STUDY OF REYNOLDS STRESS EQUATION FOR PREDICTION
OF FLOW CHARACTERISTICS OF FREE JET

Y. G. Tsuei
Department of Mechanical Engineering
University of Cincinnati
Cincinnati, OH 45221

August 11, 1978

DISTRIBUTION STATEMENT A
Approved for public release; Distribution Unlimited
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)

NOTICE OF TRANSMITTAL TO DOD

This technical report has been reviewed and is approved for public release DOD AFR 150-12 (Vo).

Distribution is unlimited.

A. D. LIECE
Technical Information Officer
FINAL REPORT

STUDY OF REYNOLDS STRESS EQUATION FOR PREDICTION
OF FLOW CHARACTERISTICS OF FREE JET

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
AFOSR-77-3311

Y. G. TSUEI
Department of Mechanical Engineering
University of Cincinnati
Cincinnati, OH 45221

August 11, 1978

DISTRIBUTION STATEMENT A
Approved for public release; Distribution Unlimited
ABSTRACT

This report concerns the prediction of the flow characteristics of an isothermal free jet. A computer program has been developed similar to that of Spalding and Patankar. Reynolds stress equations are used so that not only turbulent shearing stress, but also turbulent kinetic energy and dissipation can be calculated. This program is rather short, about 280 statements, and for a moderate number of points (usually about 15), requires only five seconds per run for the Amdahl 470/V6 computer. The results compare fairly well with experiments in two-dimensional as well as in axi-symmetric jets. It is found that the similarity assumption is only approximate. Also the results can be somewhat different for different initial input turbulence conditions. Therefore, to compare the experimental results and to interpret their accuracy, particularly when no detailed measurements are made at the jet orifice, should be done cautiously. The variations due to the assigned constants in the closure model are also briefly discussed.
TABLE OF CONTENTS

I. INTRODUCTION

II. GOVERNING EQUATIONS
 1. Turbulence Closure Model
 2. Boundary Layer Approximation for Free Jet

III. NUMERICAL METHOD AND CALCULATION PROCEDURE
 1. Transformation from Physical Coordination \((x,y)\)
 to Streamline Coordinates \((x,\psi)\)
 2. Numerical Technique
 3. Entrainment

IV. RESULTS AND DISCUSSIONS

V. FURTHER DEVELOPMENT AND SUGGESTIONS

REFERENCES

APPENDIX
 1. Table of Constants
 2. Flow Chart
 3. Computer Program
INTRODUCTION

Combustion in dump combustors is a complex process which involves mixing, mass transfer, chemical reaction as well as circulations. The investigation using the Reynolds stress equation for predicting the flow characteristics of an isothermal free jet is one of the very first steps toward understanding the mixing process. Based on the boundary layer approximation of the jet mixing and neglecting the effects of a wall, the coupled equations involving momentum, turbulent shear stress, kinetic energy and dissipation are much simplified with a proper closure model. The numerical prediction by the Spalding method with the von Mises transformation is investigated with some modification for the free jet calculation. A computer program is developed for use such that it is relatively easy for the user to read and to modify the program for his needs. Further development should include the chemical species such that free jet combustion can be predicted.

Since the APOGR-IFP-STANFORD Conference 1968 the prediction of the turbulent flow has shifted its emphasis to turbulent field methods which involve the Reynolds shear stress turbulent energy or turbulent dissipation with varying closure models as discussed in that report [1]. In 1970, Reynolds [2] presented a brief survey of the state of the art for computation of turbulent flows. Herring and Mellor [3] developed a computer program which
is used fairly widely in the United States. At Imperial College, Spalding and his coworker [4] worked over ten years on a program which is large and versatile with different turbulence models. His program is used in Europe as well as in the U.S. Because the program is large and versatile it requires some training and fluid mechanics background to use the program properly. If the user wants to modify the program for his needs, he usually encounters many difficulties. It is well known that it is difficult to read and modify a computer program, especially if it is a large and complicated one, unless the user is quite familiar with the detailed procedure. Launder [5,6] used the Reynolds stress equation in a sequence of his papers on predicting turbulent flow. His criticism is the common one i.e. there are too many constants and it is, in a sense, a complicated curve fitting technique. Nevertheless, Launder's approach does give fairly good results in general. However, there are no reports on the predictions of axi-symmetric jets which involve turbulent shear stress and kinetic energy as well as dissipation. This report is for such an investigation.
GOVERNING EQUATIONS

1. Turbulence Closure Model

For a fluid of uniform density ρ the set of differential equations governing the transport process can be written in the following form:

Equation of continuity

$$\frac{\partial U_i}{\partial x_i} = 0$$

Equations of momentum

$$\frac{D U_i}{D t} = -\frac{1}{\rho} \frac{\partial P}{\partial x_i} + \nu \frac{\partial}{\partial x_i} \left(\frac{\partial U_i}{\partial x_i} \right) - \frac{\partial \overline{u_i u_i}}{\partial x_i}$$

Equations for (kinematic) Reynolds stress

$$\frac{D \overline{u_i u_j}}{D t} = -\left[\frac{\partial U_i}{\partial x_k} \frac{\partial U_j}{\partial x_k} \right] - 2\nu \frac{\partial \overline{u_i u_j}}{\partial x_k} \frac{\partial U_k}{\partial x_k}$$

$$+ \frac{\overline{u_i u_j}}{\rho} \left(\frac{\partial u_i}{\partial x_k} + \frac{\partial u_j}{\partial x_k} \right) - \frac{\partial}{\partial x_k} \left[\frac{\partial U_i}{\partial x_k} u_j - u_i \frac{\partial U_j}{\partial x_k} + \frac{1}{\rho} \beta (\delta_{ij} + u_i^2 + u_j^2) \right]$$

