THE AVERAGE SPEED OF A FAST VEHICLE MOVING IN A STREAM OF SLOW VEHICLES

by

Zeev Barzily

Scientific rept.

Serial-T-379
16 June 1978

16 Jun 78

Program in Logistics

Contract N00014-75-C-0729
Project NR 347 020
Office of Naval Research

This document has been approved for public sale and release; its distribution is unlimited.
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>Field</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. REPORT NUMBER</td>
<td>T-379</td>
</tr>
<tr>
<td>4. TITLE (and Subtitle)</td>
<td>THE AVERAGE SPEED OF A FAST VEHICLE MOVING IN A STREAM OF SLOW VEHICLES</td>
</tr>
<tr>
<td>7. AUTHOR(s)</td>
<td>ZEEV BARZILY</td>
</tr>
<tr>
<td>9. PERFORMING ORGANIZATION NAME AND ADDRESS</td>
<td>THE GEORGE WASHINGTON UNIVERSITY PROGRAM IN LOGISTICS WASHINGTON, D. C. 20037</td>
</tr>
<tr>
<td>10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS</td>
<td></td>
</tr>
<tr>
<td>11. CONTROLLING OFFICE NAME AND ADDRESS</td>
<td>OFFICE OF NAVAL RESEARCH CODE 430D ARLINGTON, VIRGINIA 22217</td>
</tr>
<tr>
<td>12. REPORT DATE</td>
<td></td>
</tr>
<tr>
<td>13. NUMBER OF PAGES</td>
<td>16</td>
</tr>
<tr>
<td>15. SECURITY CLASS. (of this report)</td>
<td>NONE</td>
</tr>
<tr>
<td>16. DISTRIBUTION STATEMENT (of this Report)</td>
<td>DISTRIBUTION OF THIS REPORT IS UNLIMITED.</td>
</tr>
<tr>
<td>17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)</td>
<td></td>
</tr>
<tr>
<td>18. SUPPLEMENTARY NOTES</td>
<td></td>
</tr>
<tr>
<td>19. KEY WORDS (Continue on reverse side if necessary and identify by block number)</td>
<td>TRAFFIC THEORY PROBABILISTIC MODELS</td>
</tr>
<tr>
<td>20. ABSTRACT (Continue on reverse side if necessary and identify by block number)</td>
<td>This paper studies the average speed of a fast car moving in a stream of slow vehicles on a two-lane highway. Arrivals of the slow vehicles are assumed to follow a Poisson process and the test car arrives independently of the slow vehicles. The highway is assumed to consist of sections in which passing is possible and sections in which passing is impossible; the lengths of these sections are random variables. Two passing mechanisms are studied: the first assumes that the duration of a passing...</td>
</tr>
</tbody>
</table>
20. Abstract continued.

maneuver is a random variable while in the second passings are instantaneous.
This paper studies the average speed of a fast test car moving in a stream of slow vehicles on a two-lane highway. Arrivals of the slow vehicles are assumed to follow a Poisson process and the test car arrives independently of the slow vehicles. The highway is assumed to consist of sections in which passing is possible and sections in which passing is impossible; the lengths of these sections are random variables. Two passing mechanisms are studied: the first assumes that the duration of a passing maneuver is a random variable while in the second passings are instantaneous.
1. Introduction

