Ionospheric Modification: An Initial Report on Artificially Created Equatorial Spread F

S. L. Ossakow, S. T. Zalesak, and B. E. McDonald

Geophysical and Plasma Dynamics Branch
Plasma Physics Division

May 1978

This research was sponsored in part by the Office of Naval Research, NASA, and the Defense Nuclear Agency under DNA Subtask 125AAXYX960, work unit code 11, and work unit title "WB Scintillation Assessment."
A numerical simulation code for investigating equatorial Spread F in the collisional Rayleigh-Taylor regime is utilized to follow the evolution of artificial plasma density depletions injected into the bottomside nighttime equatorial F region. The 70 km diameter hole rapidly rises and steepens, forming plasma density enhancements at altitudes below the rising hole. The distribution of enhancements and depletions is similar to natural equatorial Spread F phenomena, except it occurs on a much faster time scale.
IONOSPHERIC MODIFICATION:
AN INITIAL REPORT ON ARTIFICIALLY CREATED EQUATORIAL SPREAD F

I. Introduction

Since the discovery of a large dropout (ionospheric hole) in the ionospheric total electron content during the launch of NASA's Skylab (Mendillo et al., 1975 a,b) much investigation has gone into the controlled artificial production of such holes or plasma density depletions in the F region ionosphere (Bernhardt et al., 1975; Bernhardt, 1976; Bernhardt and da Rosa, 1977; Mendillo and Forbes, 1978; Pongratz et al., 1978; see also Trans. Am. Geophys. Un., 58, 454-455, 1977, Spring Meeting Special Session on "Artificially Created Holes in the Ionosphere"). Typically investigators have focused on the chemical release of H₂O, H₂ or high explosives. These contain molecular species which react with ionospheric O⁺ in such a manner that the O⁺ loss rate due to these reactions is several orders of magnitude faster than natural ionospheric loss rates for O⁺ (Mendillo et al., 1975 a,b; Bernhardt, 1976). Recently, Pongratz et al. [1978] conducted two high explosive (88kgm mixture of nitromethane and ammonium nitrate) F region chemical releases (260 and 280 km altitude), codenamed Lagopedo, over the Hawaiian Islands (midlatitude) and formed a hole (~100 km in diameter) via the predicted chemical processes.

Within the context of artificial hole formation much of the theoretical work to date (Mendillo et al., 1975 b; Bernhardt, 1976; Pongratz et al., 1978) has centered on the complicated chemical reactions and molecular diffusion equations for producing these holes (e.g., electrodynamic forces, such as polarization electric fields, on the ions or electrons are not considered). In the past few years, experimental (Kelly et al., 1976; McClure et al., 1977) and numerical simulation studies (Scannapieco and Ossakow, 1976) have observed (under appropriate conditions) the formation of natural, rising plasma density depletions (holes or bubbles) in the equatorial Spread F ionosphere. In the present paper we wish to perform a marriage between the two studies and examine the behavior of a large plasma density depletion (hole) artificially injected into the bottom-side nighttime equatorial F region ionosphere.

II. Theoretical Model and Numerical Simulation Studies

In the present simplified model we will take the approach that the large hole has already been created and thus represents a new initial condition for our previous nonlinear numerical simulation equatorial Spread F studies [Scannapieco and Ossakow, 1976; Ossakow et al., 1978 a,b]. In this way we do not follow the chemical kinetics of the actual hole making process, rather we follow the evolution of the hole after it has been produced. Pongratz et al. [1978] noted that the entire hole in Lagopedo was produced in less than 5 minutes and Sjolander et al. [1978] noted, using rocket in situ ion mass spectrometer measurements during Lagopedo, that the dominant ion in
the artificially created hole was 0^+. Thus, we are able to utilize the two dimensional (perpendicular to the magnetic field, B) numerical simulation code developed for natural equatorial Spread F studies in the collisional Rayleigh–Taylor regime, which is represented by the following equations (see Scannapieco and Ossakow, 1976; Ossakow et al., 1978 a,b)

$$\frac{\partial n}{\partial t} - \frac{c}{B} (\nabla \phi \times \hat{z}) \cdot \nabla n = -v_R (n-n_0)$$ \hspace{1cm} (1)

$$\nabla \cdot (v_{in} n \nabla \phi) = \frac{B}{c} (\vec{g} \times \hat{z}) \cdot \nabla n$$ \hspace{1cm} (2)

where n is the electron density (n_0 refers to the background equilibrium density; $n \equiv n_0 + n_1$), ϕ is the polarization (induced) potential, v_R is the usual (used in natural Spread F studies) ionospheric recombination rate (see Fig. 1), v_{in} is the usual ion-neutral collision frequency, \vec{g} is gravity (pointing in the $-y$ direction), $\hat{z} = B/|B|$ and ∇ refers to the x and y directions. In our simulations realistic altitude profiles of v_{in} and v_R (see Fig. 1) and n_0 (see Fig. 2) have been used.