Equation for dissipation

$$\frac{D \varepsilon}{D t} = -2\nu \frac{\partial U_i}{\partial x_k} \left(\frac{\partial U_i}{\partial x_k} + \frac{\partial U_i}{\partial x_i} \right) - 2\nu \frac{\partial \overline{u_i u_i}}{\partial x_k} \frac{\partial U_k}{\partial x_k}$$

$$- 2 \left[\nu \frac{\partial U_i}{\partial x_i} \right]^2 - \frac{\partial}{\partial x_i} \left(\frac{\partial U_i}{\partial x_i} \right) - \frac{\nu}{\rho} \frac{\partial}{\partial x_i} \left(\frac{\partial \overline{u_i u_i}}{\partial x_i} \right)$$
where U is the mean flow velocity of the main flow,

\[u_1 \] is the fluctuation velocity, i.e. $\bar{u}_1 = 0$,

\[\varepsilon = \nu \frac{\partial u_i}{\partial x_i} \frac{\partial u_i}{\partial x_i} \] is the dissipation and

\[\varepsilon' \] is the dissipation fluctuation.

Since there are more unknowns than the number of equations, some closure assumptions have to be made in order to solve the equations. Based on the information on isotropic turbulence, homogenous turbulence and pure shear flow for large Reynolds number, Hanjalic and Launder [5] propose the following form of closure for Reynolds stress and dissipation.

\[
\frac{D \bar{u}_i u_i}{D x} = - \left[\frac{\bar{u}_j u_j}{x_i} \frac{\partial u_i}{\partial x_i} + \frac{\bar{u}_i u_i}{x_i} \frac{\partial u_i}{\partial x_i} \right] - \frac{\varepsilon}{3} \bar{u}_i \varepsilon
\]

\[
- \frac{c_1}{K} \frac{\varepsilon}{x} \left(\bar{u}_i u_j - \bar{u}_j u_i \frac{\varepsilon}{3} \right) + \frac{\partial u_i}{\partial x_i} A_{ij}^{mi} + \frac{\partial u_i}{\partial x_m} A_{ij}^{mi}
\]

\[
+ c_5 \frac{\partial}{\partial x_i} \left[\frac{\bar{u}_j u_j}{x_k} \frac{\partial u_i}{\partial x_k} + \frac{\bar{u}_i u_i}{x_k} \frac{\partial u_i}{\partial x_k} + \frac{\bar{u}_i u_i}{x_k} \frac{\partial u_i}{\partial x_k} \right]
\]

and

\[
\frac{DE}{Dx} = - \frac{c_6}{K} \frac{\varepsilon}{x} \bar{u}_i u_j \frac{\partial u_i}{\partial x_i} - \frac{c_6}{K} \frac{\varepsilon^2}{\varepsilon} + \frac{c_6}{K} \frac{\partial}{\partial x_i} \left(\frac{\varepsilon}{E} \frac{\bar{u}_i u_i}{x_k} \frac{\partial u_i}{\partial x_k} \right)
\]
where A^m_{ij} is a function of k, $u_j u_j$ and a constant C.

2. Boundary Layer Approximation

A simpler version of the model for boundary layer flows results in the following set of equations in (x,y) coordinates.

\[\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} = 0 \quad (1) \]

\[\frac{D U}{D x} = -\frac{1}{\rho \frac{d}{dx}} + U \frac{1}{k} \frac{\partial}{\partial y} \frac{\partial U}{\partial y} - \frac{1}{k} \frac{\partial}{\partial y} \left(\overline{w^2} \right) \quad (2) \]

\[\frac{D \overline{w}}{D x} = -C_1 \frac{\overline{w}}{\overline{u}} - C_2 \frac{\partial U}{\partial y} + C_3 \frac{1}{2} \frac{\partial}{\partial y} \frac{\partial^2 \overline{w}}{\partial x^2} \quad (3) \]

\[\frac{D \overline{e}}{D x} = -C_4 \frac{\overline{w}}{\overline{u}} \frac{\partial U}{\partial y} - C_5 \frac{\overline{e}}{\overline{u}} + 0.5 \frac{\partial}{\partial y} \left(\frac{\partial^2 \overline{e}}{\partial x^2} \right) \quad (4) \]

\[\frac{D \overline{e}}{D x} = -C_6 \frac{\overline{w}}{\overline{u}} \frac{\partial U}{\partial y} - C_7 \frac{\overline{e}}{\overline{u}} + 0.5 \frac{\partial}{\partial y} \left(\frac{\partial^2 \overline{e}}{\partial x^2} \right) \quad (5) \]

where $C_1 = 2.8$ and $C_2 = 0.07C_1$

There are six constants involved in the closure model as tabulated. Thus we have five equations with five unknowns, U, V, \overline{w}, k and \overline{e}.
This set of equations is parabolic and the initial conditions for U, \overline{uv}, k and ϵ are usually not available at the beginning station, hence, some guess work of their distributions must be made. It is observed that owing to the uncertainty of ϵ and k in the earlier stages, the range of the ratio k/ϵ might be quite large by simply assuming some arbitrary distributions of ϵ and k respectively. One way to overcome this is by assuming that the kinetic energy k is proportional to the dissipation ϵ across the stream. This idea comes from the limiting case that as ϵ approaches zero or k approaches zero, the ratio k/ϵ must approach a finite value; otherwise an artificial singularity is introduced. This assumption seems particularly appropriate for free boundary flow. From dimensional considerations, it is found that k/ϵ is proportional to $\delta_{0.5}/U$ for free jet flow where $\delta_{0.5}$ is the conventional half width where the velocity is half of the center velocity U_c. Thus, it appears to be proper to introduce

$$f(x) = \frac{k}{\epsilon} = C_x \left(C + \frac{\delta_{0.5}}{U_0}\right) \tag{6}$$

which gives the asymptotic expression

$$\frac{k}{\epsilon} \rightarrow C_x \frac{\delta_{0.5}}{U_0} \sim 5.7 x^{3/2}$$

for the plane jet and

$$\frac{k}{\epsilon} \sim 4.0 x^2$$

for an axi-symmetric jet.
The constant C represents the adjustment of the virtual origin. If this approach is adopted, it serves the following advantages in the final form of the equations.

