TECHNICAL REPORT ARBRL-TR-02081

OSCILLATIONS OF A LIQUID IN A ROTATING CYLINDER: PART I. SOLID-BODY ROTATION

C. W. Kitchens, Jr.
N. Gerber
R. Sedney

June 1978

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.
Destroy this report when it is no longer needed.
Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute endorsement of any commercial product.
Oscillations of a Liquid in a Rotating Cylinder: Part I. Solid-Body Rotation

C. W. Kitchens, Jr.
N. Gerber
R. Sedney

U.S. Army Ballistic Research Laboratory
(ATTN: DRDAR-BLL)
Aberdeen Proving Ground, MD 21005

Performing Organization Name and Address
U.S. Army Armament Research & Development Command
U.S. Army Ballistic Research Laboratory
(ATTN: DRDAR-BL)
Aberdeen Proving Ground, MD 21005

Report Date
June 1978

Number of Pages
47

Distribution Statement
Approved for public release; distribution unlimited.

Key Words
- Disturbance decay rate
- Eigenfrequencies
- Liquid filled shell
- Rotating fluids
- Solid-body rotation
- Spin-up

Abstract
For application to liquid-filled shell problems, the natural frequencies and decay rates of oscillations of liquids during spin-up in filled rotating cylinders are calculated. In this first part only the fully spun-up flow, i.e., solid-body rotation, is considered. Nevertheless, this part describes in detail the method of solution for the general case of spin-up, and presents results which check with experimental and previous theoretical data closely enough to confirm the reliability of the computational procedure. Data are shown which...
20. ABSTRACT (Continued):

illustrate the variation of the eigenfrequencies of a disturbance mode with Reynolds number and aspect ratio of the cylinder. This work treats the viscous perturbation equations for flow of a rotating fluid. An eigenvalue problem results, defined by a sixth-order system which is integrated using the orthonormalization technique.
I. INTRODUCTION

Projectiles carrying liquid payloads have been flown for at least fifty years. Quite often their flight was erratic because an instability developed due to the presence of the liquid. The work of Stewartson provided an understanding of this phenomenon; he calculated the natural frequencies of free oscillation of a spinning liquid in a cylindrical container and demonstrated that a resonance between these frequencies and the nutational frequency of the projectile causes the instability. This theory and important modifications to it by Wedemeyer have provided rational design methods for liquid-filled projectiles; predictions from these have been verified by range firings and laboratory experiments in which the conditions for the theory were satisfied.

There are three restrictive assumptions in the theory: (i) the amplitude of the disturbance to the rotating fluid is small; (ii) viscous effects are neglected; (iii) the fluid is in solid body rotation. An adequate treatment of large amplitude disturbances is not yet available. Wedemeyer made viscous corrections to Stewartson's theory which considerably extended its usefulness. Relaxing restriction (iii) is the objective of the present work.

The time required for a substantial amount of fluid to achieve solid body rotation is called the spin-up time, t_s. If t_s is small compared to the projectile flight time, Stewartson's assumption (iii) is reasonable, and his theory can be used. The applicability of assumption (iii) depends on the parameters of the projectile-gun system. When (iii) is violated, it is necessary to calculate the frequencies of the liquid during the spin-up phase of its motion. Previous attempts to do this were not successful because of the complexity of the problem.

It is first necessary to know the basic flow during spin-up. The basic theory for this was developed by Wedemeyer; if viscous diffusion

effects are neglected in his model, a simple solution for the spin-up motion is obtained. Although this simple solution is useful for many purposes, it is inadequate for the frequency calculation. We have obtained numerical solutions to the spin-up problem, including viscous diffusion. An efficient program for this is required since the results furnish input to the frequency computation. The latter is accomplished by solving an eigenvalue problem for a sixth-order differential system, the same system of perturbation equations one would obtain in performing a linear stability analysis of the flow.

The Reynolds numbers of interest are large, or Ekman numbers are small, so that the difficulties encountered in solving the eigenvalue problem for the Orr-Sommerfeld equation are present here also. In recent years several techniques have been developed to surmount these difficulties; we choose the orthonormalization technique to solve our eigenvalue problem. Because the perturbation equations have a singularity on the axis, an analytical solution must be obtained there and matched with the numerical solution.

Although the problem of primary interest concerns spin-up, Part I of this report contains only the special case of solid-body rotation, because the authors felt it important to give a detailed description of the numerical procedures yet keep the report a reasonable length. This division is feasible because: (i) the computational method is general, applicable both to solid-body rotation and spin-up flow; (ii) the presentation will not be hampered by complexities which arise in spin-up (e.g., presence of Ekman layers and critical layers, necessity of obtaining basic flows numerically); (iii) checks on the validity of the method can be made with results obtained here. Part II will deal with the spin-up period, treated in a quasi-steady manner so that the same computational method can be used.

II. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

To calculate the natural frequencies of the spinning liquid we assume a small disturbance to the basic flow. The Navier-Stokes equations for three-dimensional incompressible flow are linearized to give the perturbation equations. If the basic flow is solid-body rotation, the equations can be found in Reference 3; the more general form, for spin-up, is given in References 5 and 6. The non-dimensional flow variables are

where u, v, and w are total radial, azimuthal, and axial components of velocity, respectively, and p is the pressure. U, V, W, and P are the basic unperturbed variables, and \bar{u}, \bar{v}, \bar{w}, and \bar{p} are the small perturbations in the sense that they are small compared to U, V, W, and P.

The container spin rate is Ω; a is the container radius and c is its half-height; ν is the liquid kinematic viscosity. Length, velocity, pressure, and time are non-dimensionalized by a, a^2, a^2, and Q, respectively, where ρ is the liquid density. Dimensionless, non-rotating, cylindrical coordinates r, θ, and z are used, with $z = 0$ at one endwall; dimensionless time is denoted by t. For solid-body rotation (the only case considered here) the basic flow is given by

$$U = 0, \quad V = r, \quad W = 0, \quad \partial p/\partial r = r \quad (2).$$

On substituting (1) and (2) into the Navier-Stokes equations and linearizing, we obtain the perturbation equations:

$$u_t^* + u_{\theta}^* + r w_z^* = 0 \quad (3a)$$

$$u_t^* + u_{\theta}^* - 2v^* = - p_{r}^* + Re^{-1} (\nabla^2 u^* - r^{-2} u^* - 2r^{-2} v_{\theta}^*) \quad (3b)$$

$$v_t^* + v_{\theta}^* + 2u^* = - r^{-1} p_{\theta}^* + Re^{-1} (\nabla^2 v^* - r^{-2} v^* + 2r^{-2} u_{\theta}^*) \quad (3c)$$

$$w_t^* + w_{\theta}^* = - p_z^* + Re^{-1} \nabla^2 w^* \quad (3d)$$

where subscripts denote partial derivatives,

$$\nabla^2 \equiv \partial^2/\partial r^2 + r^{-1} \partial/\partial r + r^{-2} \partial^2/\partial \theta^2 + \partial^2/\partial z^2 , \quad (4)$$

and the Reynolds number is

$$Re = \Omega a^2/\nu . \quad (5)$$

We assume that the disturbance can be expressed as a superposition of modes; i.e., a triple Fourier expansion of the disturbances in θ, z, and t, with coefficients functions of r:
\begin{align}
 u &= u (r) \cos Kz \exp [i (Ct - m\theta)] \\
 \tilde{v} &= \tilde{v} (r) \cos Kz \exp [i (Ct - m\theta)] \\
 \tilde{w} &= \tilde{w} (r) \sin Kz \exp [i (Ct - m\theta)] \\
 \tilde{p} &= \tilde{p} (r) \cos Kz \exp [i (Ct - m\theta)]
\end{align}

where

\[K = k\pi/(2c) \] \hspace{1cm} (7)

In this form the disturbances are complex, the real parts being the physical quantities; also the functions \(u(r), \tilde{v}(r), \tilde{w}(r), \) and \(\tilde{p}(r) \) are complex. The integers \(m = 0, \pm 1, \ldots \), and \(k = 1, 2, \ldots \) are azimuthal and axial wave numbers, respectively; \(m \) expresses the condition that the disturbance is periodic in the interval \(0 < \theta < 2\pi \). The non-dimensional quantity \(C = C_R + i C_I \) is the eigenvalue we seek to determine. The natural frequency is equal to \(C_R \Omega \) and the decay rate of the disturbance is equal to \(C_I \Omega \).

The boundary conditions at the end walls \((z = 0, 2c) \) are \(\tilde{u} = \tilde{v} = \tilde{w} = 0 \). The form assumed in (6) allows only the condition of zero velocity normal to the wall, \(\tilde{w} = 0 \), to be satisfied. However, the modal decomposition, or separation of variables, requires the trigonometric functions; consequently, the no-slip condition on the endwalls, \(\tilde{u} = \tilde{v} = 0 \), is not satisfied. A boundary layer type of correction is made to the solution to account for this. This correction, described in Appendix A, is analogous to that made by Wedemeyer at both the sidewall and endwalls. The correction has a significant effect on \(C_I \).

