(0)y(0) + \frac{(-1)^n}{k} \left[\sum_{j=1}^{n-1} (-1)^{j+1} y^{(2n-j)} x^j + x^{(2n-j)} y^j \right] \]

\[+ \frac{(-1)^{n+1}}{k} x^{(n_j)} y^{(n_j)} \right] \]

Integration over the interval \([0,T]\), using \((B-1)\) and \((B-2)\), yields
\[\int_0^T xy \, dt = x(0)y(0)T - (2n - 1) \int_0^T xy \, dt \]
or
\[\int_0^T xy \, dt = \frac{x(0)y(0)}{2n} \cdot T. \quad (B-3) \]
In particular,
\[\int_0^T x^2 \, dt = \frac{x(0)^2}{2n} \cdot T \]
and
\[\int_0^T y^2 \, dt = \frac{y(0)^2}{2n} \cdot T. \]
Hence, equality in Schwarz's inequality holds, and the proof is complete.
APPENDIX C

Let \(u(\xi) \) be any distribution function which we will take for convenience as having zero mean. Then

\[
\sigma^2 = \int_{-\infty}^{\infty} \xi^2 \, du(\xi). \tag{C-1}
\]

We want to relate \(\sigma \) with

\[
q = \sup_y \int_{y-z/2}^{y+z/2} \, du \tag{C-2}
\]

It is convenient to find a function such that

\[
\sigma > r(q). \tag{C-3}
\]

This function is monotonically decreasing with \(q \) and thus we can use it to define

\[
q > z(\sigma). \tag{C-4}
\]

implicitly.

We can write

\[
\sigma^2 = \sum_{m=-\infty}^{\infty} \int_{mz/2}^{(m+1)z/2} \xi^2 \, du(\xi)
\]

\[
\sigma^2 > \sum_{m=0}^{\infty} \left(\frac{m\xi}{2} \right)^2 \int_{mz/2}^{(m+1)z/2} \, du + \sum_{m=-\infty}^{-1} \left(\frac{(m+1)\xi}{2} \right)^2 \int_{mz/2}^{(m+1)z/2} \, du
\]

\[
\sigma^2 > \sum_{m=0}^{\infty} \left(\frac{m\xi}{2} \right)^2 \mu_m + \sum_{m=-\infty}^{-1} \left[\frac{(m+1)\xi}{2} \right]^2 \mu_m \tag{C-5}
\]

where

\[
\mu_m = \int_{mz/2}^{(m+1)z/2} \, du \geq 0,
\]

\[27\]
and $$\mu_m + \mu_{m+1} \leq q$$

and $$\sum_{m=-\infty}^{\infty} \mu_m = 1.$$

If we write

$$\nu_m = \mu_m + \mu(-1-m),$$

we have

$$\sigma^2 > \Sigma = \sum_{m=0}^{\infty} \frac{m^2}{2} \nu_m,$$

(C-6)

where

$$0 \leq \nu_0 \leq q,$$ \hspace{1cm} (C-7)

$$0 \leq \nu_m + \nu_{m+1} \leq 2q,$$ \hspace{1cm} (C-8)

$$\sum_{m=0}^{\infty} \nu_m = 1.$$ \hspace{1cm} (C-9)

It is not hard to show that we have a lower bound for $$\Sigma$$ defined in Equation C-6 if we let

$$\nu_m = q \text{ for } m=0, M-1,$$ \hspace{1cm} (C-10)

$$\nu_M = 1 - Mq,$$ \hspace{1cm} (C-11)

$$\nu_m = 0 \text{ for } m > M,$$ \hspace{1cm} (C-12)

where

$$M = \text{greatest integer } \lfloor 1/q \rfloor.$$ \hspace{1cm} (C-13)

The proof of this goes as follows:

(i) If $$\nu_0 = q$$, go to step (iv)

(ii) If $$\nu_0 < q$$ and $$\nu_0 + \nu_1 = b \geq q$$, put $$\nu_0 = q$$ and $$\nu_1 = b - q$$. This will decrease $$\Sigma$$. Then go to step (iv).
(iii) If \(v_0 + v_1 = b < q \), put \(v_0 = b, v_1 = 0 \) and reduce and other \(v_m \)'s to make \(v_0 = q \). This again will decrease \(\Sigma \). Then go to step (iv).