(i) The equation for dissipation is eliminated at the beginning stages, thus reducing the system of five differential equations to four.

(ii) Only initial profiles of U, \overline{uv} and k are needed.

(iii) The sensitive constant C_{ε_i} is avoided (at least at the beginning stages). As reported by Launder [6], C_{ε_i} in the dissipation equation is such a sensitive constant that a small change of C_{ε_i} will result in a large change in the predictions. As a matter of fact, Launder later proposed to use the value 1.44 as compared to 1.45 as had been suggested previously.

(iv) It also provides the extension to calculate the dissipation from the original five equations by using

$$f(x) = C_x \left(C + \frac{\delta_{\varepsilon_i}/\varepsilon}{C}\right)$$

for the development of the initial stages and then use $f(x,y) = k/\varepsilon$ directly for further downstream calculation.
NUMERICAL METHOD AND CALCULATION PROCEDURE

1. Transformation from physical coordinates \((x,y)\) to streamline coordinates \((x,\psi)\)

The afore-mentioned five equations for \(U, V, \overline{UV}, k\) and \(\varepsilon\) can be reduced further to four equations for \(U, \overline{UV}, k\) and \(\varepsilon\) by the von Mises transformation from physical coordinates \((x,y)\) to streamline coordinates \((x,\psi)\) as discussed by Pantanka & Spalding [4]. Introducing the stream function \(\psi\) and a nondimensionalized stream function \(\omega = \frac{\psi}{\psi_0}\) where \(\psi_0\) represents the streamline at the edge of the flow. Thus

\[
d\psi = \rho u d\psi \quad \text{and} \quad \frac{\partial \psi}{\partial x} \frac{\partial}{\partial y} = \frac{\partial \omega}{\partial x} \frac{\partial \psi}{\partial y} + \omega \frac{\partial^2 \psi}{\partial x \partial y}
\]

Finally it can be arranged in the following form in \((x,\psi)\) coordinates.
\[
\frac{\partial u}{\partial x} - \frac{1}{\Psi} \frac{\partial \Psi}{\partial x} \frac{\partial u}{\partial \Psi} = \frac{\partial}{\partial \omega} \left(\rho \frac{\partial U}{\partial \omega} - \frac{\partial}{\partial \omega} \left(\frac{\partial u}{\partial \omega} \frac{\partial u}{\partial \omega} \right) \right)
\] \(7\)

\[
\frac{\partial \omega}{\partial x} - \frac{1}{\Psi} \frac{\partial \Psi}{\partial x} \frac{\partial \omega}{\partial \Psi} = \frac{\partial}{\partial \omega} \left(\frac{\frac{\partial \rho}{\partial \Psi}}{\frac{\partial \Psi}{\partial \omega}} \omega^2 \frac{\partial u}{\partial \omega} \right) - c_1 \frac{\omega}{\Psi} - c_2 \frac{\partial u}{\partial \omega}
\] \(8\)

\[
\frac{\partial \phi}{\partial x} - \frac{1}{\Psi} \frac{\partial \Psi}{\partial x} \frac{\partial \phi}{\partial \Psi} = \frac{\partial}{\partial \omega} \left(\frac{\frac{\partial \rho}{\partial \Psi}}{\frac{\partial \Psi}{\partial \omega}} \omega^2 \frac{\partial u}{\partial \omega} \right) - \frac{\omega}{\Psi} - \frac{\partial u}{\partial \omega}
\] \(9\)

\[
\frac{\partial \varepsilon}{\partial x} - \frac{1}{\Psi} \frac{\partial \Psi}{\partial x} \frac{\partial \varepsilon}{\partial \Psi} = -c_3 \frac{\varepsilon}{\Psi} \frac{\partial \varepsilon}{\partial \Psi} - \frac{c_2}{\Psi} \frac{\partial u}{\partial \Psi}
\] \(9a\)
It should be noted that

(i) \[\frac{\partial U}{\partial x} \bigg|_\omega \neq \frac{\partial U}{\partial x} \bigg|_y \]

(ii) The stream function \(\Psi(x) \) at the edge is a function of \(x \) and the expression \(\frac{d\Psi}{dx} \) represents the entrainment rate, while \(\omega \) remains to be of value one at the edge. The entrainment will automatically adjust the width for the growth of the boundary layer.

(iii) The four differential equations can be put in a generalized standard form as discussed in [4].

\[\frac{\partial \Phi}{\partial x} + (a + b\omega)\frac{\partial \Phi}{\partial \omega} = \frac{\omega}{\partial \omega} \left(c \frac{\partial \Phi}{\partial \omega} \right) + S \]

(10)

where \(\Phi \) represents \(U, \overline{uv}, k \) or \(\varepsilon \) and \(S \) represents the source term.

