The Nature of Mental Abilities

Robert J. Sternberg

Department of Psychology
Yale University
New Haven, Connecticut 06520

Technical Report No. 9
June, 1978

Approved for public release; distribution unlimited.
Reproduction in whole or in part is permitted for
any purpose of the United States Government.

This research was sponsored by the Personnel and
Training Research Programs, Psychological Sciences
Division, Office of Naval Research, under Contract
No. N0001478C0025, Contract Authority Identification
Number NR 150-412.
A theory of the nature of mental abilities is presented. In this theory, mental abilities are hierarchically organized into four progressively deeper levels—the levels of composite tasks, subtasks, information-processing components, and information-processing metacomponents. Composite tasks can be decomposed into subtasks, subtasks into components. Metacomponents control the use of components in composite tasks and subtasks. Each of the four levels of mental abilities is described and interrelated to...
The others. The fundamental theoretical questions relevant at each level are posed, and answers to these questions are proposed. The role of factors in the theory is described, and is shown to be quite different from the role of factors in traditional theories of mental abilities. Full understanding of mental abilities requires understanding of all four levels.
The Nature of Mental Abilities

Robert J. Sternberg

Yale University

Running head: The Nature of Mental Abilities

Send proofs to Robert J. Sternberg
Department of Psychology
Yale University
Box 11A Yale Station
New Haven, Connecticut 06520
Mental Abilities

1

Abstract

A theory of the nature of mental abilities is presented. In this theory, mental abilities are organized into four levels—the levels of composite tasks, subtasks, information-processing components, and information-processing metacomponents. Composite tasks can be decomposed into subtasks and subtasks into components. Metacomponents control the use of components in composite tasks and subtasks. Each of these levels of mental abilities is described. The fundamental theoretical questions relevant at each level are posed, and answers to these questions are proposed. The role of factors in the theory is described, and is shown to be quite different from the role of factors in traditional theories of mental abilities. Full understanding of mental abilities requires understanding of all four levels.
Mental Abilities

The Nature of Mental Abilities

Psychologists and laymen alike have puzzled for years over the structure and content of mental abilities. **Structure** refers to the form or forms mental abilities take, and to the way in which these abilities are organized. Are they processes, strategies, drives, habits, nerve impulses, some combination of these, or some other kind of entity? Can they be characterized in terms of some kind of linear, circular, hierarchical or other organization? **Content** refers to the identities of the processes, strategies, drives, or whatever. Knowledge of content presupposes knowledge of structure, since the structure of mental abilities delimits the possible contents of these abilities: **Structure** determines the form the list of mental abilities will take.

This article seeks to address the issues of both the structure and content of mental abilities. The theory I propose comprises four levels of ability. The four sections of this article that follow describe each of the four levels. A fifth section describes how each of the four levels can be perceived from an alternative point of view. The sixth, final section summarizes the material that precedes it. The presentation in this article follows Figure 1, which shows the structure and some of the content of the theory.

Insert Figure 1 about here

Four Levels of Mental Ability

The Level of Composite Tasks

The first level of the theory is that of the composite task—the full task as the subject sees it. From the standpoint of a theorist
of mental abilities, the most important question at this level deals with task selection: What tasks should we use in the assessment of mental abilities? In order to answer this question, we need criteria for deciding what tasks merit inclusion in an assessment battery. There is no consensus as to what these criteria should be. I propose four criteria, however, that have proven valuable in the evaluation of alternative measures of a construct in memory theory called subjective organization (Sternberg & Tulving, 1977). The four criteria are the following:

1. **Quantifiability.** Performance on the task must be susceptible to bona fide measurement, that is, the "assignment of numerals to objects or events according to rules" (Stevens, 1951, p. 1).

2. **Reliability.** Performance on the task must demonstrate a high degree of consistency, or true-score variation relative to observed-score variation (Lord & Novick, 1968). If an individual's performance fluctuates wildly—either because judges cannot agree on what constitutes a certain level of performance, or because the task does not lend itself to stable performance—then the task is not useful as a measure of mental ability.

3. **Construct validity.** Construct validity, "the degree to which a test measures the construct it was designed to measure" (Lord & Novick, 1968, p. 278), requires that inclusion of a task or test in a battery measuring mental abilities be dictated by some prior theory regarding the identification of these abilities via tasks or tests.

4. **Empirical validity.** Empirical validity, "the degree of associa-
Mental Abilities

tion between the measurement and some other observable measurement" (Lord & Novick, 1968, p. 261), requires that the task or test included in a battery be predictive of performance in some other task or test (criterion) that is alleged to require the same mental ability or abilities (either alone or in combination with other abilities).

My choice of tasks has been guided by an evolving subtheory of intelligence that I call the unified componential theory of human reasoning (Sternberg, Note 1). This theory will be described in more detail later. According to the theory, reasoning, a major aspect of intelligence (see Sternberg, 1977b, Chapter 13), comprises a relatively small number of information-processing components. Various combinations of these components are required in the solution of problems used to measure reasoning ability in standard tests of intelligence.

My colleagues and I have investigated the performance of adults in a variety of inductive and deductive reasoning tasks, including (among others) the following:

1. Analogies (Sternberg, 1977a, 1977b; Sternberg & Rifkin, in press; Sternberg & Gardner, Note 2; Sternberg & Nigro, Note 3). In a typical analogies task, the subject is given the first three terms of an analogy and a blank term, such as LAWYER : CLIENT :: DOCTOR ::, and is asked which of two terms, for example, (a) MEDICINE, (b) PATIENT, better completes the analogy.

2. Classifications (Sternberg, Note 4; Sternberg & Gardner, Note 2). In one variant of the classification task, the subject is presented with three terms and a blank term, such as LEAF, TRUNK, ROOT ::, and is asked which of two terms, such as (a) BRANCH, (b) TREE, belongs in the
3. **Series completions** (Sternberg, Note 4; Sternberg & Gardner, Note 2). In one form of series completion problem, the subject receives three terms that form a series, and a blank term, for example, TRUMAN, EISENHOWER, KENNEDY, ..., and must decide which of two terms, such as (a) JOHNSON, (b) ROOSEVELT, better completes the series.

4. **Linear syllogisms** (Sternberg, Guyote, & Turner, in press; Sternberg, Note 5; Sternberg, Note 6). In problems of this type, subjects receive two premises, such as JOHN IS TALLER THAN PETE; PETE IS TALLER THAN BILL, and a question, such as WHO IS TALLEST? The subjects must respond with the name of one of the three individuals mentioned in the premises.

5. **Categorical syllogisms** (Sternberg, Guyote, & Turner, in press; Guyote & Sternberg, Note 7; Sternberg & Turner, Note 8). In one form of categorical syllogism, subjects receive two premises, such as ALL B ARE C; ALL A ARE B, and a conclusion, such as ALL A ARE C. The subjects must indicate whether the conclusion follows logically from the premises.