When \(\tilde{u}, \tilde{v}, \tilde{w}, \) and \(\tilde{p} \) from (6) are substituted into (3), a set of homogeneous linear ordinary differential equations is obtained for \(\tilde{u}, \tilde{v}, \tilde{w}, \tilde{p} \). These must be converted to canonical form to be integrated numerically; i.e.,

\[y_i' = dy_i/dr = f_i (r, y_1, y_2, \ldots y_6), \quad i = 1, 2 \ldots 6, \]

where

\begin{align}
 y_1 &= \tilde{u} \\
 y_2 &= \tilde{u} - i \tilde{v} \\
 y_3 &= \tilde{v}' \\
 y_4 &= \tilde{w} \\
 y_5 &= \tilde{w}' \\
 y_6 &= \tilde{p}
\end{align}

\hspace{1cm} (8)
The form for \(y_2 \) is convenient for satisfying boundary conditions. After the required manipulations are performed the following sixth order system of equations is obtained:

\[
y' = (m - 1) r^{-1} y_1 - m r^{-1} y_2 - K y_4 \quad (9a)
\]

\[
y' = (m - 1) r^{-1} y_1 - m r^{-1} y_2 - i y_3 - K y_4 \quad (9b)
\]

\[
y' = 2 (Re + i m r^{-2}) y_1 + i (B + r^{-2}) (y_2 - y_1) - r^{-1} y_3 - i m Re r^{-1} y_6 \quad (9c)
\]

\[
y' = y_5 \quad (9d)
\]

\[
y' = B y_4 - r^{-1} y_5 - K Re y_6 \quad (9e)
\]

\[
y' = -Re^{-1} B y_1 + i Re^{-1} (2 Re + i m r^{-2}) (y_2 - y_1) + i m Re^{-1} r^{-1} y_3 - K Re^{-1} y_5 \quad (9f)
\]

where

\[
B = (m^2/r^2) + K^2 + i Re (C - m) .
\]

The terminal conditions at the sidewall \((r = 1) \) are \(u (1) = v (1) = w (1) = 0 \), or

\[
y_1 (1) = y_2 (1) = y_4 (1) = 0 \quad (10)
\]

The initial conditions depend on the particular problem being solved. For a filled cylinder with an inner concentric rod, or central burster, the no-slip conditions apply at the inner wall, \(r = b \):

\[
y_1 (b) = y_2 (b) = y_4 (b) = 0 \quad (11)
\]
For a filled cylinder with no inner rod the inner boundary is \(r = 0 \), and the boundary conditions depend on the azimuthal wave number:

\[
\begin{align*}
\text{m} &= 0: \quad y_1(0) = y_2(0) = y_5(0) = 0 \quad (12a) \\
\text{m} &= 1: \quad y_2(0) = y_4(0) = y_6(0) = 0 \quad (12b) \\
\text{m} > 1: \quad y_1(0) = y_2(0) = y_4(0) = 0 . \quad (12c)
\end{align*}
\]

Their derivation requires only kinematics and single-valuedness (see Batchelor, E.K. and Gill, A.E., J. Fluid Mech. 14, 529).

The wave numbers \(m \) and \(k \) are assigned, and the values of \(c \) and \(\text{Re} \) are given. Then (9), (10), and (11) or (12) constitute an eigenvalue problem. The radial modes are designated by the integers \(n = 1, 2, \ldots \).

III. NUMERICAL PROCEDURE FOR SOLVING EIGENVALUE PROBLEM

The eigenvalue problem defined by the sixth-order system (9), (10), and (11) or (12) bears some similarity to the Orr-Sommerfeld equation. In particular the coefficient of the highest derivative contains \(\text{Re}^{-1} \); in liquid-filled shell applications values of \(\text{Re} \sim 10^6 \) are commonplace. Our numerical procedure uses one of the methods developed for solving numerically the Orr-Sommerfeld equation, viz., orthonormalization.

A. Method of Superposition

An outline of the method will be given after a more compact notation is introduced. Matrices will be denoted by upper case, underscored symbols. Express (9)-(12) in matrix form:

\[
\begin{align*}
\underline{Y}' &= \underline{Y}(r) \underline{G} \\
\underline{Y}(b) \underline{E} &= \underline{0} \\
\underline{Y}(1) \underline{F} &= \underline{0}
\end{align*}
\]

where \(\underline{Y} \) is the solution vector \(\underline{Y} = \{y_1, \ldots, y_6\} \), a \(1 \times 6 \) matrix. \(\underline{G} \) is a \(6 \times 6 \) matrix; \(\underline{E} \) and \(\underline{F} \) are \(6 \times 3 \) matrices the elements of which are obtained from (9)-(12); \(b \) is the radial coordinate where initial conditions are specified. The elements of \(\underline{E} \) depend on the choice of boundary conditions (11) or (12). Each of the three columns of \(\underline{E} \) and \(\underline{F} \) has only one non-zero element.
The general solution of (13) can be expressed as a linear combination of six linearly independent solutions. If these are chosen so that (14) is satisfied, then only three independent solutions are available. These are denoted by

\[S_j(r) = \{s_{j1}, \ldots, s_{j6}\} \quad j = 1, 2, 3, \]

so that the solution can be expressed as

\[Y(r) = \Gamma S = \gamma_1 S_1 + \gamma_2 S_2 + \gamma_3 S_3 \] \hspace{1cm} (16)

where \(S \) is a 3 x 6 matrix whose rows are the vectors \(S_j \), and \(\Gamma = \{\gamma_1, \gamma_2, \gamma_3\} \) is a 1 x 3 matrix of constant coefficients. Note that (14) can be written as

\[Y(b) E = \Gamma S(b) E = 0 \]

or

\[S(b) E = 0 \] \hspace{1cm} (17)

The eigenvalue problem is solved by iteration. A value for \(C \) is selected at each stage of the iteration and one integration pass is made between \(r = b \) and \(r = 1 \) for each of the three independent solutions, \(S_1, S_2, \) and \(S_3 \), giving the \(s_{ji}(1), j = 1, 2, 3 \) and \(i = 1, \ldots, 6 \). From (15)

\[Y(1) F = \Gamma S(1) F = 0 \] \hspace{1cm} (18)

A non-trivial solution for \(\Gamma \) requires

\[D(C) = \text{Det} [S(1) F] = 0 \] \hspace{1cm} (19)

The iteration process provides a systematic method of choosing the values of \(C \) used in the numerical integration of (9) until (19) is satisfied to within a specified accuracy. At each stage of the iteration \(\Gamma \) is obtained by solving (18); finally the eigenfunctions are found from (16).

The method of superposition described above cannot be carried out successfully for large values of \(\text{Re} \). The initially linearly-independent solutions, \(S_1, S_2, \) and \(S_3 \), become numerically dependent during the
numerical integration. The determinant in (19) then generally fails to yield a clear-cut root, C, and the iterative process does not converge. This occurs because one or more of the solutions grows rapidly with r, yielding numbers of higher orders of magnitude than the other solutions. A method of orthonormalization is employed in this work to maintain linear independence and reasonable order-of-magnitude solutions. The technique which we adopt is based on a version of Godunov's procedure described by Conte.

B. Numerical Integration and Orthonormalization

The linear independence of the solutions can be maintained by the orthogonalization process described below. The solutions can be further conditioned by periodically renormalizing them, thus preventing any of them from growing inordinately large. Procedures to test the solution vectors for loss of independence are available; however, to avoid unduly complicating the computer program, we specify the number and locations of orthonormalizations.

The integration procedure starts with orthonormal initial values (discussed in next section) specified for s_{ji} at $r = \epsilon$. When $b = 0$, an analytical solution near $r = 0$ must be used to obtain the solution vectors at the "matching radius" ϵ; when $b \neq 0$, the value of ϵ is taken equal to b.

The numerical integration of (9) is carried out over the interval $\epsilon < r < 1$ using a fourth-order Runge-Kutta technique. This interval is divided into N subintervals of equal length, $(1 - \epsilon)/N$. At the end of each subinterval the solution vectors are orthonormalized using the Gram-Schmidt process. At the end of the λth subinterval there are three solution vectors S_1^λ, S_2^λ, and S_3^λ, where $\lambda = 1, \ldots, N$ denotes the subinterval index. For the complex solution vectors we define a non-standard inner product

\[S_1 \cdot S_2 = \sum_{i=1}^{6} s_{1i}^* s_{2i} . \]

The two vectors are orthogonal when \(\mathbf{S}_1 \cdot \mathbf{S}_2 = 0 \). The norm of a vector is defined by

\[
\| \mathbf{S} \|^2 = \mathbf{S} \cdot \mathbf{S}.
\]

This inner-product was used by Davey\(^{10}\); it has the advantage that the solutions are analytic functions of \(C \), a useful property in the iteration process. It has the disadvantage that the norm can be zero for a non-zero vector; however, this difficulty has never arisen.

The new set of orthogonal vectors, denoted by \(\mathbf{S}_1, \mathbf{S}_2, \) and \(\mathbf{S}_3 \), is obtained using the following transformation:

\[
\mathbf{S}^\lambda = A^\lambda \mathbf{S}^\lambda
\]

where \(A^\lambda \) is a 3 x 3 matrix whose elements \(\alpha_{ij} \) are given by

\[
\begin{align*}
\alpha_{11} &= \alpha_{22} = \alpha_{33} = 1 \\
\alpha_{21} &= \alpha_{31} = \alpha_{32} = 0 \\
\alpha_{12} &= Q^\lambda \left[(S_3^\lambda \cdot S_3^\lambda) (S_1^\lambda \cdot S_2^\lambda) - (S_3^\lambda \cdot S_1^\lambda) (S_3^\lambda \cdot S_2^\lambda) \right] \\
\alpha_{13} &= Q^\lambda \left[(S_3^\lambda \cdot S_1^\lambda) (S_2^\lambda \cdot S_2^\lambda) - (S_3^\lambda \cdot S_2^\lambda) (S_1^\lambda \cdot S_2^\lambda) \right] \\
\alpha_{23} &= - (S_2^\lambda \cdot S_3^\lambda) / (S_3^\lambda \cdot S_3^\lambda),
\end{align*}
\]

where

\[
Q^\lambda = 1/[(S_3^\lambda \cdot S_2^\lambda)^2 - (S_2^\lambda \cdot S_2^\lambda) (S_3^\lambda \cdot S_3^\lambda)].
\]

The solution vectors are then normalized, forming three orthonormal basis vectors \(T_j^\lambda \) (\(j = 1, 2, 3 \)). The complete orthonormalization process can be expressed as

\[T^\lambda = \mathcal{B} \cdot S^\lambda \]

The elements of \(T^\lambda \) are denoted by \(t_{ij}^\lambda \); the elements of the matrix \(\mathcal{B}^\lambda \) are

\[
\begin{align*}
\beta^\lambda_{11} &= 1/|S_1^\lambda|, & \beta^\lambda_{22} &= 1/|S_2^\lambda|, & \beta^\lambda_{33} &= 1/|S_3^\lambda| \\
\beta^\lambda_{21} &= \beta^\lambda_{31} = \beta^\lambda_{32} = 0, & \beta^\lambda_{12} &= \alpha^\lambda_{12}/|S_1^\lambda|, \\
\beta^\lambda_{13} &= \alpha^\lambda_{13}/|S_1^\lambda|, & \beta^\lambda_{23} &= \alpha^\lambda_{23}/|S_2^\lambda|.
\end{align*}
\]

The three solutions \(T_j^\lambda \) are evaluated at the end of the \(\lambda \)th sub-interval and taken as initial values of \(S_j^{\lambda+1} \) for the continuation of the numerical integration into the \((\lambda + 1)\)st subinterval. This process of integration and orthonormalization is carried out for each successive subinterval, finally yielding three orthonormal basis vectors \(T_j^N(1) \).