2. Numerical Technique

The system of equations is put in finite difference form as discussed in [4] and the final expressions are arranged as

\[A_j \Phi_{j+1} + B_j \Phi_j + C_j \Phi_{j-1} = F_j \]

(11)

where the \(\Phi_j \) represents the unknown quantities at downstream stations to be calculated. \(A, B, C \) and \(F \)'s are constants of flow characteristics evaluated at upstream station.
It is noted that the equations are linearized so that the matrix of the coefficients is in tri-diagonal form. The solution of the equations can be put in the following form as discussed in Schlichting [7] by letting

\[\Phi_j = H_j \Phi_{j+1} + G_j \]

where

\[G_j = \frac{F_j - A_j G_{j-1}}{B_j + A_j H_{j-1}} \quad \text{and} \quad H_j = \frac{-C_j}{B_j + A_j H_{j-1}} \]

The boundary condition for free jet by using symmetry at centerline

\[y = 0: \quad \frac{\partial U}{\partial y} = 0 \quad \text{gives} \quad G_j = 0 \quad H_j = 1 \]
\[\overline{uv} = 0 \quad \text{gives} \quad G_j = 0 \quad H_j = 0 \]
\[\frac{\partial \Phi}{\partial y} = 0 \quad \text{gives} \quad G_j = 0 \quad H_j = 0 \quad \text{and for} \quad \frac{\partial E}{\partial y} = 0 \quad \text{also} \]

Thus after calculation of \(G_j \) and \(H_j \) from the center toward the boundary edge for \(j = 2,3,...,N+1 \) the unknowns \(\Phi_j \) are successively obtained from the edge toward the center by Equation (12).

3. Entrainment

In the marching forward calculation, the non-dimensional stream function \(\omega \) is constant and at the edge \(\omega = 1 \). However, the stream function \(\psi \) at the edge is a function of \(x \), and it is expected that \(\psi \) will increase as \(x \) increases due to entrainment \(\frac{d\psi}{dx} \). By arbitrarily choosing a point close to the edge of the boundary and arbitrarily requiring a value of the velocity at \(\omega_b \), say \(U_b = \text{fraction of the center velocity } U_c \), the entrainment \(\frac{d\psi}{dx} \) can be evaluated from Equation (7). Alternatively, the entrainment rate is properly chosen as is the case in this program.
The computer program has been written for a free turbulent jet with output in decay of center velocity, velocity profile, turbulent shear stress, turbulent kinetic energy and dissipation. The goal was to write the program concisely so that it is easier for the user to read and modify the program for his needs. This program has been tested for sensitivity in initial conditions, constants and entrainment rate. In the program, the total momentum \((\text{FLUX}) \) is calculated and is compared with initial total momentum \((\text{SM}) \), the difference \(\frac{\text{DM}}{\text{SM}} = \text{FLUX} - \text{SM} \) serves a check for conservation of momentum. Usually the ratio \(\frac{\text{DM}}{\text{SM}} \) is about a few percent.
RESULTS AND DISCUSSIONS

Based on the report by Tsuei [8], which has been tested on laminar and turbulent two dimensional jets, this computer program is an extension to the case of the axi-symmetric jet. In order to be consistent with the previous report the notations are kept about the same. An available library plotting subroutine is utilized to present the figures in the in-line plot so that the user can obtain the figures or modify the scales without writing additional subroutines. Many figures are generated, but only a few are presented here to demonstrate the variations due to the changes of constants. In all the figures, symbols 1, 2, 3 and 4 represent the mean velocity, turbulent shearing stress, turbulent kinetic energy and dissipation respectively. These quantities are non-dimensionalized by the center velocity with the different scales indicated. Figures 3 and 4 show the slight difference in similarity due to two stations x=21 and x=26. Figure 5 shows the center velocity decay. It is noted that the prediction is lower than measurements, particularly at the development region. However, further downstream the results compare fairly well with experimental evidence. This discrepancy might be attributed to the effects of the initial conditions, boundary layer assumptions, assigned constants, or a small longitudinal pressure gradient. It should be emphasized that because of the deviation in the velocity decay, the other non-dimensional quantities such as turbulent shear, kinetic energy, and dissipation are all

* BECAUSE OF IN-LINE PLOTTING, THE SYMBOLS 4, 3, 2 AND 1 MAY FALL ON TOP OF EACH OTHER
affected. It also should be noted that \(y/x \) is deliberately chosen as the coordinate since the \(y/y_{\infty} \) representation fixes one point of \(y \) which make the comparison look better than it might otherwise have been. Figures 6 and 7 show the difference due to one constant \(C_5 \). Figures 8 and 9 show the spread of the width due to the entrainment rate. From these figures, it is noted the results can be different for different constants. A comparison with experiments reported by Craig [10] is shown in Figure 10. In conclusion, the results vary with the values of different combination of constants and initial conditions; however, it can compare fairly well with experiments provided the constants are chosen properly.
FURTHER DEVELOPMENT AND SUGGESTIONS

Since a computer program has been satisfactorily developed for predicting the flow characteristics such as velocity, turbulent shear, kinetic energy, and dissipation in a free jet, it is recommended that further investigation with more elaborate closure models to study the three components of turbulent intensities as well be carried out. Initial investigation should focus on the two dimensional case because most of the constants are determined by two dimensional considerations and measurements. After that, the study should be extended to the axi-symmetric jet.
ACKNOWLEDGEMENTS

The author acknowledges the support from AFOSR Col. David E. England, Col. Lowell W. Ormand and Dr. Brian Quinn. The author would also like to acknowledge the opportunity to work at the Ramjet Technology Branch, Air Force Aero-Propulsion Laboratory, Wright-Patterson Air Force Base and to express his appreciation for the discussions with Dr. R.R. Craig and Dr. F.D. Stull.
REFERENCES

