ADAPTIVE DETECTION OF RENEWAL PROCESSES

A. Fogel and S.C. Schwartz

INFORMATION SCIENCES AND SYSTEMS LABORATORY

Department of Electrical Engineering and Computer Science
Princeton University
Princeton, New Jersey 08540

MAY 1978 (Issue date: SEPTEMBER 1978)

Approved for public release; distribution unlimited

Prepared for
OFFICE OF NAVAL RESEARCH (Code 436)
Statistics and Probability Branch
Arlington, Virginia 22217
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
In this report, we consider the adaptive detection of renewal processes whose inter-arrival times are Gamma distributed. It is shown that the optimum detector exhibits a two-dimensional estimator-correlator structure for the two pertinent parameters. When the underlying statistics are partially known, the estimates appearing in the receiver cannot be implemented. Three suboptimum schemes with surprisingly good small sample performance are derived and compared.
ADAPTIVE DETECTION OF RENEWAL PROCESSES

A. Fogel and S.C. Schwartz
Department of Electrical Engineering and Computer Science
Princeton University
Princeton, NJ 08540

Abstract

In this paper, we consider the adaptive detection of renewal processes whose inter-arrival times are Gamma distributed. It is shown that the optimum detector exhibits a two-dimensional estimator-correlator structure for the two pertinent parameters. When the underlying statistics are partially known, the estimates appearing in the receiver cannot be implemented. Three suboptimum schemes with surprisingly good small sample performance are derived and compared.

Acknowledgment. The research reported here was supported in part by the National Science Foundation under Grant ENG-75-09610 and the Office of Naval Research under contract N00014-77-C-0544.
1. Introduction

An increasing number of communication systems process signals which can be modelled as point processes. These occur in various areas such as optical communications, nuclear medicine, and detection of seismic events. Oftentimes, the signals are assumed to be Poisson time-dependent processes and detection schemes under these assumptions have been investigated ([1]). However, many processes depart significantly from Poisson statistics; the measure of departure usually is taken as the hazard function ([2]) which is constant under the Poisson regime, but time-varying for other renewal processes.

A renewal process is by definition a point process in which the sequence of times between occurrence of events consists of i.i.d. random variables. In this paper, we investigate the detection of renewal processes whose inter-arrival times are \(\Gamma(\mu, k) \) distributed, i.e.

\[
f(x | \mu, k) = \exp(-\frac{k}{\mu} x) x^{k-1} \left(\frac{k}{\mu}\right)^k / \Gamma(k)
\]

With two parameters, \(k \) and \(\mu \), the Gamma distribution is a good model for a variety of problems. It conveniently describes the Poisson regime for \(k = 1 \) and measures the departure from Poisson statistics through the parameters \(k([2]) \). In particular, characteristics of bunching are quite well described since

\[
\begin{align*}
E(x) &= \mu \\
\text{Var}(x) &= \frac{\mu^2}{k}
\end{align*}
\]

so that

\[
\sqrt{\text{Var}(x)} = \frac{1}{\sqrt{k}}
\]

\[
E(x) = \mu
\]
From (2), it can be seen that if k is greater than one, we have spreading of the observations (i.e. events are spaced regularly around the mean in time) whereas if k is less than one, events exhibit a bunching, or correlated, pattern.

We will investigate the following two hypotheses H_0 and H_1: under H_0, noise (dark current) is received and the process is Poisson with mean $1/\mu_0$; under H_1, the observed point process contains a random signal to be detected and the inter-arrival times are governed by (1). We will assume that the random signal under H_1 modulates the information bearing parameters μ and k, so that there are to be considered as random variables. Alternatively, one might consider μ as the information bearing parameter while k reflects the unknown dead time characteristic of a photomultiplier device.

In order to determine the structure of the optimum detector minimizing the average probability of error under a Bayesian criterion or maximizing the power for a fixed probability of false alarm, it is convenient to exploit the property that the Gamma distribution belongs to the exponential family. Indeed, let

$$\theta \hat{=} (\theta_1, \theta_2)^T$$

where

$$\theta_1 \hat{=} -\frac{k}{\mu}$$

$$\theta_2 \hat{=} k$$

and

$$h(x) \hat{=} \frac{1}{x}$$

$$b(\theta) \hat{=} \log^T(\theta_2) - \theta_2 \log(-\theta_1)$$
Then, (1) can be written as

$$f(x|\theta) = h(x)\exp(\theta_1 x + \theta_2 \log x - b(\theta))$$

which is the usual exponential form.

In the next section, we will extend some of the results of (3) to the two-dimensional exponential family and show that, independent of the bivariate prior density $\pi(\theta_1, \theta_2)$, the marginal density $f(x)$ is completely determined by the conditional mean estimates (CME) of θ_1 and θ_2. This resulting form for the marginal density leads to a general estimator-correlator structure for detectors based on likelihood ratios.

Since the optimum detector usually cannot be implemented because of insufficient a-priori knowledge of the statistics of u and k, we will investigate the properties of some related sub-optimum detectors. This is done in Section III. In particular, we will utilize a modified and a discrete maximum likelihood estimate ([4]) in forming suboptimum detectors. The simulations to be discussed illustrate the attractiveness of this suboptimum approach, especially in the important small sample case.
II. Detection of a Renewal Process with Gamma Inter-Arrival Times

A. Bayesian test

We suppose that under both hypotheses H_0 and H_1, n observations $(x_i, i=1, ..., n)$ independent and identically distributed (i.i.d.) are governed by (4); under H_0, $\theta = \theta_0 = \begin{pmatrix} \theta_1^0 & \theta_2^0 \end{pmatrix}$ is a known vector, whereas under H_1, $\hat{\theta}$ is a random vector with bivariate prior $\hat{\theta} \sim \pi(\theta) = \pi(\theta_1, \theta_2)$. Moreover we assume that H_0 and H_1 occur with priors equal to p_0 and p_1 respectively. The detection problem admits a sufficient statistic ([5])

$$t = (t_1, t_2)' \quad (5)$$

where

$$t_1 = \sum_{i=1}^{n} x_i$$
$$t_2 = \sum_{i=1}^{n} \log x_i$$

so that H_0 and H_1 become equivalent to the following. Under both hypotheses

$$t \sim f(t|\theta) = \exp(\theta_1 t_1 + \theta_2 t_2 - nb(\theta) - F(t)) \quad (6)$$

where $\theta = \theta_0$ is a known vector under H_0 and under H_1, $\hat{\theta}$ is a random vector with prior $\pi(\theta)$. Denoting the marginal of t under H_1 by $f(t)$, the optimum detector is the likelihood ratio

$$L(t) = \frac{f(t|\theta_0)}{f(t|\theta_1) \frac{H_1}{H_0} \frac{p_0}{p_1}} \quad (7)$$

Now, $f(t)$ is given by

$$f(t) = \int \int f(t|\theta) \pi(\theta) \, d\theta \quad (8)$$
\[f(t) = \exp(B(t)) \int_{-\infty}^{\infty} \exp(\theta_1 t_1 + \theta_2 t_2 - \nu B(t)) \pi(\theta_1, \theta_2) d\theta_1 d\theta_2 \quad (9) \]

Take the partial derivative of \(f(t) \) with respect to \(t_1 \) and \(t_2 \):

\[\frac{\partial \log f(t)}{\partial t_i} = \frac{\partial B(t)}{\partial t_i} + \int \frac{\partial f(t|\theta) \pi(\theta) d\theta}{f(t)} \quad i = 1, 2 \quad (10) \]

Thus

\[\hat{\theta}_i(t) \hat{E}(\theta_i | t) = \frac{\partial \log f(t)}{\partial t_i} - \frac{\partial B(t)}{\partial t_i} \quad i = 1, 2 \quad (11) \]

