INVERSE MEAN FREE PATH, STOPPING POWER, CSDA RANGE, AND STRAGGLING IN POLYSTYRENE FOR ELECTRONS OF ENERGY ≤10 keV

J. C. Ashley
C. J. Tung
R. H. Ritchie
V. E. Anderson

Oak Ridge National Laboratory
Oak Ridge, Tennessee 37830

Approved for public release; distribution unlimited
Dr. R. Ritchie is the principal investigator for this contract. Dr. John N. Bradford (RADC/ESR) is the RADC Project Engineer.

This report has been reviewed by the RADC Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the General Public, including foreign nations.

This technical report has been reviewed and approved for publication.

John N. Bradford
JOHN N. BRADFORD
Project Engineer

Robert M. Barrett
ROBERT M. BARRETT
Director
Solid State Sciences Division

[Signature]
Scientific Report

Title:
Inverse Mean Free Path, Stopping Power, CSDA Range, and Straggling in Polystyrene for Electrons of Energy up to 10 keV

Authors:
J. C. Ashley, V. E. Anderson, C. J. Tung, R. H. Ritchie

Performing Organization Name and Address:
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37830

II. CONTROLLING OFFICE NAME AND ADDRESS
Deputy for Electronic Technology (RADC)
Hanscom AFB, Massachusetts 01731
Monitor/John N. Bradford/ESR

15. SECURITY CLASS. (of this report)
Unclassified

15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; distribution unlimited

16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
electron
electron transport
insulator
slowing-down

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
The interaction of electrons with solid polystyrene, -(C₆H₅)-, is described based on a model insulator theory to account for the response of the valence electrons, and carbon K-shell ionization cross sections derived from atomic, generalized oscillator strengths. Contributions to the inverse mean free path and energy loss due to these two excitation processes are tabulated for incident electrons with energies from 5 eV to 10 keV. Electron ranges in the continuous-slowing-down approximation and straggling are tabulated for electrons with energies from 15 eV to 10 keV.
TABLE OF CONTENTS

SECTION PAGE

I. INTRODUCTION ... 4
II. GENERAL FORMULATIONS .. 5
III. DIMFP FOR THE VALENCE BAND 7
IV. DIMFP FOR CARBON K SHELL ... 11
V. EXCHANGE CORRECTED DIMFP'S AND FORMULAE FOR THE TABULATIONS 14
VI. RESULTS ... 17
VII. REFERENCES .. 20
VIII. TABLES (EXPLANATION) ... 22

TABLE 1 - Inverse Mean Free Path of Electrons in Polystyrene 23
TABLE 2 - Stopping Power of Polystyrene 24
TABLE 3 - CSDA Range and Straggling in Polystyrene 25

LIST OF FIGURES

Fig. 1 The imaginary part of the optical dielectric function for polystyrene as measured and as calculated from a model insulator theory 8
Fig. 2 The energy loss function for polystyrene as calculated from experimental data and from a model insulator theory 8
Fig. 3 Extension of the energy loss function into the momentum transfer plane as prescribed by a model insulator theory 10
Fig. 4 DIMFP's for excitation of electrons from the valence band of polystyrene as determined by a model insulator theory for several values of incident electron energy E 12
Fig. 5 Differential cross section for ionization of the K shell in carbon as derived from generalized oscillator strengths 13
Fig. 6 DIMFP for inelastic interaction of an electron of energy E with the valence-band electrons and K-shell electrons in polystyrene 18
Fig. 7 Contributions from valence-band electrons and K-shell electrons to the stopping power of polystyrene for an electron of energy E 18
I. INTRODUCTION

A quantitative description of the interaction of electrons with solids over a wide range of energies is a subject of importance in a wide variety of basic and applied physical problems. Theoretical calculations of energy loss and range of electrons in many materials have formed the basis of at least two extensive tabulations.1,2 Both of those tabulations are based on the Bethe theory of stopping power and are restricted to electron energies \(\geq 10 \text{ keV} \). To complement these results we have employed several theoretical models to provide calculations of inverse mean free path, energy loss, csda range, and straggling for electrons with energies \(< 10 \text{ keV}\). Tables of these quantities are now available for the solids Al and Al\(_2\)O\(_3\) (Reference 3); Si and SiO\(_2\) (Reference 4); Ni, Cu, Ag, and Au (Reference 5); and Ge and GaAs (Reference 6). These tables should provide useful guides for interpretation of experimental data as well as input for calculations in applied areas.

The work presented here for the organic insulator polystyrene, -(C\(_8\)H\(_8\))-\(_n\), employs a model insulator theory3,6,7 to describe the response of the valence band electrons. The states of the tightly bound K-shell electrons are assumed to retain a free-atom-like character so the excitation of these electrons to the continuum is described by cross sections derived from atomic, generalized oscillator strengths (GOS's).8 In the following sections we describe the calculation of differential inverse mean free paths (DIMFP's) for interaction of an electron with the valence band or carbon K-shell electrons in the solid polystyrene and the derivation of inverse mean free path (IMFP) and energy loss from these DIMFP's.
Results are presented graphically for the IMFP and energy loss (or stopping power of the polystyrene) and in tabular form for the IMFP, stopping power, csda range, and straggling for electrons of energy from a few electron volts through 10 keV.

II. GENERAL FORMULATIONS

A charged particle passing through a solid interacts with a large number of electrons simultaneously, and it is thus appropriate to speak of a mean free path of the charged particle for energy transfer to the solid. Assuming the effect of the charged particle on the medium may be described in first Born approximation, the inverse mean free path, differential in momentum transfer Πk, and energy transfer $\Pi \omega$, for a particle of velocity \vec{v} is given by

$$\frac{d^2 \mu}{dk d\omega} = \frac{2e^2}{\pi \hbar v} \frac{1}{k} \operatorname{Im} \left[\frac{-1}{\varepsilon(k,\omega)} \right]$$

where $\varepsilon(k,\omega)$ is the dielectric response function of the solid.9,10 We assume in this work that the solid is isotropic and homogeneous so that ε is a scalar function of k and ω.
For our calculations of inverse mean free path, stopping power, etc., it is sufficient to compute inverse mean free paths differential in energy transfer only. This differential inverse mean free path (DIMFP) for energy loss \(\eta \omega \) by an electron with energy \(E = mv^2/2 \) in the solid is given by

\[
\tau(E, \eta \omega) = \frac{d\mu}{d(\eta \omega)} = \frac{1}{\pi a_0 E} \int_{k}^{k+} \frac{dk}{k} \text{Im}\left[\frac{-1}{\epsilon(k, \omega)} \right],
\]

where \(\epsilon_k = \sqrt{2m \left[\sqrt{E + \sqrt{E - \eta \omega}} \right]} \) and \(a_0 = \hbar^2/m e^2 \). This expression assumes that the energy-momentum relation for a swift electron in the solid does not differ appreciably from that of a free electron in vacuum.