C. Initial and Terminal Conditions

The initial conditions of \(r = \varepsilon \) must be selected so that the boundary conditions, (11) or (12), are satisfied. For a cylinder with an inner concentric rod the initial conditions at \(r = \varepsilon \) are taken to be

\[
\begin{align*}
S_1(\varepsilon) &= \{0,0,1,0,0,0\}, & S_2(\varepsilon) &= \{0,0,0,0,1,0\} \\
S_3(\varepsilon) &= \{0,0,0,0,1\}.
\end{align*}
\]

These orthonormal vectors satisfy (11), or equivalently, (17).

For a cylinder with no inner rod boundary conditions (12) are specified at \(r = 0 \). The integration of (9) must be carried out in two stages because the inverse powers of \(r \) prevent direct numerical integration from \(r = 0 \). The procedure we adopt is to obtain three linearly independent analytical solutions near the axis which satisfy (12) at \(r = 0 \). Numerical values of these solutions at the matching radius \(r = \varepsilon \) are used as initial conditions for numerical integration over the interval \(\varepsilon \leq r < 1 \). The analytical solutions are obtained from power series expansions for \(u, v, w, \) and \(p \) using the method of undetermined coefficients to obtain recursion formulas. The power series coefficients for \(m = 1 \) are presented in Appendix B. There are three arbitrary
coefficients \((b_0, d_1, e_1)\), which are specified so as to give three independent solutions. Terminal conditions (10) lead to (19), modified by orthonormalization so that \(T(1)\) replaces \(S(1)\). In terms of \(T(1)\) the following equation must be solved for \(C\):

\[
D(C) \equiv \begin{vmatrix}
 t_{11}^N(1) & t_{21}^N(1) & t_{31}^N(1) \\
 t_{12}^N(1) & t_{22}^N(1) & t_{32}^N(1) \\
 t_{14}^N(1) & t_{24}^N(1) & t_{34}^N(1)
\end{vmatrix} = 0 .
\tag{25}
\]

Once a solution to (25) has been found, \(\gamma_1, \gamma_2,\) and \(\gamma_3\) of (16) can be determined to within a constant multiple. The matrix from which the determinant in (25) originates is generally of rank 2. Thus, we set \(\gamma_3 = 1\) so that \(\gamma_1\) and \(\gamma_2\) are found from

\[
t_{11}^N(1) \gamma_1 + t_{21}^N(1) \gamma_2 = -t_{31}^N(1)
\tag{26}
\]

\[
t_{12}^N(1) \gamma_1 + t_{22}^N(1) \gamma_2 = -t_{32}^N(1) .
\]

D. Iteration Procedure to Solve for Eigenvalue

An eigenvalue \(C = C_R + iC_I\) is a root of (25), which is equivalent to the following system of two real equations:

\[
D_R(C_R, C_I) = 0 , \quad D_I(C_R, C_I) = 0 ,
\tag{27}
\]

where \(D_R\) and \(D_I\) are real and imaginary parts of \(D\). This system is solved by a method of successive iteration. An initial guess \(C_1\) is assumed which must be reasonably close to the solution because of the sensitivity of \(D_R\) and \(D_I\) to variations in \(C_R\) and \(C_I\). An iteration operator, \(J\), is applied to \(C_1\) yielding a new estimate \(C_2\), etc. A sequence of iterates is determined from

\[
C_{\mu+1} = J(C_\mu) .
\]
When (25) is satisfied and \(|C_{\mu+1} - C_{\mu}|\) is small to within specified tolerances, for some \(\mu\), the iteration is stopped. We found it advisable to satisfy both requirements since the condition on \(C\) could sometimes be satisfied without the one on \(D\) being satisfied.

The iteration operation used here is an extension of Newton's method. For small changes in \(C\) and \(D\) between the \(\mu\)th and \((\mu+1)\)st iterations we can write

\[
\begin{align*}
D_{R_{\mu+1}} - D_{R_{\mu}} &= \left(\frac{\partial D_{R}}{\partial C_{R}}\right) \left[C_{R_{\mu+1}} - C_{R_{\mu}}\right] + \left(\frac{\partial D_{R}}{\partial C_{I}}\right) \left[C_{I_{\mu+1}} - C_{I_{\mu}}\right] \\
D_{I_{\mu+1}} - D_{I_{\mu}} &= \left(\frac{\partial D_{I}}{\partial C_{R}}\right) \left[C_{R_{\mu+1}} - C_{R_{\mu}}\right] + \left(\frac{\partial D_{I}}{\partial C_{I}}\right) \left[C_{I_{\mu+1}} - C_{I_{\mu}}\right].
\end{align*}
\]

The partial derivatives are approximated by

\[
\begin{align*}
\frac{\partial D_{R}}{\partial C_{R}} &= \left[D_{R} \left(C_{R_{\mu}} + \Delta C_{R}, C_{I_{\mu}}\right) - D_{R} \left(C_{R_{\mu}}, C_{I_{\mu}}\right)\right]/\Delta C_{R} \\
\frac{\partial D_{R}}{\partial C_{I}} &= \left[D_{R} \left(C_{R_{\mu}}, C_{I_{\mu}} + \Delta C_{I}\right) - D_{R} \left(C_{R_{\mu}}, C_{I_{\mu}}\right)\right]/\Delta C_{I},
\end{align*}
\]

with similar expressions for \(\partial D_{I}/\partial C_{R}\) and \(\partial D_{I}/\partial C_{I}\). Appropriate small values for \(\Delta C_{R}\) and \(\Delta C_{I}\) are used, e.g. \(\Delta C_{R} = \epsilon C_{R}\) unless \(C_{R}\) is small, in which case \(C_{R} = \epsilon\); \(\epsilon\) is an input parameter, typically \(\epsilon = 0.001\). The goal of each iteration is to make \(D_{\mu+1}\) vanish. We set \(D_{R_{\mu+1}} = D_{I_{\mu+1}} = 0\) in (28) and thereby get formulas for \(C_{R_{\mu+1}}\) and \(C_{I_{\mu+1}}\) in terms of \(C_{R_{\mu}}\) and \(C_{I_{\mu}}\).

A simplification is possible at this point, since, with the chosen definition of inner product, \(D(C)\) is an analytic function of \(C\) which satisfies the Cauchy-Riemann conditions:

\[
\frac{\partial D_{R}}{\partial C_{R}} = \frac{\partial D_{I}}{\partial C_{I}}, \quad \frac{\partial D_{R}}{\partial C_{I}} = -\frac{\partial D_{I}}{\partial C_{R}}.
\]

We substitute (30) into (28) (with \(D_{\mu+1} = 0\)) and obtain the operator \(J(C_{\mu})\) as the solution to the set of equations:
\[
\frac{\partial D_I}{\partial C_R} C_{R_{\mu+1}} + \frac{\partial D_R}{\partial C_R} C_{I_{\mu+1}} = H_2 \left(C_{\mu}, D_{\mu} \right)
\]

(32)

\[
H_1 \left(C_{\mu}, D_{\mu} \right) = \frac{\partial D_R}{\partial C_R} C_{R_{\mu}} + \frac{\partial D_I}{\partial C_R} C_{I_{\mu}} - D_{R_{\mu}}
\]

Since (31) and (32) contain only partial derivatives with respect to \(C_R, D_R (C_R, C_I + \Delta C_I) \) in (29) and \(D_I (C_R, C_I + \Delta C_I) \) in the expression for \(\partial D_I/\partial C_I \) need not be evaluated. Practically, this cuts the required computer time almost in half since only six integration passes (two for each of the three independent solutions) are needed per iteration, versus the twelve that would be required if \(D(C) \) were not analytic.

E. Evaluation of Eigenfunctions

For some applications we may also wish to evaluate the flow variable perturbations \(\hat{u}(r), \hat{v}(r), \hat{w}(r), \) and \(\hat{p}(r) \), or, equivalently, \(\hat{Y}(r) = \{ \hat{y}_1, \ldots, \hat{y}_6 \} \), the eigenfunctions associated with the eigenvalue \(\lambda \). The solution \(\hat{Y} \) is expressed as a combination of the three linearly independent solutions, according to (16). Because of the orthonormalization at the end of each subinterval the constants in (16) are different for each subinterval: \(\gamma^\lambda_1, \gamma^\lambda_2, \gamma^\lambda_3 \). The solutions \(\hat{S}_1(r), \hat{S}_2(r), \) and \(\hat{S}_3(r) \) are computed over each subinterval and stored; the evaluation of the eigenfunctions reduces to the problem of determining \(\gamma^\lambda_1, \gamma^\lambda_2, \) and \(\gamma^\lambda_3 \).