Since

\[d\log f(t) = \frac{\partial \log f(t)}{\partial t_1} dt_1 + \frac{\partial \log f(t)}{\partial t_2} dt_2 \quad (12) \]

upon substituting (11) into (12), one obtains

\[d\log f(t) = \hat{\theta}_1(t) dt_1 + \hat{\theta}_2(t) dt_2 + dB(t) \quad (13) \]

(13) is a complete differential. Therefore if we integrate along a path such as represented in Fig. 1, we get

\[f(t) = K(\hat{\theta}) \exp \left(\int_{t_0}^{t} \hat{\theta}_1(u) du_1 + \int_{t_0}^{t} \hat{\theta}_2(u) du_2 + b(t) \right) \quad (14) \]

where \(K(\hat{\theta}) \) is the normalizing constant and \(t_0 \) is chosen arbitrarily.
Let
\[r(\hat{\theta}) = \int_{t_0}^{\tau_1} \hat{\theta}_1(u) du_1 + \int_{t_0}^{\tau_2} \hat{\theta}_2(u) du_2 - \theta_1 \tau_1 - \theta_2 \tau_2 \] (15)

After substitution of (6) and (14) into (7), one can write the likelihood-ratio as
\[L(t) = K(\hat{\theta}) \exp(\eta(\hat{\theta}_0)) \exp(r(\hat{\theta})) \] (16)

Following [6], the constant appearing in (16) can be written in a more convenient way. We multiply (16) by \(f(t|\hat{\theta}_0) \) and integrate with respect to \(t \). Since \(f(t) \) integrates to 1, we obtain
\[[K(\hat{\theta}) \exp(\eta(\hat{\theta}_0))]^{-1} = E_{H_0}(\exp(r(\hat{\theta}))) \] (17)

Substituting (17) into (16) and taking logarithms, the log-likelihood ratio becomes
\[L(\hat{\theta}) = r(\hat{\theta}) - E_{H_0}(\exp(r(\hat{\theta}))) \] (18)

This is compared to the threshold \(\ln(p_0/p_1) \) for an optimum Bayes test. As seen from (18) and (15), the optimum receiver is completely determined by the CME's of \(\hat{\theta}_1 \) and \(\hat{\theta}_2 \) and displays an estimator-correlator structure.

b. Neyman-Pearson test

The Neyman-Pearson test is easily derivable from (18), i.e.,
\[r(\hat{\theta}) \overset{H_1}{\gtrless} \gamma(\hat{\theta}) \overset{H_0}{\gtrless} \] (19)

where \(\gamma(\hat{\theta}) \) is chosen so that the probability of false alarm is set equal to a level \(\alpha \).

The above results constitute a canonical detector structure
for renewal processes with gamma inter-arrival times. One must, of course, specify the prior distribution \(\pi(\theta_1, \theta_2) \). When this distribution is not known, Eqs. (18) and (19) suggest replacing the CME's by other estimates which are good approximations to it and which require less prior information. This is the subject of the next section.

Finally, it should be clear that the results of this section can easily be extended to the \(n \)-dimensional exponential family.
III. Adaptive Detection of Renewal Processes

Let

\[\hat{\theta}_{10} = -1/\mu_0, \quad \hat{\theta}_{20} = 1 \]
\[\hat{\theta}_1 = -k/\mu, \quad \hat{\theta}_2 = k \] \hspace{1cm} (20)

Then, the optimum Bayesian and Neyman-Pearson tests are given by (18) and (19). As suggested above, these tests are often not used because of insufficient prior knowledge or because the CME's of \(\theta_1 \) and \(\theta_2 \) are simply difficult to implement. Consequently, it is natural to investigate the properties of suboptimum detectors obtained by substituting suboptimum estimators for the CME's in (18) or (19). In ([4]), it is shown that good approximations to CME's can be derived from modifications of the maximum likelihood estimate (MLE). As one might expect, the resulting detector performance is close to the optimum. What is surprising is that this is true even for very small samples (\(n=3 \) or 4). We now derive three detection schemes based on the MLE and modifications of it. This is done in increasing order of assumed prior knowledge. The first is the MLE which assumes no prior knowledge on \(\mu \) or \(k \). The truncated MLE assumes that the range of \(\mu \) and \(k \) is known. Finally, the discrete MLE assumes further that the parameter \(k \) can only take on one of a finite number of values.

A. MLE Detector

We first have to calculate the MLE's of \(\mu \) and \(k \) or, equivalently, of \(\theta_1 \) and \(\theta_2 \). From (3) and (6) the maximum likelihood equations have the form

\[-\frac{\hat{\theta}_2}{\hat{\theta}_1} = \bar{\mu} = t_1/n \]
\[\psi(\hat{\theta}_2) - \log(-\hat{\theta}_1) = t_2/n \] \hspace{1cm} (21)
where $\tilde{\mu}$, $\tilde{\theta}_1$, $\tilde{\theta}_2$ denote the MLE's of the corresponding parameters and ψ is the derivative of the Gamma function. The solution to (21) is not immediate and does not lend itself to analytic integration. However, if one assumes that k (i.e. θ_2) is sufficiently large so that Stirling's formula ([7]) can be used, we have

$$\psi(\tilde{\theta}_2) = \log \tilde{\theta}_2 - \frac{1}{2\tilde{\theta}_2}$$

and

$$\frac{\tilde{\theta}_2}{\tilde{\theta}_1} = \frac{t_1}{n}$$

$$\tilde{\theta}_2 = k = \frac{1}{2} \left(\log \left(\frac{t_1}{n} \right) - \frac{t_2}{n} \right)^{-1}$$

(22)

For later use, we make the following observations:

1) $\tilde{\theta}_1$ and $\tilde{\theta}_2$ can now be integrated.

2) k is a reasonable estimate since it is always positive, a property which stems from the fact that the arithmetic mean is larger than the geometric mean. We now have to calculate the integrals

$$I(\tilde{\theta}_1) = \int_{t_0}^{t_1} \tilde{\theta}_1(u) du$$

(23)

and

$$I(\tilde{\theta}_2) = \int_{t_0}^{t_2} \tilde{\theta}_2(u) du$$

(24)

where the integrations should be performed along a convenient path. In Appendix A, these integrations are carried out, the final result being:

$$I(\tilde{\theta}_1) + I(\tilde{\theta}_2) = -\frac{n}{2} \log \left(\log \left(\frac{t_1}{n} \right) - \frac{t_2}{n} \right)$$

(25)

Note again that in (25), the sign of the argument raises no problem.
since it is positive. We then obtain the MLE Bayesian detector by substituting (25) into (19). We also have to calculate the quantity

\[K' = \frac{E_{H_0} \exp \left(\frac{t_1}{\mu_0} - t_2 - \frac{n}{2} \log \left(\frac{t_1}{n} - \frac{t_2}{n} \right) \right)}{\exp \left[n \log \left(\frac{t_1}{n} - \frac{t_2}{n} \right) / n^{1/2} \right] \exp \left[-n \log \frac{t_1}{n} + \frac{t_1}{\mu_0} \right]} \]

Rewrite (26) as:

\[K' = \frac{E_{H_0} \exp \left[n \log \left(\frac{t_1}{n} - \frac{t_2}{n} \right) \right]}{\exp \left[-n \log \frac{t_1}{n} + \frac{t_1}{\mu_0} \right]} \]

By a theorem due to Pitman ([8], page 217), \(t_1 \) and \(\log \left(\frac{t_1}{n} - \frac{t_2}{n} \right) \) are independent. This property permits the factorization of the expectation in (27) and since \(t_1 \) is Gamma distributed under \(H_0 \), we have

\[E_{H_0} \exp \left(-n \log \frac{t_1}{n} + \frac{t_1}{\mu_0} \right) = \frac{1}{\Gamma(n)} \int_0^\infty \left(\frac{t_1}{\mu_0} \right)^{n-1} e^{-t_1 / \mu_0} \, dt_1 \]

so that

\[K' = \frac{1}{\Gamma(n)} \int_0^\infty \left(\frac{t_1}{\mu_0} \right)^{n-1} e^{-t_1 / \mu_0} \, dt_1 \]

Hence, the MLE yields an undefined Bayesian detector, a phenomenon encountered for other classes of problems ([9], Sec. V.B. and [10], Sec. 3.4 of Chap. 2).