Given \(\epsilon(k, \omega) \) for the solid, the quantities of interest here follow directly from \(\tau(E, \eta \omega) \). The inverse mean free path of the electron, \(\mu \), is given by integrating over allowed energy transfers as

\[
\mu(E) = \int d(\eta \omega) \tau(E, \eta \omega).
\]

The rate of energy loss of the electron, or the stopping power of the medium, is given by

\[
S(E) = -dE/dx = \int d(\eta \omega) \eta \omega \tau(E, \eta \omega),
\]

and the mean square energy loss per unit path length by

\[
\langle \Delta E \rangle^2 (E) = \int d(\eta \omega)(\eta \omega)^2 \tau(E, \eta \omega).
\]
With these results we may calculate the range of an electron in the continuous-slowing-down approximation (csda range) by

$$R_0(E) = \int_{E_0}^{E} dE'/S(E')$$

(6)

and the mean square fluctuation in the range or "range straggling" will be calculated from Eqs. (4) and (5) as

$$\langle (R - R_0)^2 \rangle_{AV} = \int_{E_0}^{E} dE' \frac{\omega^2(E')}{[S(E')]^3}$$

(7)

For our tabulations we take the lower limit in the integrations of Eqs. (6) and (7) as $E_0 = 10$ eV.

III. DIMFP FOR THE VALENCE BAND

The model insulator theory used to derive the DIMFP for interaction of an electron with the valence band electrons has been described and employed in several previous calculations. Instead of repeating the detailed formulae here, we present graphically some of the steps required to obtain the energy loss function, $\text{Im}[-1/\varepsilon(k,\omega)]$, which is the key ingredient in the calculation of the DIMFP.

The first step in applying the model insulator theory is to fix the adjustable parameters by fitting the theoretical expression for the imaginary part of the dielectric response function in the optical limit ($k\rightarrow 0$) to experimentally determined values of this quantity. In Figure 1 we
Fig. 1 The imaginary part of the optical dielectric function for polystyrene as measured (solid line) and as calculated from a model insulator theory.

Fig. 2 The energy loss function (in the optical limit) for polystyrene as calculated from experimental data (solid curve) and from a model insulator theory (dashed curve).
show the results of the fit using experimental values obtained by Inagaki et al.12 for polystyrene. The valence band is assumed to result from a combination of three ground state orbitals and the fit shown in Figure 1 gives the following set of parameters (as defined in References 3, 6, and 7):

<table>
<thead>
<tr>
<th>i</th>
<th>(\alpha a_0)</th>
<th>(\eta \omega_{B_i}) (eV)</th>
<th>(n_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.29</td>
<td>5.80</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>0.87</td>
<td>8.50</td>
<td>31.5</td>
</tr>
<tr>
<td>3</td>
<td>1.90</td>
<td>25.0</td>
<td>7.5</td>
</tr>
</tbody>
</table>

where \(n_i \) is the number of valence electrons per monomeric unit accounted for by each level and \(\beta = 1/2 \) for each of the three levels. Note that we account for 41.5 electrons per monomeric unit in the valence band instead of the expected 40. This redistribution of electron numbers between the core and valence electrons is due to oscillator strength coupling between the core and valence levels.12 Since there are 56 electrons per monomeric unit, we will account for an effective number of 14.5 carbon K-shell electrons (or 7.25 K shells) per monomeric unit in our calculations of DIMFP's in Section IV. The density of polystyrene for these calculations is taken to be 1.05 g/cm\(^3\). With the molecular weight of 104.14 g/mole for polystyrene, this density corresponds to \(6.07 \times 10^{-3} \) monomeric units/A\(^3\).

As a further comparison we show in Figure 2 the energy loss function in the optical limit calculated from the experimental data12 and calculated from the model insulator theory using the parameters determined above. Quite reasonable agreement is seen in both Figures 1 and 2.

The extension of the energy loss function to arbitrary values of momentum transfer as determined by the model insulator theory is illustrated in Figure 3 where energy and momentum transfer are given in atomic units.
Fig. 3 Extension of the energy loss function into the momentum transfer plane as prescribed by a model insulator theory.
Calculations of DIMFP from Eq. (2) are illustrated in Figure 4 where we plot E_t as a function of energy transfer for several values of electron energy, with all quantities expressed in atomic units.

IV. DIMFP FOR CARBON K SHELL

From a general expression for the dielectric function of a homogeneous, isotropic system, we may show that for values of ω which correspond to ionization of a given inner shell in a solid that

$$\text{Im} \left[-1/\epsilon(k,\omega) \right] \approx \text{Im} \epsilon(k,\omega) \approx \frac{2\pi ne^2}{\hbar \omega} \frac{df(k,\omega)}{d\omega},$$

where $df/d\omega$ is the GOS and n is the number of those inner shells per unit volume in the solid. Equation (2) thus leads to

$$\tau(E,\hbar\omega) = \frac{8\pi a_0^2 n}{(E/R)(\hbar\omega/R)} \int_{k^-}^{k^+} \frac{dk}{k} \frac{df(k,\omega)}{d(\hbar\omega)},$$

where $R = e^2/2a_0 = 13.6$ eV.

Generalized oscillator strengths for ionization of electrons from the K shell of carbon have been calculated by McGuire. These GOS values have been used in Eq. (9) to obtain the differential cross section $d\sigma/d(\hbar\omega) = \tau/n$. Some typical results are shown in Figure 5 for several values of electron energy. The binding energy of the K-shell electrons in carbon is ~ 282 eV. As discussed in Section III, we account for an effective 7.25 K shells per monomeric unit in calculating τ.
Fig. 4 DIMFP's for excitation of electrons from the valence band of polystyrene as determined by a model insulator theory for several values of incident electron energy E.
Fig. 5. Differential cross section for ionization of the K shell in carbon as derived from generalized oscillator strengths. E is the Rydberg energy $e^2/2a_0 = 13.6$ eV.
V. EXCHANGE CORRECTED DIMFP's AND FORMULAE FOR THE TABULATIONS

We have included the effect of electron exchange in our calculations in a simple manner based on the form of the Mott formula (nonrelativistic Møller formula) for scattering of an incident electron with a free electron. The cross section for finding a scattered electron with energy \(W \) per unit energy interval is given by

\[
\frac{d\sigma}{dW} = \frac{4\pi e^4}{E} \left[\frac{1}{W^2} + \frac{1}{(E-W)^2} - \frac{1}{W(E-W)} \right]
\]

for an incident electron of energy \(E \), except for energies close to \(W = 0 \) and \(W = E \). Near \(W = 0 \) and \(W = E \) the interference term (third term on the right side of Eq. (10)) is small compared with the first or second term, respectively.

The DIMFP for excitation of an electron from a particular state \(i \) may be written in the form

\[
\tau_i(E, \omega) = \frac{1}{E} F_i(E, \omega).
\]

If we assume that the width of the level from which an electron is excited is quite narrow, we obtain from Eq. (11) the DIMFP for production of a secondary electron with energy \(E_s \) as

\[
\tau_i^S(E, E_s) = \frac{1}{E} F_i(E, E_s^B + E_s).
\]
where E_i^B is the binding energy of the i^{th} level (a positive quantity).

The exchange corrected DIMFP is taken as

$$\tau_{i}^{\text{exc}}(E, \mathcal{H}_0) = \frac{1}{E} \left\{ F_i(E, \mathcal{H}_0) + F_i(E, E + E_i^B - \mathcal{H}_0) \right\}$$

$$- \left[1 - \sqrt{\frac{E_i^B}{E}} \right] \left[F_i(E, \mathcal{H}_0) F_i(E, E + E_i^B - \mathcal{H}_0) \right]^{1/2}. \quad (13)$$

Since $E_{i} = 1/(\mathcal{H}_0)^2$ for large E and \mathcal{H}_0, Eq. (13) reduces in this limit to the form given by Eq. (10). The factor $1 - \sqrt{E_i^B/E}$ reduces the contribution of the third term in Eq. (13) as $E \to E_i^B$. This form for the exchange corrected DIMFP has been used in our calculations for the inner shell and for the valence bands (since our model assumes the width of these levels to be quite narrow).