The numerical simulation plane coincided with the equatorial plane spanning an altitude (y) range from 172 to 452 km in one case and 252 to 532 km in the other case (both with $\Delta y = 2$ km) with an east-west (x) extent of 200 km ($\Delta x = 5$ km). The system of eqns. (1) and (2) was initialized as follows.
\[
\frac{n}{n_0} = \begin{cases}
0.03, & r-r_0 \leq 15 \text{ km} \\
\exp[a(r-r_0-15)^3] - 0.97, & 15 \text{ km} < r-r_0 \leq 35 \text{ km} \\
1.0, & r-r_0 > 35 \text{ km}
\end{cases}
\]

where \(a = \ln(1.97)/20^3 \). This provided a constant 97% depletion over a central 30 km of the hole and the depletion decreased to ambient density over a 20 km extent on each side (total extent of bubble was 70 km). The thickness of the hole at half depletion was \(\sim 63 \text{ km} \) (see for example Pongratz et al., 1978). The results of a simulation with \(r_0 \) corresponding to \(x_0 = 0, y_0 = 300 \text{ km} \), i.e., release altitude = 300 km, are shown in Figs. 2-5, which depict contour plots of \(n/n_o \) (or equivalently \(n_1/n_0 \)) at \(t = 0, 500, 1000, \) and 2000 sec. The \(t = 0 \) frame shows the initial state after the hole has been formed by chemical processes. At \(t = 500 \) sec the hole has begun to steepen on its topside as it rises toward the F peak (altitude = 354 km). This corresponds to a rise velocity \(\sim 28 \text{ m/sec} \). We note that the initial hole is no longer circular and plasma density enhancements are forming to the sides of the bubble (hole). As the initial depletion rises on the bottomside it displaces regions of higher density which fall to lower altitudes creating enhancements. At \(t = 1000 \) sec the top of the bubble is at the F peak and the enhancements are getting larger. This should be contrasted with the natural Spread F developing bubble, in this ionospheric profile, which took \(\sim 8000 \) sec to reach the peak (see Scannapieco and Ossakow, 1976; Ossakow et al., 1978b). At \(t = 2000 \) sec the hole is well past the
peak and has bifurcated on its topside. This is similar to barium cloud striation bifurcation phenomena (see Zabusky et al., 1973; Ossakow et al., 1977) and would lead to smaller scale structures if the present simulation had more resolution. The hole is now accompanied by large enhancements and the enhancements in turn are forcing depletions to lower altitudes. This picture is far different from the initial circular hole at t = 0. This figure shows a widespread rapid equatorial Spread F condition.

Figures 6-9 exhibit the results for an artificial depletion released at 380 km altitude \((x_0 = 0, y_0 = 380 \text{ km})\) in an ionosphere with the altitude of the F peak equal to 434 km. In this case the time evolution of the hole is much more rapid. For example, between \(t = 0\) and 50 sec the hole is rising with a velocity \(\sim 88 \text{ m/sec}\). The initial rise velocity, here and in the previous case, is consistent with a bubble rise velocity given by (Ossakow and Chaturvedi, 1978)

\[
V_B = \left(\frac{g}{v_{in}} \right) f \left(\frac{n_1}{n_o} \right),
\]

where \(f \left(\frac{n_1}{n_o} \right)\) is an increasing function of the percentage depletion, \(n_1/n_o\), and dependent on bubble shape. In particular \(f\) corresponds here to a circular-like shape. The case depicted in Figs. 6-9 is also to be contrasted to the natural Spread F case in this geometry where a bubble took \(\sim 1000\) sec to reach the F peak.

III. Concluding Remarks

We have presented numerical simulation results, in the collisional Rayleigh-Taylor regime, of artificial depletions injected into the bottomside nighttime equatorial F region. It has been shown
that such depletions, while they steepen and rise, will cause plasma density enhancements to be formed. The entire final picture is similar to natural equatorial Spread F numerical simulation phenomena except that by artificial injection it occurs on a much faster time scale.