6. **Conditional syllogisms** (Sternberg, Guyote, & Turner, in press; Guyote & Sternberg, Note 7). In a typical conditional syllogism, subjects receive two premises, such as IF A THEN B; A, and a conclusion, such as B. The subjects must indicate whether the conclusion follows logically from the premises.

Problems such as these satisfy the four criteria described earlier for inclusion in a battery of tasks measuring mental abilities. Performance on each task is quantifiable in terms of response times to
solution and error rate in solution. The tasks have been demonstrated to yield reliable performance, with reliability coefficients usually exceeding .90. The tasks demonstrate construct validity, in that their selection has been guided by the unified componential theory of human reasoning, according to which performance on each of these tasks can be decomposed into a small number of basic information-processing components that overlap across tasks and that are fundamental to understanding reasoning, and hence intelligence. And the tasks have been shown to be empirically valid indicators of mental abilities as measured at the level of the composite task: Performances on these tasks are correlated with each other, with performance on standard intelligence tests, and with school performance.

Why do we need levels of analysis deeper than the level provided by the analysis of composite tasks? There are at least three reasons. First, a mere listing of tasks and subjects' scores on them is theoretically barren. It gives us no understanding of the determinants of performance on the tasks: The representations of information, the processes that act upon these representations, and the strategies by which these processes are combined are left unspecified. Second, the number of possible tasks seems without limit. What constitutes a distinct task, and what a trivial variant of a task? Two tasks may appear to be quite different on the surface, and yet require quite similar processes or strategies in their solution; conversely, two tasks may appear to be quite different on the surface, and yet require quite similar processes or strategies in their solution. Without a theoretical analysis of
performance on the tasks, we have no basis for stopping an endless proliferation of "new" tasks. Third, performances on these and other tasks are correlated both across subject and across task manipulations. For example, subjects who perform well on the categorical-syllogisms task tend to perform well on the conditional-syllogisms task; moreover, when certain types of categorical and conditional syllogisms are paired on the basis of structural similarities, high performance on one member of the pair is associated with high performance on the other member of the pair. All of these considerations suggest the need for a deeper level of analysis. We want, somehow, to break down task performance into smaller chunks that may be common across tasks. A first step in this breakdown is to decompose tasks into subtasks.

The Level of Subtasks

Most tasks, and indeed, all of the tasks that my collaborators and I have investigated, can be decomposed into subtasks, where a subtask is defined in terms of its involvement of a subset of the information-processing components that are involved in the full task. There are a number of reasons for attempting to isolate information-processing components from subtasks rather than from composite tasks. First, it is often possible to isolate information-processing components from subtasks that cannot be isolated from composite tasks. The smaller the number of information-processing components involved in any single subtask, the greater is the likelihood that the individual components will be susceptible to isolation. Second, use of subtasks requires the investigator to specify in which subtask(s) each information-processing component is executed, and thus requires tighter, more nearly complete
specification of the relationship between task structure and the components that act upon that structure. Third, use of subtasks increases the number of data points to be accounted for, and thus helps guard against the spurious good fit between model and data that can result when the number of parameters to be estimated becomes large relative to the number of data points to be predicted. Fourth, use of subtasks results in component-free estimates of performance for a series of nested processing intervals. These estimates can be valuable when one wants to test alternative predictions about global stages of information processing (see example below). Although the use of subtasks is not always necessary (see, for example, Guyote & Sternberg, Note 7), I have found subtasks informative whenever I have used them, and it is always possible to test whether their use changes the nature of the task (see Sternberg, 1977a). The decomposition of composite tasks into subtasks, then, represents a useful intermediate step in the analysis of the nature of mental abilities.

Composite tasks can often be decomposed into subtasks in a variety of different ways and by a variety of different methods (enumerated in some detail in Sternberg, in press [a]). How might the tasks described earlier be decomposed? Let us consider the tasks in two groups, the induction tasks (analogies, classifications, and series completions) and the deduction tasks (linear syllogisms, categorical syllogisms, and conditional syllogisms):

1. Induction tasks. I have generally decomposed induction tasks via the method of precueing (Sternberg, 1977b, in press [a]). In this
method, presentation trials are divided into two parts, the first of
which consists of precueing that facilitates problem solution, and the
second of which consists of the full problem and thus allows problem
solution. In the first part of the trial, the subject processes the
precueing information as fully as possible, and then presses a button
or in some other way indicates readiness to see the full problem; in
the second part of the trial, the subject solves the problem. The pre-
cueing consists of the first k terms of the problem, where k varies
across conditions of precueing, and ranges between zero and the number of
terms in the problem. Consider, for example, the analogy, LAWYER :
CLIENT :: DOCTOR : (a) MEDICINE, (b) PATIENT. The subject might receive
as precueing either zero terms (a blank field), one term (LAWYER), two
terms (LAWYER : CLIENT), three terms (LAWYER : CLIENT :: DOCTOR), four
terms (LAWYER : CLIENT :: DOCTOR : (a) MEDICINE), or five terms (LAWYER :
CLIENT :: DOCTOR : (a) MEDICINE, (b) PATIENT). Note that the first
and last conditions are "degenerate" conditions of precueing, in that
the precueing supplies either no information, or full information. In
the method of precueing, both the first (precueing) and second (solution)
parts of the trial involve subtasks, although it is usually the second
part of the trial that is of primary interest. The same kind of task
breakdown can be applied to the classification and series problems
described earlier. In each type of problem, there are five terms, and
thus five possible conditions of precueing. Usually, one will not use
all possible conditions, because one wants to select only those condi-
tions of precueing that (a) do not alter the strategy by which subjects
solve the problems, and (b) actually facilitate isolation of information-processing components of task performance (see Sternberg, 1977b, Chapters, 4, 7 and 8). In analogies, for example, precueing with both zero and two terms has generally been sufficient. In classification and series problems, precueing with zero and three terms has generally been sufficient.

2. Deduction tasks. I have used precueing in the investigation of one deduction task, linear syllogisms, presenting either no premises, just the first premise, or both premises in the first part of a trial, and the full problem in the second part of the trial. In general, though, another method, the method of partial tasks, has been more useful in isolating the components of information processing in deductive reasoning (see Sternberg, in press [a]). In this method, subjects receive either the full task or a partial task on a given trial. Consider, for example, the linear syllogism (or three-term series problem). The full task consists of an item such as JOHN IS TALLER THAN PETE; PETE IS TALLER THAN BILL; WHO IS TALLEST? JOHN, PETE, BILL. A partial task can be formed via a two-term series problem, such as JOHN IS TALLER THAN PETE; WHO IS TALLEST? JOHN, PETE. (The ungrammatical superlative form of the question is retained to preserve comparability of format.)