If we now define the more energetic of the two electrons after collision to be the primary and account for exchange through Eq. (13), Eq. (3) gives the contribution to the inverse mean free path due to excitation of an electron from the i^{th} level as

$$\mu_i(E) = \int_{E_i^B}^{(E+E_i^B)/2} d(\mathcal{H}_0) \tau_i^{\text{exc}}(E, \mathcal{H}_0). \quad (14)$$

Similarly, for the stopping power and mean square energy loss per unit path length, we have from Eq. (4) and Eq. (5)

$$S_i(E) = \int_{E_i^B}^{(E+E_i^B)/2} d(\mathcal{H}_0) \mathcal{H}_0 \tau_i^{\text{exc}}(E, \mathcal{H}_0) \quad (15).$$
and

$$\omega_i^2(E) = \int_{E_i^B}^{(E+E_i^B)/2} \frac{d(\Omega_{\omega})}{(\Omega_{\omega})^2} \tau_i^{\text{exc}}(E,\Omega_{\omega}).$$ \hfill (16)

For the remaining calculations we form the sums

$$S_{\text{exc}}(E) = \sum_i S_i(E)$$ \hfill (17)

and

$$\omega_{\text{exc}}^2(E) = \sum_i \omega_i^2(E).$$ \hfill (18)

where the index i includes the terms appropriate for a given solid, including exchange corrections as indicated above. The csda range is calculated from

$$R_0(E) = \int_{10 \text{eV}}^{E} \frac{dE'}{S_{\text{exc}}(E')}$$ \hfill (19)

corresponding to an electron slowing down in a continuous manner from an energy E to 10eV. The mean square fluctuation in the csda range based on Eq. (7) is calculated as

$$\langle (R-R_0)^2 \rangle_{\text{AV}} = \int_{10 \text{eV}}^{E} \frac{dE'}{S_{\text{exc}}(E')} \frac{\omega_{\text{exc}}^2(E')}{[S_{\text{exc}}(E')]^3}. \hfill (20)$$
VI. RESULTS

Before presenting the tabulations for polystyrene, we discuss briefly the results for IMFP and stopping power. In Figure 6 the IMFP's are shown for interactions with the valence band (sum of contributions from the three levels, Section III) and with the carbon K shell. The K-shell contribution is quite small compared to the valence band contribution and amounts to \(\approx 1\% \) of the total IMFP in the energy range covered here. We have found no measurements of electron mean free paths in polystyrene for \(E \leq 10 \text{ keV} \). However, Swanson and Powell14 performed characteristic energy loss measurements using 20 keV electrons on polystyrene films and determined mean free paths for the 7 eV and 21 eV losses. These losses correspond to the peaks seen in the energy loss function derived from optical data shown in Figure 2. They determine a mean free path \(\lambda \), in Å, of 17,400 ± 5,500 for the 7 eV loss and 410 ± 80 for the 21 eV loss. If we assume these represent the dominant inelastic loss processes, then the total mean free path (\(1/\lambda_{\text{TOTAL}} = 1/\lambda_{7\text{eV}} + 1/\lambda_{21\text{eV}} \)) is 400 Å (± 20%) at 20 keV. Extrapolating our IMFP values to 20 keV yields \(\lambda \approx 2.5 \times 10^{-3} \text{ Å}^{-1} \) or \(\lambda = 1/\mu = 400 \text{ Å} \) in excellent agreement, possibly fortuitous, with the experimental result.

In Figure 7 we show the contributions to the stopping power of polystyrene for electrons. Also shown is the stopping power derived from Bethe-Bloch theory1,2 for \(E \geq 10 \text{ keV} \). At 10 keV, the Bethe-Bloch result is \(S = 0.237 \text{ eV/Å} \) for polystyrene of density \(\rho = 1.05 \text{ g/cm}^3 \). Our value for \(S = S \) (valence) + \(S \) (K-shell) is \(S = 0.238 \text{ eV/Å} \) which
Fig. 6. IMFP for inelastic interaction of an electron of energy \(E \) with the valence-band electrons and K-shell electrons in polystyrene.

Fig. 7. Contributions from valence-band electrons and K-shell electrons to the stopping power of polystyrene for an electron of energy \(E \).
agrees remarkably well with the previously tabulated results1,2 at this energy. Our tabulated results for μ, S, range, and straggling are presented in Section VIII.
VII. REFERENCES

VIII. TABLES

The results of the calculations for polystyrene, at a density of 1.05 g/cm3, are given in the following tables:

Table 1 presents total inverse mean free path and contributions to IMFP due to interactions with valence band electrons or carbon K-shell electrons, Eq. (14), in units of Å^{-1} for incident electrons with energies $5 \text{ eV} \leq E \leq 10 \text{ keV}$.

Table 2 presents total stopping power and contributions to the stopping power due to interactions with valence band electrons or carbon K-shell electrons, Eq. (15), in units of $\text{eV}/\text{Å}$ for electron energies $5 \text{ eV} \leq E \leq 10 \text{ keV}$.