At the \((\lambda - 1)\)st junction point \(r_{\lambda-1} = \varepsilon + (1 - \varepsilon)(\lambda - 1)/N \) and the solution is

\[
\hat{Y}_{\lambda-1} \left(r_{\lambda-1} \right) = \Gamma^\lambda-1 \hat{S}^\lambda-1 \left(r_{\lambda-1} \right)
\]

(33)
The initial value of the solution in the \(\lambda \)-th subinterval is (see Section III.B)

\[
Y^\lambda (r_{\lambda-1}) = r^\lambda T^{\lambda-1} (r_{\lambda-1})
\]

(34)

At each junction point \(S^\lambda = T^{\lambda-1} \) and

\[
S^\lambda = B^{\lambda-1} S^{\lambda-1}
\]

from (22). The elements of the matrix \(B^{\lambda-1} \), given by (23), are stored for all subintervals during each iteration. Continuity requires that \(Y^\lambda (r_{\lambda-1}) = Y^\lambda (r_{\lambda-1}) \). Equating the right-hand sides of (33) and (34) gives

\[
\Gamma^{\lambda-1} S^{\lambda-1} (r_{\lambda-1}) = \Gamma^\lambda B^{\lambda-1} S^{\lambda-1} (r_{\lambda-1})
\]

or

\[
\Gamma^{\lambda-1} = \Gamma^\lambda B^{\lambda-1}
\]

(35)

which is used to calculate the \(\Gamma^{\lambda-1} \) from known \(\Gamma^\lambda \). At the last (Nth) subinterval \(\gamma^N_1, \gamma^N_2, \) and \(\gamma^N_3 \) are known. In our procedure \(\gamma^N_3 = 1 \), and \(\gamma^N_2 \) and \(\gamma^N_3 \) are obtained from (26). The \(\gamma^N_j \) (\(j = 1, 2, 3 \)) are found using (35), and so forth, down to \(\lambda = 2 \). The appropriate linear combinations of \(S_1, S_2, \) and \(S_3 \) are evaluated in each subinterval to give the eigenfunctions over the interval \(\epsilon \leq r \leq 1 \).

F. Additional Aspects of the Computation

As mentioned in Section III.D, convergence of the iteration process requires that the initial guess for the eigenvalue \(C \) be reasonably close to the actual value, say within 10%; typically, convergence criteria are satisfied in five or less iterations. For solid body rotation and \(m = 1 \), satisfactory trial values can be obtained from Wedemeyer's simple formulae for eigenvalues\(^1,3\) obtained by applying a viscous correction (described in Section IV) to Stewartson's results\(^2\). In fact, the latter can also be used for the initial guess, with \(C_1 = 0 \) because the perturbation is inviscid. The \(C_R \) are given in tabular form in Reference 1 for given \(c \) and \(k \) and radial mode numbers \(n = 1, 2, 3 \). (In Reference 1, \(C_R \) is denoted by \(\tau_0 \), and \(2j = k - 1 \).) The value of \(n \) is the maximum number of (non-boundary) zeros in the real and imaginary
parts of the set of \(\dot{u}, \dot{v}, \dot{w}, \) and \(\dot{p} \). A typical solution is illustrated in Figure 1, which shows the real part of \(\dot{p}(r) \) for the lowest two radial modes for the case \(c = 3.148, \text{Re} = 8977, k = 3, m = 1 \). The number of zeros is \(n - 1 \) here, but for \(\dot{v} \) the number of zeros is \(n \).

In Figure 2 the real part of \(\dot{w} \) is plotted to demonstrate the presence of the boundary layer on the sidewall.

It was stated in Section III.C that three independent analytic solutions to (9) were obtained near \(r = 0 \). Though it has not been proven, it is fairly certain that any other independent solution would be singular at \(r = 0 \), and thus inadmissible. For \(m = 1 \) we obtain three independent solutions by choosing the complex constants \(b_0, d_1, \) and \(e_1 \) in Appendix B in the following way: during each iteration \(\{b_0, d_1, e_1\} \) is equal to \(\{1,0,0\} \) for the first integration pass, \(\{0,1,0\} \) for the second pass, and \(\{0,0,1\} \) for the third. Approximately ten terms of the series are used to approximate the functions for \(\epsilon = 0.001 \). The actual number of terms used is adjusted to insure that the series converge with a difference between successive partial sums of no greater than typically \(1 \times 10^{-6} \).

Since \(m = 1 \) modes are the only ones which lead to an overturning moment on the projectile, only these will be considered in this report. However, other modes, particularly \(m = 0 \), have also been computed.

IV. ENDWALL BOUNDARY CONDITION CORRECTION

The technique described in Sections II and III will provide natural frequencies within the limitations of the linearized theory. However, as pointed out in Section II, in order to perform a modal analysis in the longitudinal direction it is necessary to abandon the no-slip boundary conditions \(\dot{u} = \dot{v} = 0 \) on the endwalls; only \(\dot{w} = 0 \) could be satisfied. The perturbation velocities thus satisfy the inviscid boundary conditions. Because these incorrect boundary conditions have a significant effect on \(C_T \), a correction was devised, analogous to Wedemeyer's viscous correction\(^1,3\) to Stewartson's inviscid results. This correction is briefly described here; details are given in Appendix A.

Experiments with a liquid-filled gyrostat revealed discrepancies between observations and Stewartson's inviscid analysis. To account for these Wedemeyer analyzed the perturbation boundary layers along the sidewall and endwalls. He concluded that the viscous flow problem is equivalent to an inviscid problem with boundary conditions

* Figures 1 and 2 are located on page 26.
\[
\begin{align*}
\hat{u} &= 0 \quad \text{at} \quad r = 1 - \delta a_w \\
\hat{w} &= 0 \quad \text{at} \quad z = \delta c_w \quad \text{and} \quad z = (2c - \delta c_w),
\end{align*}
\]

(36)

where \(\delta a_w\) and \(\delta c_w\) are non-dimensional displacement thicknesses for the sidewall and endwall boundary layers, respectively. The complex quantities \(\delta a_w\) and \(\delta c_w\) are algebraic functions of \(Re\) and the inviscid \(C_R\) but are independent of \(r, \theta,\) and \(t\). The analysis is applicable for large \(Re\) (but not so large as to cause boundary layer instabilities). Large \(Re\) requires that \(|\delta a_w| << 1\) and \(|\delta c_w| << 1\), conditions which are generally true for \(Re > 10^3\). Solving the inviscid problem with (36) modifies the eigenfrequency by a small complex increment. The resulting frequency and damping rate agree with experimental observations.

In our analysis the viscous diffusion terms are present in the perturbation equations. The correction is needed here because conditions \(\hat{u} = \hat{v} = 0\) on \(z = 0, 2c\) are not satisfied. This correction, in principle, is different from Wedemeyer's; but after proper formulation the analysis proceeds in much the same way. A sidewall correction is not required since the perturbation solution satisfies the no-slip conditions at \(r = 1\). A boundary layer analysis is made on the difference between the flows with and without the no-slip conditions on the endwalls, and a displacement thickness \(\delta c_s\) is obtained which has the same properties as \(\delta c_w\). When \(C_I = 0, \delta c_s = \delta c_w\). The eigenvalue problem is solved again, now using the modified complex half-height, \(c - \delta c_s\). No computational difficulties are introduced because \(\delta c_s\) directly affects only \(K\) in (7), which appears in the already complex (9). The effects of this correction on \(C_R\) and \(C_I\) are discussed in Section V.

V. DESCRIPTION OF NUMERICAL RESULTS

A program as extensive as the eigenvalue computation program requires checks to establish its reliability. Three types of checks will be treated: (a) related problems for which results are available in the literature; (b) Wedemeyer's approximate solution to the eigenvalue problem; (c) experimental data.

A. Check With Flow Between Rotating Cylinders

Many investigations have been carried out on the stability of flow between concentric rotating cylinders, often called Taylor's problem; when the flow is unstable Taylor vortices are generated. The basic flow is steady but not solid-body rotation because the angular
velocities of the two cylinders differ. \(V(r) \) has \(r \) and \(r^{-1} \) terms, and is independent of \(z \) for infinite length cylinders. Since our program is written for general \(V(r) \), eigenvalues can be calculated for the two-cylinder problem.

The first comparison is made with a result in Reference 11 for which the parameters are \(Re = 796.8 \), \(b = 0.70 \), \(\Omega_b/\Omega_a = -1 \), \(K = 13.280 \), and \(m = 2 \), where \(b \) is the non-dimensional radius of the inner cylinder, and \(\Omega_b \) and \(\Omega_a \) are the dimensional angular velocities of the inner and outer cylinders, respectively. The computed eigenvalue is \(C_R = 0.6763 \) and \(C_I = -0.0007 \), compared to \(C_R = 0.6759 \) and \(C_I = 0.0000 \) in Reference 11. The second comparison is made with a result of Reference 12 for \(Re = 4270.2 \), \(b = .9512 \), \(\Omega_b/\Omega_a = 0 \), \(K = 64.10 \), and \(m = -1 \). Values of \(C_R = -0.5141 \) and \(C_I = -0.1443 \) are obtained both from our program and from Reference 12. The agreement between our results and those of References 11 and 12 lends support to the validity of all of them.

B. Check With Wedemeyer’s Solution and Parametric Study of Eigenvalues

No previous viscous perturbation calculations exist, but Wedemeyer’s viscous correction to the Stewartson theory provides an approximate solution to the eigenvalue problem which agrees well with experiment. Therefore, results from his theory will be compared with ours; a sufficient number of cases will be presented to exhibit the variation of the eigenvalue with \(Re \) and \(c \).

Tables 1-3 provide the eigenvalues for the \(m = 1, k = 3, n = 1 \) mode over the ranges \(c = 3, 4, 5 \) and \(Re = 10^3, 10^4, 10^5, \) and \(10^6 \). The endwall displacement thicknesses \(\delta_{c_w} \) and \(\delta_{c_s} \) are also presented; there is no reason for these two quantities to be the same; but in fact they differ at most by a few percent. The effect of the boundary condition correction on \(C_R \) and \(C_I \) is demonstrated in these tables. Except for \(c = 3 \) and the two smaller \(Re \), the percentage correction to \(C_I \) is much larger than that to \(C_R \). With boundary condition correction the \(C_R \) differ from Wedemeyer’s results by a few percent at most for all cases. However, for the three aspect ratios and \(Re = 10^3 \) and \(10^4 \) the differences

in \(C_I \) are greater than 10\%, and for \(c = 5, \, Re = 10^3 \) it is 43\%. In principle, our results should be more accurate since no correction is needed at the sidewall and viscous diffusion effects in the interior are included. Whether or not this is the case requires a comparison with experiment (or perhaps a full numerical solution to the perturbation problem). On the basis of the following discussion it is concluded that sufficient experimental evidence to discriminate between Wedemeyer's results and ours does not exist.