<table>
<thead>
<tr>
<th>CONSTANT</th>
<th>VALUE</th>
<th>BASIS FOR CHOICE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>2.8</td>
<td>Return to isotropy of distorted turbulence Rotta (1962)</td>
<td>Launder et al (1975) $C_1 = 1.5$</td>
</tr>
<tr>
<td>C_2</td>
<td>0.45</td>
<td>Plane homogeneous shear flow Champagne et al (1970)</td>
<td>The value of 0.4 was later proposed</td>
</tr>
<tr>
<td>C_5</td>
<td>0.08</td>
<td></td>
<td>The value of 0.11 was later suggested</td>
</tr>
<tr>
<td>C_6</td>
<td>1.45</td>
<td>Near-wall turbulence</td>
<td>Very sensitive constant, small change results in large deviation Launder later proposed to use the value 1.44</td>
</tr>
<tr>
<td>C_{e_1}</td>
<td>2.0</td>
<td>Decay of grid turbulence</td>
<td>The value of 1.90 was proposed later by Launder et al.</td>
</tr>
<tr>
<td>C_{e_2}</td>
<td>0.13</td>
<td></td>
<td>Launder et al (1975) recommend the value of 0.15 to be consistent with a value of χ of about 4.1</td>
</tr>
</tbody>
</table>
Constants:

\(C_1 \sim C_1 \)	2.8	\(C_C \sim C_{PS} \)	1.45
\(C_2 \sim C_2 \)	0.07G1	\(C_C \sim C_{PS1} \)	2.0
\(C_3 \sim C_S \)	0.06	\(C_C \sim C_{PS2} \)	0.13
\(\pi \sim F1 \)	3.14159		

Initial Conditions:

- \(Y1, U1, T1, K1 \)

Boundary Conditions:

- \(GU(1) = GT(1) = CK(1) = GE(1) = HT(1) = 0 \)
- \(HU(1) = HK(1) = HE(1) = 1 \)

Calculate:

- Initial flow rate \(Q \)
- Initial momentum flux \(SM \)
- Non-dimensional stream function \(W \)

DO 9990

- \(KN = 1, KKX \)

This is the main loop \(X = X + DX \)

DO 444

- \(ITER = 1, NITER \)

Iterations, \(NITER = 6 \) for \(KN \leq 3 \) and then \(NITER = 3 \)

DO 120

- \(J = 2, NF \)

Calculation of \(G's \) and \(H's \)

DO 330

- \(JJ = 1, N \)

Calculation of \(U, T, K, E \)

Divergent?

Stop

DO 444

Calculate entrainment \(ENTRN \) and \(\psi \) increment \(DPSI \)

DO 440

- \(J = 2, NPP \)

Calculate \(Y, Y5, Q \) and momentum flux \(FLUX \)

Check conservation of momentum \(DM = FLUX - SM \)

Change \(DX \) as \(X \) increases

CALL OUTPUT

- \(9990 \)
- \(9999 \)

More Run or Data?