Table 3 presents the csda range, Eq. (19), in units of Å, the mean square energy loss, Eq. (16), in $(\text{eV})^2/\text{Å}$, the mean square range fluctuation, Eq. (20), in Å^2, and the relative range straggling given by $\left[\frac{(R-R_0)_{AV}^2}{R_0}\right]^{\frac{1}{2}}$, for electron energies $15 \text{ eV} \leq E \leq 10 \text{ keV}$.
<table>
<thead>
<tr>
<th>ELECTRON ENERGY (EV)</th>
<th>INVERSE MEAN FREE PATH (A-1)</th>
<th>INDMFP</th>
<th>VALENCE BAND</th>
<th>INNER SHELL (C-K SHELL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.000 00</td>
<td>0.4</td>
<td>0.0</td>
<td>4.5900-03</td>
<td>0.0</td>
</tr>
<tr>
<td>1.000 01</td>
<td>4.5900-03</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1.500 01</td>
<td>5.7310-02</td>
<td>0.0</td>
<td>5.7310-02</td>
<td>0.0</td>
</tr>
<tr>
<td>2.500 01</td>
<td>7.8890-02</td>
<td>0.0</td>
<td>9.8500-02</td>
<td>0.0</td>
</tr>
<tr>
<td>3.500 01</td>
<td>1.1440-01</td>
<td>0.0</td>
<td>1.1440-01</td>
<td>0.0</td>
</tr>
<tr>
<td>4.500 01</td>
<td>1.3630-01</td>
<td>0.0</td>
<td>1.3630-01</td>
<td>0.0</td>
</tr>
<tr>
<td>5.500 01</td>
<td>1.4280-01</td>
<td>0.0</td>
<td>1.4280-01</td>
<td>0.0</td>
</tr>
<tr>
<td>6.500 01</td>
<td>1.4700-01</td>
<td>0.0</td>
<td>1.4700-01</td>
<td>0.0</td>
</tr>
<tr>
<td>7.500 01</td>
<td>1.4910-01</td>
<td>0.0</td>
<td>1.4910-01</td>
<td>0.0</td>
</tr>
<tr>
<td>8.500 01</td>
<td>1.4990-01</td>
<td>0.0</td>
<td>1.4990-01</td>
<td>0.0</td>
</tr>
<tr>
<td>9.500 01</td>
<td>1.4990-01</td>
<td>0.0</td>
<td>1.4990-01</td>
<td>0.0</td>
</tr>
<tr>
<td>1.000 02</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>1.500 02</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>2.000 02</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>2.500 02</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>3.000 02</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>3.500 02</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>4.000 02</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>4.500 02</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>5.000 02</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>5.500 02</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>6.000 02</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>6.500 02</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>7.000 02</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>7.500 02</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>8.000 02</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>8.500 02</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>9.000 02</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>9.500 02</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>1.000 03</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>1.500 03</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>2.000 03</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>2.500 03</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>3.000 03</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>3.500 03</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>4.000 03</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>4.500 03</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>5.000 03</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>5.500 03</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>6.000 03</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>6.500 03</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>7.000 03</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>7.500 03</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>8.000 03</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>8.500 03</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>9.000 03</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>9.500 03</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>1.000 04</td>
<td>1.5400-01</td>
<td>0.0</td>
<td>1.5400-01</td>
<td>0.0</td>
</tr>
<tr>
<td>ELECTRON ENERGY EV</td>
<td>STOPPING POWER EV/A</td>
<td>VALENCE BAND</td>
<td>INNER SHELL</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>5.000 00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1.000 01</td>
<td>1.4930-02</td>
<td>3.3690-01</td>
<td>6.1860-01</td>
<td></td>
</tr>
<tr>
<td>1.500 01</td>
<td>1.1560 00</td>
<td>1.6490 00</td>
<td>2.6250 00</td>
<td></td>
</tr>
<tr>
<td>2.000 01</td>
<td>1.2620 00</td>
<td>2.5830 00</td>
<td>2.7550 00</td>
<td></td>
</tr>
<tr>
<td>2.500 01</td>
<td>2.5850 00</td>
<td>2.9550 00</td>
<td>3.2880 00</td>
<td></td>
</tr>
<tr>
<td>3.000 01</td>
<td>3.2840 00</td>
<td>3.5450 00</td>
<td>3.7450 00</td>
<td></td>
</tr>
<tr>
<td>3.500 01</td>
<td>3.5010 00</td>
<td>3.9010 00</td>
<td>4.1100 00</td>
<td></td>
</tr>
<tr>
<td>4.000 01</td>
<td>4.0190 00</td>
<td>4.4190 00</td>
<td>4.7430 00</td>
<td></td>
</tr>
<tr>
<td>4.500 01</td>
<td>4.4180 00</td>
<td>4.8190 00</td>
<td>5.1280 00</td>
<td></td>
</tr>
<tr>
<td>5.000 01</td>
<td>4.8170 00</td>
<td>5.2260 00</td>
<td>5.5290 00</td>
<td></td>
</tr>
<tr>
<td>5.500 01</td>
<td>5.2260 00</td>
<td>5.6260 00</td>
<td>5.9290 00</td>
<td></td>
</tr>
<tr>
<td>6.000 01</td>
<td>5.6250 00</td>
<td>6.0290 00</td>
<td>6.3290 00</td>
<td></td>
</tr>
<tr>
<td>6.500 01</td>
<td>6.0280 00</td>
<td>6.4290 00</td>
<td>6.7280 00</td>
<td></td>
</tr>
<tr>
<td>7.000 01</td>
<td>6.4270 00</td>
<td>6.8280 00</td>
<td>7.1270 00</td>
<td></td>
</tr>
<tr>
<td>7.500 01</td>
<td>6.8270 00</td>
<td>7.2260 00</td>
<td>7.5260 00</td>
<td></td>
</tr>
<tr>
<td>8.000 01</td>
<td>7.2260 00</td>
<td>7.6250 00</td>
<td>7.9250 00</td>
<td></td>
</tr>
<tr>
<td>8.500 01</td>
<td>7.6240 00</td>
<td>8.0240 00</td>
<td>8.3240 00</td>
<td></td>
</tr>
<tr>
<td>9.000 01</td>
<td>8.0230 00</td>
<td>8.4230 00</td>
<td>8.7230 00</td>
<td></td>
</tr>
<tr>
<td>9.500 01</td>
<td>8.4220 00</td>
<td>8.8220 00</td>
<td>9.1220 00</td>
<td></td>
</tr>
<tr>
<td>1.000 04</td>
<td>9.8210 00</td>
<td>10.2210 00</td>
<td>10.5210 00</td>
<td></td>
</tr>
<tr>
<td>ELECTRON ENERGY EV</td>
<td>CSDA RANGE (E TO 10EV) A</td>
<td>MEAN SQUARE ENERGY LOSS EV/Å</td>
<td>MEAN SQUARE RANGE FLUCTUATION A²</td>
<td>RELATIVE RANGE STRAGGLING</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>1.500 01</td>
<td>4.2640 01</td>
<td>3.4710 00</td>
<td>3.6620 03</td>
<td>1.7650 00</td>
</tr>
<tr>
<td>2.000 01</td>
<td>5.2690 01</td>
<td>3.9790 00</td>
<td>3.9630 03</td>
<td>1.4570 00</td>
</tr>
<tr>
<td>2.500 01</td>
<td>5.9160 01</td>
<td>1.8330 01</td>
<td>1.2570 03</td>
<td>1.1710 00</td>
</tr>
<tr>
<td>3.500 01</td>
<td>6.4420 01</td>
<td>2.1310 01</td>
<td>1.2900 03</td>
<td>1.0950 00</td>
</tr>
<tr>
<td>4.000 01</td>
<td>6.6540 01</td>
<td>5.9850 01</td>
<td>2.1040 03</td>
<td>1.2080 00</td>
</tr>
<tr>
<td>5.500 01</td>
<td>6.9950 01</td>
<td>8.8400 01</td>
<td>1.1370 03</td>
<td>1.1170 00</td>
</tr>
<tr>
<td>7.500 01</td>
<td>7.1410 01</td>
<td>9.0180 02</td>
<td>2.1290 03</td>
<td>1.0760 00</td>
</tr>
<tr>
<td>1.500 02</td>
<td>7.2790 01</td>
<td>1.1340 02</td>
<td>1.1690 03</td>
<td>1.0570 00</td>
</tr>
<tr>
<td>5.500 02</td>
<td>7.4090 01</td>
<td>1.5130 02</td>
<td>1.1900 03</td>
<td>1.0410 00</td>
</tr>
<tr>
<td>8.500 02</td>
<td>7.8790 01</td>
<td>1.5870 02</td>
<td>1.4810 03</td>
<td>1.3660 00</td>
</tr>
<tr>
<td>1.500 03</td>
<td>8.5130 01</td>
<td>1.6840 02</td>
<td>1.3200 03</td>
<td>1.3660 00</td>
</tr>
<tr>
<td>3.500 03</td>
<td>8.8101 01</td>
<td>1.6990 02</td>
<td>1.2100 03</td>
<td>1.4700 03</td>
</tr>
<tr>
<td>4.500 03</td>
<td>9.4430 01</td>
<td>1.7320 02</td>
<td>1.5500 03</td>
<td>1.3200 03</td>
</tr>
<tr>
<td>7.500 03</td>
<td>1.2360 02</td>
<td>2.0980 02</td>
<td>1.5500 03</td>
<td>5.1430 01</td>
</tr>
<tr>
<td>9.500 03</td>
<td>1.4030 02</td>
<td>2.1020 02</td>
<td>1.3200 03</td>
<td>3.0650 01</td>
</tr>
<tr>
<td>1.500 04</td>
<td>1.5550 02</td>
<td>2.1530 02</td>
<td>2.2700 03</td>
<td>8.1700 01</td>
</tr>
<tr>
<td>2.000 04</td>
<td>1.6980 02</td>
<td>2.1750 02</td>
<td>2.7100 03</td>
<td>6.9400 01</td>
</tr>
<tr>
<td>2.500 04</td>
<td>2.2260 02</td>
<td>2.1930 02</td>
<td>1.3130 04</td>
<td>7.0400 01</td>
</tr>
<tr>
<td>3.500 04</td>
<td>2.4470 02</td>
<td>2.2190 02</td>
<td>1.1050 04</td>
<td>4.4100 01</td>
</tr>
<tr>
<td>4.500 04</td>
<td>2.7240 02</td>
<td>2.2290 02</td>
<td>1.4790 04</td>
<td>4.0800 01</td>
</tr>
<tr>
<td>5.500 04</td>
<td>2.9930 02</td>
<td>2.2590 02</td>
<td>2.0760 04</td>
<td>3.7200 01</td>
</tr>
<tr>
<td>7.500 04</td>
<td>3.5680 02</td>
<td>2.2860 02</td>
<td>1.9770 04</td>
<td>3.8200 01</td>
</tr>
<tr>
<td>9.500 04</td>
<td>3.8750 02</td>
<td>2.3000 02</td>
<td>1.3860 04</td>
<td>3.7070 01</td>
</tr>
<tr>
<td>1.500 05</td>
<td>4.1940 02</td>
<td>2.3130 02</td>
<td>2.1400 04</td>
<td>3.6700 01</td>
</tr>
<tr>
<td>2.000 05</td>
<td>4.4870 02</td>
<td>2.3310 02</td>
<td>1.1940 04</td>
<td>3.5900 01</td>
</tr>
<tr>
<td>2.500 05</td>
<td>4.8200 02</td>
<td>2.3560 02</td>
<td>1.8390 04</td>
<td>3.5020 01</td>
</tr>
<tr>
<td>3.500 05</td>
<td>5.4620 02</td>
<td>2.3830 02</td>
<td>1.0050 05</td>
<td>3.5020 01</td>
</tr>
<tr>
<td>4.500 05</td>
<td>5.9540 02</td>
<td>2.4030 02</td>
<td>2.4290 05</td>
<td>3.4540 01</td>
</tr>
<tr>
<td>5.500 05</td>
<td>6.4340 02</td>
<td>2.4440 02</td>
<td>3.2500 05</td>
<td>3.3200 01</td>
</tr>
<tr>
<td>7.500 05</td>
<td>6.9330 02</td>
<td>2.4570 02</td>
<td>1.5190 06</td>
<td>3.3130 01</td>
</tr>
<tr>
<td>9.500 05</td>
<td>7.5280 02</td>
<td>2.4820 02</td>
<td>1.3230 06</td>
<td>3.0330 01</td>
</tr>
<tr>
<td>1.500 06</td>
<td>8.1900 02</td>
<td>2.5020 02</td>
<td>2.1600 06</td>
<td>3.1780 01</td>
</tr>
<tr>
<td>2.000 06</td>
<td>8.6950 02</td>
<td>2.5230 02</td>
<td>2.1600 06</td>
<td>2.9760 01</td>
</tr>
<tr>
<td>2.500 06</td>
<td>9.4200 02</td>
<td>2.5450 02</td>
<td>2.1070 07</td>
<td>2.9510 01</td>
</tr>
<tr>
<td>3.500 06</td>
<td>1.0860 04</td>
<td>2.1370 02</td>
<td>1.4090 07</td>
<td>2.9280 01</td>
</tr>
<tr>
<td>4.500 06</td>
<td>1.2370 04</td>
<td>2.2100 02</td>
<td>2.1809 07</td>
<td>2.9060 01</td>
</tr>
<tr>
<td>5.500 06</td>
<td>1.3500 04</td>
<td>2.2810 02</td>
<td>2.6610 07</td>
<td>2.8860 01</td>
</tr>
<tr>
<td>7.000 06</td>
<td>1.4300 04</td>
<td>2.3800 02</td>
<td>3.2139 07</td>
<td>2.8600 01</td>
</tr>
<tr>
<td>9.000 06</td>
<td>1.5360 04</td>
<td>2.4600 02</td>
<td>3.4560 07</td>
<td>2.8360 01</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