This paper studies the speed of a fast test car moving in a stream of slow vehicles in a two-lane two-way highway. Let "our direction" designate the direction in which the test-car is traveling. We assume that the highway consists of two alternating sections, sections of Type I in which passing is possible and sections of Type II in which passing is impossible. The highway is assumed to begin with a Type I section. Let X_i and Y_i denote the length of the ith Type I and Type II sections, respectively. We assume that X_1, X_2, \ldots are i.i.d. distributed according to a continuous c.d.f. G with an expectation $E[X]$. The random variables Y_1, Y_2, \ldots are also assumed to be i.i.d.; they are distributed according to a continuous c.d.f. H with an expectation $E[Y]$. The functions G and H depend on road conditions and on traffic moving in the opposite direction. We assume that the slow vehicles moving in our direction arrive at the highway according to a Poisson process with parameter λ_1. These zero size vehicles always maintain their free speed v_1. The test car arrives at the highway independently of the slow vehicles, and it has a free speed v_2 ($v_2 > v_1$).
As the test car travels along the road it occasionally comes up against slow vehicles. At these points the test car's driver may decide to pass the slow vehicle or otherwise to reduce his speed immediately to \(v_1 \) and to follow the slow vehicle for a while. The decisions to pass are made either at the points where the test car comes up against slow vehicles in Type I sections, or at the beginnings of the Type I sections to which the test car arrives traveling behind a slow vehicle. We assume that the driver's decision is dependent on the distance from the decision point to the end of the Type I section and independent of the distance he has already been following the slow vehicle. Two passing mechanisms are studied. The first mechanism assumes that at each decision point the test car's driver samples a required passing distance \(W_1 \) from a c.d.f. \(B \). If the distance to the end of the Type I section exceeds \(W_1 \) then the passing will take place \(W_1 \) units of distance from the decision point; otherwise the test car continues following the slow vehicle at least until the beginning of the next Type I section. In the second passing mechanism, the driver samples a r.v. \(W_2 \) from a c.d.f. \(C \). He passes instantaneously at the decision point if the distance to the end of the Type I section exceeds \(W_2 \); otherwise he follows the slow vehicle at least until the beginning of the next Type I section.

The paper is comprised of five sections. In Sections 2 and 3 we discuss the traveling of the test car in Type I sections under the first
and the second passing mechanisms, respectively. In Section 4 we determine the test car's average speed. Section 5 is a short summary.

2. The Movement of the Test Car in a Type I Section Under Passing Mechanism Number One

In this section we discuss the movement of the test car in the ith Type I section under passing mechanism number one. Let us assume temporarily, for the convenience of the analysis, that this section is infinitely long. Define that the test car is in state i (i=1,2) at a point along the road if it is moving there at speed \(v_i \). Denote by \(Z_n \) the distance the test car travels at a speed \(v_n \) for the jth time since entering the ith section. It was shown earlier in [1] that while moving at a speed \(v_2 \), the distance from the test car to the preceding slow vehicle is an exponential random variable with a parameter \(\lambda_1/v_1 \). From this result we obtain that \(Z_{1,1}, Z_{2,1}, \ldots \) are i.i.d. random variables distributed according to an exponential distribution function with parameter \(\alpha = \lambda_1(1/v_1 - 1/v_2) \). The random variables \(Z_1,1, Z_1,2, Z_1,3 \) are (by assumption) i.i.d. random variables distributed according to a c.d.f. \(B \).

Let us now denote by \(T(x) \) the time it takes the test car to arrive at a distance \(x \) from the beginning of the section; let \(M_1(x) \) denote the state of the car at that point, and define \(U(x) = x/v_1 - T(x) \). A realization of \(T(x) \) and the corresponding \(U(x) \) for \(M_1(0) = 2 \) is given in Figure 1. It is easy to analyze \(T(x) \) using the analysis of \(U(x) \).

Denote

\[
q_{2j}(x,u) = P[U(x) \leq u, M_1(x) = j \mid M_1(0) = 2], \quad j=1,2,
\]

\[
Q_{2j}(\theta, \xi) = \int_{x=0}^{\infty} \int_{u=0}^{\infty} e^{-\theta x} e^{-\xi u} d_u q_{2j}(x,u) dx,
\]

and

-3-
Figure 1. A typical realization of $T(x)$ and $U(x)$ for $M_1(0) = 2$.