(iv) Now work on \(v_1 \) and \(v_2 \) as we worked on \(v_0 \) and \(v_1 \).

(v) Continue on with \(v_2 \) and \(v_3 \), etc.

We then have

\[
\frac{\sigma^2}{\ell^2} > \sum_{m=0}^{M-1} \frac{m^2q}{4} + \frac{M^2}{4} \left[1 - Mq \right], \tag{C-14}
\]

which we can write in closed form as

\[
\frac{\sigma^2}{\ell^2} = r(q) = \frac{(M-1)M(2M-1)}{24} q + \frac{M^2}{4} \left[1 - Mq \right]. \tag{C-15}
\]

We now need only show that this function is monotonically decreasing for \(0 < q \leq 1 \), and we have implicitly defined \(z(z) \).

First let \(q = \frac{1}{M} \). Then

\[
r(q) = \frac{(M-1)(2M-1)}{24}
\]

which increases as \(q \) decreases.

We can write Equation C-14 as

\[
r(q) = \frac{M^2}{4} + qM \left[-\frac{4M^2 - 3M + 1}{24} \right] \tag{C-16}
\]

For \(\frac{1}{M+1} < q \leq \frac{1}{M} \), \(M \) is fixed in Equation C-16 and \(r(q) \) varies only as a constant times \(q \). Since

\[-4M^2 - 3M + 1 < 0 \quad \text{for} \ q \leq 1,
\]

we have that \(r(q) \) increases as \(q \) decreases from \(\frac{1}{M} \) to \(\frac{1}{M+1} \).