Defense Communication Engineer Center
1860 Wiehle Ave
Reston, VA 22090
Attn: Code R320 C W Bergman
Attn: Code R410 J W McClean

Director
Defense Communications Agency
Washington, DC 20305
Attn: Code 540.5
Attn: Code 930 M 1 Burgett Jr

Defense Documentation Center
Cameron Station
Alexandria, VA 22314
Attn: TC

Director
Defense Intelligence Agency
Washington, DC 20301
Attn: DS-4A2

Director
Defense Nuclear Agency
Washington, DC 20305
Attn: TITL Tech Library
Attn: DNST
Attn: RAEV
Attn: STVL

Dir of Defense Rsch & Engineering
Department of Defense
Washington, DC 20301
Attn: S&SS (OS)

Commander
Field Command
Defense Nuclear Agency
Kirtland AFB, NM 87115
Attn: FCPR

Director
Interservice Nuclear Weapons School
Kirtland AFB, NM 87115
Attn: Document Control

Director
Joint Strat Tgt Planning Staff JCS
Offutt AFB Omaha, NE 68111
Attn: JLTW-2

Chief
Livermore Div Prog Fld Command DNA
Lawrence Livermore Laboratory
P.O. Box 808
Livermore, CA 94550
Attn: FCPRL

Director
National Security Agency
Ft. George G. Meade, MD 20755
Attn: 0 0 Van Gunten R-423
Attn: TDL

DEPARTMENT OF ARMY

Project Manager
Army Tactical Data Systems
US Army Electronics Command
Fort Monmouth, NJ 07703
Attn: DRCPN-TDS-SD
Attn: DWAIN E B Rusew

Commander
BMD System Command
P.O. Box 1500
Huntsville, AL 35801
Attn: BMESC-TEN

Commander
Frankford Arsenal
Bridge and Tacony Sts
Philadelphia, PA 19137
Attn: SARFA FCD

Commander
Harley Diamond Laboratories
2800 Powder Mill Road
Adelphi, MD 20783
Attn: DRXDO-EM
Attn: DRXDO-NP
Attn: DRXDO-T1/Tech Library
Attn: DRXDO-RJ
Attn: DRXDO-RC
Attn: J Halpin
Attn: J McGarry

Commanding Officer
Night Vision Laboratory
US Army Electronics Command
Fort Belvoir, VA 22060
Attn: Ca,t. Allan S Parker
Commander
Picatinny Arsenal
Dover, NJ 07801
Attn: SMUPA-FR-S-P
Attn: SARPA-FR-E
Attn: SMUPA-ND-W
Attn: SMUPA-ND-D-B
Attn: SARPA-ND-C-E
Attn: SARPA-ND-N
Attn: SMUPA-ND-N-E