\[\text{slope} = \frac{1}{v_1} \]

\[\text{slope} = \frac{1}{v_2} \]

\[\text{slope} = \left(\frac{1}{v_1} - \frac{1}{v_2} \right) \]
Denoting $\beta = 1/v_1 - 1/v_2$, we obtain
\[
q_{21}(x, u) = \begin{cases}
\frac{u/\beta}{u - \alpha z} [1 - B(x-z)]dz + 0 \\
\int \int ae^{-\alpha z} q_{21}(x-z-y, u-z\beta)dB(y)dz, & 0 < u < x\beta \\
q_{21}(x, \cdot), & x\beta < u
\end{cases}
\]

hence,
\[
Q_{21}(\theta, \xi) = \frac{[1 - B^*(\theta)]\alpha}{\theta [\alpha + \theta + \xi\beta - \alpha B^*(\theta)]},
\]

where
\[
B^*(\theta) = \int_{x=0}^{\infty} e^{-\theta x} dB(x).
\]

To obtain $Q_{22}(\theta, \xi)$, we notice that
\[
q_{22}(x, u) = \begin{cases}
\frac{u/\beta}{u - \alpha z} x-z \int \int ae^{-\alpha z} q_{22}(x-z-y, u-z\beta)dB(y)dz, & 0 < u < x\beta \\
\int \int ae^{-\alpha z} q_{22}(x-z-y, u-z\beta)dB(y)dz + e^{-\alpha z}, & u = x\beta \\
q_{22}(x, \cdot), & u > x\beta
\end{cases}
\]

hence,
\[
Q_{22}(\theta, \xi) = [\alpha + \theta + \xi\beta - \alpha B^*(\theta)]^{-1}.
\]

Now we denote
\[
p_{ij}(x, t) = P[T(x) \leq t, M_1(x) = j \mid M_1(0) = i], \quad i, j = 1, 2
\]

and
\[P_{ij}(0, \xi) = \int_{x=0}^{\infty} \int_{t=0}^{\infty} e^{-\theta x} e^{-\xi t} d_1 p_{ij}(x,t) dx, \quad i,j = 1,2; \quad \theta, \xi > 0. \]

To determine \(P_{ij}^*(\theta, \xi) \) we realize that

\[p_{2j}(x,t) = \]

\[P\left[U(x) > \frac{x}{v_1} - t, M_1(x) = j \mid M_1(0) = 2\right] + P\left[U(x) = \frac{x}{v_1} - t, M_1(x) = j \mid M_1(0) = 2\right]; \]

hence we obtain from (2.1)

\[
P_{21}^*(\theta, \xi) = \frac{\alpha\left[1 - B^*\left(\theta + \frac{\xi}{v_1}\right)\right]}{\left(\theta + \frac{\xi}{v_1}\right)\left[\alpha + \theta + \frac{\xi}{v_2} - \alpha B^*\left(\theta + \frac{\xi}{v_1}\right)\right]}, \quad (2.3)
\]

and from (2.2) we get

\[
P_{22}^*(\theta, \xi) = \left[\alpha + \theta + \frac{\xi}{v_2} - \alpha B^*\left(\theta + \frac{\xi}{v_1}\right)\right]^{-1}. \quad (2.4)
\]

Now we determine \(P_{ij}^*(\theta, \xi), j=1,2 \). For \(j=1 \) we have

\[
p_{11}(x,t) = \begin{cases}
0 & , \quad t \leq x/v_2 \\
\frac{(t-x/v_2)/\beta}{\int_{y=0}^{x/v_2} p_{21}(x-y, t-y/v_1) dB(y)} & , \quad x/v_2 < t < x/v_1 \\
\frac{(t-x/v_2)/\beta}{\int_{y=0}^{x/v_2} p_{21}(x-y, t-y/v_1) dB(y) + 1-B(x)} & , \quad t = x/v_1 \\
p_{11}(x,*) & , \quad t > x/v_1
\end{cases};
\]

hence,

\[
P_{11}^*(\theta, \xi) = \frac{1 - B^*\left(\theta + \frac{\xi}{v_1}\right)}{\theta + \frac{\xi}{v_1}} + \frac{\alpha\left[1 - B^*\left(\theta + \frac{\xi}{v_1}\right)\right]B^*\left(\theta + \frac{\xi}{v_1}\right)}{\left(\theta + \frac{\xi}{v_1}\right)\left[\alpha + \theta + \frac{\xi}{v_2} - \alpha B^*\left(\theta + \frac{\xi}{v_1}\right)\right]}, \quad (2.5)
\]
and for $j=2$ we obtain