This partial task is theorized to require for its solution a subset of the information-processing components involved in solution of the full task. The same principle of task decomposition can be applied to certain forms of categorical syllogisms, for example, ALL B ARE C; ALL A ARE B; IS SOME A ARE C valid? In a partial task, the subject would receive the problem ALL B ARE C; IS SOME B ARE C valid? In one form of conditional syllogism, the subject would receive either a full problem,
IF A THEN ALWAYS B; IF B THEN ALWAYS C; Is IF A THEN SOMETIMES C valid?, or a partial problem, IF A THEN ALWAYS B; Is IF A THEN SOMETIMES B valid?

I have claimed above that decomposition of composite tasks into sub-tasks is useful in order to permit, in subsequent stages of analysis, isolation of information-processing components that would otherwise be confounded. But the use of subtasks is beneficial in understanding the nature of mental abilities even if no further task decomposition is intended. Through the use of subtasks, the investigator can gain insights into task performance that would be unavailable if only composite tasks were used. Consider two examples.

The first example is from a study of induction. In my initial investigations of analogical reasoning (Sternberg, 1977b), I decomposed the analogies task into four subtasks, using either zero, one, two, or three precues. I then correlated subtask scores (for both the first and second parts of the trial) with scores on standard reasoning tasks of the kinds found in a multitude of intelligence tests. My expectation was that the more information processing the experimental subtask required, the higher would be the correlation between the subtask score and the reasoning task. In fact, the reverse pattern was found for response-time scores on both the first half of the trial and the second half of the trial: Correlations decreased with increased amounts of information processing in the subtasks. The finding proved to be replicable in my own work, and moreover, comparable findings have since emerged both in my laboratory and in those of others, for a variety of tasks (see Sternberg, in press [b]). It is a finding that I and others are still
seeking fully to understand. The finding was counterintuitive to say the least, and never would have emerged in my initial work had I not decomposed composite task scores into subtask scores.

The second example is from a study of deduction. In the categorical syllogisms task, the theorized components of information processing can be grouped into several, more global stages of information processing, among which are two stages called encoding and combination. The first stage involves encoding of the various possible set relations for a given syllogistic premise. The second stage involves combination of the set relations encoded for the two syllogistic premises. The partial task used in one study of categorical syllogisms (Sternberg & Turner, Note 8) is theorized to involve only the encoding stage, whereas the full task used in this study is theorized to involve both the encoding and combination stages. The separation of stages enabled us to find that almost all errors in syllogistic reasoning originate in the combination rather than the encoding stage. The use of the method of partial tasks thus permits exploration of the proposed global stages of syllogistic reasoning without analysis of the component processes that constitute these stages.

The above examples show that the decomposition of composite tasks into subtasks can tell us more about mental abilities than can the investigation of composite tasks alone, but less than the further breakdown of the subtasks into the component processes used in the subtasks. A second step in the breakdown of task performance, therefore, is the isolation of component processes, the step to which we now turn.
The Level of Information-processing Components

In my schematization of the nature of abilities, the level of the component has been the primary one of interest. Indeed, I have used the term, componential metatheory, to refer to the schematization of the nature of mental abilities, and the term, componential analysis, to refer to the methodology used to fill in the substantive details of the various levels of the schematization (Sternberg, 1977b, 1978).

A component information process is an elementary operation that operates upon internal representations of objects or symbols (cf, Newell & Simon, 1972). The process may translate a sensory input into a conceptual representation, transform one conceptual representation into another one, or translate a conceptual representation into a motor output (Sternberg, 1977b).

One thorny problem that inevitably arises is that of what is meant by an elementary operation. I believe that the designation of a component process as elementary is arbitrary, in that it will almost certainly be possible to split a given process into smaller processes that represent ever finer levels of analysis. One's goal, therefore, should be to seek out a level of analysis that is theoretically or practically interesting. The level of the component process is noteworthy precisely because it has been demonstrated to be of both theoretical and practical interest. These demonstrations have taken various forms:

1. Detailed specification of task performance. Once the level of the component process is reached, it is possible to provide a detailed specification of task performance. This specification does not stop with the identification of component processes, but includes (a) identi—
Mental Abilities

14

ification of the component processes in task performance, (b) specification of the internal representation(s) of information upon which the component processes act, (c) specification of the strategy or strategies by which different component processes and multiple executions of the same component process are combined, (d) specification of the consistency with which the various strategies are employed by individual subjects, and (e) specification of the duration, difficulty, and probabilities of execution of the various component processes.

2. Framework for analyzing individual differences within and across age levels. The five elements of task performance described above provide a framework for analyzing individual-differences variation both within and across age levels. In the tasks I have investigated to date, most individual differences within age level have arisen from sources (d) and (e) above; individual differences across age levels, however, have been found to arise from all five sources of variation (see Sternberg & Rifkin, in press; Sternberg & Nigro, Note 3).

3. Framework for a subtheory of intelligence. Theoretical analyses of the mental abilities constituting much of what we mean by intelligence may start either with tasks and proceed to the components that result from the analysis of the tasks (as in 1 and 2 above), or they may start with component processes and proceed to the tasks that can be constructed from combining the component processes in various ways. Pursuing this latter route, I have used component processes as the basic unit in the unified componential theory of human reasoning. In the theory, reasoning tasks are arranged hierarchically in terms of the overlap in component processes used to perform various tasks. Tasks at higher levels
of the hierarchy require for their solution various concatenations of the component processes required for the solution of tasks lower in the hierarchy. The hierarchy provides a natural means for organizing the various ways in which component processes can overlap across tasks. Relations among tasks are understood in terms of the overlap in component processes used in their solution.