Commander
Redstone Scientific Information Center
US Army Missile Command
Redstone Arsenal, AL 35809
Attn: Chief, Documents

Secretary of the Army
Washington, DC 20310
Attn: ODUSA or D Willard

Director
Redstone
White Sands Missile Range NM 88002
Attn: ATAA-EAC

Director
US Army Ballistic Research Labs
Aberdeen Proving Ground, MD 21005
Attn: DRXBR-X
Attn: DRXBR-VL
Attn: DRXBR-AM
Attn: DRXRD-BVL

Chief
US Army Communications Systems Agency
Fort Monmouth, NJ 07703
Attn: SCCM-AD-SV/Library

Commander
US Army Electronics Command
Fort Monmouth, NJ 07703
Attn: DRSSEL-TL-1R
Attn: DRSSEL-CE
Attn: DRSSEL-CT-HDK
Attn: DRSSEL-GG-TD
Attn: DRSSEL-TL-MD
Attn: DRSSEL-TL-ND
Attn: DRSSEL-PL-ENV

Commandant
US Army Engineer School
Ft Belvoir VA 22060
Attn: ATSE-CTD-CS

Commander-in-Chief
US Army Europe & Seventh Army
APO New York 09403
(Heidelberg)
Attn: ODCSE-E AEAGE-P1

Commandant
US Army Field Artillery School
Fort Sill, OK 73503
Attn: ATSF-CTD-ME

Commander
US Army Material Dev & Readiness CMD
5001 Eisenhower Ave
Alexandria, VA 22333
Attn: DRCDE-D

Commander, US Army Missile Command
Redstone Arsenal, AL 35809
Attn: DRS1-RGP
Attn: DRSIPM-PE-EA
Attn: DRSML-RGG
Attn: DRSML-RGP
Attn: DRSML-RRR

Chief
US Army Nuc & Chemical Surety CP
Bldg 2073, North Area
Ft Belvoir, VA 22060
Attn: NOSG-ND

Commander
US Army Nuclear Agency
7500 Backlick Road
Building 2073
Springfield, VA 22150
Attn: ATCN-W

Commander
US Army Tank Automotive Command
Warren, MI 48090
Attn: DRCTPM-GCM-SW

Commander
White Sands Missile Range
White Sands Missile Range NM 88002
Attn: STEWS-TE-NT

DEPARTMENT OF NAVY

Chief of Naval Research
Navy Department
Arlington, VA 22217
Attn: Code 427
Commander Officer
Naval Avionics Facility
21st & Arlington Ave
Indianapolis, IN 46218
Attn: Branch 942

Commander
Naval Electronic Systems Command HqS
Washington, DC 20360
Attn: Code 504511
Attn: Code 50451
Attn: PME 117-21
Attn: Code 5032
Attn: Flex 05323

Commanding Officer
Naval Intelligence Support Ctr
4301 Suitland Road, Bldg. 5
Washington, DC 20390
Attn: NISC-45

Director
Naval Research Laboratory
Washington, DC 20375
Attn: Code 4004
Attn: Code 6631
Attn: Code 5210
Attn: Code 5216
Attn: Code 6460
Attn: Code 601
Attn: Code 7701
Attn: Code 2627

Commander
Naval Sea Systems Command
Navy Department
Washington, DC 20362
Attn: SEA-9931

Officer-in-Charge
Naval Surface Weapons Center
White Oak, Silver Spring, MD 20910
Attn: Code WA52
Attn: Code WA501/Navy Nuc Prgms Off
Attn: Code WA50

Commander
Naval Weapons Center
China Lake, CA 9355
Attn: Code 533 Tech Library

Commanding Officer
Naval Weapons Evaluation Facility
Kirtland AFB Albuquerque, NM 87117
Attn: Code ATG/Mr Stanley

Commanding Officer
Naval Weapons Support Center
Crane, IN 47522
Attn: Code 7024/J Ramsey
Attn: Code 70242/J A Munarin

Commanding Officer
Nuclear Weapons TNG Center Pacific
Naval Air Station, North Island
San Diego, CA 92135
Attn: Code 50

Director
Strategic Systems Project Office
Navy Department
Washington, DC 20376
Attn: SP 2701
Attn: NSF-2342
Attn: NSF-27331

DEPARTMENT OF THE AIR FORCE

RADEC/Deputy for Electronic Technology
Hanscom AFB, MA 01731
Attn: ET/Stop 30/E Cormier
Attn: ES/Stop 30/F Shepherd
Attn: ES/Stop 30/E A Burke

AF Institute of Technology, AU
Wright-Patterson AFB, OH 45433
Attn: ENP/C J Bridgman

AF Materials Laboratory, AFSC
Wright-Patterson AFB, OH 45433
Attn: LTE

AF Weapons Laboratory, AFSC
Kirtland AFB, NM 87117
Attn: DES
Attn: ELA
Attn: ELP TREE SECTION
Attn: NT/Carl E Baum
Attn: ELS
Attn: NTS

AFTAC
Patrick AFB FL 32925
Attn: TFS/Maj M F Schneider
US Energy Research & Dev Admin
Albuquerque Operations Office
P. O. Box 5400
Albuquerque, NM 87115
Attn: Doc Con for WSSB

OTHER GOVERNMENT

Department of Commerce
National Bureau of Standards
Washington, DC 20234
Attn: Judson C French

DEPARTMENT OF DEFENSE CONTRACTORS

Aerojet Electro-Systems Co.
Div of Aerojet-General Corp.
P. O. Box 296, 1100 W. Hollyvale Dr
Azusa, CA 91702
Attn: T D Hanscome

Aerospace Corp.
P. O. Box 92957
Los Angeles, CA 90009
Attn: John Ditre
Attn: Irving M Garfunkel
Attn: S P Bower
Attn: Julian Reinheimer
Attn: L W Aukerman
Attn: Library
Attn: William W Willis

Analog Technology Corp.
3410 East Foothill Boulevard
 Pasadena, CA 91107
Attn: J J Baum

AVCO Research & Systems Group
201 Lowell St
Wilmington, MA 01887
Attn: Research Lib/A830 Rm 7201

BDM Corp.
7915 Jones Branch Drive
McLean, VA 22101
Attn: T H Neighbors

BDM Corporation
P. O. Box 9274
Albuquerque International
Albuquerque, NM 87119
Attn: D R Alexander

Bendix Corp.
Communication Division
Fast Joppa Road
Baltimore, MD 21204
Attn: Document Control

Bendix Corp.
Research Laboratories Division
Bendix Center
Southfield, MI 48075
Attn: Mgr Prgm Dev/D J Niehaus
Attn: Max Frank

Boeing Company
P. O. Box 3707
Seattle, WA 98124
Attn: H W Wicklein/NS 17-11
Attn: Itsu Amura/2R-00
Attn: Aerospace Library
Attn: R S Caldwell/2R-00
Attn: Carl Rosenberg/2R-00

Booz-Allen and Hamilton, Inc.
106 Apple Street
Tinton Falls, NJ 07724
Attn: Raymond J Chrisner

California Institute of Technology
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91103
Attn: J Bryden
Attn: A C Stanley

Charles Stark Draper Laboratory Inc.
555 Technology Square
Cambridge, MA 02139
Attn: Kenneth Fertig
Attn: Paul R Kelly

Cincinnati Electronics Corp.
2630 Glendale - Milford Road
Cincinnati, OH 45241
Attn: Lois Hammond
Attn: C R Stump