In contrast, the Neyman-Pearson test is well defined and derived by substituting (25) into (19). Dividing by \(n \), we get

\[l(\theta) = -\frac{1}{2} \log \left(\frac{t_1}{n} - \frac{t_2}{n} \right) + \frac{1}{\mu_0} \frac{t_1}{n} - \frac{t_2}{n} \chi_1^2(\theta) \]
Truncated MLE Detector

Since the optimum detector is determined by CME's, one might expect that by modifying the MLE for some given partial a-priori knowledge of the parameters, the resulting estimates will be closer to the CME's, and the associated detector will exhibit a performance which is closer to that of the optimum. This will indeed be the case. In this sub-section, we assume prior knowledge of the dynamic range of \(\mu \) and \(k \), i.e., the boundaries are known:

\[
\mu \in [\mu_L, \mu_U] \\
\ k \in [k_L, k_U]
\]

We consider the following estimates:

\[
\bar{\mu} = \frac{t_1}{n} \quad \text{if } 0 \leq \frac{t_1}{n} \leq \mu_U \\
\bar{\mu} = \mu_U \quad \text{if } \frac{t_1}{n} > \mu_U
\]

and

\[
\bar{k} = \bar{k} \quad \text{if } k_L \leq \bar{k} \leq k_u \\
\bar{k} = k_u \quad \text{if } \bar{k} > k_u \\
\bar{k} = k_L \quad \text{if } \bar{k} < k_u
\]

The associated estimates \(\bar{s}_1 \) and \(\bar{s}_2 \) are given by

\[
\bar{s}_1 = -\frac{k}{\bar{\mu}} \quad , \quad \bar{s}_2 = k
\]

In Appendix B, we calculate the integrals \(I(\bar{s}_1) \) and \(I(\bar{s}_2) \) defined as in (23), (24). With the following definitions
\[f(x) = \begin{cases} 0 & \text{if } f(x) < 0 \\ \frac{t_1}{n} & \text{if } x = 0 \\ \frac{t_2}{n} & \text{if } x < 0 \end{cases} \]

\[c(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } x < 0 \end{cases} \]

\[y_1 = \frac{t_1}{n}, \quad y_2 = \frac{t_2}{n} \]

\[a = \log \frac{t_1}{n} - \frac{t_2}{n} \]

\[\nu = \log \frac{t_1}{n} - \frac{1}{2k_2} \]

\[\nu_u = \log \frac{t_1}{n} - \frac{1}{2k_u} \]

Equation (32) is obviously a complicated expression. However, it is easily implementable on a computer using the built-in positive difference function or on special purpose hardware using limiters. We consider only the associated N-P detector which is obtained by substituting (32) into (19).
C. Discrete MLE Detector

Here, we assume the a-priori knowledge of the dynamic range of u and also suppose that k can only take on an integer value drawn from a finite set, i.e.

$$u \in [u_L, u_u]$$

$$k \in [k_L, k_L + 1, \ldots, k_u]$$

we form the following estimates\(^1\)

$$\hat{u} = \frac{t}{n} \quad \text{if} \quad u_L \leq \frac{t}{n} \leq u_u$$

$$\hat{u} = u_u \quad \text{if} \quad \frac{t}{n} > u_u$$

$$\hat{u} = u_L \quad \text{if} \quad \frac{t}{n} < u_L$$

and

$$\hat{k} = k_L \quad \text{if} \quad \hat{u} \leq k_L + \frac{1}{2}$$

$$\hat{k} = k_L + i \quad \text{if} \quad k_L + i - \frac{1}{2} < \hat{u} \leq k_L + i + \frac{1}{2}$$

for $i = 1, \ldots, k_u - k_L - 1$

$$\hat{k} = k_u \quad \text{if} \quad \hat{u} > k_u - \frac{1}{2}$$

while

$$\hat{\theta}_1 = -\frac{\hat{k}}{\hat{u}}$$

$$\hat{\theta}_2 = \hat{k}$$

\(^1\)The notation here should not be confused with the CME notation.
The resulting N-P detector obtained by substituting \(I(\hat{\Theta}_1) \) and \(I(\hat{\Theta}_2) \) into (10), is derived in Appendix C. We introduce the following notation:

\[
y_1 = \frac{t_1}{n}, \quad y_2 = \frac{t_2}{n}
\]

\[
v_i = \log y_1 - \frac{1}{2(k_u + i - 1)}, \quad i = 1, \ldots, k_u - k_
\]

\[
s_i = \exp [y_2 + \frac{1}{2(k_u + i - 1)}], \quad i = 1, \ldots, k_u - k_
\]

We then have

1) If \(y_1 > 1 \)

\[
\frac{1}{n} (I(\hat{\Theta}_1) + I(\hat{\Theta}_2)) = -k_l (\log y_1 - 1) + k_u (\log y_1 - \log y_u) + k_u - k_l
\]

\[
+ \sum_{i=1}^{k_u - k_l} (-v_i) + k_l y_2 + \sum_{i=1}^{k_u - k_l} (y_2 - v_i) + k_l y_2
\]

(36)

2) If \(\mu_l < y_1 < 1 \)

\[
\frac{1}{n} (I(\hat{\Theta}_1) + I(\hat{\Theta}_2)) = -k_l (\log y_1 - 1) + \sum_{i=1}^{k_u - k_l} (y_2 - v_i) + k_l y_2
\]

(37)

3) If \(y_1 < \mu_l \)

\[
\frac{1}{n} (I(\hat{\Theta}_1) + I(\hat{\Theta}_2)) = -k_l (\log \mu_l - 1) + \sum_{i=1}^{k_u - k_l} (y_2 - \log \mu_l) + \frac{1}{2(k_u + i - 1)}
\]

\[
+ k_u - k_l \sum_{i=1}^{k_u - k_l} s_i + \frac{1}{\mu_l} \sum_{i=1}^{k_u - k_l} (s_i - y_1) + k_l y_2
\]

(38)
As commented on in Section III.B, this receiver is also not that difficult to implement.

D. Simulation Results

Simulations have been performed for the Neyman-Pearson tests associated with $\hat{\theta}$, $\hat{\theta}$ and $\hat{\theta}$, and are denoted respectively by DET.1, DET.2 and DET.3. Under H_0, the observations are exponentially distributed with mean $1/\mu_0$. Under H_1, they are $\Gamma(\frac{k}{\mu}, k)$ distributed, k is uniformly distributed on the integers $[k, k+1, \ldots, k]$ and μ is independent of k and uniform on $[\mu_{\ell}, \mu_u]$. For this example, the optimum test which we designate DET.4, can be obtained directly from the likelihood ratio calculated in Appendix D. It should be noted that although available in this example, this detector cannot be set into an estimator-correlator structure and, as indicated in Table 3 below, the computing time required for its implementation is much larger than that of any of the tests previously described.