4. Diagnostic and pedagogic value. By analyzing response-time and error data for individual subjects at the level of the component process, it becomes possible to pinpoint quite precisely the source(s) of particular weaknesses or strengths in global information processing. One need not be satisfied merely to say that a certain subject is a good reasoner or a poor reasoner. The etiology of the strength or weakness can be specified in terms of the five sources of individual-differences variation described above. Moreover, it becomes possible to train subjects in strategies that capitalize upon their particular patterns of strength and weakness. We have found, for example, an aptitude-strategy interaction in the solution of linear syllogisms (Sternberg & Weil, Note 9). These problems may be solved either by a strategy that requires both spatial and linguistic information processing, or by a strategy that requires only linguistic information processing. Subjects who are deficient in spatial visualization abilities relative to linguistic comprehension abilities can be trained to use the component processes and rules for combining these processes that make up the linguistic strategy, and can thereby bypass utilization of the abilities in which they are relatively weak.
5. Isolation of component processes based upon within-task, within-subject data analysis. The componential methodology used in the isolation of component processes cannot be fully explicated here. (See Sternberg, 1977b, for details.) In essence, the method involves the use of multiple regression to predict response-times or error rates for performance on tasks that are structurally manipulated in ways that vary the number of executions of each component process theorized to be involved in task performance. The method of analysis isolates component processes on the basis of within-task, within-subject variation. Since problem solving occurs both within tasks and within individual subjects, the proposed line of approach seems to be a reasonable one. Certain alternative methodologies, however, base their analysis on across-task, across-subject variation. Factor-analytic procedures, for example, generally follow this line of approach, leading one to query whether these procedures are capable of leading one to the component processes used in task solution. Even the most committed of factor theorists have doubted that factor analysis is indeed capable of leading one to these processes (e.g., Thurstone, 1947). Componential procedures therefore seem more suitable for data analysis if one's goal is to understand the component processes that enter into various kinds of problem-solving performance.

To summarize, analysis at the level of the component process seems to provide a desirable supplement to analysis at the levels of the composite task and the subtask, providing information about the nature of mental abilities that cannot be gleaned from either of these latter two levels of analysis, or from factor-analytic methods (which will be discussed further later in the article).
So far, I have described the level of the component process and some advantages of seeking this level, without giving any examples of what the proposed component processes are. I will describe here, therefore, a subset of the component processes that, according to the unified componential theory of human reasoning, forms the building blocks of performance on a variety of reasoning tasks. I will limit the subset to be described to components found in a variety of induction tasks. A further catalogue of components, including ones found in deduction tasks, is presented elsewhere (Sternberg, Guyote, & Turner, in press; Sternberg, Note 1).

Just as the unified componential theory of human reasoning may be viewed as a subtheory of intelligence, so may the proposed theory of inductive reasoning be viewed as a subtheory of the theory of human reasoning. The theory of inductive reasoning is called the IMAGER (pronounced like imager) theory. Its name is an acronym for the six component processes theorized to be involved in a wide variety of induction tasks, and briefly described in Table 1—inferring, mapping, application, justification, encoding, and response. The best way to understand the meanings of these component processes is to see how they are used in induction tasks of the sort described earlier in the article.

Consider the component processes a subject might use in solving an analogy such as LAWYER : CLIENT :: DOCTOR : (a) MEDICINE, (b) PATIENT. The subject would seem to have to encode the terms of the analogy, translating each stimulus into an internal representation upon which further mental operations can be performed. The subject must also infer the
relation between LAWYER and CLIENT, realizing that someone who seeks out the professional services of a lawyer is referred to as a "client."

Next, the subject needs to map the higher-order relation that links the first half of the analogy to the second half. This mapping can be accomplished via the relation between the first and third terms: A LAWYER and a DOCTOR are both professionals who provide professional services to the public. Now, the subject must apply from DOCTOR to either MEDICINE or PATIENT the relation that was inferred from LAWYER to CLIENT, and was then mapped into DOCTOR. Only the answer option PATIENT permits application of the appropriate relation. If the subject does not perceive either answer option as permitting application of an exactly analogous relation, then the subject justifies one of the options as preferred, that is, as permitting application of a relation that is closer to the exactly analogous one than is permitted by the other answer option.

Finally, the subject responds with the chosen answer, in this case, b.

Consider next the component processes a subject might use in solving the classification problem LEAF, TRUNK, ROOT, (a) BRANCH, (b) TREE. The subject's task is to decide which answer option belongs with the first three terms. The subject must encode each term of the classification problem. The subject must also infer what property or properties LEAF, TRUNK, and ROOT have in common. Next, the subject must apply the list of properties to BRANCH and TREE, deciding which answer option possesses the appropriate set of properties. If neither option possesses all the properties on the list, then the subjects justifies one option as closer to an ideal option, that is, as possessing more of the critical properties than does the other answer option. Finally, the subject responds.
with the chosen answer, in this case, a. Note that this particular variant of the classification problem does not require the mapping operation, although other variants do, for example, variants of the problem in which the subject must decide in which of two classes a single object is more appropriately classified. Mapping is required only when the subject must determine a higher-order relation between two lower-order relations, as in analogies, where the mapping links the relation between the first two terms to the relation between the second two terms.

Consider finally the component processes a subject might use in solving the series completion problem, TRUMAN, EISENHOWER, KENNEDY, (a) JOHNSON, (b) ROOSEVELT. The subject must encode the terms of the problem. The subject must also infer the relation between TRUMAN and EISENHOWER, and then infer the relation between EISENHOWER and KENNEDY. The second inference is restricted, in that it need consist only of a subset (and possibly the full set) of attributes that were inferred between the first two terms: Other possible attributes relating the second and third terms are deemed irrelevant in the context of this problem. Next, the subject attempts to apply from KENNEDY to each of the options JOHNSON and ROOSEVELT the relation that could be successfully inferred both from TRUMAN to EISENHOWER and from EISENHOWER to KENNEDY. If neither answer option permits application of the same list of attributes, the subject justifies one of the answer options as permitting application of a more similar list of attributes. Finally, the subject responds with the chosen answer, in this case, a. Note that this problem, like the classification problem, did not include a mapping.
operation, because no higher-order relation was involved. Other forms of series completion problems do include a mapping operation.

Analogy, classification, and series completion are three types of induction problems theorized to require the component processes enumerated by the LAJER theory to induction; but they are not the only types of problems theorized to require these processes. Other types of problems, such as topological relations (Sternberg, Note 1, Note 4), causal inferences (Sternberg, Note 1; Sternberg & Ross, Note 10), and metaphorical relations (Sternberg, Tourangeau, & Nigro, in press; Nigro & Sternberg, Note 11) are also theorized to require these processes in their solution. The component processes posited by the theory are thus theoretically useful in that they seem to be general across a rather wide variety of inductive reasoning tasks.

Do component processes, the representations upon which they act, and the strategies by which they are combined, represent the "bottom line" in the analysis of mental abilities, or is there some deeper level yet? Since subjects must somehow decide what component processes, strategies, and representations to apply to a given problem situation, it appears that a deeper level of analysis is indeed required. I refer to this deeper level of analysis as the metacomponential level.

The Level of Information-processing Metacomponents

The level of metacomponents deals with what Brown and DeLoache (in press) have referred to as metacognition, or the control an individual has over his or her own cognitive processes. In the memory literature, this level of processing has been studied under the rubric of metamemory (Brown, in press; Flavell & Wellman, 1977), and in the problem-solving
literature, under the rubric of the executive, the homunculus, or of control processes (cf. Reitman, 1965).