Table 1. Eigenvalues and Half-Height Corrections for Solid-Body Rotation:
\(m = 1, \, k = 3, \, n = 1, \, c = 3. \)

<table>
<thead>
<tr>
<th>(Re = a^2/\nu)</th>
<th>(\delta c_w)</th>
<th>(\delta c_s)</th>
<th>(C_R) Wed.</th>
<th>B.C. Correction (C_R)</th>
<th>No B.C. Correction (C_R)</th>
<th>(C_I) Wed.</th>
<th>B.C. Correction (C_I)</th>
<th>No B.C. Correction (C_I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^6)</td>
<td>.000855-</td>
<td>.00127 i</td>
<td>.000856-</td>
<td>.000472</td>
<td>.000484</td>
<td>.000509</td>
<td>.000996</td>
<td>.00100</td>
</tr>
<tr>
<td></td>
<td>.00127 i</td>
<td>.000856-</td>
<td>.00127 i</td>
<td>.000472</td>
<td>.000484</td>
<td>.000509</td>
<td>.000996</td>
<td>.00100</td>
</tr>
<tr>
<td>(10^5)</td>
<td>.00270-</td>
<td>.00401 i</td>
<td>.00271-</td>
<td>.000533</td>
<td>.000564</td>
<td>.000643</td>
<td>.000315</td>
<td>.000324</td>
</tr>
<tr>
<td></td>
<td>.00401 i</td>
<td>.00270-</td>
<td>.00401 i</td>
<td>.000533</td>
<td>.000564</td>
<td>.000643</td>
<td>.000315</td>
<td>.000324</td>
</tr>
<tr>
<td>(10^4)</td>
<td>.000855-</td>
<td>.01267 i</td>
<td>.000858-</td>
<td>.000808</td>
<td>.000815</td>
<td>.001066</td>
<td>.000996</td>
<td>.01100</td>
</tr>
<tr>
<td></td>
<td>.01267 i</td>
<td>.000855-</td>
<td>.01267 i</td>
<td>.000808</td>
<td>.000815</td>
<td>.001066</td>
<td>.000996</td>
<td>.01100</td>
</tr>
<tr>
<td>(10^3)</td>
<td>.02705-</td>
<td>.04008 i</td>
<td>.02754-</td>
<td>.01614</td>
<td>.01578</td>
<td>.02382</td>
<td>.03150</td>
<td>.04256</td>
</tr>
<tr>
<td></td>
<td>.04008 i</td>
<td>.02705-</td>
<td>.04069 i</td>
<td>.01614</td>
<td>.01578</td>
<td>.02382</td>
<td>.03150</td>
<td>.04256</td>
</tr>
</tbody>
</table>

Table 2. Eigenvalues and Half-Height Corrections for Solid-Body Rotation:
\(m = 1, \, k = 3, \, n = 1, \, c = 4. \)

<table>
<thead>
<tr>
<th>(Re = a^2/\nu)</th>
<th>(\delta c_w)</th>
<th>(\delta c_s)</th>
<th>(C_R) Wed.</th>
<th>B.C. Correction (C_R)</th>
<th>No B.C. Correction (C_R)</th>
<th>(C_I) Wed.</th>
<th>B.C. Correction (C_I)</th>
<th>No B.C. Correction (C_I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^6)</td>
<td>.000805-</td>
<td>.00150 i</td>
<td>.24352</td>
<td>.24375</td>
<td>.24390</td>
<td>.000915</td>
<td>.000927</td>
<td>.000636</td>
</tr>
<tr>
<td></td>
<td>.00150 i</td>
<td>.000805-</td>
<td>.00151 i</td>
<td>.24352</td>
<td>.24375</td>
<td>.24390</td>
<td>.000915</td>
<td>.000927</td>
</tr>
<tr>
<td>(10^5)</td>
<td>.00255-</td>
<td>.00476 i</td>
<td>.24454</td>
<td>.24475</td>
<td>.24525</td>
<td>.000289</td>
<td>.000300</td>
<td>.000208</td>
</tr>
<tr>
<td></td>
<td>.00476 i</td>
<td>.00255-</td>
<td>.00477 i</td>
<td>.24454</td>
<td>.24475</td>
<td>.24525</td>
<td>.000289</td>
<td>.000300</td>
</tr>
<tr>
<td>(10^4)</td>
<td>.00805-</td>
<td>.01505 i</td>
<td>.24775</td>
<td>.24797</td>
<td>.24953</td>
<td>.000915</td>
<td>.01024</td>
<td>.000731</td>
</tr>
<tr>
<td></td>
<td>.01505 i</td>
<td>.00805-</td>
<td>.01515 i</td>
<td>.24775</td>
<td>.24797</td>
<td>.24953</td>
<td>.000915</td>
<td>.01024</td>
</tr>
<tr>
<td>(10^3)</td>
<td>.02547-</td>
<td>.04758 i</td>
<td>.25793</td>
<td>.25772</td>
<td>.26277</td>
<td>.02894</td>
<td>.03995</td>
<td>.03051</td>
</tr>
<tr>
<td></td>
<td>.04758 i</td>
<td>.02547-</td>
<td>.04859 i</td>
<td>.25793</td>
<td>.25772</td>
<td>.26277</td>
<td>.02894</td>
<td>.03995</td>
</tr>
</tbody>
</table>
Table 3. Eigenvalues and Half-Height Corrections for Solid-Body Rotation:
m = 1, k = 3, n = 1, c = 5.

<table>
<thead>
<tr>
<th>Re = a²η/u</th>
<th>δc_w</th>
<th>δc_s</th>
<th>C_R Wed.</th>
<th>B.C. Correction C_R</th>
<th>No B.C. Correction C_R</th>
<th>C_I Wed.</th>
<th>B.C. Correction C_I</th>
<th>No B.C. Correction C_I</th>
</tr>
</thead>
<tbody>
<tr>
<td>10⁶</td>
<td>0.000783- 0.000784-</td>
<td>0.00181 i</td>
<td>0.00181 i</td>
<td>0.40225</td>
<td>0.40227</td>
<td>0.40237</td>
<td>0.000822</td>
<td>0.000837</td>
</tr>
<tr>
<td>10⁵</td>
<td>0.00248- 0.00249-</td>
<td>0.00573 i</td>
<td>0.00574 i</td>
<td>0.40330</td>
<td>0.40333</td>
<td>0.40364</td>
<td>0.00260</td>
<td>0.00272</td>
</tr>
<tr>
<td>10⁴</td>
<td>0.00783- 0.00800-</td>
<td>0.01811 i</td>
<td>0.01827 i</td>
<td>0.40664</td>
<td>0.40666</td>
<td>0.40768</td>
<td>0.00822</td>
<td>0.00935</td>
</tr>
<tr>
<td>10³</td>
<td>0.02476- 0.02723-</td>
<td>0.05727 i</td>
<td>0.05875 i</td>
<td>0.41719</td>
<td>0.41674</td>
<td>0.42010</td>
<td>0.02600</td>
<td>0.03729</td>
</tr>
</tbody>
</table>

C. Check With Experimental Data

This check is the most useful one. Unfortunately there are not sufficient data for completely filled cylinders to make the necessary crucial comparisons. Most of the experimental data were generated in a gyrostat; the technique of determining C_R and C_I is discussed in Reference 1. The C_I were not measured directly but were determined from the observed maximum rate of divergence of the gyrostat motion and relationships taken from Wedemeyer’s theory; the latter fact indicates a possible logical inconsistency in a comparison of Wedemeyer’s theory with the experimental C_I.

Results for two values of Re are compared in Table 4 for k = 3, m = 1, n = 1, and c = 3.148; the data in Case I come from Reference 13; Case II was done specifically for this report. Both Wedemeyer’s and our results for C_R agree with the experimental values for both cases to within the estimated uncertainty. The data were not accurate enough to obtain C_I for Case I, Re = 5.2 x 10⁵; but from results for partially-filled cylinders we should expect agreement at this Re. For Case II the theoretical and experimental results for C_I agree, considering the accuracy of the latter. Thus, it is an open question whether our results are in fact superior to Wedemeyer’s.

Table 4. Comparison of Predicted and Measured Eigenfrequencies for Mode \(m = 1, k = 3, n = 1 \) for Basic Flow in Solid-Body Rotation.