Acknowledgement

This work was supported by the Defense Nuclear Agency, ONR, and NASA.
References

Fig. 1 — Values of ion-neutral collision frequency (solid curve), ν_{in}, and recombination rate (dashed curve), ν_R, as a function of altitude used in the artificial hole injection simulations.
Fig. 2 — Contour plots of constant n_1/n_0 at $t = 0$ sec (initial condition). The circular contours represent the artificial depletion (-) such that the outermost contour is a 16% depletion and the innermost is a 96% depletion (inside this contour is a constant 97% depletion). The large dashed curve represents a plot of the ambient electron number density (values on upper horizontal axis), n_0, as a function of altitude. The vertical (y) axis represents altitude, the lower horizontal (x) axis east-west range, and the ambient magnetic field is out of the figure (z).
Fig. 3 — Same as Fig. (1), except $t = 500$ sec. The smaller dashed contours are contours of constant n_1/n_0 for plasma density enhancements (+). The enhancement contour represents a 19% enhancement.
Fig. 4 — Same as Fig. 2, except $t = 1000$ sec. The inner enhancement contour represents a 68% enhancement.
Fig. 5 — Same as Fig. 2, except $t = 2000$ sec. The inner enhancement contour represents a 236% enhancement.
Fig. 6 — Same nomenclature as Figs. 1 and 2, except new simulation with n_0 profile raised so peak is now at 434 km (note difference in y axis) and $t = 0$ sec.
Fig. 7 — Same as Fig. 6, except $t = 50$ sec and 19% enhancement contours
Fig. 8 — Same as Fig. 6, except $t = 100$ sec
Fig. 9 — Same as Fig. 6, except $t = 150$ sec. and inner enhancement contour is 68%
DISTRIBUTION LIST

DIRECTOR
Defense Advanced R&D Proj Agency
Architect Building
1400 Wilson Blvd.
Arlington, Va. 22209
ATTN: Strategic Tech Office

Defense Communication Engineer Center
1860 Wiehle Avenue
Reston, Va. 22090
ATTN: CODE R820 R. L. Crawford
ATTN: Code R410 W. D. Dehart

DIRECTOR
Defense Communications Agency
Washington, D. C. 20305
ATTN: CODE 960
ATTN: CODE 480

Defense Documentation Center
Cameron Station
Alexandria, Va. 22314
ATTN: TC
12 copies (if open publication)
2 copies (if otherwise)

DIRECTOR
Defense Intelligence Agency
Washington, D. C. 20301
ATTN: W. Wittig DC - 7D
ATTN: DT-1B

DIRECTOR
Defense Nuclear Agency
Washington, D. C. 20305
ATTN: STSI Archives
ATTN: STVL
ATTN: STTL Tech Library
ATTN: DDST
ATTN: RAAE
2 copies
OJCS/J-6
The Pentagon
Washington, D. C. 20301
ATTN: J-6

DIRECTOR
Telecommunications & Commd & Con Sys
Washington, D. C. 20301
ATTN: ASST DIR Info & Space Sys
ATTN: DEP ASST. SEC Sys

Weapons Systems Evaluation Group
400 Army-Navy Drive
Arlington, Va. 22202
ATTN: DOCUMENT CONTROL

COMMANDER
Harry Diamond Laboratories
2800 Powder Mill Road
Adelphi, Md. 20783
ATTN: AMDO-NP

COMMANDER
TRASANA
White Sands Missile Range, NM 88002
ATTN: EAB

DIRECTOR
U. S. Army Ballistic Research Labs
Aberdeen Proving Ground, Md. 21003
ATTN: AM-CA Franklin E. Niles

U. S. Army Communications CMD
C-B Services Division
Pentagon Rm. 2D513
Washington, D. C. 20310
ATTN: CEAD

COMMANDER
U. S. Army Electronics Command
Fort Monmouth, N. J. 07703
ATTN: AMSEL-TL-ENV Hans A. Bomke

COMMANDER
U. S. Army Material Command
5001 Eisenhower Avenue
Alexandria, Va. 22333
ATTN: AMCRD-WN-RE John F. Corrigan
5441ES
Offutt AFB, NB 68113
ATTN: RDPO LT. Alan B. Merrill

Los Alamos Scientific Laboratory
P. O. Box 1663
Los Alamos, NM 87544
ATTN: DOC CON for R. F. Taschek
ATTN: DOC CON for Milton Peek
ATTN: DOC CON for Eric Lindman

Sandia Laboratories
P. O. Box 5800
Albuquerque, NM 87115
ATTN: DOC CON for A. Dean Thronbrough
ATTN: DOC CON for W. D. Brown
ATTN: DOC CON for D. A. Dahlgren, ORG 1722
ATTN: DOC CON for J. P. Martin, ORG 1732