We simulated hypotheses H_0 and H_1 1000 times ($m=1000$) and calculated the empirical distributions of the four tests under both hypotheses. To determine the various thresholds for a significance level α, we used the following non-parametric method discussed by Davis and Andreadakis [11], and which can also be found in ([12]). Let $r(1), r(2), \ldots, r(m)$ be the order statistics of any of the tests investigated under H_0. The $(1-\alpha)$th quantile $q_{1-\alpha}$ is such that

$$\Pr_{H_0}[r > q_{1-\alpha}] = \alpha$$

Consider the event

$$E = \{r(j) > q_{1-\alpha}\}$$
E occurs if at least \((m-j+1)\) values of \(r\) are greater than \(q_{\alpha}\), corresponding to the probability of having at least \((m-j+1)\) successes in \(m\) Bernoulli trials with \(\alpha\) being the probability of a success. Hence

\[
Pr(E) = I_{\alpha} (m-j+1, j)
\]

where \(I_{\alpha}(a,b)\) is the incomplete Beta function. In this case, it can be approximated by

\[
N \left(\frac{j-l-m(1-\alpha)}{\sqrt{m(1-\alpha)}}, 1 \right)
\]

where

\[
N(a,1) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{x^2}{2}} \, dx
\]

Consequently, for \(m=1000\), if we choose \(j=963\) (or \(j=918\)), there is a 96.4% probability that the false alarm is less than 5% (or 10%) when the thresholds are taken to be \(r(963)\) and \(r(918)\), respectively.

The results, summarized in the following tables, illustrate some significant differences in the small sample case for various values of the parameters. In general, DET.3 is superior to DET.2 which in turn, performs better than DET.1. DET.3 is quite frequently much better than DET.1 and very close to the optimum. In the large sample case (\(n \) greater than 10), as one might expect, the detectors have similar power.
<table>
<thead>
<tr>
<th>Number of Samples</th>
<th>μ_0</th>
<th>μ_L</th>
<th>μ_U</th>
<th>k_ℓ</th>
<th>k_u</th>
<th>Power of DET.1</th>
<th>Power of DET.2</th>
<th>Power of DET.3</th>
<th>Power of DET.4 (optimum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>.3</td>
<td>.5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>.731</td>
<td>.773</td>
<td>.862</td>
<td>.876</td>
</tr>
<tr>
<td>4</td>
<td>.5</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>.689</td>
<td>.784</td>
<td>.818</td>
<td>.858</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>.354</td>
<td>.443</td>
<td>.525</td>
<td>.435</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>.5</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>.433</td>
<td>.484</td>
<td>.615</td>
<td>.681</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>.5</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>.346</td>
<td>.324</td>
<td>.403</td>
<td>.523</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>.5</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>.708</td>
<td>.797</td>
<td>.760</td>
<td>.832</td>
</tr>
</tbody>
</table>

Table 1. $\alpha = 5\%$

<table>
<thead>
<tr>
<th>Number of Samples</th>
<th>μ_0</th>
<th>μ_L</th>
<th>μ_U</th>
<th>k_ℓ</th>
<th>k_u</th>
<th>Power of DET.1</th>
<th>Power of DET.2</th>
<th>Power of DET.3</th>
<th>Power of DET.4 (optimum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>.3</td>
<td>.5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>.816</td>
<td>.824</td>
<td>.911</td>
<td>.915</td>
</tr>
<tr>
<td>4</td>
<td>.5</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>.760</td>
<td>.832</td>
<td>.887</td>
<td>.901</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>.549</td>
<td>.699</td>
<td>.728</td>
<td>.760</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>.5</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>.635</td>
<td>.681</td>
<td>.746</td>
<td>.799</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>.5</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>.495</td>
<td>.501</td>
<td>.577</td>
<td>.660</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>.5</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>.800</td>
<td>.879</td>
<td>.842</td>
<td>.893</td>
</tr>
</tbody>
</table>

Table 2. $\alpha = 10\%$

<table>
<thead>
<tr>
<th>DET.1</th>
<th>DET.2</th>
<th>DET.3</th>
<th>DET.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>112</td>
<td>115</td>
<td>495</td>
</tr>
<tr>
<td>seconds</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.
Approximate Sum of Computing Time for the First and Two Last Rows of Table 1.
IV. Conclusion

In this paper, we investigated the detection of renewal processes whose inter-arrival times are Gamma distributed. We first developed the structure of the optimum Bayesian and Neyman-Pearson tests for the two-dimensional exponential family. The main characteristic of these detectors is that they fall into the category of estimator-correlators since they are determined by integrals of the CME's of the two pertinent parameters. One implication of this structure is the implementation of suboptimum tests by substituting various estimates for the CME's.

We then applied the estimator-correlator property to the case of Gamma distributed observations and investigated three related tests. The first detector, DET.1, is based on the MLE, and as previously observed, the Bayesian test is undefined whereas the Neyman-Pearson version seems to perform quite well even for a small number of samples. The second test, DET.2, is based on the truncated MLE which assumes knowledge of the dynamic range (boundary) of the parameters. Finally, we investigated the properties of DET.3, the test based on the discrete MLE of k assuming that k can only assume a value on a finite set of integers. This test is well-suited for the situation where observations are taken at the output of a photomultiplier with a fixed dead-time characteristic. DET.3 and DET.2 outperformed DET.1 and often in the small sample case, the performance of DET.3 is markedly superior to that of DET.1 and very close to the optimum. Consequently, based on these preliminary simulations, DET.3 is a fairly adequate test for the detection of a large class of renewal processes.
Appendix A

We integrate the MLE's \overline{y}_1 and \overline{y}_2 which are solutions to (22).

They are rewritten as:

1. $\overline{y}_1 = - \frac{n}{2t_1} (\log \frac{t_1}{n} - \frac{t_2}{n})^{-1}$

2. $\overline{y}_2 = \frac{1}{2} (\log \frac{t_1}{n} - \frac{t_2}{n})^{-1}$

Fig. A
Since
\[\log \frac{t_1}{n} - \frac{t_2}{n} \geq 0 \]
the admissible points \(\frac{t}{n} \) are located below the curve
\[y = \log \frac{t_1}{n} \]
and therefore one should be careful in choosing the path of
integration.

1) Case 1: \(\frac{t_1}{n} > 1 \)
We integrate along path (a). Then
\[I(\vec{a}_1) = \int_{t_0}^{t} \vec{a}_1(u)du_1 = -\frac{1}{2} \int_{t_0}^{t} \frac{n}{u_1(\log \frac{u_1}{n} - \frac{t_2}{n})} du_1 \quad (3.A) \]
Along the part of the path for which the integral does not vanish, we have
\[t_2 = t_{20} = 0 \]
Thus
\[I(\vec{a}_1) = - \frac{n}{2} \int_{e^{1/n}}^{e^{1/n}} \frac{ds}{s \log s} = - \frac{n}{2} \int_{1}^{e^{1/n}} \frac{ds}{s} \]
\[I(\vec{a}_1) = - \frac{n}{2} \log \log \frac{t_1}{n} \quad (4.A) \]
Now
\[I(\vec{a}_2) = \int_{t_0}^{t} \vec{a}_2(u)du_2 = \frac{1}{2} \int_{t_0}^{t} \frac{du_2}{u_1(\log \frac{u_1}{n} - \frac{u_2}{n})} \quad (5.A) \]
Along the part of the path where the integral does not vanish, we have
\[u_1 = t_1 \]
Thus

\[I(\theta_2) = \frac{1}{2} \int_0^{t_2} \frac{du_2}{\log \frac{1}{n} - \frac{u_2}{n}} = - \frac{n}{2} \log \left(\frac{\log \frac{1}{n} - \log \frac{2}{n}}{\log \frac{1}{n}} \right) \] \hspace{1cm} (6.A)