The metacomponential level controls what happens at the componential level. Metacomponents are the processes by which subjects determine what components, representations, and strategies should be applied to various problems. They also determine the various rates of component execution (including the decision as to how rate will be traded off for accuracy), and the probabilities that various components will be applied at all in a given situation.

My research to date has not dealt explicitly with the exploration of metacomponents, although because it has become increasingly clear that the metacomponential level cannot be ignored, some of my current research is aimed at exploration of metacomponents. Consider how metacomponents have operated in tasks I have previously investigated.

A finding referred to earlier was the increase in the correlation between response times on analogical reasoning subtasks and reasoning tests as the amount of information processing required by the subtasks decreased. This finding would have been unobservable at the composite-task level. It was observable, but not comprehensible, at the subtask level. When the phenomenon was analyzed at the componential level, it was found to be due to the extremely high correlation of the unanalyzed response component with reasoning. The response component was "unanalyzed" in the sense that its duration was estimated as the "regression constant"—that which was constant across all problem types and was left over after the "regression slopes" were estimated. What operation(s) might be constant across the various problem types, beside the presumably uninteresting process of response? It seems likely that one or more metacomponents were constant across problem types—operations that
Mental Abilities

22

determine how analogy problems will be solved (as opposed to operations that actually solve the problems). In order fully to understand how subjects solve analogies, therefore, one must identify the metacomponents as well as the components of solution: The constant component must be further subdivided.

A second finding in my research on analogies, which has also proved to be replicable (Sternberg, 1977a, 1977b; Sternberg & Rifkin, in press), is that better reasoners tend to spend longer in encoding terms of the analogy than do poorer reasoners. This pattern is opposite to that found for other component processes (inference, mapping, application, justification, and response), for which faster execution is associated with higher reasoning ability. An analysis of this phenomenon suggests that understanding of it must be sought at the metacomponential level: Better reasoners seem purposely to spend relatively more time in encoding in order to facilitate subsequent attribute-comparison operations (see Sternberg, 1977b, Chapter 8). A parallel might be drawn to a lending library: Slower and more careful cataloguing of books (encoding of analogy terms) requires a greater initial time investment; but this investment is more than repaid by the more rapid and efficient borrowing and lending (inference, mapping, application, justification) that can later take place because of the more efficient retrieval of sought-after volumes. In this example, then, we see a decision by the subject at the metacomponential level to trade off increased encoding time for decreased times on other component processes.

A third finding in my research on analogies is that older children tend to perform the various component processes of analogical reasoning
more nearly exhaustively than do younger children (Sternberg & Rifkin, in press; Sternberg & Nigro, Note 3). Increased use of exhaustive information processing appears to be a general characteristic of cognitive development (Brown & DeLoache, in press), and another finding from the analogies research suggests at least one reason why. Almost all errors made in analogy solution can be traced to self-terminating component processes, that is, processes that terminate before all relevant attributes have been identified or compared. Thus, the large decrease in error rates that occurs in the analogy solutions of older subjects can probably be traced at least in part to a decision at the metacomponential level to process information more nearly exhaustively.

Comparable metacomponential decisions have been found in the various kinds of deductive reasoning tasks I have studied, and can be found in non-reasoning tasks as well. As the number of such findings increases, it becomes increasingly evident that attributions to the "homunculus" and to the "executive" are inadequate to a comprehensive understanding of the nature of mental abilities. We need to start "unpacking" what has been confounded with components and especially the constant in our equation (both literally and figuratively): the metacomponential processes that are responsible for the solution of problems in an intelligent way. I have been as guilty as anyone else (or more so) in packing these processes into the components and especially the constant component.

But research findings such as the ones cited above have forced my hand and guided some of my current research toward psychological phenomena that now seem more fundamental than some of those I have studied at the
componential level. But isn't that the function research findings are supposed to serve?

An Alternative Perspective on the Four Levels

No mention has been made so far of the role of what has been previously a central construct in theories of mental abilities, namely, the factor. Factors have often been viewed as source or latent traits (see, for example, Cattell, 1971; Guilford, 1967)—the underlying dimensions along which individuals differ. I have stated elsewhere why I believe this neither is nor could be the case (Sternberg, 1977b, Chapter 2). In the present framework, factors are viewed quite differently, specifically, as constellations of mental abilities, at whatever level, that are organized by patterns of variation across individuals rather than across tasks. Factors provide a useful way of reorganizing data, at a given level, in order to understand the organization of individual differences at that level; but they do not provide a useful way of penetrating data to a deeper level that enables one to understand the sources of those individual differences. Factors, in other words, provide an alternative perspective on each of the levels of mental ability, without supplying an additional level.

Factor scores derived from factor analysis of composite tasks and subtasks can be understood in much the same way that composite-task and subtask scores can be understood—as combined scores of constellations of components and metacomponents. Factor scores are useful in summarizing performance, because rather than being bound by the constraints of the ways in which the tasks or subtasks are put together (as are task and subtask scores), they are bound by the constraints of individual differences—of how components and metacomponents tend to cluster together in tasks and subtasks. If one or more processes appear together
in an entire set of tasks that is factor analyzed, the result will be a general factor; if they appear together in a subset of the tasks, the result will be a group factor; if they appear together in just a single task, the result will be a specific factor. Thus, because the components of the DMAJER theory of induction appear together in a large variety of induction tasks, they will tend to yield a general, or \(g \), factor. In a wider range of tasks, they are more likely to yield a group, or even a specific factor. The \(g \) factor will probably tend to appear in most factor analyses, however, if the same metacomponents are applicable to each task, as seems likely for the various kinds of tasks used to measure intelligence.

Because components and metacomponents may themselves be correlated across subjects, factor analyses of them may well lead to some sort of interpretable factors. What do these factors represent? Presumably, they represent the correlation—in heredity and experience—with which various abilities at all levels develop. The genes and experiences that lead to the development of individual differences in components and metacomponents, as well as tasks and subtasks, are almost certainly highly overlapping in their occurrences. Thus, one can expect to find correlations across subjects in the basic units of analysis at all four levels of mental ability. These communalities are highlighted, but in no sense caused by, factors.

Summary and Conclusions

Mental abilities can be analyzed at four levels—the levels of tasks, subtasks, components, and metacomponents. Each level of analysis tells us something about the structure and content of the mental abilities...
responsible for much of what we refer to as intelligent performance. Deeper levels of analysis are in some ways more interesting than shallower levels of analysis, but they are not a substitute for them. In order fully to understand the nature of mental abilities, one needs to know the composite tasks through which intelligent performance is demonstrated; the subtasks that in combination constitute the composite tasks; the component processes, representations, and strategies used in task and subtask performance; and the metacomponents that control these processes, representations, and strategies. Factors provide a useful alternative way of organizing this information, but do not themselves provide a further level of analysis. They may be viewed as related horizontally, rather than vertically, to each of the levels of analysis.