$$
\begin{align*}
p_{22}(x,t) &= \begin{cases}
0, & t \leq \frac{x}{v_2} \\
\frac{(t-x/v_2)/\beta}{\int_{y=0}^{\infty} p_{22}(x-y, t-y/v_1)dB(y)} & x/v_2 < t < x/v_1 \\
p_{12}(x,\cdot), & x/v_1 < t
\end{cases}
\end{align*}
$$

hence,

$$
P_{12}(\theta, \xi) = \frac{B^*(\theta + \frac{\xi}{v_1})}{\alpha + \theta + \frac{\xi}{v_2} - \alpha B^*(\theta + \frac{\xi}{v_1})}.
$$

Let us now denote by $T_{ij}(x)$ the time spent by the test car in a Type I section of length x given that $M_1(0)=i$ and $M_1(x)=j$. The c.d.f. of $T_{ij}(x)$ satisfies

$$
P[T_{ij}(x) \leq t] = \frac{P[T(x) \leq t, M_1(x)=j | M_1(0)=i]}{P[M_1(x)=j | M_1(0)=i]};
$$

hence, denoting by $R^*_i(x, \xi)$ the inverse Laplace transform of $P^*_i(\theta, \xi)$ and letting $r_{ij}(x) = P[M_1(x)=j | M_1(0)=i]$, we obtain

$$
E[T_{ij}(x)] = \left(\frac{3}{\alpha^2} R^*_{ij}(x,0) \right) / r_{ij}(x).
$$

The probabilities $r_{ij}(x), i,j = 1,2$, satisfy $r_{ij}(x) = R^*_{ij}(x,0)$. To invert $P^*_i(\theta, \xi)$ we have to specify the c.d.f. B. We assume that B is the exponential distribution function with parameter η. The inversion can be carried out for other distribution functions, but the expressions are likely to be very messy. Using tables of Laplace transforms we obtain

$$
r_{21}(x) = \alpha [1 - \exp(-(\alpha+\eta)x)]/((\alpha+\eta)),
$$

$$
r_{11}(x) = [\alpha + \eta \exp(-(\alpha+\eta)x)]/((\alpha+\eta)).
$$
\[r_{21}(x)E[T_{21}(x)] = \alpha \left[x(\alpha/v_1 + \eta/v_2) + (\eta-\alpha)\beta \left(1 - \exp\left\{ -(\alpha+\eta)x \right\} \right) \right] \frac{1}{(\alpha+\eta)}, \quad (2.10) \]
\[r_{22}(x)E[T_{22}(x)] = \left[x(\alpha/v_1 + \eta^2/v_2) + 2\left(1 - \exp\left\{ -(\alpha+\eta)x \right\} \right) \alpha\beta/(\eta+\alpha) \right] \frac{1}{(\alpha+\eta)^2}, \quad (2.11) \]
\[r_{11}(x)E[T_{11}(x)] = \left[x(\alpha^2/v_1 + \alpha\eta/v_2) + 2\left(1 - \exp\left\{ -(\alpha+\eta)x \right\} \right) \alpha\eta\beta/(\eta+\alpha) \right] \frac{1}{(\alpha+\eta)^2}, \quad (2.12) \]
\[r_{12}(x)E[T_{12}(x)] = r_{21}(x)E[T_{21}(x)]n/\alpha. \quad (2.13) \]

3. The Movement of the Test Car in a Type I Section under Passing Mechanism Number Two

In this section we derive results similar to those of Section 2 when the passing is instantaneous upon the test car driver's decision to pass. We start with the analysis of the case where \(M_1(0)=2 \) and assume that \(X_1=x \). The distribution of \(T_{22}(x) \) can easily be determined because \(M_1(x)=2 \) means here that the test car is unimpeded in the \(i \)th Type I section; hence,
\[T_{22}(x) = x/v_2, \] with probability one. \((3.1) \)