2) Case 2: \(\frac{t_1}{n} < 1 \)

Here, we integrate along path (b). We have

\[I(\theta_1) = - \frac{1}{2} \int_{t_1}^1 \frac{n}{u_1(\log \frac{1}{n} - \frac{u_1}{n})} \, du_1 \]

and using the same changes of variables as those leading to (4.A) one obtains:

\[I(\theta_1) = - \frac{n}{2} \log \left(\frac{\log \frac{1}{n} - \frac{2}{n}}{1 - \frac{t_1}{n}} \right) \] \hspace{1cm} (7.A)

Similarly,

\[I(\theta_2) = \frac{1}{2} \int_0^{t_2} \frac{du_2}{1 - \frac{u_2}{n}} = - \frac{n}{2} \log \left(1 - \frac{t_2}{n} \right) \] \hspace{1cm} (8.A)

Finally, from (4.A), (6.A), (7.A) and (8.A), we obtain in both cases

\[I(\theta_1) + I(\theta_2) = - \frac{n}{2} \log \left(\frac{\log \frac{1}{n} - \frac{2}{n}}{1 - \frac{t_1}{n}} \right) \] \hspace{1cm} (9.A)
Appendix B

Here, we integrate the estimates δ_1 and δ_2 given in (31). As in Appendix A, the admissible region of values that $\frac{t}{n}$ can take on is located below the curve $y = \log \frac{1}{n}$. Several cases have to be investigated which will be referred to in Fig. B below.

\[s_u = e^{y_2 + \frac{1}{2k_u}} \]
\[s_l = e^{y_2 + \frac{1}{2k_l}} \]
\[\frac{t_0}{n} = \left(e \right) \]
\[z_l = e^{\frac{1}{2k_l}} \]
\[z_u = e^{\frac{1}{2k_u}} \]

Fig. B
We assume that $\mu_u > e, k_t > \frac{1}{2}$ and make use of the notation introduced for (32) and in Fig. B. It is easily verified that

\[
\tilde{k} = k_t \text{ iff } y_2 < \nu_t
\]

\[
\tilde{k} = \tilde{k} \text{ iff } \nu_t \leq y_2 \leq \nu_u
\]

\[
\tilde{k} = k_u \text{ iff } y_2 > \nu_u
\]

1. **Case 1:** $y_1 > 1$

\[
\frac{1}{2k_t} e^{k_t} < y_1 \leq \mu_u
\]

Integrate along the path (a):

\[
I(\tilde{\sigma}_1)/n = -\int_{e}^{\nu_1} \frac{k_t}{u_1} du_1 = -k_t (\log y_1 - 1) \tag{2.B}
\]

We now integrate $\tilde{\sigma}_2$ and several subcases have to be considered.

i) If $y_2 > \nu_u$, then

\[
I(\tilde{\sigma}_2)/n = \int_{0}^{\nu_t} k_t du_2 + \frac{1}{2} \int_{\nu_t}^{\nu_u} \frac{du_2}{\log y_1 - u_2} + \int_{\nu_u}^{y_2} k_u du_2
\]

or

\[
I(\tilde{\sigma}_2)/n = k_t \nu_t - \frac{1}{2} \log (\frac{k_t}{k_u}) + k_u (y_2 - \nu_u) \tag{3.B}
\]

ii) If $\nu_t \leq y_2 \leq \nu_u$

\[
I(\tilde{\sigma}_2)/n = k_t \nu_t - \frac{1}{2} \log (2k_t a) \tag{4.B}
\]

iii) If $y_2 < \nu_t$, then

\[
I(\tilde{\sigma}_2)/n = k_t y_2 \tag{5.B}
\]

Then, (3.B - 5.B) can be rewritten in a single formula, i.e.,
\[
I(\bar{\theta}_2)/n = k_\ell y_2 - k_\ell (y_2 - \nu_\ell)^+ - \frac{1}{2} \log (2k_\ell a) c(y_2 - \nu_\ell)
\]
\[
+ \frac{1}{2} \log (2k_\ell a) c(y_2 - \nu_u) + k_u (y_2 - \nu_u)^+
\] (6.B)

b) If \(y_1 > u_u \), integrate along path (b):

\[
I(\bar{\theta}_1)/n = - \int_\mu_u^{\ell} \frac{k_\ell}{u_1} \, du_1 + \int_{\nu_\ell}^y \frac{k_\ell}{\mu_u} \, du_1
\]

or

\[
I(\bar{\theta}_1)/n = - k_\ell \left(\log u_1 - 1 \right) - \frac{k_\ell}{\mu_u} (y_1 - u_u)
\] (7.B)

In this case, \(I(\bar{\theta}_2) \) is again given by (6.B).

c) If \(z_u \leq y_1 \leq z_\ell \), then integrate along path (c),

\[
I(\bar{\theta}_1)/n = - \int_\mu_u^{z_u} \frac{k_\ell}{u_1} \, du_1 + \int_{z_u}^y \frac{y_1}{\mu_u} \, du_1
\]

or

\[
I(\bar{\theta}_1)/n = - k_\ell \left(\frac{1}{2k_\ell} - 1 \right) - \frac{1}{2} \log (2k_\ell \log y_1)^+
\] (8.B)

Again, \(I(\bar{\theta}_2) \) is given in (6.B).

d) If \(1 < y_1 < z_u \), we integrate along path (d), so that

\[
I(\bar{\theta}_1)/n = - k_\ell \left(\frac{1}{2k_\ell} - 1 \right) - \frac{1}{2} \log \frac{k_\ell}{k_u} - k_u (\log y_1 - \frac{1}{2k_u})
\] (9.B)

and again, \(I(\bar{\theta}_2) \) is given by (6.B). We can include (2.B, 7.B, 8.B, 9.B) within a single formula, i.e.,

\[
I(\bar{\theta}_1)/n = - k_\ell (\log y_1 - 1) - k_\ell (-\nu_\ell)^+ + \frac{1}{2} \log (2k_\ell \log y_1) c(-\nu_\ell)
\]

\[
- \frac{1}{2} \log (2k_\ell \log y_1) c(-\nu_u) + k_\ell (\log \frac{y_1}{\mu_u})^+ + \frac{k_\ell}{\mu_u} (y_1 - u_u)^+
\] (10.B)
2. **Case 2**: \(y_1 < 1 \) (Path (e))

a) If \(y_2 < \nu_u \)

\[
I(\bar{\nu}_1)/n = -k_\nu (\log y_1 - 1) \quad (11.B)
\]

b) If \(\nu_u \leq y_2 \leq \nu_u' \)

\[
I(\bar{\nu}_1)/n = -k_\nu (\log y_1 - 1) - \frac{1}{2} \int_{\nu_u}^{y_1} \frac{du_1}{u_1 (\log u_1 - y_2)}
\]

or

\[
I(\bar{\nu}_1)/n = -k_\nu (\log y_1 - 1) - \frac{1}{2} \log (2k_\nu a) \quad (12.B)
\]

c) If \(y_2 > \nu_u' \)

\[
I(\bar{\nu}_1)/n = -k_\nu (\log y_1 - 1) - \frac{1}{2} \log \left(\frac{k_\nu}{k_u} - k_u (\nu_u - y_2) \right) \quad (13.B)
\]

Eqs. (11.B - 13.B) may be summarized as

\[
I(\bar{\nu}_1)/n = -k_\nu (\log y_1 - 1) - k_\nu (y_2 - \nu_u')^+ - \frac{1}{2} \log (2k_\nu a) (y_2 - \nu_u')^+
\]

\[
+ \frac{1}{2} \log (2k_\nu a) (y_2 - \nu_u')^+ + k_u (y_2 - \nu_u')^+ \quad (14.B)
\]