<table>
<thead>
<tr>
<th></th>
<th>Case I: (Re = 5.195 \times 10^5)</th>
<th>Case II: (Re = 8.977 \times 10^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gyrostat Measurements</td>
<td>(0.048 \pm 0.002) (Insufficient Accuracy)</td>
<td>(0.051 \pm 0.003)</td>
</tr>
<tr>
<td>Stewartson Inviscid Perturbation</td>
<td>(0.0462)</td>
<td>(0.0462)</td>
</tr>
<tr>
<td>Wedemeyer Correction to Stewartson Value</td>
<td>(0.0468)</td>
<td>(0.0500)</td>
</tr>
<tr>
<td>Result from Present Viscous Perturbation--No Correction</td>
<td>(0.0473)</td>
<td>(0.0530)</td>
</tr>
<tr>
<td>Result from Present Viscous Perturbation--Correction (\delta c)</td>
<td>(0.0469)</td>
<td>(0.0505)</td>
</tr>
</tbody>
</table>

Most of the experiments were conducted with partially-filled cylinders because these are the more practical cases and the filled cylinder experiment is more difficult. Wedemeyer compared his calculations with data obtained from the gyrostat experiments, and the agreement was impressive. The data were obtained for a cylinder of nominally 85% fill-ratio, but the actual value was varied in the experiments. The viscous correction theory of Wedemeyer requires 100% fill-ratio, as does ours. But since he applies his correction to Stewartson’s results for partially-filled cylinders, he evidently assumes that it is applicable there also; this assumption seems justified by the favorable comparison. There is no counterpart to Stewartson’s results to which our boundary condition correction can be applied; thus a clear-cut check of the two theoretical results against experimental data is not possible. Analysis of the available data and calculations indicates that the difference between the \(C_I \)'s for 85% and 100% ratios is negligible for \(Re > 10^4 \) and \(c \approx 3 \); however, for \(Re \leq 10^4 \) the effect of fill-ratio on \(C_I \) is more pronounced. For example, with \(Re = 5.05 \times 10^2 \), \(c = 3.08 \), \(k = 3 \), \(m = 1 \), and \(n = 1 \), Wedemeyer's formulae give \(C_I = 0.0490 \) (85%) and 0.0437 (100%). Whether or not these accurately represent the effect of fill-ratio at low Re is not known, and appropriate experimental data are not available. Further experimentation is required.
VI. CONCLUSIONS

Although the main objective of the work reported here is to develop methods to compute the eigenvalues for small perturbations of spin-up flow in a cylinder, this Part I is restricted to consideration of solid-body rotation so that the numerical technique can be described in detail without the distraction of the complexities that arise in spin-up, and yet provide results that can be checked with other theoretical work and experimental data. The perturbation equations are solved using an orthonormalization technique to insure linear independence of the solutions, and the eigenvalues are determined iteratively. A correction for the endwall boundary condition is derived and incorporated into the program which then provides eigenvalues that agree with other results in the literature and with experimental data.

ACKNOWLEDGEMENTS

The authors express their appreciation to J. M. Bartos for her assistance in programming and performing the computations. They also wish to acknowledge the help received from W. P. D'Amico, S. Davis, A. Davey, and G. P. Neitzel.
Figure 1. Real part of $\hat{p}(r)$ for two radial modes, with $c = 3.15$, $Re = 8977$, $m = 1$, $k = 3$.

Figure 2. Real part of $\hat{w}(r)$ for $n = 2$, with $c = 3.15$, $Re = 8977$, $m = 1$, $k = 3$.
REFERENCES

LIST OF SYMBOLS

Length, velocity, pressure, and time are non-dimensionalized by a, aΩ, ρaΩ2, and Ω⁻¹, respectively.

a cross-sectional radius of cylinder [m]
A 3x3 orthogonalization matrix in λth subinterval (see (20))
b value of r where initial conditions are specified
B 3x3 orthonormalization matrix in λth subinterval (see (22))
c half-height of cylinder
C ≡ CR + iCI, complex eigenvalue
C disturbance decay rate/Ω
CI disturbance frequency/Ω
D(C) ≡ DR + iDI, 3x3 determinant whose zeros are the eigenvalues (see (19))
E,F 6x3 matrices specifying initial and terminal conditions, respectively (see (14) and (15))
F symbol denoting a solution u,v,w,p (Appendix A)
G 6x6 matrix of coefficients in (9) (see (13))
J iteration operator -- Cμ+1 = J(Cμ) (see (31))
k,m,n axial, azimuthal, and radial indices, respectively, of a disturbance mode
K = kπ/(2c) (see (7))
N number of subintervals in orthonormalization
p pressure
p pressure perturbation (see (1))
p radial part of pressure perturbation (see (6))
LIST OF SYMBOLS (Continued)

P unperturbed pressure
r radial coordinate
Re \(\equiv \Omega a^2 / c \), Reynolds number
\(s_{j1}, \ldots, s_{j6} \) elements of solution vector \(S_j \)
\(S_j \) eigenvalue problem solution vector, \(j = 1, 2, 3 \) (see (16))
\(S \) 3x6 solution matrix whose rows are \(S_j \) (see (16))
\(S^\lambda \) orthogonolized solution matrix in \(\lambda \)th subinterval (see (20))
t time [non-dimensional]
\(t_{ji}^\lambda \) elements of 3x6 matrix \(T^\lambda \)
\(T^\lambda \) orthonormalized solution matrix in \(\lambda \)th subinterval (see (22))
u, v, w radial, azimuthal, and axial components, respectively, of velocity
\(\hat{u}, \hat{v}, \hat{w} \) radial parts of \(\hat{u}, \hat{v}, \hat{w} \), respectively (see (6))
U, V, W radial, azimuthal, and axial components, respectively, of unperturbed velocity
y boundary layer normal coordinate at endwall (see A.3a-d)
\(y_1, \ldots, y_6 \) dependent variables in canonical form of eigenvalue differential equation system (see (8))
\(Y \) solution vector \(\{y_1, \ldots, y_6\} \)
LIST OF SYMBOLS (Continued)

\(z \)
axial coordinate (= 0 at base of cylinder)

\(a_{ij}^{\lambda} \)
elements of \(A^{\lambda} \) (see (21))

\(c_{ij}^{\lambda} \)
elements of \(B^{\lambda} \) (see (23))

\(\gamma_1, \gamma_2, \gamma_3 \)
constant coefficients in (16)

\(\delta c_s, \delta c_w \)
cyliner half-height correction due to endwall boundary
layer--present theory, Wedemeyer theory, respectively

\(\Delta \)
displacement thickness of endwall boundary layer (see A.6)

\(\Gamma \)
1x3 matrix \([\gamma_1, \gamma_2, \gamma_3]\)

\(\varepsilon \)
value of \(r \) where numerical integration is initiated

\(\theta \)
avimuthal angle [radians]

\(v \)
kinematic viscosity of fluid [m\(^2\)/s]

\(\rho \)
density of fluid [kg/m\(^3\)]

\(\Omega \)
spin rate of cylinder [radians/s]

Superscript

\(\lambda \)
subinterval index

\(\sim \)
endwall boundary layer approximation

\(' \)
d/dr in (8) and (9)

Subscript

\(I \)
imaginary part of complex number

\(R \)
real part of complex number

\(\lambda \)
subinterval index
LIST OF SYMBOLS (Continued)

\(\mu \) \hspace{1cm} \text{iteration index in solution of } D(C) = 0 \text{ (see (28))}

\(o \) \hspace{1cm} \text{solution which satisfies inviscid boundary conditions at endwalls (Appendix A)}

\(1 \) \hspace{1cm} \text{correction to } o \text{ solution (Appendix A)}

\(\infty \) \hspace{1cm} \text{endwall value of } o \text{ solution}

Miscellaneous

\[S_1 \cdot S_2 = \sum_{i=1}^{6} s_{1i} s_{2i} \]

\[||S||^2 = S \cdot S \]
APPENDIX A: CORRECTION FOR THE ENDWALL BOUNDARY CONDITIONS

The derivation of the correction for endwall boundary conditions, discussed in Section IV, is presented here; this correction is needed to satisfy \(u = v = 0 \) on \(z = 0, 2c \). The perturbation equations for solid body rotation are (3), the linearized Navier-Stokes equations:

\[
(r u^*_r + v^*_\theta + r w^*_z) = 0 \quad (A.1a)
\]
\[
u^* + u^* - 2v^* = - p^*_r + Re^{-1} (\nabla^2 u^* - r^{-2} u^* - 2r^{-2} v^*_\theta) \quad (A.1b)
\]
\[
u^*_r + v^*_\theta + 2u^*_r = - r^{-1} p^*_\theta + Re^{-1} (\nabla^2 v^* - r^{-2} v^* + 2r^{-2} u^*_\theta) \quad (A.1c)
\]
\[
u^* + w^*_\theta = - p^*_z + Re^{-1} \nabla^2 w^* \quad (A.1d)
\]

where

\[
\nabla^2 \equiv \partial^2/\partial r^2 + r^{-1} \partial/\partial r + r^{-2} \partial^2/\partial \theta^2 + \partial^2/\partial z^2, \quad Re = \Omega a^2/\nu .
\]

The boundary conditions are \(u = v = w = 0 \) at \(z = 0, 2c \) and at \(r = a \). The solution to the problem is denoted by \(F = (u, v, w, p) \).

As discussed in Section II we solve the same equations

\[
u_{o_r} + u_{o_\theta} - 2v_o = - p_{o_r} + Re^{-1} (\nabla^2 u_o - r^{-2} u_o - 2r^{-2} v_{o_\theta}) \quad (A.2a)
\]
\[
u_{o_r} + v_{o_\theta} + 2u_o = - r^{-1} p_{o_\theta} + Re^{-1} (\nabla^2 v_o - r^{-2} v_o + 2r^{-2} u_{o_\theta}) \quad (A.2b)
\]
\[
u_{o_r} + w_{o_\theta} = - p_{o_z} + Re^{-1} \nabla^2 w_o \quad (A.2c)
\]
\[
(r u_o)_r + v_{o_\theta} + r w_{o_z} = 0 , \quad (A.2d)
\]

but with boundary conditions \(u_o = v_o = w_o = 0 \) at \(r = a \), and \(w_o = 0 \) at \(z = 0, 2c \), but \(u_o \neq 0 \) and \(v_o \neq 0 \) there. Let \(F_o \) denote the solution to this problem, for which a modal analysis in the \(z \) direction is possible. Since erroneous values for \(C_i \) were obtained with these incorrect
(inviscid) boundary conditions and a modal analysis for F could not be made, a correction to F_o was sought which satisfies the no-slip boundary conditions at $z = 0,2c$.

Subscript 1 is used to denote the correction. Since F and F_o differ only in their boundary conditions at $z = 0,2c$, we expect $F - F_o$ to differ from zero only near the end-walls. The correction F_1 should have the property that $u_1 + u_o = v_1 + v_o = w_1 + w_o = 0$ at $z = 0,2c$, and $F_1 \to 0$ or $F_1 + F_o \to F$, away from this boundary. Thus, $F_1 = F - F_o$ must have a boundary layer character near $z = 0,2c$; and, because of the similarity of this problem to Wedemeyer's, the same $Re^{-\frac{1}{2}}$ scaling is appropriate to this boundary layer. The boundary layer approximation to F_1 is denoted by \tilde{F}_1 and is an approximation to the desired correction, but only in the boundary layer; elsewhere the correction is negligible.