- yes Go to the starting point
- no 11111

STOP
REAL K, KI, KE
EXTERNAL FUNC
COMMON W(25), IW(25), Y(25), U(25), E(25), T(25), K(25), TDU(25), UDK(25)
COMMON KN, NM, KK, NC, NF, N, ENTRN, X, Q, FSI, SM, FLUX, IM, Y5, R, JR, F
REAL UPE(25), GE(25), HE(25), DY(25), YU(25), YUU(25), YY(25),
1 KK(25), IU(25), UU(25), GU(25), HU(25), UPU(25),
2 DT(25), TT(25), GT(25), HT(25), UPT(25), UK(25), EE(25),
3 V(25), IN(25), DE(25), GK(25), HK(25), UFK(25), UK(25),
4 XX(200)/200*0.0/, UC(200)/200*0.0/, GRAPH(400)/400*0.0/
DIMENSION YI(25), UI(25), TI(25), VI(25), EI(25), KI(25)
REAL YS(25), US(25), TS(25), KS(25), ES(25)
REAL XXA(8)/4., 5., 6., 8., 10., 15., 20., 25./
REAL UCA(8)/1.0, 0.96, 0.84, 0.70, 0.57, 0.39, 0.29, 0.23/
DATA C/0.0/, CX /5.72/, EDGE/10.0/, XGROW/0.0025/, DELTA/0.10/
DATA C1/2.8/, C2/0.45/, CS/0.08/, CEPS1/1.45/, CEPS2/2.0/, CEPS/0.13/
DATA CC/0.07/, C3/0.00/, C4/0.00/, CM/0.00/, CONST/0.8/, NWRITE/1/
DATA FF/3.14159/, FII/6.28318/, KNN/10/, RHO/1./, RJet/1./, UJ/1./
DATA LL/0/
DATA NFF/15/, YI/0.00, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
1 0.85, 0.9, 0.95, 1.0, 1.05, 1.1, 10*0.0/
DATA UI/9*1.0, 0.98, 0.96, 0.90, 0.5, 0.25, 0.0, 10*0.0/, JJJJ/2/
DATA TI/0.0, 13*0.001, 0.0, 10*0.0/, KI/25*0.001/, EI/25*0.002/
DATA TT(1), UU(1), GT(1), HK(1), HT(1), YU(1), YUU(1), FRESS/8*0.0/
DATA V(1), UK(1), YY(1), GE(1), A, DFSI/8*0.0/, XLAST/60./, IX/*0.5/
DATA HE(1), HU(1), HK(1), UU(1)/4*1.0/, UEDGE/0./, NNN/10/, LAMIN/1/
CEPS1=1.44
C1=2.6
N=NFF-2
NP=N+1
NM=N-1
NC=NP/2
C1=C1+0.1
CS=0.08
DO 11111 LLLL=1, 2
CEPS2=CEPS2-0.1
CS=0.08
6666 FORMAT (/)
DO 11111 KKKKKK=1, 2
CS=CS+0.01
DO 11111 JJJJJJ=1, JJJJ
100 CONTINUE
ENTRN=0.5
XGROW=-0.0002
NNN=10
NWRITE=1
JR=1
R=400.
RR=R/1000.
F=CX*(C+1.0)
Y5=1.
KI(NPF)=0.0
DO 10 J=1,NPF
Y(J)=YI(J)
U(J)=UI(J)
T(J)=TI(J)
K(J)=KI(J)
E(J)=EI(J)
10 CONTINUE
HU(1)=1.0001
W(1)=0.0
TDU(1)=0.0
X=0.0
DX=0.05
DM=0.0
FLUX=0.0
KKK=68
WRITE (6,6666)
Q=0.0
SM=0.0
DO 102 J=1,NPF
JM=J-1
DY(JM)=Y(J)-Y(JM)
YRM=0.5*(Y(J)+Y(JM))*2.*FI
IF (J.R.EQ.0) YRM=1.
BW(JM)=(U(J)+U(JM))/2.*DY(JM)*YRM
W(J)=W(JM)+BW(JM)
Q=Q+0.5*(U(J)+U(JM))*DY(JM)*YRM
SM=SM+0.5*(U(J)**2+U(JM)**2)*L*Y(JM)*YRM
102 CONTINUE
SMM=SM
DO 110 J=1,NPF
W(J)=W(J)/W(NPF)
DIW(J)=DIW(J)/W(NPF)
110 CONTINUE
W(NPF)=1.0
PSI=Q
101 CONTINUE
DO 9990 K=1,KKK
ENTRN=ENTRN+XGROW*X
NPPS=NPF
IF (K.LE.3) NITER=6
IF (K.GT.3) NITER=3
XS=X
X=X+DX
DO 103 J=1,NPF
VK(J)=K(J)
103 V(J)=U(J)
LAMIN=0
IF (LAMIN.EQ.1) R=30
DO 444 ITER=1,NITER
DO 120 J=2,NF
JM=J-1
JP=J+1
UEDGE=0.0
UCE=U(1)-UEDGE
F=CX*(C+Y5*UCE)
IF ((KN.GT.KNN).AND.(LAMIN.EQ.0)) F=K(J)/E(J)
YP=Y(JP)*PII
YJ=Y(J)*PII
YM=Y(JM)*PII
DWP=W(JP)-W(JM)
A=0
B=ENTRN/PSI
R=RH0/PSI
RPP=4.0*RP*RP
CMU=RPP/R*(U(JM)*YM*YM+U(J)*YJ*YJ)
CPF=RP/R*(U(JP)*YP*YP+U(J)*YJ*YJ)
CMT=CMU*RPP/F*(U(JP)*K(JP)*YM*YM+U(J)*K(J)*YJ*YJ)
CPT=CMT*RPP/F*(U(JP)*K(JP)*YP*YP+U(J)*K(J)*YJ*YJ)
CMK=CONST*CMT
CPK=CONST*CPT
CME=0.5*CEPS*CMT/CS
CPE=0.5*CEPS*CPT/CS
G1=(DW(J)/DX+4.*A+B*(W(JP)+3.*W(J)))/4./DWP
G2=(3./DX-B)/4.
G3=(DW(JM)/DX-4.*A-B*(W(JM)+3.*W(J)))/4./DWP
G5U=CPU/DWP/DW(J)
G5T=CPT/DWP/DW(J)
G5K=CPK/DWP/DW(J)
G5E=CPE/DWP/DW(J)
G6U=CMU/DWP/DW(JM)
G6T=CMT/DWP/DW(JM)
G6K=CMK/DWP/DW(JM)
G6E=CME/DWP/DW(JM)
AU=G3-G6U
AT=G3-G6T
AK=G3-G6K
AE=G3-G6E
BU=G2+G5U+G6U
BT=G2+G5T+G6T+C1/F/U(J)
BK=G2+G5K+G6K+1./F/U(J)
BE=G2+G5E+G6E+CEPS2/F/U(J)
CU=G1-G5U
CT=G1-G5T
CK=G1-G5K
CE=G1-G5E
IF (ITER.GT.1) GO TO 111
UPU(J)=(DW(JM)*U(JM)+3.*DWP*U(J)+DW(J)*U(JP))/4./DX/DWP
UPT(J) = (DW(JM) * T(JM) + 3 * DWP * T(J) + DW(J) * T(JP)) / 4 / DXP / DWP
 UPK(J) = (DW(JM) * K(JM) + 3 * DWP * K(J) + DW(J) * K(JP)) / 4 / DXP / DWP

111 CONTINUE
 DU DW = (U(JP) - U(JM)) / DWP
 DT DW = (T(JP) - T(JM)) / DWP
 TJJM = (T(J) - T(JM)) / DWP
 TJP = (T(JP) - T(J)) / DWP

 SDW = -C2 * RP * K(J) * U(JP) / 4 / DWP
 SK = -RP * T(J) / 4 / DWP
 SE = -2 * RP * T(J) / 4 / DWP
 FU = U(J) + SU
 FT = U(J) + ST
 FK = U(J) / 4 / DWP