Now we assume without loss of generality that the test car arrives at the entrance of the \(i \)th Type I section at time zero. To obtain \(\{ T_{21}(x) < t \}, x/v_2 < t \leq x/v_1 \), the test car has to be unimpeded by slow vehicles arriving at this section during \([-(x/v_1 - t), 0] \). Let \(J(x,t) \) denote the number of slow vehicles arriving at the \(i \)th Type I section during \([-(x/v_1 - t), 0] \). It is known that given that \(J(x,t) = n \), then the epochs of the arrivals are independent and uniformly distributed on \([-(x/v_1 - t), 0] \). Consequently we obtain
\[
P[T(x) \leq t \mid M_1(0) = 2, J(x,t) = n] = \left[\frac{(x/v_1) - t}{t} \right]^{n} C\left\{ \frac{(t+y-x/v_2)}{\beta} \right\} \frac{dy}{(x/v_1) - t},
\]

where \(C\left\{ \frac{(x+y-x/v_2)}{\beta} \right\} \) is the probability that the test car passes immediately a slow vehicle that arrives at the section in \(\{-(x/v_1 - t) + y\} \).

Since \(J(x,t) \) is a Poisson random variable with parameter \(\lambda_1(x/v_1 - t) \), we obtain

\[
P[T(x) \leq t \mid M_1(0) = 2] = \exp \left[-\lambda_1 \left\{ x/v_1 - t \right\} - \int_0^{1/v_1} C\left(\frac{(t+y-x/v_2)}{\beta} \right) dy \right].
\]
(3.2)

From (3.2) we obtain

\[
r_{21}(x) = P[T(x) > x/v_2 \mid M_1(0) = 2] = 1 - \exp \left[-\lambda_1 \left\{ x/v_1 - t \right\} - \int_0^{x/v_2} C\left(\frac{y}{\beta} \right) dy \right],
\]
(3.3)

\[
r_{22}(x)E[T_{22}(x)] = \exp \left[-\lambda_1 \left\{ x/v_1 - t \right\} - \int_0^{x/v_2} C\left(\frac{y}{\beta} \right) dy \right] x/v_2,
\]
(3.4)

and

\[
r_{21}(x)E[T_{21}(x)] = \frac{x/v_1}{x/v_2} \int_{x/v_2}^{t} t \cdot d_{t} \{ P[T(x) \leq t \mid M(0) = 2] \}. \]
(3.5)

Now we turn to determine the results associated with \(M_1(0) = 1 \). The derivation is based on the fact that

\[
P[T(x) \leq t \mid M_1(0) = 1] = \begin{cases}
C(x)P[T(x) \leq t \mid M_1(0) = 2], & x/v_2 < t < x/v_1 \\
1, & t = x/v_1
\end{cases}
\]

from which we obtain

\[
r_{11}(x) = C(x)P[T(x) > x/v_2 \mid M_1(0) = 2] + (1 - C(x)),
\]
(3.6)

\[
r_{11}(x)E[T_{11}(x)] = C(x)r_{21}(x)E[T_{21}(x)] + (1 - C(x))x/v_1,
\]
(3.7)

and
\[r_{12}(x)E[T_{12}(x)] = C(x)r_{22}(x)E[T_{22}(x)]. \] (3.8)

4. The Test Car's Average Speed

In this section we use the results of Sections 2 and 3 to obtain the test car's average speed under the two passing mechanisms. As we follow the test car's journey along the road we realize that its state at the beginnings of the Type I sections forms a Markov chain. The analysis is based on this property.