Control Data Corporation
P. O. Box 0
Minneapolis, MN 55440
Attn: Jack Meehan

Cutler-Hammer, Inc.
AIL Division
Comac Road
Deer Park, NY 11729
Attn: Central Tech Files/A Anthony
Dikewood Industries, Inc.
1009 Bradbury Drive, S. E.
Albuquerque, NM 87106
Attn: L Wayne Davis

E-Systems, Inc.
Greenville Division
P. O. Box 1056
Greenville, TX 75401
Attn: Library 8-50100

Effects Technology, Inc.
5383 Hollister Avenue
Santa Barbara, CA 93111
Attn: Edward J Steele

Exp & Math Physics Consultants
P. O. Box 66331
Los Angeles, CA 90066
Attn: Thomas M Jordan

Fairchild Camera & Instrument Corp.
464 Ellis St
Mountain View, CA 94040
Attn: Sec Dept for 2-233 D K Myers

Fairchild Industries, Inc.
Sherman Fairchild Technology Center
203/1 Century Boulevard
Germantown, MD 20767
Attn: Mgr Config Data & Standards

Florida, University of
P. O. Box 284
Gainesville, FL 32601
Attn: Patricia B Rambo
Attn: D P Kennedy

Ford Aerospace & Communications Corp.
3939 Fabian Way
Palo Alto, CA 94303
Attn: Edward R Hahn/MS-X22
Attn: Donald R McMorrow/MS-G30
Attn: Samuel R Crawford/MS-531

Ford Aerospace & Comm Operations
Ford & Jamboree Roads
Newport Beach, CA 92663
Attn: F R Poncelet Jr.
Attn: Ken C Attinger
Attn: Tech Info Section

Franklin Institute, The
20th St and Parkway
Philadelphia, PA 19103
Attn: Ramie H Thompson

Garrett Corporation
P. O. Box 92248, 9851 Sepulveda Blvd
Los Angeles, CA 90009
Attn: Robert E Weir/Dept 93-9

General Dynamics Corp.
Electronics Div Orlando Operations
P. O. Box 2566
Orlando, FL 32802
Attn: D W Coleman

General Electric Company
Space Division
Valley Forge Space Center
Goddard Blvd King of Prussia
P. O. Box 8555
Philadelphia, PA 19101
Attn: Larry I Chasen
Attn: John L Andrews
Attn: Joseph C Peden/VFSC, Rm 4230M

General Electric Company
Re-Entry & Environmental Systems Div
P. O. Box 7722
3198 Chestnut St
Philadelphia, PA 19101
Attn: Robert V Benedict
Attn: John W Palchefsly Jr
Attn: Ray E Anderson

General Electric Company
Ordnance Systems
100 Plastics Ave.
Pittsfield, MA 01201

General Electric Company
Tempo-Center for Advanced Studies
816 State St (P O Drawer QQ)
Santa Barbara, CA 93102
Attn: Royden R Rutherford
Attn: DASIAC
Attn: M Espig
Attn: William McNamera

31
General Electric Company
Aircraft Engine Business Group
Evendale Plant Int Hwy 75 S
Cincinnati, OH 45215
Attn: John A Ellerhorst E2

General Electric Company
Aerospace Electronics Systems
French Road
Utica, NY 13503
Attn: Charles M Hewison/Drop 624
Attn: W J Patterson/Drop 233

General Electric Company
P. O. Box 5000
Binghamton, NY 13902
Attn: David W Pepin/Drop 160

General Electric Company—Tempo
c/o Defense Nuclear Agency
Washington, DC 20305
Attn: DASIAAC
Attn: William Alfonte

General Research Corporation
P. O. Box 3587
Santa Barbara, CA 93105
Attn: Robert D Hill

Georgia Institute of Technology
Georgia Tech Research Institute
Atlanta, GA 30332
Attn: R Curry

Grumman Aerospace Corporation
South Oyster Bay Road
Bethpage, NY 11714
Attn: Jerry Rogers/Dept 533

GTE Sylvania, Inc.
Electronics Systems GRP—Eastern Div
77 A St
Needham, MA 02194
Attn: Charles A Thornhill, Librarian
Attn: James A Waldon
Attn: Leonard L Blaisdell

GTE Sylvania, Inc.
189 B St
Needham Heights, MA 02194
Attn: Paul B Fredrickson
Attn: Herbert A Ullman
Attn: H & V Group
Attn: Charles H Ramsbottor

Gulton Industries, Inc.
Engineered Magnetics Division
13041 Cermak Ave
Hawthorne, CA 90250
Attn: Engnmagnetics Div

Harris Corp.
Harris Semiconductor Division
P. O. Box 883
Melbourne, FL 32901
Attn: Wayne E Abare/MS 16-111
Attn: Carl F Davis/MS 17-220
Attn: T L Clark/MS 4040

Hazeltine Corp.
Pulaski Rd
Greenlawn, NY 11740
Attn: Tech Info Ctr/M Waite

Honeywell Inc.
Avionics Division
2600 Ridgeway Parkway
Minneapolis, MN 55413
Attn: Ronald R Johnson/Al622
Attn: R J Kell/MS S2572

Honeywell Inc.
Avionics Division
13350 US Highway 19 North
St Petersburg, FL 33733
Attn: H H Noble/MS 725-5A
Attn: S H Graaff/MS 725-J

Honeywell Inc.
Radiation Center
2 Forbes Road
Lexington, MA 02173
Attn: Technical Library

Hughes Aircraft Company
Centinela and Teale
Culver City, CA 90230
Attn: Dan Binder/MS 6-D147
Attn: Billy W Campbell/MS 6-E-110
Attn: Kenneth R Walker/MS D157
Attn: John B Singletary/MS 6-D133