University of California
Lawrence Livermore Laboratory
P. O. Box 808
Livermore, CA 94550
ATTN: Tech Info Dept L-3

Department of Commerce
National Oceanic & Atmospheric Admin.
Environmental Research Laboratories
Boulder, CO 80302
ATTN: Joseph H. Pope
ATTN: C. L. Rufenach

Department of Commerce
Office for Telecommunications
Institute for Telecom Science
Boulder, CO 80302
ATTN: Glenn Falcon
ATTN: G. Reed
ATTN: L. A. Berry
ATTN: William F. Utlaut

Department of Transportation
Transportation Resch. System Center
Kendall Square
Cambridge, MA 02142
ATTN: TER C. Harowles

NASA
Goddard Space Flight Center
Greenbelt, Md 20771
ATTN: CODE 750 T. Golden
NASA
600 Independence Ave., S. W.
Washington, D. C. 20546
ATTN: M. Dubin

Aerodyne Research, Inc.
Tech/Ops Building
20 South Avenue
Burlington, MA 01803
ATTN: M. Camac
ATTN: F. Bien

Aerospace Corporation
P. O. Box 92957
Los Angeles, CA 90009
ATTN: T. M. Salmi
ATTN: S. P. Bower
ATTN: V. Josephson
ATTN: SMFA for PWW
ATTN: R. Grove
ATTN: R. D. Rawcliffe
ATTN: T. Taylor
ATTN: Harris Mayer
ATTN: D. C. Cartwright

Analytical Systems Corporation
25 Ray Avenue
Burlington, MA 01803
ATTN: Radio Sciences

Avco-Everett Research Laboratory, Inc.
2385 Revere Beach Parkway
Everett, MA 02149
ATTN: Richard M. Patrick

Boeing Company, The
P. O. Box 3707
Seattle, WA 98124
ATTN: D. Murray
ATTN: Glen Keister

Brown Engineering Company, Inc.
Cummings Research Park
Huntsville, AL 35807
ATTN: David Lambert MS 13

California at San Diego, Univ. of
Building 500 Mather Campus
2772 Miramar Road
La Jolla, CA 92037
ATTN: Henry G. Booker
Calspan
P. O. Box 235
Buffalo, N. Y. 14221
ATTN: Romeo A. Deliberis

Computer Sciences Corporation
P. O. Box 530
6565 Arlington Blvd.
Falls Church, VA 22046
ATTN: H. Blank
ATTN: Barbara F. Adams

Comsat Laboratories
P. O. Box 115
Clarksburg, Md. 20734
ATTN: R. R. Taur

Cornell University
Department of Electrical Engineering
Ithaca, N. Y. 14850
ATTN: D. T. Farley, Jr.

ESL, Inc.
495 Java Drive
Sunnyvale, CA 93102
ATTN: J. Roberts
ATTN: V. L. Mower
ATTN: James Marshall
ATTN: R. K. Stevens

General Electric Company
Tempo-Center for Advanced Studies
816 State Street
Santa Barbara, CA 93102
ATTN: Don Chandler
ATTN: DASIAC
ATTN: Tim Stephens

General Electric Company
P. O. Box 1122
Syracuse, N. Y. 13201
ATTN: F. A. Reibert

General Research Corporation
P. O. Box 3587
Santa Barbara, CA 93105
ATTN: John Ise, Jr.
Geophysical Institute
University of Alaska
Fairbanks, AK 99701
ATTN: Technical Library
ATTN: Neil Brown
ATTN: T. N. Davis

GTE Sylvania, Inc.
189 B Street
Needham Heights, MA 02194
ATTN: Marshall Cross

HRB-SINGER, Inc.
Science Park, Science Park Road
P. O. Box 60
State College, PA 16801
ATTN: Larry Feathers

Honeywell Incorporated
Radiation Center
2 Forbes Road
Lexington, MA 02173
ATTN: W. Williamson

Illinois, University of
Department of Electrical Engineering
Urbana, IL 61801
ATTN: K. C. Yeh

Institute for Defense Analyses
400 Army-Navy Drive
Arlington, VA 22202
ATTN: Ernest Bauer
ATTN: Hans Wolfhard
ATTN: J. H. Acm
ATTN: Joel Bengston

Intl Tel & Telegraph Corporation
500 Washington Avenue
Nutley, N. J. 07110
ATTN: Technical Library