To complement the results on the movement of the test car in a Type I section we need to have similar results on the travel in Type II sections. For this purpose we denote by \(S_k(y), k=1,2, \) the time it takes the test car to travel \(y \) units of length along a Type II section given that \(M_2(0)=k \) \([M_2(u) \text{ designates the state of the test car } u \text{ units of length from the beginning of the Type II section}]. \) We also denote

\[a_{ij}(y) = P[M_2(y)=j \mid M_2(0)=i]. \]

Here again we use the property that while the test car is in state 2 the distance between it and its preceding slow vehicle is an exponential random variable (parameter \(\lambda_1/v_1 \)) and obtain

\[S_1(y) = y/v_1 \text{ with probability one,} \] (4.1)

\[a_{11}(y) = 1, \] (4.2)

\[a_{22}(y) = \exp(-\lambda_1 y) \] (4.3)

\[P[S_2(y) \leq s] = \exp[-\lambda_1 (y/v_1 - s)], \quad y/v_2 \leq s \leq y/v_1. \] (4.4)

For a more detailed derivation of (4.3) and (4.4), see [1]. From (4.4) we obtain

\[E[S_2(y)] = y/v_1 - [1 - \exp(-\lambda_1 y)]/\lambda_1. \] (4.5)
We are now in a position where we can sum up the results derived so far to obtain the test car's average speed. To this end, let N_{ik} be the number of Type I sections to which the test car arrives at a speed v_k, $k=1,2$, while traveling up to the end of the ith Type II section. Denote by $\tau_k(j)$, $j=1,\ldots,N_{ik}$, the time it takes the test car to travel along a road section that consists of a Type I section and its following Type II section, given that the Type I section is the jth to which it arrives at speed v_k. The average speed at the end of the jth Type II section is given by

$$\bar{V}_j = \frac{\sum_{i=1}^{N_{ij}} \sum_{k=1}^{j} \tau_{ij}(k)}{\sum_{i=1}^{j} (X_i + Y_i)}.$$ (4.6)

We will determine

$$\lim_{j \to \infty} \bar{V}_j.$$

From (4.6) we obtain

$$\lim_{j \to \infty} \bar{V}_j = \lim_{j \to \infty} \frac{1}{j} \sum_{k=1}^{j} \tau_{ij}(k) \frac{2}{N_{ij}} \lim_{j \to \infty} \frac{1}{j} \sum_{i=1}^{N_{ij}} \frac{1}{j} \sum_{k=1}^{j} (X_i + Y_i).$$ (4.7)

The RHS of (4.7) calls for the use of the strong law of large numbers. Applying this law yields

$$\lim_{j \to \infty} \frac{1}{j} \sum_{k=1}^{j} (X_i + Y_i) = \frac{1}{E[X] + E[Y]},$$ (4.8)
\[
\lim_{k=1}^{N} \frac{\tau_{i}(k)}{N} = \frac{2}{\beta} \{ E_{X}[r_{1k}(X)E[T_{1k}(X)] \} + E[r_{1k}(X)] E_{Y}[E[S_{k}(Y)] \},
\]
(4.9)

and

\[
\lim_{j \to \infty} \frac{N_{ji}}{j} = \pi_{i},
\]
(4.10)

where \(\pi = (\pi_{1}, \pi_{2}) \) is the invariant distribution for the Markov chain of the state of the test car upon arrivals at Type I sections. The vector \(\pi \) is obtained as follows. Define

\[Y_{ij} = E[r_{ij}(X)]; \quad \Gamma = \{Y_{ij}\} \]

and

\[\phi_{ij} = E[a_{ij}(Y)]; \quad \phi = \{\phi_{ij}\}, \]

then \(\pi \) satisfies

\[\pi(\Gamma \phi) = \pi \]

and

\[\sum_{i=1}^{2} \pi_{i} = 1. \]

5. Summary

In the present paper we determined the average speed of a fast test car that is moving in a stream of slow vehicles. Two passing mechanisms were studied. The first mechanism assumes that after a driver decides to pass he still spends some time before reaching his free speed. The second mechanism, on the other hand, assumes instantaneous passing upon making the decision to pass. The first mechanism seems more realistic when the \(X' \)s are small with respect to the \(Y' \)s. Here the passings occur mainly at the beginnings of Type I sections and the test car has to accelerate before passing. The second mechanism seems more realistic.
when the X's are large with respect to the Y's and the test car comes up against slower vehicles mainly in Type I sections. The realism of the two mechanisms may also depend on road conditions and traffic congestion. We could have easily added a third passing mechanism that is a combination of the first two--instantaneous passing inside Type I sections and passing according to mechanism number one upon arrival at the beginning of a Type I section. However, we do not think that this addition makes a substantial contribution on top of the other two.