Surprisingly, our understanding of even the shallower levels of analysis is quite crude. Although many of the tasks believed to reflect intelligent performance (and some of the subtasks that they comprise) have been studied fairly widely, an intelligent taxonomy of these tasks can be formed only after we know the components and metacomponents that enter into them. Similarly, an intelligent taxonomy of components requires understanding of the metacomponents controlling them, and we have almost no understanding of activities at the metacomponential level. A well integrated understanding of all these levels is a long way off, but is actively being sought.
Reference Notes

References

Sternberg, R. J. Component processes in analogical reasoning. Psychological Review, 1977, 84, 353-378. (a)

Sternberg, R. J. Isolating the components of intelligence. *Intelligence*, in press. (a).

Sternberg, R. J. Intelligence research at the interface between differential and cognitive psychology: Prospects and proposals. *Intelligence*, in press (b).

Preparation of this report was supported by Contract N0001478C0025 from the Office of Naval Research to Robert J. Sternberg. This report was presented at the symposium on New Ways of Measuring I.Q., International Congress of Applied Psychology, Munich, Germany, July-August, 1978. Requests for reprints should be sent to Robert J. Sternberg, Department of Psychology, Yale University, Box 11A Yale Station, New Haven, Connecticut 06520.

The views presented in this paper represent a further development of ideas first presented in Sternberg (1977b). These views are not in complete accord with the earlier ones, however, as my ideas regarding the nature of mental abilities have changed over time. In the earlier volume, for example, the fourth (metacomponential) level of the theory had not yet appeared.

2 Metamemory is often used to refer to knowledge about, rather than control of, memory.
Table 1

Information-processing Components of the IMAEJER Theory of Induction

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoding</td>
<td>Translation of a stimulus into an internal representation upon which further mental operations can be performed</td>
</tr>
<tr>
<td>Inference</td>
<td>Discovery of one or more relations between two terms of a problem</td>
</tr>
<tr>
<td>Mapping</td>
<td>Discovery of one or more relations between two relations in a problem</td>
</tr>
<tr>
<td>Application</td>
<td>Use of one or more previously known or inferred relations in a problem</td>
</tr>
<tr>
<td>Justification</td>
<td>Selection of an answer option in problem as preferred but nonoptimal</td>
</tr>
<tr>
<td>Response</td>
<td>Communication of an answer to a problem</td>
</tr>
</tbody>
</table>
Figure 1. Outline of theory of mental abilities, with examples at right of figure.
DECISIONS REGARDING:

- What components to use
- Upon what representations of components should act

Each action upon a specified internal strategy or an estimated rate of representation via a specified representation

METACOMPONENTS

RESPONSE
ENCODING
JUSTIFICATION
APPLICATION
MAPPING
INFERENCE

COMPOUNDS

SUBTASKS

Solution
Proceeding
Analogies

Series Completion: Which of D1 and D2 follows next in the series A, B, C?
Classification: Which of D1 and D2 belongs with A, B, C?
Analogies: A is to B as C is to D1 or D2?
Technical Reports Presently in this Series
NR 150-412, ONR Contract N0001478C0025

#1. Sternberg, R. J. Intelligence research at the interface between
differential and cognitive psychology: Prospects and proposals.

April, 1978.

#5. Guyote, M. J., & Sternberg, R. J. A transitive-chain theory of syllogistic
reasoning. April, 1978.

April, 1978.

#7. Sternberg, R. J., Tourangeau, R., & Nigro, G. Metaphor, induction, and
social policy: The convergence of macroscopic and microscopic views.
April, 1978.

#8. Sternberg, R. J. A proposed resolution of curious conflicts in the

#10. Sternberg, R. J. Psychometrics, mathematical psychology, and cognition:

#11. Tourangeau, R., & Sternberg, R. J. Understanding and appreciating
Navy

Dr. James McBride
Code 301
Navy Personnel R&D Center
San Diego, CA 92152

Dr. James McGrath
Navy Personnel R&D Center
Code 305
San Diego, CA 92152

DR. WILLIAM MONTAGUE
NAVY PERSONNEL R&D CENTER
SAN DIEGO, CA 92152

Commanding Officer
U.S. Naval Amphibious School
Coronado, CA 92155

Commanding Officer
Naval Health Research Center
Attn: Library
San Diego, CA 92152

CDR PAUL NELSON
NAVAL MEDICAL R&D COMMAND
CODE 44
NATIONAL NAVAL MEDICAL CENTER
BETHESDA, MD 20014

Library
Navy Personnel R&D Center
San Diego, CA 92152

Commanding Officer
Naval Research Laboratory
Code 2627
Washington, DC 20390

OFFICE OF CIVILIAN PERSONNEL
(CODE 26)
DEPT. OF THE NAVY
WASHINGTON, DC 20390

JOHN OLSEN
CHIEF OF NAVAL EDUCATION & TRAINING SUPPORT
PENSACOLA, FL 32509

Navy

1 Office of Naval Research
Code 200
Arlington, VA 22217

1 Scientific Director
Office of Naval Research
Scientific Liaison Group/Tokyo
American Embassy
APO San Francisco, CA 96503

1 SCIENTIFIC ADVISOR TO THE CHIEF
OF NAVAL PERSONNEL
NAVAL BUREAU OF PERSONNEL (PERS OR)
RM. 4410, ARLINGTON ANNEX
WASHINGTON, DC 20370

1 DR. RICHARD A. POLLAK
ACADEMIC COMPUTING CENTER
U.S. NAVAL ACADEMY
ANNAPOLIS, MD 21402

1 Mr. Arnold I. Rubinstein
Human Resources Program Manager
Naval Material Command (0344)
Room 1044, Crystal Plaza 45
Washington, DC 20360

1 Dr. Worth Scanland
Chief of Naval Education and Training
Code N-5
NAS, Pensacola, FL 32508

1 A. A. SJOHOLM
TECH. SUPPORT, CODE 201
NAVY PERSONNEL R&D CENTER
SAN DIEGO, CA 92152

1 Mr. Robert Smith
Office of Chief of Naval Operations
OP-937E
Washington, DC 20350

1 Dr. Alfred F. Smode
Training Analysis & Evaluation Group
(TAEG)
Dept. of the Navy
Orlando, FL 32813
Navy

CDR Charles J. Theisen, JR. MSC, USN
Head Human Factors Engineering Div.
Naval Air Development Center
Warminster, PA 18974