Under the boundary layer approximation $F_1 = F - F_o$ becomes $\tilde{F}_1 = \tilde{F} - \tilde{F}_o$ where \tilde{F}_o is the boundary layer approximation to the solution of (A.2a-d); the \tilde{F}, obtained from this relation, is the corrected F_o or the desired F, to within the boundary layer approximation. Let δ_1 be a measure of the thickness of the boundary layer so that $\delta_1 \to 0 (Re^{-\frac{1}{2}})$. Using the form of the solution for F_o in (6a-d) it can be easily shown that \tilde{F}_o satisfies the inviscid equations; i.e., (A.2a-d) with $v = 0$, with an error of $O(Re^{-1})$ except near $r = a$, where the sidewall boundary layer induces a viscous contribution. Also, the changes in u_o and v_o across δ_1 are

$$\Delta u_o = 0 (Re^{-1}) , \quad \Delta v_o = 0 (Re^{-1}) .$$

Thus,

$$\tilde{u} = \tilde{u}_o + \tilde{u}_1 = u_{o\infty} + \tilde{u}_1 , \quad \tilde{v} = \tilde{v}_o + \tilde{v}_1 = v_{o\infty} + \tilde{v}_1 ,$$

with the same error $O (Re^{-1})$, where sub ∞ denotes evaluation on the end-walls $z = 0,2c$. The conclusions of this paragraph are needed when the displacement surface is determined.

The boundary layer approximation applied to the equations for $F_1 = F - F_o$, yields
\[\tilde{u}_{1t} + \tilde{u}_{1\theta} - 2\tilde{v}_{1} + \tilde{p}_{1r} = \text{Re}^{-1} \tilde{u}_{1yy} \quad (A.3a) \]

\[\tilde{v}_{1t} + \tilde{v}_{1\theta} + 2\tilde{u}_{1} + \text{Re}^{-1} \tilde{p}_{1\theta} = \text{Re}^{-1} \tilde{v}_{1yy} \quad (A.3b) \]

\[\tilde{p}_{1y} = 0 \quad (A.3c) \]

\[(\tilde{r}\tilde{u}_{1})_{r} + \tilde{v}_{1\theta} - (\tilde{r}\tilde{w}_{1})_{y} = 0 \quad (A.3d) \]

for the endwall at \(z = 2c \), where \(y = 2c - z \) is the boundary layer normal coordinate. The boundary conditions are

\[\begin{align*}
\tilde{u}_{1} &= -u_{0\infty} \\
\tilde{v}_{1} &= -v_{0\infty} \\
\tilde{w}_{1} &= 0
\end{align*} \]

\text{at } y = 0, \quad \tilde{u}_{1} = \tilde{v}_{1} = 0 \text{ at } y = \infty.

Since the flow \(F_{1} \) is generated by changing from the no-slip to the inviscid type boundary conditions there is no mechanism to cause pressure gradients. Thus, \(p_{1} = 0 \) and \(\tilde{p}_{1} = 0 \). Then (A.3a-b) are in the same form as Wedemeyer's (28a-b), but their meaning is different. These equations are decoupled by introducing

\[A = \tilde{v}_{1} + i\tilde{u}_{1}, \quad B = \tilde{v}_{1} - i\tilde{u}_{1}, \]

and solved assuming the same periodicity, \(e^{i(Ct-\theta)} \), as for \(F_{0} \); i.e., \(m=1 \). The results for \(\tilde{u}_{1} \) and \(\tilde{v}_{1} \) are

\[\tilde{u}_{1} = (i/2) \left[(v_{\infty} + iu_{\infty}) e^{-\alpha y} - (v_{\infty} - iu_{\infty}) e^{-\beta y} \right] \quad (A.4a) \]

\[\tilde{v}_{1} = - (1/2) \left[(v_{\infty} + iu_{\infty}) e^{-\alpha y} + (v_{\infty} - iu_{\infty}) e^{-\beta y} \right] \quad (A.4b) \]
where
\[a = - \text{Re}^{\frac{1}{2}} [(3 - C_R)^2 + C_I^2]^{\frac{1}{4}} e^{i\sigma_1} \]
\[\sigma_1 = \frac{1}{2} \{[2 - H (C_I)] \pi + \tan^{-1} [(3 - C_R)/C_I] \} \]
\[\beta = - \text{Re}^{\frac{1}{2}} [(1 + C_R)^2 + C_I^2]^{\frac{1}{4}} e^{i\sigma_2} \]
\[\sigma_2 = \frac{1}{2} \{[2 + H (C_I)] \pi - \tan^{-1} [(1 + C_R)/C_I] \} \]
\[H (C_I) = 0 \text{ for } C_I < 0, \quad = 1 \text{ for } C_I > 0. \]

The principal values for \(\tan^{-1} \) are used.

Next the displacement surface, \(y = \Delta(r, \theta, t) \), is found. This is an impermeable surface in the \(o \) flow; i.e., \(\tilde{w}_o = 0 \) on it. \(\Delta \) satisfies a first order partial differential equation, as for a steady 3-D boundary layer. For unsteady incompressible flow an additional term, \(r \Delta_t \), appears. The equation for \(\Delta \) is
\[[r u_o (\Delta - \delta^r)]_r + (v_o (\Delta - \delta^\theta))_\theta + \Delta_t = 0 \quad (A.6) \]

where
\[u_o \delta^r \equiv \int_0^\infty (u_o - \tilde{u}) \, dy = - \int_0^\infty \tilde{u}_1 \, dy \]
\[= (1/2)(\alpha^{-1} + \beta^{-1}) u_o - (i/2)(\alpha^{-1} - \beta^{-1}) v_o, \]
\[v_o \delta^\theta \equiv \int_0^\infty (v_o - \tilde{v}) \, dy = - \int_0^\infty \tilde{v}_1 \, dy \]
\[= (1/2)(\alpha^{-1} + \beta^{-1}) v_o + (i/2)(\alpha^{-1} - \beta^{-1}) u_o \]

using \((A.4a-b)\).

After some analysis, employing the order of magnitude estimates for \(\Delta u_o \) and \(\Delta v_o \) given in the paragraph preceding \((A.3a-d)\), \((A.6)\) can be written as
\[[ru_{0\infty}(\Delta - \delta)]_t + [v_{0\infty}(\Delta - \delta)]_\theta + r\Delta_t = 0 \] \hspace{1cm} (A.7)

where

\[2\delta = \alpha^{-1} + \beta^{-1} - 2(\alpha^{-1} - \beta^{-1})/(1 - C) \] \hspace{1cm} (A.8)

The only periodic non-singular solution of (A.7) is the constant

\[\Delta = \delta \hspace{1cm} . \]

From (A.5), \(\Delta \) depends only on Re and \(c \), and is easily found after the eigenvalue \(C = C_R + iC_I \) is determined for the problem \(\phi \). Putting \(C_I = 0 \)
in (A.5) and (A.8) gives \(\delta = \delta c = \) Wedemeyer's displacement thickness (non-dimensionalized). Wedemeyer also determines a displacement thickness for the sidewall boundary layer. In our problem this is not necessary since the proper boundary conditions are satisfied at the sidewall.

The displacement thickness is a complex constant. The interpretation of the complex \(\Delta \) is given in Reference 1. Operationally, it is used in the same manner as a real displacement thickness: \(2c \) is replaced by \(2c - 2\Delta \) and the \(\phi \) problem is re-solved.
APPENDIX B: POWER SERIES COEFFICIENTS

In accordance with Section III.B, analytical solutions to (9) are found for the interval $0 \leq r \leq \varepsilon$. These are obtained by substituting power series for \hat{u}, \hat{v}, \hat{w}, and \hat{p} into (9) and determining the coefficients.

The solution for the azimuthal mode $m = 1$ is given by

$$\hat{u} = \sum_{j=0}^{\infty} a_j r^j$$
$$\hat{v} = \sum_{j=0}^{\infty} b_j r^j$$
$$\hat{w} = \sum_{j=0}^{\infty} d_j r^j$$
$$\hat{p} = \sum_{j=0}^{\infty} e_j r^j$$

The coefficients are given by the following sequence of formulas, where b_0, d_1, and e_1 are arbitrary complex constants:

$$a_0 = i b_0$$
$$b_0 = b_0$$
$$d_0 = 0$$
$$e_0 = 0$$

$$a_1 = 0$$
$$b_1 = 0$$
$$d_1 = d_1$$
$$e_1 = e_1$$

$$H = Re^{-1} K^2 + i C$$

$$a_2 = -(1/4) K d_1 + (1/8) Re [b_0 (iH - 1) + e_1]$$
$$b_2 = -i (1/4) K d_1 - (3i/8) Re [b_0 (iH - 1) + e_1]$$