We should point out that \(r(\cdot) \) is not actually achievable by a \(u(\cdot) \). In particular, there is a jump of \(q \) at zero and a jump of \(q/2 \) at \(\ell/2 \) so the interval \([-\ell/4, 3\ell/4] \) would have measure \(3q/2 \). Thus \(z \) is only a lower bound.
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Commander Defense Documentation Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: DDC-TCA</td>
</tr>
<tr>
<td></td>
<td>Cameron Station</td>
</tr>
<tr>
<td></td>
<td>Alexandria, VA 22314</td>
</tr>
<tr>
<td>1</td>
<td>Office of Director of Defense Research & Engineering Research and Advanced Technology</td>
</tr>
<tr>
<td></td>
<td>ATTN: Mr. L. R. Weisberg</td>
</tr>
<tr>
<td></td>
<td>Assistant Director</td>
</tr>
<tr>
<td></td>
<td>Elec & Phy Sci</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20501</td>
</tr>
<tr>
<td>1</td>
<td>Office of Director of Defense Research & Engineering Engineering Technology</td>
</tr>
<tr>
<td></td>
<td>ATTN: Mr. Ray Thorkildsen</td>
</tr>
<tr>
<td></td>
<td>Staff Assistant for Ordnance Technology</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20501</td>
</tr>
<tr>
<td>1</td>
<td>Director Institute for Defense Analysis</td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. J. Ross</td>
</tr>
<tr>
<td></td>
<td>400 Army Navy Drive</td>
</tr>
<tr>
<td></td>
<td>Arlington, VA 22202</td>
</tr>
<tr>
<td>1</td>
<td>Commander US Army Materiel Development and Readiness Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRCDMD-ST, N. Klein</td>
</tr>
<tr>
<td></td>
<td>5001 Eisenhower Avenue</td>
</tr>
<tr>
<td></td>
<td>Alexandria, VA 22333</td>
</tr>
<tr>
<td>4</td>
<td>Commander US Army Aviation Research and Development Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRSAV-E</td>
</tr>
<tr>
<td></td>
<td>DRCPM-AAH</td>
</tr>
<tr>
<td></td>
<td>DRCPM-ASE</td>
</tr>
<tr>
<td></td>
<td>DRCPM-CO</td>
</tr>
<tr>
<td></td>
<td>12th and Spruce Streets</td>
</tr>
<tr>
<td></td>
<td>St. Louis, MO 63166</td>
</tr>
<tr>
<td>1</td>
<td>Director US Army Air Mobility Research and Development Laboratory</td>
</tr>
<tr>
<td></td>
<td>Ames Research Center</td>
</tr>
<tr>
<td></td>
<td>Moffett Field, CA 94035</td>
</tr>
<tr>
<td>1</td>
<td>Commander US Army Electronics Research and Development Command Technical Support Activity</td>
</tr>
<tr>
<td></td>
<td>ATTN: DELSD-L</td>
</tr>
<tr>
<td></td>
<td>Fort Monmouth, NJ 07703</td>
</tr>
<tr>
<td>1</td>
<td>Commander US Army Communications Research and Development Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRDCO-SGS</td>
</tr>
<tr>
<td></td>
<td>Fort Monmouth, NJ 07703</td>
</tr>
<tr>
<td>1</td>
<td>Commander US Army Missile Research and Development Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRDMI-R</td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td>1</td>
<td>Commander US Army Missile Materiel Readiness Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRSMI-AOM</td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td>1</td>
<td>Commander US Army Tank Automotive Research and Development Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRDTA-UL</td>
</tr>
<tr>
<td></td>
<td>Warren, MI 48090</td>
</tr>
<tr>
<td>5</td>
<td>Commander US Army Armament Research and Development Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRDAR-TSS (2 cys)</td>
</tr>
<tr>
<td></td>
<td>DRDAR-TD, Dr. R. Weigle</td>
</tr>
<tr>
<td></td>
<td>DRDAR-TDS, Mr. V. Lindner</td>
</tr>
<tr>
<td></td>
<td>DRDAR-SCF</td>
</tr>
<tr>
<td></td>
<td>Dover, NJ 07801</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td>1</td>