For a), b), c), of case 2, we have

\[
I(\bar{\nu}_2)/n = k_\nu y_2 \quad (15.B)
\]

Appendix C

In this appendix, the discrete MLE detector is derived. The estimates \(\hat{\mu} \), \(\hat{k} \), \(\hat{\theta}_1 \) and \(\hat{\theta}_2 \) are given in (33), (34) and (35) and have various forms according to the position of \(t \) in the plane. The paths of integration are represented in Fig. C1 and Fig. C2 below.

\[
\begin{align*}
 z_1 &= e^{\frac{1}{2k_1+1}} \\
 z_i &= \exp\left[\frac{1}{2(k_1+i)-1}\right]
\end{align*}
\]

Fig. C1
Fig. C2

\[a_1 = e^{y_2 + \frac{1}{2(k_2 + 1) - 1}} \]
We assume that
\[\mu_\ell < 1, \quad \mu_u > \epsilon \]
and \(k_\ell \geq 1 \)

With the notation introduced below (35), it is readily verified that (34) is equivalent to:
\[\hat{\ell} = k_\ell \quad \text{iff} \quad y_2 < v_1 \]
\[\hat{\ell} = k_\ell + i \quad \text{iff} \quad v_i < y_2 < v_{i+1}, \quad i = 1, \ldots, k_u - k_\ell - 1 \quad (1.C) \]
\[\hat{\ell} = k_u \quad \text{iff} \quad v_{k_u - k_\ell} < y_2 \]

1. **Case 1**: If \(y_1 > 1 \), then consider Fig. C.1 and integrate along the appropriate path.
 a) If \(y_1 > z_1 \), then consider Fig. C.1 and integrate along the appropriate path.
 i) If \(y_2 < v_1 \),
 \[I(\hat{\theta}_2) = \int_0^{t_2} k_\ell du_2 = nk_\ell y_2 \quad (2.C) \]
 ii) If \(v_1 < y_2 < v_2 \),
 \[I(\hat{\theta}_2) = \frac{k_\ell}{n} v_1 + (k_\ell + 1)(y_2 - v_1) = k_\ell y_2 + (y_2 - v_1); \quad (3.C) \]
 iii) If \(v_1 < y_2 < v_3 \),
 \[I(\hat{\theta}_2) = \frac{k_\ell}{n} v_2 + (y_2 - v_1) + (y_2 - v_2) \quad (4.C) \]
 One can summarize (2.C - 4.C) and the other subcases as
 \[I(\hat{\theta}_2) = \frac{k_\ell}{n} v_2 + \sum_{i=1}^{k_u - k_\ell} (y_2 - v_i)^+ \quad (5.C) \]
 b) If \(z_2 < y_1 \leq z_1 \), then
\[I(\hat{\theta}_1)/n = - k_{\xi} \left(\frac{1}{2k_{\xi} + 1} - 1 \right) - \int \frac{y_1 k_{\xi} + 1}{z_1 u_1} du_1 \]

or

\[I(\hat{\theta}_1)/n = - k_{\xi} (\log y_1 - 1) - \nu_1 \quad (6.C) \]

\[I(\hat{\theta}_2) \text{ is still given by (5.C).} \]

\[\text{a) If } z_3 < y_1 < z_2, \]

\[I(\hat{\theta}_1)/n = - k_{\xi} (\log y_1 - 1) - \nu_1 - \nu_2 \quad (7.C) \]

Cases a), b), c), and all other subsequent cases for \(y_1 > 1 \), can be rewritten as

\[I(\hat{\theta}_1)/n = - k_{\xi} (\log y_1 - 1) + k_{\xi} (\log \frac{y_1}{u}) \]

\[+ \sum_{i=1}^{k_u-k_{\xi}} (-\nu_i)^+ \quad (8.C) \]

while \(I(\hat{\theta}_2) \) is given by (5.C).

2. Case 2: If \(\mu < y_1 < 1 \), then consider Fig. C.2 and integrate along the appropriate paths.

a) If \(y_1 > s_1 \),

\[I(\hat{\theta}_1)/n = - k_{\xi} (\log y_1 - 1) \quad (9.C) \]

b) If \(s_2 < y_1 \leq s_1 \)

\[I(\hat{\theta}_1)/n = - k_{\xi} (\log y_1 - 1) + (y_2 - \nu_1) \quad (10.C) \]

and in general, for \(\mu < y_1 < 1 \), we get

\[I(\hat{\theta}_1)/n = - k_{\xi} (\log y_1 - 1) + \sum_{i=1}^{k_u-k_{\xi}} (y_2 - \nu_i)^+ \quad (11.C) \]
3. **Case 3:** If \(y_1 \leq \mu_\ell \), we have to consider the various values that \(\mu_\ell \) can assume.

a) If \(\mu_\ell > s_1 \), we investigate the following subcases.

i) If \(y_1 > s_1 \), then similarly as before

\[
I(\hat{\theta}_1)/n = - k_\ell (\log \mu_\ell - 1) + \frac{k_\ell}{\mu_\ell} (\mu_\ell - y_1)
\]

(12.C)

ii) If \(s_2 < y_1 \leq s_1 \),

\[
I(\hat{\theta}_1)/n = - k_\ell (\log \mu_\ell - 1) + \frac{1}{\mu_\ell} (s_1 - y_1) + \frac{k_\ell}{\mu_\ell} (\mu_\ell - y_1)
\]

(13.C) and the subsequent cases can be written as

\[
I(\hat{\theta}_1)/n = - k_\ell (\log \mu_\ell - 1) + \frac{1}{\mu_\ell} \sum_{i=1}^{k_u-k_\ell} (s_i-y_1)^+ + \frac{k_\ell}{\mu_\ell} (\mu_\ell - y_1)
\]

(14.C)

b) If \(s_2 < \mu_\ell \leq s_1 \), again several sub-cases have to be investigated.

If \(s_2 < y_1 \), we have using (10.C)

\[
I(\hat{\theta}_1)/n = - k_\ell (\log \mu_\ell - 1) + (y_2 - \log \mu_\ell + \frac{1}{2k_\ell+1}) - \frac{k_\ell+1}{\mu_\ell} (y_1 - \mu_\ell)
\]

(15.C)

and in general for \(s_{i+1} \leq y_1 \leq s_i \), \(i = 2, \ldots, k_u - k_\ell \), we get

\[
I(\hat{\theta}_1)/n = - k_\ell (\log \mu_\ell - 1) + (y_2 - \log \mu_\ell + \frac{1}{2k_\ell+1})
\]

\[
+ \frac{1}{\mu_\ell} \sum_{i=2}^{k_u-k_\ell} (s_i-y_1)^+ + \frac{k_\ell+1}{\mu_\ell} (\mu_\ell - y_1)
\]

(16.C)

We can regroup (14.C) and (16.C) as

\[
I(\hat{\theta}_1)/n = - k_\ell (\log \mu_\ell - 1) + (y_2 - \log \mu_\ell + \frac{1}{2k_\ell+1})
\]

\[
+ \frac{k_u-k_\ell}{\mu_\ell} (s_1-\mu_\ell)^+ + \frac{1}{\mu_\ell} \sum_{i=1}^{k_\ell} (s_i-y_1)^+ + \frac{k_\ell}{\mu_\ell} (\mu_\ell - y_1)
\]

(17.C)
In fact, (17.1) can be generalized to the cases
\[s_{i+1} < \mu_\ell \leq s_i, \quad i = 2, \ldots, k_u - k_\ell \] as follows:

\[
I(\hat{\theta}_1)/n = -k_\ell (\log \mu_\ell - 1) + \sum_{i=1}^{k_u - k_\ell} \left(y_2 - \log \mu_\ell + \frac{1}{2(k_\ell + 1)} \right)^+
- \frac{1}{\mu_\ell} \left[\sum_{i=1}^{k_u - k_\ell} (s_i - \mu_\ell)^+ - (s_i - y_1)^+ \right] + \frac{k_\ell}{\mu_\ell} (\mu_\ell - y_1)
\]