 GU(J) = (FU - AU * GU(JM)) / (BU + AU * HU(JM))
 HU(J) = -CU / (BU + AU * HU(JM))
 GT(J) = (FT - AT * GT(JM)) / (BT + AT * HT(JM))
 HT(J) = CT / (BT + AT * HT(JM))
 GK(J) = (FK - AK * GK(JM)) / (BK + AK * HK(JM))
 HK(J) = CK / (BK + AK * HK(JM))
 GE(J) = (FE - AE * GE(JM)) / (BE + AE * HE(JM))
 HE(J) = -CE / (BE + AE * HE(JM))

120 CONTINUE
 DO 330 JJ = 1, NF

130 U(NPP-JJ) = HU(NPP-JJJ) + GU(NPP-JJJ+1)

230 T(NPP-JJ) = HT(NPP-JJJ) + GT(NPP-JJJ+1)
 K(NPP-JJ) = HK(NPP-JJJ) + GK(NPP-JJJ+1)
 E(NPP-JJ) = HE(NPP-JJJ) + GE(NPP-JJJ+1)

330 CONTINUE
 DO 440 JJ = 1, NF

340 CONTINUE
 DO 440 J = 2, NPP
 JM = J - 1
 YRM = 0.5 * (Y(J) + Y(JM)) * 2 * PI
 IF (JR.EQ.0) YRM = 1.
 DY(JM) = 2 * PSI * DW(JM) / (U(J) + U(JM)) / YRM
 Y(J) = Y(JM) + DY(JM)
 Q = Q + 0.5 * (U(J) + U(JM)) * DY(JM) * YRM
 FLUX = FLUX + 0.5 * (U(J) ** 2 + U(JM) ** 2) * DY(JM) * YRM
 UU(J) = (U(J) - UEDGE) / UCE
 IF (.NOT. (UU(J) .LT. 0.5 .AND. UU(JM) .GT. 0.5)) GO TO 435
 Y5 = Y(JM) + 0.5 - UU(JM) / (UU(J) - UU(JM)) * (Y(J) - Y(JM))

435 CONTINUE
IF (J.EQ.NPP) GO TO 440
JF = J + 1
IWFM = W(JF) - W(JM)
ENTU = ENTRN * W(J)/PSI * (U(JF) - U(JM))/IWFM
ENTK = ENTRN * W(J)/PSI * (K(JF) - K(JM))/IWFM
TDU(J) = U(J)*(U(J) - V(J))/DX - ENTU
UDK(J) = U(J)*((K(J) - V(J))/DX - ENTK)*YS/UCE**3

440 CONTINUE
IM = FLUX - SM
IF ((U(NP)).GT.U(N)) .AND. (T(NF)).GT.T(N)) GO TO 9999

444 CONTINUE
UC(KN) = U(1)
XX(KN) = X/2.
IF (XX(KN).LE.1.1) XX(KN) = 1.1
DPSI = ENTRN*DX
PSI = PSI + DPSI
IF (KN.EQ.1) WRITE (6,1100)
1100 FORMAT (IX, ' KN X PSI YNPP YS ENTRN IM U(1) U(3) U
1(4) U(S) U(6) UNM UN UNP T(NC) T(N) K(1) KC KNM
2KN KNF')
IF ((KN.LE.1).OR.(KN.EQ.NWRITE)) CALL OUTPUT (5)
IF (KN.GT.51) NNN = NNN + 5
IF (KN.EQ.NWRITE) NWRITE = NWRITE + NNN

480 CONTINUE
490 CONTINUE
IF (X.GE.1.0) DX = DELTA*X
IF (DX.GT.2.0) DX = 2.0
IF (JJJJJ.EQ.2.AND.X.LE.5.0) GO TO 556
DO 555 J = 1, NFF
U(J) = U(J)*SORT(SM/FLUX)
555 CONTINUE