W. Gary Thomson
Naval Ocean Systems Center
Code 7132
San Diego, CA 92152

Army

1 ARI Field Unit-Leavenworth
 P.O. Box 3122
 Ft. Leavenworth, KS 66027

1 HQ USAREUE & 7th Army
 ODCSOPS
 USAAREUE Director of GED
 APO New York 09403

1 DR. JAMES BAKER
 U.S. ARMY RESEARCH INSTITUTE
 5001 EISENHOWER AVENUE
 ALEXANDRIA, VA 22333

1 DR. RALPH CANTER
 U.S. ARMY RESEARCH INSTITUTE
 5001 EISENHOWER AVENUE
 ALEXANDRIA, VA 22333

1 DR. RALPH DUSEK
 U.S. ARMY RESEARCH INSTITUTE
 5001 EISENHOWER AVENUE
 ALEXANDRIA, VA 22333

1 Dr. Milton S. Katz
 Individual Training & Skill
 Evaluation Technical Area
 U.S. Army Research Institute
 5001 Eisenhower Avenue
 Alexandria, VA 22333

1 Dr. Harold F. O'Neil, Jr.
 ATTN: PERI-OK
 5001 EISENHOWER AVENUE
 ALEXANDRIA, VA 22333

1 Director, Training Development
 U.S. Army Administration Center
 ATTN: Dr. Sherrill
 Ft. Benjamin Harrison, IN 46218

1 Dr. Joseph Ward
 U.S. Army Research Institute
 5001 Eisenhower Avenue
 Alexandria, VA 22333
Air Force

Air Force Human Resources Lab
AFHRL/PED
Brooks AFB, TX 78235

Air University Library
AUL/LSE 76/443
Maxwell AFB, AL 36112

Dr. G. A. Eckstrand
AFHRL/AS
Wright-Patterson AFB, OH 45433

Dr. Alfred R. Fregly
AFOSR/NL, Bldg. 410
Boiling AFB, DC 20332

CDR. Mercer
CNET LIAISON OFFICER
AFHRL/FLYING TRAINING DIV.
WILLIAMS AFB, AZ 85224

Personnel Analysis Division
HQ USAF/DPXXA
Washington, DC 20330

Research Branch
AFMPC/DFMYF
Randolph AFB, TX 78148

Dr. Marty Rockway (AFHRL/TT)
Lowry AFB
Colorado 80230

Major Wayne S. Sellman
Chief, Personnel Testing
AFMPC/DFMXFT
Randolph AFB, TX 78148

Brian K. Waters, Maj., USAF
Chief, Instructional Tech. Branch
AFHRL
Lowry AFB, CO 80230

Marines

1 Director, Office of Manpower Utilization
HQ, Marine Corps (MPU)
BCB, Bldg. 2009
Quantico, VA 22134

1 Dr. A.L. Slafkossy
SCIENTIFIC ADVISOR (CODE RD-1)
HQ, U.S. MARINE CORPS
WASHINGTON, DC 20380
<table>
<thead>
<tr>
<th>Civil Govt</th>
<th>Non Govt</th>
</tr>
</thead>
</table>
| Dr. Susan Chipman
Basic Skills Program
National Institute of Education
1200 19th Street NW
Washington, DC 20208 | 1 PROF. EARL A. ALLUISI
DEPT. OF PSYCHOLOGY
CODE 287
OLD DOMINION UNIVERSITY
nORFOLK, VA 23508 |
| Dr. William Gorham, Director
Personnel R&D Center
U.S. Civil Service Commission
1900 E Street NW
Washington, DC 20415 | 1 DR. MICHAEL ATWOOD
SCIENCE APPLICATIONS INSTITUTE
40 DENVER TECH. CENTER WEST
7935 E. PRENTICE AVENUE
ENGLEWOOD, CO 80110 |
| Dr. Andrew R. Molnar
Science Education Dev. and Research
National Science Foundation
Washington, DC 20550 | 1 psychological research unit
Dept. of Defense (Army Office)
Campbell Park Offices
Canberra ACT 2600, Australia |
| Dr. Thomas G. Sticht
Basic Skills Program
National Institute of Education
1200 19th Street NW
Washington, DC 20208 | 1 MR. SAMUEL BALL
EDUCATIONAL TESTING SERVICE
PRINCETON, NJ 08540 |
| Dr. Joseph L. Young, Director
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550 | 1 Dr. Nicholas A. Bond
Dept. of Psychology
Sacramento State College
600 Jay Street
Sacramento, CA 95819 |
| Dr. John Seeley Brown
Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138 | 1 Dr. John B. Carroll
Psychometric Lab
Univ. of No. Carolina
Davie Hall 013A
Chapel Hill, NC 27514 |
| Dr. William Chase
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213 | 1 Dr. Micheline Chi
Learning R & D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213 |
Dr. Kenneth E. Clark
College of Arts & Sciences
University of Rochester
River Campus Station
Rochester, NY 14627

Dr. Norman Cliff
Dept. of Psychology
Univ. of So. California
University Park
Los Angeles, CA 90007

Dr. Allan M. Collins
Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

Dr. Meredith Crawford
5605 Montgomery Street
Chevy Chase, MD 20015

Dr. Donald Dansereau
Dept. of Psychology
Texas Christian University
Fort Worth, TX 76129

Dr. Rene V. Davis
DEPT. OF PSYCHOLOGY
UNIV. OF MINNESOTA
75 E. RIVER RD.
MINNEAPOLIS, MN 55455

Dr. Ruth Day
Center for Advanced Study
in Behavioral Sciences
202 Junipero Serra Blvd.
Stanford, CA 94305

ERIC Facility-Acquisitions
4833 Rugby Avenue
Bethesda, MD 20014

MAJOR I. N. EVONIC
CANADIAN FORCES PERS. APPLIED RESEARCH
1107 AVENUE ROAD
TORONTO, ONTARIO, CANADA

Dr. Richard L. Ferguson
The American College Testing Program
P.O. Box 168
Iowa City, IA 52240

Dr. Victor Fields
Dept. of Psychology
Montgomery College
Rockville, MD 20850

Dr. Edwin A. Fleishman
Advanced Research Resources Organ.
8555 Sixteenth Street
Silver Spring, MD 20910

Dr. John R. Frederiks
Bolt Beranek & Newman
50 Moulton Street
Cambridge, MA 02138

Dr. Robert Glaser
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213

Dr. James G. Greeno
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213

Dr. Ron Hambleton
School of Education
University of Massachusetts
Amherst, MA 01002

Dr. Barbara Hayes-Roth
The Rand Corporation
1700 Main Street
Santa Monica, CA 90406