Hughes Aircraft Co., El Segundo Site
P. O. Box 92919
Los Angeles, CA 90009
Attn: William W Scott/MS A1080
Attn: Edward C Smith/MS A620
ADDITIONAL DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Location</th>
<th>Address</th>
<th>Attention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanscom AFB, MA 01731</td>
<td>Eglin AFB, FL 32542</td>
<td>AFGL/SUSRP/Stop 30</td>
</tr>
<tr>
<td>Attn: AFGL/CC/Stop 30</td>
<td></td>
<td>AFGL/SUOL/Stop 20</td>
</tr>
<tr>
<td>Attn: AFGL/CC/Stop 30</td>
<td>Scott AFB, IL 62225</td>
<td>ESD/XR/Stop 30</td>
</tr>
<tr>
<td>Attn: AFGL/CC/Stop 30</td>
<td>NASA Scientific & Technical</td>
<td>DCD/SATIN IV</td>
</tr>
<tr>
<td>Attn: ESD/XR/Stop 30</td>
<td>Information Facility</td>
<td>MCAE/Lt Col D Sparks</td>
</tr>
<tr>
<td>Attn: ESD/XR/Stop 30</td>
<td></td>
<td>ES/Stop 30</td>
</tr>
<tr>
<td>Scott AFB, IL 62225</td>
<td>NASA Scientific & Technical</td>
<td>EE/Stop 30</td>
</tr>
<tr>
<td>NASA Goddard Space Flight Center</td>
<td></td>
<td>Griffiss AFB, NY 13441</td>
</tr>
<tr>
<td>Goddard Space Flight Center</td>
<td></td>
<td>Attn: RADC/OC</td>
</tr>
<tr>
<td>Greenbelt, MD 20771</td>
<td></td>
<td>Attn: RADC/IS</td>
</tr>
<tr>
<td>NASA Goddard Space Flight Center</td>
<td></td>
<td>Attn: RADC/DC</td>
</tr>
<tr>
<td>Greenbelt, MD 20771</td>
<td></td>
<td>Attn: RADC/IR</td>
</tr>
<tr>
<td>NASA Goddard Space Flight Center</td>
<td></td>
<td>Attn: RADC/CA</td>
</tr>
<tr>
<td>NASA Goddard Space Flight Center</td>
<td></td>
<td>Attn: RADC/TIR</td>
</tr>
<tr>
<td>Greenbelt, MD 20771</td>
<td></td>
<td>Attn: RADC/DAP</td>
</tr>
<tr>
<td>NASA Goddard Space Flight Center</td>
<td></td>
<td>Attn: RADC/TLD</td>
</tr>
<tr>
<td>NASA Goddard Space Flight Center</td>
<td></td>
<td>Maxwell AFB, AL 36112</td>
</tr>
<tr>
<td>Greenbelt, MD 20771</td>
<td></td>
<td>Attn: RADC/OC</td>
</tr>
<tr>
<td>NASA Goddard Space Flight Center</td>
<td></td>
<td>Attn: RADC/IS</td>
</tr>
<tr>
<td>NASA Goddard Space Flight Center</td>
<td></td>
<td>Attn: RADC/CA</td>
</tr>
<tr>
<td>Greenbelt, MD 20771</td>
<td></td>
<td>Attn: RADC/TIR</td>
</tr>
<tr>
<td>NASA Goddard Space Flight Center</td>
<td></td>
<td>Attn: RADC/DAP</td>
</tr>
<tr>
<td>Greenbelt, MD 20771</td>
<td></td>
<td>Attn: RADC/TLD</td>
</tr>
<tr>
<td>US Army Missile Command Labs</td>
<td></td>
<td>US Navy Network Center</td>
</tr>
<tr>
<td>Redstone Scientific Information Ctr</td>
<td></td>
<td>Los Angeles, CA 90009</td>
</tr>
<tr>
<td>Redstone Arsenal, AL 35809</td>
<td></td>
<td>Attn: Chief, Documents</td>
</tr>
<tr>
<td>Redstone Scientific Information Ctr</td>
<td></td>
<td>SAMS (YA/AT)</td>
</tr>
<tr>
<td>Redstone Arsenal, AL 35809</td>
<td></td>
<td>P. O. Box 92960</td>
</tr>
<tr>
<td>Redstone Scientific Information Ctr</td>
<td></td>
<td>Worldway Postal Center</td>
</tr>
<tr>
<td>Redstone Arsenal, AL 35809</td>
<td></td>
<td>Los Angeles, CA 90009</td>
</tr>
<tr>
<td>Redstone Arsenal, AL 35809</td>
<td></td>
<td>Attn: Mr Hess</td>
</tr>
<tr>
<td>Redstone Scientific Information Ctr</td>
<td></td>
<td>Naval Postgraduate School</td>
</tr>
<tr>
<td>Redstone Arsenal, AL 35809</td>
<td></td>
<td>Superintendent</td>
</tr>
<tr>
<td>Redstone Scientific Information Ctr</td>
<td></td>
<td>Monterey, CA 93940</td>
</tr>
<tr>
<td>Redstone Arsenal, AL 35809</td>
<td></td>
<td>Attn: Library (Code 2124)</td>
</tr>
<tr>
<td>Redstone Scientific Information Ctr</td>
<td></td>
<td>US Dept. of Commerce</td>
</tr>
<tr>
<td>Redstone Arsenal, AL 35809</td>
<td></td>
<td>Boulder Laboratories</td>
</tr>
<tr>
<td>Redstone Scientific Information Ctr</td>
<td></td>
<td>Boulder, CO 80302</td>
</tr>
<tr>
<td>Redstone Arsenal, AL 35809</td>
<td></td>
<td>Attn: Library/NOAA/ERI</td>
</tr>
<tr>
<td>Redstone Scientific Information Ctr</td>
<td></td>
<td>USAF Academy</td>
</tr>
<tr>
<td>Redstone Arsenal, AL 35809</td>
<td></td>
<td>Library</td>
</tr>
<tr>
<td>Redstone Scientific Information Ctr</td>
<td></td>
<td>Colorado 80840</td>
</tr>
<tr>
<td>Redstone Arsenal, AL 35809</td>
<td></td>
<td>Attn: 80840</td>
</tr>
<tr>
<td>Redstone Scientific Information Ctr</td>
<td></td>
<td>Naval Postgraduate School</td>
</tr>
<tr>
<td>Redstone Arsenal, AL 35809</td>
<td></td>
<td>Superintendent</td>
</tr>
<tr>
<td>Redstone Scientific Information Ctr</td>
<td></td>
<td>Monterey, CA 93940</td>
</tr>
<tr>
<td>Redstone Arsenal, AL 35809</td>
<td></td>
<td>Attn: Library (Code 2124)</td>
</tr>
<tr>
<td>Redstone Scientific Information Ctr</td>
<td></td>
<td>US Dept. of Commerce</td>
</tr>
<tr>
<td>Redstone Arsenal, AL 35809</td>
<td></td>
<td>Boulder Laboratories</td>
</tr>
<tr>
<td>Redstone Scientific Information Ctr</td>
<td></td>
<td>Boulder, CO 80302</td>
</tr>
<tr>
<td>Redstone Scientific Information Ctr</td>
<td></td>
<td>Attn: Library/NOAA/ERI</td>
</tr>
<tr>
<td>Redstone Scientific Information Ctr</td>
<td></td>
<td>USAF Academy</td>
</tr>
<tr>
<td>Redstone Scientific Information Ctr</td>
<td></td>
<td>Library</td>
</tr>
<tr>
<td>Redstone Scientific Information Ctr</td>
<td></td>
<td>Colorado 80840</td>
</tr>
<tr>
<td>Redstone Scientific Information Ctr</td>
<td></td>
<td>Attn: 80840</td>
</tr>
</tbody>
</table>
Department of the Navy
800 North Quincy St
Arlington, VA 22217
Attn: ONRL Documents, Code 102IP

SAMSO
P. O. Box 92960
Worldway Postal Center
Los Angeles, CA 90006
Attn: Lt Col Staubs

US Army Electronics Command
Fort Monmouth, NJ 07703
Attn: AMSEL-GG-TD

Kirtland AFB NM 87117
Attn: AFWL/SUL Technical Library

US Naval Weapons Center
China Lake, CA 93555
Attn: Technical Library

Los Alamos Scientific Lab.
P. O. Box 1663
Los Alamos, NM 87544
Attn: Report Library

Hq DNA
Washington DC 20305
Attn: Technical Library

Secretary of the Air Force
Washington DC 20330
Attn: SAFRD

Scott AFB IL 62225
Attn: ETAC/CB/Stop 825

Andrews AFB
Washington DC 20334
Attn: AFSC/DLC

Army Material Command
Washington, DC 20315
Attn: AMCRD

NASA Langley Research Center
Langley Station
Hampton, VA 23665
Attn: Technical Library/MS 185

NASA
Washington DC 20546
Attn: Library (KSA-10)