<td>Deputy Under Secretary of the Army (Operations Research)</td>
</tr>
<tr>
<td>1</td>
<td>Commandant</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td>1</td>
<td>AF/XOOF-A</td>
</tr>
<tr>
<td>1</td>
<td>AF/SAV</td>
</tr>
<tr>
<td>1</td>
<td>AFSC (DOVS)</td>
</tr>
<tr>
<td>1</td>
<td>TAWC/OA (Mr. J. Durrenberger)</td>
</tr>
<tr>
<td>1</td>
<td>AFWL (SA)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Army Armament Materiel Readiness Command</td>
</tr>
<tr>
<td>ATTN: DRSAR-LEP-L, Tech Lib Rock Island, IL 61299</td>
</tr>
<tr>
<td>Commander</td>
</tr>
<tr>
<td>White Sands Missile Range</td>
</tr>
<tr>
<td>ATTN: STEWS-TE-ML</td>
</tr>
<tr>
<td>STEWS-NR-PA</td>
</tr>
<tr>
<td>White Sands, NM 88002</td>
</tr>
<tr>
<td>Commander</td>
</tr>
<tr>
<td>US Army Training and Doctrine Command</td>
</tr>
<tr>
<td>ATTN: ATCD-FT</td>
</tr>
<tr>
<td>Fort Monroe, VA 23651</td>
</tr>
<tr>
<td>Director</td>
</tr>
<tr>
<td>US Army TRADOC Systems Analysis Activity</td>
</tr>
<tr>
<td>ATTN: ATAA-SL, Tech Lib</td>
</tr>
<tr>
<td>White Sands Missile Range, NM 88002</td>
</tr>
<tr>
<td>Commander</td>
</tr>
<tr>
<td>US Army Aviation Center</td>
</tr>
<tr>
<td>ATTN: ATZK-D-MT</td>
</tr>
<tr>
<td>Fort Rucker, AL 36360</td>
</tr>
<tr>
<td>Commander</td>
</tr>
<tr>
<td>US Army Combined Arms Combat Developments Activity</td>
</tr>
<tr>
<td>ATTN: ATCACC-C Ft Lear, KS 66027</td>
</tr>
<tr>
<td>Commander</td>
</tr>
<tr>
<td>MASTTER</td>
</tr>
<tr>
<td>ATTN: ATMAS-OEP-Q</td>
</tr>
<tr>
<td>Fort Hood, TX 76544</td>
</tr>
<tr>
<td>Commander</td>
</tr>
<tr>
<td>Operational Test and Evaluation Agency</td>
</tr>
<tr>
<td>ATTN: FDTE-P0-08</td>
</tr>
<tr>
<td>5600 Columbia Pike</td>
</tr>
<tr>
<td>Falls Church, VA 22041</td>
</tr>
<tr>
<td>Deputy Under Secretary of the Army (Operations Research) Washington, DC 20310</td>
</tr>
<tr>
<td>Commandant</td>
</tr>
<tr>
<td>US Military Academy</td>
</tr>
<tr>
<td>ATTN: COL John L. Palmer</td>
</tr>
<tr>
<td>Dept. of Engineering West Point, NY 10996</td>
</tr>
<tr>
<td>Commander</td>
</tr>
<tr>
<td>Naval Ordnance Systems Command</td>
</tr>
<tr>
<td>Washington, DC 20360</td>
</tr>
<tr>
<td>Commander</td>
</tr>
<tr>
<td>Office of Naval Research</td>
</tr>
<tr>
<td>ATTN: Mr. S. M. Selig</td>
</tr>
<tr>
<td>800 North Quincy Street</td>
</tr>
<tr>
<td>Arlington, VA 22217</td>
</tr>
<tr>
<td>Director</td>
</tr>
<tr>
<td>Special Projects Office Department of the Navy</td>
</tr>
<tr>
<td>Washington, DC 20360</td>
</tr>
<tr>
<td>Commander</td>
</tr>
<tr>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td>ATTN: Code 753</td>
</tr>
<tr>
<td>China Lake, CA 93557</td>
</tr>
<tr>
<td>AF/XOOF-A</td>
</tr>
<tr>
<td>Washington, DC 20330</td>
</tr>
<tr>
<td>AF/SAV</td>
</tr>
<tr>
<td>Washington, DC 20330</td>
</tr>
<tr>
<td>AFSC (DOVS)</td>
</tr>
<tr>
<td>Andrews AFB Washington, DC 20331</td>
</tr>
<tr>
<td>TAWC/OA (Mr. J. Durrenberger)</td>
</tr>
<tr>
<td>Eglin AFB, FL 32542</td>
</tr>
<tr>
<td>AFWL (SA)</td>
</tr>
<tr>
<td>Kirtland AFB, NM 87117</td>
</tr>
</tbody>
</table>

32
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>United States Air Force Academy Department of Astronautics and Computer Science ATTN: DFACS/LTC E. J. Bauman Colorado 80840</td>
</tr>
<tr>
<td>1</td>
<td>Martin Marietta ATTN: Dr. Joseph Sternberg 6801 Rockledge Drive Bethesda, MD 20034</td>
</tr>
</tbody>
</table>

Aberdeen Proving Ground

Dir, USAMSAA ATTN: Dr. J. Sperrazza Mr. D. O'Neill Mr. H. Burke

Gdr, USATECOM ATTN: DRSTE-SG-H DRSTE-SE DRSTE-SY, J. Marley DRSTE-AD

Dir, USAMTD ATTN: STEAP-MT-M