For \(y_1 < 1 \), we always have

\[
I(\hat{\theta}_2) = nk_\ell y_2
\]

Finally, Eqs. (5.1), (8.1), (11.1), (18.1) and (19.1) yield the results stated in (36), (37), and (38).
Appendix D

We derive the optimum detector DET.4. The marginal of \(t \) under \(H_1 \) which we denote by \(f(t) \), can be written as:

\[
f(t) = \int \int f(t|\mu,k)\pi(k)\pi(\mu)dkd\mu \tag{1.\text{D}}\]

where \(\pi(k) \) and \(\pi(\mu) \) are the priors on \(k \) and \(\mu \) respectively. Consequently, we have

\[
f(t) = \frac{1}{(k_u-k_c+1)(\mu_u-\mu_c)} \sum_{k=k_c}^{k_u} \frac{\mu_u(k)}{\mu_c(k)} \frac{1}{\Gamma(n)(k)} \exp\left(-\frac{k}{\mu} t_1 + kt_2 + B(t)\right) dkd\mu \tag{2.\text{D}}\]

Let

\[
J = \frac{\mu}{\mu_c} \exp\left(-\frac{k}{\mu} t_1\right) \frac{1}{\mu nk} d\mu \tag{3.\text{D}}\]

We integrate by parts:

\[
J = \left[\exp\left(-\frac{k}{\mu} t_1\right) \frac{1}{\mu nk-1} \right]_{\mu=\mu_c}^{\mu=\mu_u} + \frac{nk-2}{\mu c} \int_{\mu_c}^{\mu_u} \frac{\mu}{\mu} \exp\left(-\frac{k}{\mu} t_1\right) \frac{1}{\mu nk-1} d\mu \tag{4.\text{D}}\]

Iterating the integrations by parts and denoting

\[
z = \frac{kt_1}{\mu} \]

one gets

\[
J = \frac{(nk-2)1}{(kt_1)^{nk-1}} \left[e^{-z} \sum_{i=0}^{nk-2} \frac{z^i}{i!} \right] \frac{kt_1}{\mu u} \tag{5.\text{D}}\]

Hence, substituting (5.D) into (2.D) and using (6), the likelihood-ratio which we denote by $L(t)$, is equal to:

$$L(t) = \frac{f(t)}{F(t|\theta_0)} = c \exp \frac{t}{\mu_0} \sum_{k=k_1}^{k_u} \frac{k(nk-2)!}{nk-1} \exp \left[\frac{(k-1)t_2}{\mu_0} \right]$$