ITT Electro-Physics Laboratories, Inc.
9140 Old Annapolis Road
Columbus, Md. 21043
ATTN: John N. Kelso
Mission Research Corporation
735 State Street
Santa Barbara, CA 93101
ATTN: R. Hendrick
ATTN: Conrad L. Longmire
ATTN: Ralph Kilb
ATTN: R. E. Rosenthal
ATTN: R. Bogusch
ATTN: David Soile
ATTN: M. Scheibe
ATTN: P. Fischer

Mitre Corporation, The
Route 62 and Middlesex Turnpike
P. O. Box 208
Bedford, MA 01730
ATTN: Chief Scientist W. Sen
ATTIN: S. A. Morin M/S
ATTN: C. Hirding

North Carolina State Univ At Raleigh
Raleigh, N. C. 27507
ATTN: SEC Officer for Walter A. Flood

Pacific-Sierra Research Corp.
1456 Cloverfield Blvd.
Santa Monica, CA 90404
ATTN: E. C. Field, Jr.

Philco-Ford Corporation
Western Development Laboratories Div
3939 Fabian Way
Palo Alto, CA 94303
ATTN: J. T. Mattingley MS X22

Photometrics, Inc.
142 Marrett Road
Lexington, MA 02173
ATTN: Irving J. Kofsky

Mitre Corporation, The
Westgate Research Park
1820 Dolley Madison Blvd.
McLean, VA 22101
ATTN: Allen Schneider
Stanford Research Institute
333 Ravenswood Avenue
Menlo Park, CA 94025
ATTN: M. Baron
ATTN: L. L. Cobb
ATTN: Walter G. Chestnut
ATTN: David A. Johnson
ATTN: Charles L. Rino
ATTN: E. J. Fremouw
ATTN: Ray L. Leadabrand
ATTN: Donald Neilson

Stanford Research Institute
306 Wynn Drive, N. W.
Huntsville, AL 35805
ATTN: Dale H. Davis

Technology International Corporation
75 Wiggins Avenue
Bedford, MA 01730
ATTN: W. P. Boquist

TRW Systems Group
One Space Park
Redondo Beach, CA 90278
ATTN: P. H. Katsos
ATTN: J. W. Lowery

Utah State University
Contract/Grant Office
Logan, UT 84322
ATTN: Security Officer

Visidyne, Inc.
19 Third Avenue
North West Industrial Park
Burlington, MA 01803
ATTN: William Reidy
ATTN: Oscar Manley
ATTN: J. W. Carpenter
Please distribute one copy to each of the following people:

Advanced Research Projects Agency (ARPA)
Strategic Technology Office
Arlington, Virginia

Capt. Donald M. LeVine

Naval Research Laboratory
Washington, D.C. 20375

Dr. P. Mange
Dr. E. Peterkin
Dr. R. Meier
Dr. E. Szuszczechewicz - Code 7127
Dr. Timothy Coffey - Code 6700 (20 copies)
Dr. Jay P. Boris - Code 6750 (100 copies)

Science Applications, Inc.
1250 Prospect Plaza
La Jolla, California 92037

Dr. D. A. Hamlin
Dr. L. Linson
Dr. D. Sachs

Director of Space and Environmental Laboratory
NOAA
Boulder, Colorado 80302

Dr. A. Glenn Jean
Dr. C. W. Adams
Dr. D. N. Anderson
Dr. K. Davies
Dr. R. F. Donnelly

A. F. Cambridge Research Laboratories
L. G. Hanscom Field
Bedford, Mass. 01730

Dr. T. Elkins
Dr. W. Swider
Mrs. R. Sagalyn
Dr. J. M. Forbes
Dr. T. J. Keneshea
Dr. J. Aarons
University of California, Los Angeles
405 Hilgard Avenue
La Jolla, California 90024

Dr. F. V. Coroniti
Dr. C. Kennel

University of California, Berkeley
Berkeley, California 94720

Dr. M. Hudson

Utah State University
4th N. and 8th Streets
Logan, Utah 84322

Dr. P. M. Banks
Dr. R. Harris
Dr. V. Peterson
Dr. R. Megill

Cornell University
Ithaca, New York 14850

Dr. W. E. Swartz
Dr. R. Sudan
Dr. D. Farley
Dr. M. Kelley
Dr. E. Ott

NASA
Goddard Space Flight Center
Greenbelt, Maryland 20771

Dr. S. Chandra
Dr. K. Maedo

Princeton University
Plasma Physics Laboratory
Princeton, New Jersey 08540

Dr. F. Perkins

Institute for Defense Analysis
400 Army/Navy Drive
Arlington, Virginia 22202

Dr. E. Bauer