HumRRO/Ft. Knox office
P.O. Box 293
Ft. Knox, KY 40121
<table>
<thead>
<tr>
<th>Non Govt</th>
<th>Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr. Gary Irving</td>
<td>Data Sciences Division</td>
</tr>
<tr>
<td>Dr. Robert R. Mackie</td>
<td>Human Factors Research, Inc.</td>
</tr>
<tr>
<td>Dr. Earl Hunt</td>
<td>Dept. of Psychology</td>
</tr>
<tr>
<td>Dr. Roger A. Kaufman</td>
<td>203 Dodd Hall</td>
</tr>
<tr>
<td>Dr. Richard E. Millward</td>
<td>Dept. of Psychology</td>
</tr>
<tr>
<td>Dr. Donald A. Norman</td>
<td>Dept. of Psychology C-009</td>
</tr>
<tr>
<td>Dr. Melvin R. Novick</td>
<td>Iowa Testing Programs</td>
</tr>
<tr>
<td>Dr. Jesse Oriansky</td>
<td>Institute for Defense Analysis</td>
</tr>
<tr>
<td>Dr. Robert R. Mackie</td>
<td>6780 Cortona Drive</td>
</tr>
<tr>
<td>Mr. Marlin Kroger</td>
<td>1117 Via Goleta</td>
</tr>
<tr>
<td>LCOL. C.R.J. LAFLEUR</td>
<td>PERSONNEL APPLIED RESEARCH</td>
</tr>
<tr>
<td>Dr. Louis H. Lord</td>
<td>Educational Testing Service</td>
</tr>
<tr>
<td>Dr. Frank Prattner</td>
<td>Cntr. for Vocational Education</td>
</tr>
<tr>
<td>Mr. Luigi Petrullo</td>
<td>2431 N. EDGEWOOD STREET</td>
</tr>
<tr>
<td>Dr. Peter Polson</td>
<td>DEPT. OF PSYCHOLOGY</td>
</tr>
<tr>
<td>Dr. Diane M. Ramsey-Klee</td>
<td>R-K RESEARCH & SYSTEM DESIGN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non Govt</th>
<th>Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Earl Hunt</td>
<td>Dept. of Psychology</td>
</tr>
<tr>
<td>Dr. Roger A. Kaufman</td>
<td>203 Dodd Hall</td>
</tr>
<tr>
<td>Dr. Richard E. Millward</td>
<td>Dept. of Psychology</td>
</tr>
<tr>
<td>Dr. Donald A. Norman</td>
<td>Dept. of Psychology C-009</td>
</tr>
<tr>
<td>Dr. Melvin R. Novick</td>
<td>Iowa Testing Programs</td>
</tr>
<tr>
<td>Dr. Jesse Oriansky</td>
<td>Institute for Defense Analysis</td>
</tr>
<tr>
<td>Dr. Robert R. Mackie</td>
<td>6780 Cortona Drive</td>
</tr>
<tr>
<td>Mr. Marlin Kroger</td>
<td>1117 Via Goleta</td>
</tr>
<tr>
<td>LCOL. C.R.J. LAFLEUR</td>
<td>PERSONNEL APPLIED RESEARCH</td>
</tr>
<tr>
<td>Dr. Louis H. Lord</td>
<td>Educational Testing Service</td>
</tr>
<tr>
<td>Dr. Frank Prattner</td>
<td>Cntr. for Vocational Education</td>
</tr>
<tr>
<td>Mr. Luigi Petrullo</td>
<td>2431 N. EDGEWOOD STREET</td>
</tr>
<tr>
<td>Dr. Peter Polson</td>
<td>DEPT. OF PSYCHOLOGY</td>
</tr>
<tr>
<td>Dr. Diane M. Ramsey-Klee</td>
<td>R-K RESEARCH & SYSTEM DESIGN</td>
</tr>
</tbody>
</table>

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDQ
Non Govt

MIN. RET. M. RAUCH
P II 4
BUNDESMINISTERIUM DER VERTEIDIGUNG
POSTFACH 161
53 BONN 1, GERMANY

Dr. Mark D. Reckase
Educational Psychology Dept.
University of Missouri-Columbia
12 Hill Hall
Columbia, MO 65201

Dr. Joseph W. Rigney
Univ. of So. California
Behavioral Technology Labs
3717 South Hope Street
Los Angeles, CA 90007

Dr. Andrew M. Rose
American Institutes for Research
1055 Thomas Jefferson St. NW
Washington, DC 20007

Dr. Leonard L. Rosenbaum, Chairman
Department of Psychology
Montgomery College
Rockville, MD 20850

Dr. Ernst Z. Rothkopf
Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

PROF. FUMIKO SAMEJIMA
DEPT. OF PSYCHOLOGY
UNIVERSITY OF TENNESSEE
KNOXVILLE, TN 37916

DR. WALTER SCHNEIDER
DEPT. OF PSYCHOLOGY
UNIVERSITY OF ILLINOIS
CHAMPAIGN, IL 61820

DR. ROBERT J. SEIDEL
INSTRUCTIONAL TECHNOLOGY GROUP
HUMRRO
300 N. WASHINGTON ST.
ALEXANDRIA, VA 22314

Non Govt

1 Dr. Robert Singer, Director
Motor Learning Research Lab
Florida State University
212 Montgomery Gym
Tallahassee, FL 32306

1 Dr. Richard Snow
School of Education
Stanford University
Stanford, CA 94305

1 DR. ALBERT STEVENS
BOLT BERANEK & NEWMAN, INC.
50 MOULTON STREET
CAMBRIDGE, MA 02138

1 DR. PATRICK SUPPES
INSTITUTE FOR MATHEMATICAL STUDIES IN
THE SOCIAL SCIENCES
STANFORD UNIVERSITY
STANFORD, CA 94305

1 Dr. Kikumi Tatsuoka
Computer Based Education Research Laboratory
252 Engineering Research Laboratory
University of Illinois
Urbana, IL 61801

1 DR. PERRY THORNDYKE
THE RAND CORPORATION
1700 MAIN STREET
SANTA MONICA, CA 90406

1 Dr. Benton J. Underwood
Dept. of Psychology
Northwestern University
Evanston, IL 60201

1 DR. THOMAS WALLSTEN
PSYCHOMETRIC LABORATORY
DAVIE HALL 013A
UNIVERSITY OF NORTH CAROLINA
CHAPEL HILL, NC 27514

1 Dr. Claire E. Weinstein
Educational Psychology Dept.
Univ. of Texas at Austin
Austin, TX 78712
Non Govt

Dr. David J. Weiss
M660 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455

Dr. Susan E. Whiteley
Psychology Department
University of Kansas
Lawrence, Kansas 66044
Additions to Distribution List:

LT Steven D. Harris, MSC, USN
Naval Aerospace Medical Research Lab
NAS, Pensacola, FL 32508

Dr. Fred Reif
SESAME
University of California
Berkeley, CA 94720

Dr. Robert Breaux
Human Factors Lab
Naval Training Equipment Center
Code N-215
Orlando, FL 32813