$$\times \left[e^{-z} \sum_{i=0}^{nk-2} \frac{z^i}{i!} \right]^{kt_1/\mu_u}$$

where

$$c = \frac{\mu_0^n}{(k_u-k_1+1)(\mu_u-\mu_1)}$$
References

7. Abramowitz, M. and Stegun, I., Handbook of Mathematical Functions, Dover, N.Y.

<table>
<thead>
<tr>
<th>Copies</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Director, Office of Naval Research Branch Office
1030 East Green Street
Attn: Dr. A.R. Laufer
Pasadena, CA 91101</td>
</tr>
<tr>
<td>1</td>
<td>Director, Office of Naval Research Branch Office
1030 East Green Street
Attn: Dr. Richard Lau
Pasadena, CA 91101</td>
</tr>
<tr>
<td>12</td>
<td>Office of Naval Research
San Francisco Area Office
One Hallidie Plaza - Suite 601
San Francisco, CA 94102</td>
</tr>
<tr>
<td>1</td>
<td>Office of Naval Research
Scientific Liaison Group
Attn: Dr. Bruce J. McDonald
Scientific Director
American Embassy - Tokyo
APO San Francisco 96503</td>
</tr>
<tr>
<td>1</td>
<td>Technical Library
Naval Ordnance Station
Indian Head, Maryland 20640</td>
</tr>
<tr>
<td>1</td>
<td>Naval Ship Engineering Center
Philadelphia
Division Technical Library
Philadelphia, PA 19112</td>
</tr>
<tr>
<td>1</td>
<td>Bureau of Naval Personnel
Department of the Navy
Technical Library
Washington, D.C. 20370</td>
</tr>
<tr>
<td>Copies</td>
<td>Copies</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| Purdue University
Department of Statistics
Attn: Prof. S.S. Gupta
Lafayette, Indiana 47907 | Yale University
Department of Statistics
Attn: Prof. I.R. Savage
New Haven, CT 06520 |
| Cornell University
Department of Operations Research
Attn: Prof. R.E. Bechhofer
Ithaca, New York 14850 | Southern Methodist University
Department of Statistics
Attn: Prof. W.R. Schucany
Dallas, Texas 75275 |
| Southern Methodist University
Department of Statistics
Attn: Prof. D.B. Owen
Dallas, Texas 75275 | University of Missouri
Department of Statistics
Attn: Prof. W.A. Thompson, Jr.
Columbia, Missouri 65201 |
| Daniel H. Wagner, Associates
Station Square One
Paoli, Pennsylvania 19301 | Rice University
Department of Mathematical Sciences
Attn: Prof. J.R. Thompson
Houston, Texas 77001 |
| Stanford University
Department of Operations Research
Attn: Prof. A.F. Veinott
Stanford, CA 94305 | Naval Postgraduate School
Department of Operations Research
and Administrative Sciences
Attn: Prof. P.A.W. Lewis
Monterey, California 93950 |
| Stanford University
Department of Operations Research
Attn: Prof. D.L. Iglehart
Stanford, CA 94305 | University of California
Department of Applied Physics
and Information Science
Attn: Prof. E. Masry
La Jolla, CA 92093 |
| Stanford University
Department of Statistics
Attn: Prof. Solomon
Stanford, CA 94305 | University of California
School of Engineering
Attn: Prof. N.J. Bershad
Irvine, California 92664 |
| University of North Carolina
Department of Statistics
Attn: Prof. C.R. Baker
Chapel Hill, NC 27514 | University of California
School of Engineering and
Applied Science
Attn: Prof. I. Rubin
Los Angeles, CA 90024 |
| Clemson University
Department of Math. Sciences
Attn: Prof. K.T. Wallenius
Clemson, SC 29631 | Virginia Polytechnic Institute
and State University
Department of Industrial Engineering
and Operations Research
Attn: Prof. R.L. Disney
Blacksburg, VA 24061 |
| Case Western Reserve University
Department of Mathematics and
Statistics
Attn: Prof. S. Zacks
Cleveland, Ohio 44106 | |
<table>
<thead>
<tr>
<th>Copies</th>
<th>Copies</th>
</tr>
</thead>
</table>
| Naval Postgraduate School
Department of Operations Research
and Administrative Sciences
Attn: Prof. J.D. Esary
Monterey, California 93940 | 1 |
| Massachusetts Institute of
Technology
Department of Mathematics
Attn: Prof. H. Chernoff
Cambridge, MA 02139 | 1 |
| Polytechnic Institute of New York
Dept. of Electrical Engineering
Attn: Prof. M.L. Shoeman
Brooklyn, New York 11201 | 1 |
| Desmatics, Inc.
P.O. Box 618
Attn: Dr. D.E. Smith
State College, PA 16801 | 1 |
| Carnegie-Mellon University
Department of Statistics
Attn: Prof. J.B. Kadane
Pittsburgh, PA 15213 | 1 |
| Cornell University
Department of Operation
Attn: Prof. J.A. Muckstadt
Ithaca, New York 19850 | 1 |
| Colorado State University
Dept. of Electrical Engineering
Attn: Prof. L.L. Scharf, Jr.
Fort Collins, CO 80522 | 1 |
| Commandant of the Marine Corps
(Code AX)
Attn: Dr. A.L. Slafkosky
Scientific Advisor
Washington, D.C. 20380 | 1 |
| Virginia Polytechnic Institute
and State University
Department of Economics
Attn: Prof. W.U. Hinich
Blacksburg, Virginia 24061 | 1 |
| Program in Logistics
The George Washington University
Attn: Dr. W.H. Marlow
707 22nd Street, N.W.
Washington, D.C. 20037 | 1 |
| Rockwell International Corporation
Science Center
P.O. Box 1035
Attn: Dr. H. R. Mann
Thousand Oaks, CA 91360 | 1 |
| Navy Library
National Space Technology Laboratory
Attn: Navy Librarian
Bay St. Louis, Mississippi 39522 | 1 |
| University of Southern California
Department of Quantitative
Business Analysis
Attn: Prof. W.R. Bischke
Los Angeles, CA 90007 | 1 |
| National Security Agency
Attn: Dr. James R. Maar
Fort Meade, Maryland 20755 | 1 |
| Southern Methodist University
Computer Science/Operations
Research Center
Attn: Prof. U.N. Shat
Dallas, Texas 75275 | 1 |
| Naval Coastal Systems Laboratory
Code P761
Attn: Mr. C.M. Bennett
Panama City, FL 32401 | 1 |
| University of Florida
Department of Industrial and
Systems Engineering
Attn: Prof. R.S. Leavenworth
Gainesville, FL 32611 | 1 |
| National Security Agency
Attn: Mr. Glenn F. Stahly
Fort Meade, Maryland 20755 | 1 |
| Mr. F. R. Del Priori
Code 224
Operational Test and Evaluation
Force (OPTEVFOR)
Norfolk, Virginia 23511 | 1 |
<table>
<thead>
<tr>
<th>Copies</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Electronic Systems Command (NELEX 320) National Center No. 1 Arlington, Virginia 20360</td>
<td>1</td>
</tr>
<tr>
<td>University of Pittsburgh Department of Mathematics Attn: Prof. H. W. Block Pittsburgh, PA 15260</td>
<td>1</td>
</tr>
<tr>
<td>Dr. A. Petrasovits Room 207B, Food & Drug Building Tunney's Pasture Ottowa, Ontario K1A-0L2, Canada</td>
<td>1</td>
</tr>
<tr>
<td>University of North Carolina Department of Mathematics Attn: Prof. M. Abdel-Hameed Charlotte, NC 28223</td>
<td>1</td>
</tr>
<tr>
<td>J.S. Lee Associates, Inc. Attn: Dr. J.S. Lee 2001 Jefferson Davis Highway Suite 802 Arlington, VA 22202</td>
<td>1</td>
</tr>
<tr>
<td>Illinois Institute of Technology Department of Industrial and Systems Engineering Attn: Prof. M. Zia Hassan Chicago, Illinois 60616</td>
<td>1</td>
</tr>
<tr>
<td>Arthur D. Little, Inc. Attn: Mr. Wendell G. Sykes Acorn Park Cambridge, MA 02140</td>
<td>1</td>
</tr>
<tr>
<td>Kansas State University Department of Industrial Engineering Attn: Prof. F.A. Tillman Manhattan, Kansas 66506</td>
<td>1</td>
</tr>
<tr>
<td>Claremont Men's College The Institute of Decision Science for Business and Public Policy Attn: Dr. Janet M. Myhre Claremont, CA 91711</td>
<td>1</td>
</tr>
<tr>
<td>Naval Postgraduate School Dept. of Operations Research and Administrative Sciences Attn: Prof. D. P. Gaver Monterey, California 93940</td>
<td>1</td>
</tr>
<tr>
<td>Cornell University Sibley School of Mechanical and Aerospace Engineering Attn: Prof. S.L. Phoenix Ithaca, New York 14850</td>
<td>1</td>
</tr>
<tr>
<td>Lehigh University Dept. of Industrial Engineering Attn: Prof. G.E. Whitehouse Bethlehem, PA 18015</td>
<td>1</td>
</tr>
<tr>
<td>University of Missouri Department of Statistics Attn: Prof. R.W. Madsen Columbia, Missouri 65201</td>
<td>1</td>
</tr>
<tr>
<td>Stanford University Stanford Electronics Laboratories Attn: Prof. Bernard Widrow Stanford, California 94305</td>
<td>1</td>
</tr>
<tr>
<td>State University of New York, Binghamton Department of Math. Sciences Attn: Prof. D.L. Hanson Binghamton, New York 13901</td>
<td>1</td>
</tr>
<tr>
<td>Naval Research Laboratory Advanced Projects Group (Code 8103) Attn: Mr. David A. Swick Washington, D.C. 20375</td>
<td>1</td>
</tr>
<tr>
<td>Virginia Polytechnic Institute and State University Department of Statistics Attn: Prof. L.D. Lee Blacksburg, VA 24061</td>
<td>1</td>
</tr>
<tr>
<td>Defense Communications Agency Defense Communications Engineering Center Attn: Dr. M. J. Fischer 1860 Wiehle Avenue Reston, Virginia 22090</td>
<td>1</td>
</tr>
<tr>
<td>Copies</td>
<td>Copies</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| U.S. Army Research Office
P.O. Box 12211
Attn: Dr. J. Chandra
Research Triangle Park, NC 27706 | 1 | Indiana University Foundation
Department of Mathematics
P.O. Box F
Attn: Prof. M.L. Puri
Bloomington, Indiana 47401 |
| Naval Sea Systems Command
(NSEA 03F)
Attn: Miss B.S. Orleans
Crystal Plaza #6
Arlington, Virginia 20360 | 1 | Polytechnic Institute of New York
Dept. of Operations Research and
System Analysis
Attn: Prof. L.H. Herbach
Brooklyn, New York 11201 |
| Office of The Director
Bureau of The Census
Attn: Mr. H. Nisselson
Rm. 2025, Federal Bldg. 3
Washington, D.C. 20233 | 1 | University of California
College of Engineering
Attn: Prof. S. M. Ross
Berkeley, California 94720 |
| Defense Logistics Studies
Information Exchange
Army Logistics Management Center
Attn: Mr. J. Dowling
Fort Lee, Virginia 20390 | 1 | Union College
Institute of Administration and
Management
Attn: Prof. L.A. Aroian
Schenectady, New York 12308 |
| OASD (I&L), Pentagon
Attn: Mr. Charles S. Smith
Washington, D.C. 20301 | 1 | Southern Methodist University
Department of Statistics
Attn: J.E. Boyer, Jr.
Dallas, Texas 75275 |
| The American University
Dept. of Mathematics, Statistics
and Computer Science
Attn: Prof. Joseph Blum
Washington, D.C. 20016 | 1 | University of Wisconsin
Department of Statistics
Attn: Prof. Grace Wahba
Madison, Wisconsin 53706 |
| The George Washington University
Department of Operations Research
Attn: Prof. N.D. Singpurwalla
Washington, D.C. 20052 | 1 | Naval Underwater Systems Center
Attn: Dr. Derrill J. Bordelon
Code 21
Newport, Rhode Island 02840 |
| Stanford University
Department of Statistics
Attn: Prof. D. O. Siegmund
Stanford, California 94305 | 1 | | San Diego State University
Dept. of Electrical Engineering
Attn: Prof. F. J. Harris
San Diego, California 92182 | 1 |