556 CONTINUE
SMM = FLUX
IF (.NOT.((KN.EQ.63).OR.(KN.EQ.82).OR.(KN.EQ.KKK))) GO TO 9990
DO 1 J = 1, NF
GRAPH(J) = Y(J)/X
IF (GRAPH(J)).GT.0.16) GRAPH(J) = 0.16
GRAPH(J+NF) = U(J)/U(1)
GRAPH(J+2*NF) = T(J)/U(1)**2*40.
GRAPH(J+3*NF) = K(J)/U(1)**2*10.
GRAPH(J+4*NF) = E(J)*YS/U(1)**3*40.
1 CONTINUE
CALL PLOT9 (1,GRAPH,NF,5,0.0,FUNC,.2,0.0,1.4,0.,400)
CALL OUTPUT (6)
WRITE (6,7770)
WRITE (6,7771) JR, N, KKK, EDGE, CEPS1, Q ,SM, FLUX, DM, X , F, C,
1 CX, C1, C2, CS, CONST, DX ,RR, ENTRN
WRITE (6,7772) CEPS, CEPS2
WRITE (6,6666)
CALL OUTPUT (5)
9990 CONTINUE
 KNM=KN-1
 KNMB=KNM+8
 DO 2 J=1,KNM
 GRAPH(J)=XX(J)
 2 GRAPH(J+KNMB+8)=UC(J)
 DO 3 J=1,8
 GRAPH(J)=XXA(J)
 3 GRAPH(J+KNMB)=UCA(J)
 CALL PLOT9 (1,GRAPH,KNMB,2,0,FUNC, 28., 0.,1.4, 0., 400)
 KNP=KN+1
9999 CONTINUE
700 WRITE (6,7770)
7770 FORMAT (/,' JR N KKK EDGE CEPS1 Q SM FLUX DM
 1 X F C CX CI C2 CS CONST DX RR/21000 ENTRN ')
 RR=R/1000.
 WRITE (6,7771) JR, N, KKK,EDGE, CEPS1, Q, SM, FLUX, DM, X, F, C,
 1 CX, CI, C2, CS, CONST, DX, RR, ENTRN
7771 FORMAT (1X,314,17F7.2)
 WRITE (6,6666)
 WRITE (6,7772) CEPS,CEPS2
7772 FORMAT (1X,'CEPS=',F5.3,' CEPS2=',F5.3)
11111 CONTINUE
STOP
END
SUBROUTINE OUTPUT (ICALL)
REAL K, KK, KI
COMMON W(25), DW(25), Y(25), U(25), E(25), T(25), K(25), TDU(25), UDK(25)
COMMON KN, NM, KKK, NC, NP, N, ENTRN, X, Q, PSI, SM, FLUX, DM, Y5, R, JR, F
DIMENSION YY(25), TT(25), KK(25), EE(25), UU(25)
NPP=N+2
1111 FORMAT (I4,1P11E10.2, 1P2E9.1)
UEDGE=0.0
UCE=U(1)-UEDGE
UCEN=UCE/(1.0-UEDGE)
Z=X/2.
GO TO (100,200,200,200,500,600), ICALL
100 WRITE (6,1000)
1000 FORMAT (1X, 'INITIAL AND BOUNDARY CONDITIONS FOR NPP W IW Y
1 U T K
1112 FORMAT (1X, I4,25F5.2)
WRITE (6,1112) NPP, (W(J), J=1,NPP)
WRITE (6,1112) N , (DW(J), J=1, NP)
WRITE (6,1112) NPP, (Y(J), J=1,NPP)
WRITE (6,1112) NPP, (U(J), J=1, NPP)
WRITE (6,1112) NPP, (T(J), J=1, NP)
WRITE (6,1112) NPP, (K(J), J=1, NP)
WRITE (6,1112) NPP
WRITE (6,6666)
6666 FORMAT (/)
200 RETURN
500 WRITE (6,1234) KN, Z, PSI, Y, NPP, Y5, ENTRN, DM, UCEN, U, U5, U, IC, K
2 K(NM), K(N), K(NP)
1234 FORMAT (I4,14F6.2,7F6.3)
RETURN
600 WRITE (6,6660)
6660 FORMAT (/1X, 'J W Y U T K
1 RX YY UU TT KK EE TDU
2 UDK')
DO 610 J=2,NP,2
RX=Y(J)/X
UU(J)=U(J)/UCE
YY(J)=Y(J)/Y5
TT(J)=T(J)/UCE**2
KK(J)=K(J)/UCE**2
EE(J)=E(J)*Y5/UCE**3
610 WRITE (6,1111) J, W(J), Y(J), U(J), T(J), K(J), RX, YY(J), UU(J),
1 TT(J), KK(J), EE(J), TDU(J), UDK(J)
WRITE (6,6666)
RETURN
END

SUBROUTINE FUNC (XIN, YOUT)
YOUT=0.
RETURN
END
FIG. 2 COORDINATES OF TRANSFORMATION

\[\omega = \frac{\psi}{\psi} \]
FIG. 3 PROFILES OF VELOCITY, SHEAR, ENERGY AND DISSIPATION
FIG. 4 PROFILES OF VELOCITY, SHEAR, ENERGY AND DISSIPATION
FIG. 5 DECAY OF CENTER VELOCITY
<table>
<thead>
<tr>
<th>R/X</th>
<th>0.0</th>
<th>0.020</th>
<th>0.040</th>
<th>0.060</th>
<th>0.080</th>
<th>0.100</th>
<th>0.120</th>
<th>0.140</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_0 = 0.12</td>
<td>0.150</td>
<td>0.400</td>
<td>0.650</td>
<td>0.900</td>
<td>1.150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MEAN VELOCITY U/U_e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SHEAR STRESS T/U_e^2 * 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>KINETIC ENERGY K/U_e^2 * 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>DISSIPATION E*Y_c /U_e^5 * 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIG. 6 PROFILES OF VELOCITY, SHEAR, ENERGY AND DISSIPATION
FIG. 7 PROFILES OF VELOCITY, SHEAR, ENERGY AND DISSIPATION
FIG. 9 PROFILES OF VELOCITY, SHEAR, ENERGY AND DISSIPATION
1 MEAN VELOCITY U/U_c
2 SHEAR STRESS T/U_c^2*40
3 KINETIC ENERGY K/U_c^2*10
4 DISSIPATION $E*Y_c^2/U_c^2*40$

FIG. 10 COMPARISON WITH EXPERIMENTS
This report concerns the prediction of the flow characteristics of an isoenthalpic free jet. A computer program has been developed, similar to that of Spalding and Patankar, which incorporates Reynolds stress equations, and is used so that not only turbulent shear stress, but also turbulent kinetic energy and dissipation can be calculated. This program is rather short, about 280 statements, and for a moderate number of points (usually about 15), requires only five seconds per run for the Amdahl 470/V6 computer. The results compare fairly well with experiments in two-dimensional as well as in axisymmetric jets. It is found that the similarity
The assumption is only approximate. Also the results can be somewhat different for different initial input turbulence conditions. Therefore, comparison of experimental results and interpretation of their accuracy, particularly when no detailed measurements are made at the jet orifice, should be done cautiously. The variations due to the assigned constants in the closure model are also briefly discussed.