Finally, we would like to note that the current model cannot be used in cases where traffic is heavy because in these cases the assumption that slow vehicles arrive according to a Poisson process is not suitable.
REFERENCES

THE GEORGE WASHINGTON UNIVERSITY
Program in Logistics
Distribution List for Technical Papers

The George Washington University
Office of Sponsored Research
Library
Vice President H. F. Bright
Dean Harold Liebowitz
Mr. J. Frank Doubleday

ONR
Chief of Naval Research
(Codes 200, 430D, 1021P)
Resident Representative

OPNAV
OP 40
DCNO, Logistics
Naval Dept Library
OP 911
OP 914

Naval Avionics Integrated Log Support
NAVCOSACT
Naval Cmd Sys Sup Activity Tech Library
Naval Electronics Lab Library
Naval Facilities Eng Cmd Tech Library
Naval Ordnance Station
Los Angeles, Calif.
Indian Head, Md.
Naval Ordnance Sys Cmd Library

Naval Research Branch Office
Boston
Chicago
New York
Pasadena
San Francisco

Naval Research Lab
Tech Info Div
Library, Code 2039 (ONRL)

Naval Ship Engg Center
Hyattsville, Md.

Naval Ship Res & Dev Center

Naval Sea Systems Command
Tech Library
Code 03

Naval Supply Systems Command
Library
Capt W. T. Nash

Naval War College Library
Newport

NUPERS Tech Library

FMUS

Integrated Sea Lift Study

USN Amm Lifeh Depot Earle

USN Postgrad School Monterey
Library
Dr. Jack R. Borsting
Prof C. R. Jones

US Marine Corps
Commandant
Deputy Chief of Staff, R&D
Marine Corps School Quantico
Landing Force Dev Ctr
Logistics Officer

Armed Forces Industrial College

Army War College Library
Carlisle Barracks
Army Cdr & Gen Staff College

US Army
ETC George L. Slyman
Army Trans Mat Command

Army Logistics Mgmt Center
Fort Lee
Commanding Officer, USALIDSRA
New Cumberland Army Depot
US Army Inventory Res. Ofc
Philadelphia
HQ, US Air Force
AFADS 3
Griffiss Air Force Base
Reliability Analysis Center
Maxwell Air Force Base Library
Wright Patterson Air Force Base
HQ, Air Log Command
Research Sch Log

Defense Documentation Center
National Academy of Science
Maritime Transportation Res Board Library

National Bureau of Standards
Dr. E. W. Carlson
Dr. Joan Rosenblatt
National Science Foundation
National Security Agency
WSEG
British Army Staff

Logistics, OR Analysis Establishment
National Defense Hqtrs, Ottawa

American Power Jet Co
George Chernowitz

ARCON Corp
General Dynamics, Pomona

General Research Corp
Dr Hugh Cole

Planning Research Corp
Los Angeles

Rand Corporation

Carnegie Mellon University
Dei H. A. Simon
Prof G. Thompson

Case Western Reserve University
Prof B. V. Dean
Prof John R. Isbell
Prof M. Mesarovic
Prof S. Zuck

Cornell University
Prof R. E. Bechhofer
Prof R. W. Conway
Prof J. Kiefer
Prof Andrew Schultz, Jr.

Cowles Foundation for Research
Library
Prof Herbert Scarf
Prof Martin Shubik

Florida State University
Prof R. A. Bradley

Harvard University
Prof K. J. Arrow
Prof W. G. Cochran
Prof Arthur Schleifer, Jr.

New York University
Prof O. Morgenstern

Princeton University
Prof A. W. Tucker
Prof J. W. Tukey
Prof Geoffrey S. Watson
To cope with the expanding technology, our society must be assured of a continuing supply of rigorously trained and educated engineers. The School of Engineering and Applied Science is completely committed to this objective.