For $j = 0, 1, 2, \ldots$

$$N_{1j} = Re [H a_{j+1} - (2 b_{j+1} + i a_{j+1})]$$
$$N_{2j} = Re [H b_{j+1} + (2 a_{j+1} - i b_{j+1})]$$

$$N_j = [N_{1j} - i (j + 2) N_{2j}] / [(j + 1)(j + 3)]$$
\[d_{j+2} = \text{Re} \left[(H - i) d_j - K e_j \right]/[(j + 1)(j + 3)] \]

\[a_{j+3} = - \left[N_j + (j + 4) K d_{j+2} \right]/[(j + 5)(j + 3)] \]

\[b_{j+3} = i \left[K d_{j+2} + (j + 4) N_j \right]/[(j + 5)(j + 3)] \]

\[e_{j+2} = \frac{[2 a_{j+3} + i (j^2 + 6j + 7) b_{j+3} - i N_{2j}]}{\text{Re}} \]
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Commander Defense Documentation Center</td>
<td>2</td>
<td>Commander US Army Missile Research and Development Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DDC-TCA</td>
<td></td>
<td>ATTN: DRDMI-R</td>
</tr>
<tr>
<td></td>
<td>Cameron Station</td>
<td></td>
<td>DRDMI-TD, Mr. R. Deep</td>
</tr>
<tr>
<td></td>
<td>Alexandria, VA 22314</td>
<td></td>
<td>Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td>1</td>
<td>Commander US Army Materiel Development Command</td>
<td>1</td>
<td>Commander US Army Missile Materiel Readiness Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRCDMD-ST</td>
<td></td>
<td>ATTN: DRSMI-AOM</td>
</tr>
<tr>
<td></td>
<td>5001 Eisenhower Avenue</td>
<td></td>
<td>Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td></td>
<td>Alexandria, VA 22333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commander US Army Aviation Research and Development Command</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: DRSAV-E</td>
<td>1</td>
<td>Commander US Army Tank Automotive Research & Development Command</td>
</tr>
<tr>
<td></td>
<td>12th and Spruce Streets</td>
<td></td>
<td>ATTN: DRDTA-UL</td>
</tr>
<tr>
<td></td>
<td>St. Louis, MO 63166</td>
<td></td>
<td>Warren, MI 48090</td>
</tr>
<tr>
<td>2</td>
<td>Commander US Army Air Mobility Research and Development Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: SAVDL-D, W.J. McCroskey</td>
<td>3</td>
<td>Commander US Army Armament Research and Development Command</td>
</tr>
<tr>
<td></td>
<td>Ames Research Center</td>
<td></td>
<td>ATTN: DRSAR-LEP-L, Tech Lib</td>
</tr>
<tr>
<td></td>
<td>Moffett Field, CA 94035</td>
<td></td>
<td>Rock Island, IL 61299</td>
</tr>
<tr>
<td>1</td>
<td>Commander US Army Electronics R&D Command Technical Support Activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: DELSD-L</td>
<td>1</td>
<td>Commander US Army Armament Research and Development Command</td>
</tr>
<tr>
<td></td>
<td>Fort Monmouth, NJ 07703</td>
<td></td>
<td>ATTN: DRDAR-LCA-F, A. Loeb</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DRDAR-TSS (2 cys)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dover, NJ 07801</td>
</tr>
<tr>
<td>1</td>
<td>Commander US Army Communications Rsch and Development Command</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: DRDCO-SGS</td>
<td>1</td>
<td>Director US Army TRADOC Systems Analysis Activity</td>
</tr>
<tr>
<td></td>
<td>Fort Monmouth, NJ 07703</td>
<td></td>
<td>ATTN: ATAA-SL, Tech Lib</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>White Sands Missile Range</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NM 88002</td>
</tr>
<tr>
<td>1</td>
<td>Commander US Army Jefferson Proving Ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: STEJP-TD-D</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Madison, IN 47250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>6</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>US Army Research Office</td>
<td></td>
<td>US Naval Surface Weapons Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. R. E. Singleton</td>
<td></td>
<td>Applied Aerodynamics Division</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 12211</td>
<td></td>
<td>ATTN: K. R. Enkenhus</td>
</tr>
<tr>
<td></td>
<td>Research Triangle Park</td>
<td></td>
<td>M. Ciment</td>
</tr>
<tr>
<td></td>
<td>North Carolina 27709</td>
<td></td>
<td>K. Lobb</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>1</td>
<td>AGARD-NATO</td>
</tr>
<tr>
<td></td>
<td>US Army Waterways Experiment Station</td>
<td></td>
<td>ATTN: R. H. Malter</td>
</tr>
<tr>
<td></td>
<td>ATTN: R. H. Malter</td>
<td></td>
<td>Vicksburg, MS 39180</td>
</tr>
<tr>
<td>3</td>
<td>Commander</td>
<td>2</td>
<td>AFFDL (W. L. Hankey; J. S. Shang)</td>
</tr>
<tr>
<td></td>
<td>US Naval Air Systems Command</td>
<td></td>
<td>Wright-Patterson AFB</td>
</tr>
<tr>
<td></td>
<td>ATTN: AIR-604</td>
<td></td>
<td>Ohio 45433</td>
</tr>
<tr>
<td>3</td>
<td>Commander</td>
<td>6</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>US Naval Ordnance Systems Command</td>
<td></td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td></td>
<td>ATTN: ORD-0632</td>
<td></td>
<td>ATTN: D. R. Chapman</td>
</tr>
<tr>
<td></td>
<td>ORD-035</td>
<td></td>
<td>J. Marvin</td>
</tr>
<tr>
<td></td>
<td>ORD-5524</td>
<td></td>
<td>J. D. Murphy</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20360</td>
<td></td>
<td>J. Rakich</td>
</tr>
<tr>
<td>2</td>
<td>Commander</td>
<td>5</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>David W. Taylor Naval Ship Research and Development Command</td>
<td></td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td></td>
<td>ATTN: H. J. Lugt, Code 1802</td>
<td></td>
<td>ATTN: J. E. Carter</td>
</tr>
<tr>
<td></td>
<td>S. de los Santos</td>
<td></td>
<td>E. Price</td>
</tr>
<tr>
<td></td>
<td>Head, High Speed Aero Division</td>
<td></td>
<td>J. South</td>
</tr>
<tr>
<td></td>
<td>Bethesda, Maryland 20084</td>
<td></td>
<td>J. R. Sterrett</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td></td>
<td>Tech Library</td>
</tr>
<tr>
<td></td>
<td>US Naval Surface Weapons Center</td>
<td></td>
<td>Langley Research Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: DX-21, Lib Br. Dahlgren, Virginia 22448</td>
<td></td>
<td>Langley Station</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hampton, Virginia 23365</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>Director National Aeronautics and Space Administration Lewis Research Center ATTN: MS 60-3, Tech Lib 21000 Brookpark Road Cleveland, Ohio 44135</td>
<td>3</td>
<td>The Boeing Company Commercial Airplane Group ATTN: W. A. Bissell, Jr. M. S. 1W-82, Org 6-8340 P. E. Rubbert J. D. McLean Seattle, WA 98124</td>
</tr>
<tr>
<td>2</td>
<td>Director Jet Propulsion Laboratory ATTN: L. M. Mark Tech Library 4800 Oak Grove Drive Pasadena, CA 91103</td>
<td>1</td>
<td>Center for Interdisciplinary Programs ATTN: Victor Zakkay W. 177th Street & Harlem River Bronx, New York 10453</td>
</tr>
<tr>
<td>3</td>
<td>ARO, Inc. ATTN: J. D. Whitfield R. K. Matthews J. C. Adams Arnold AFB, TN 37389</td>
<td>1</td>
<td>General Dynamics ATTN: Research Lib 2246 P. O. Box 748 Fort Worth, Texas 76101</td>
</tr>
<tr>
<td>1</td>
<td>AVCO Systems Division ATTN: B. Reeves 201 Lowell Street Wilmington, MA 01887</td>
<td>1</td>
<td>General Electric Company, RESD ATTN: R. A. Larmour 3198 Chestnut Street Philadelphia, PA 19101</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>Lockheed-Georgia Company</td>
<td>2</td>
<td>Sandia Laboratories</td>
</tr>
<tr>
<td></td>
<td>ATTN: B. H. Little, Jr.</td>
<td></td>
<td>ATTN: F. G. Blottner</td>
</tr>
<tr>
<td></td>
<td>G. A. Pounds</td>
<td></td>
<td>Tech Lab</td>
</tr>
<tr>
<td></td>
<td>Dept. 72074, Zone 403</td>
<td></td>
<td>Albuquerque, NM 87115</td>
</tr>
<tr>
<td></td>
<td>86 South Cobb Drive</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marietta, Georgia 30062</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Lockheed Missiles and Space Company</td>
<td>2</td>
<td>United Aircraft Corporation Research Laboratories</td>
</tr>
<tr>
<td></td>
<td>ATTN: Tech Info Center</td>
<td></td>
<td>ATTN: R. W. Briley</td>
</tr>
<tr>
<td></td>
<td>3251 Hanover Street</td>
<td></td>
<td>Library</td>
</tr>
<tr>
<td></td>
<td>Palo Alto, California 94304</td>
<td></td>
<td>East Hartford, CT 06108</td>
</tr>
<tr>
<td>4</td>
<td>Martin-Marietta Laboratories</td>
<td>1</td>
<td>Vought Systems Division</td>
</tr>
<tr>
<td></td>
<td>ATTN: S. H. Maslen</td>
<td></td>
<td>LTV Aerospace Corporation</td>
</tr>
<tr>
<td></td>
<td>S. C. Traugott</td>
<td></td>
<td>ATTN: J. M. Cooksey</td>
</tr>
<tr>
<td></td>
<td>K. C. Wang</td>
<td></td>
<td>Chief, Gas Dynamics Lab., 2-53700</td>
</tr>
<tr>
<td></td>
<td>H. Obremski</td>
<td></td>
<td>P. O. Box 5907</td>
</tr>
<tr>
<td></td>
<td>1450 S. Rolling Road</td>
<td></td>
<td>Dallas, Texas 75222</td>
</tr>
<tr>
<td></td>
<td>Baltimore, Maryland 21227</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>McDonnell Douglas Astronautics Corporation</td>
<td>3</td>
<td>California Institute of Technology</td>
</tr>
<tr>
<td></td>
<td>ATTN: J. Xerikos</td>
<td></td>
<td>ATTN: Tech Library</td>
</tr>
<tr>
<td></td>
<td>J. Xerikos</td>
<td></td>
<td>H. B. Keller</td>
</tr>
<tr>
<td></td>
<td>H. Tang</td>
<td></td>
<td>Mathematics Dept.</td>
</tr>
<tr>
<td></td>
<td>5301 Bolsa Avenue</td>
<td></td>
<td>D. Coles</td>
</tr>
<tr>
<td></td>
<td>Huntington Beach, CA 92647</td>
<td></td>
<td>Aeronautics Dept.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pasadena, California 91109</td>
</tr>
<tr>
<td>1</td>
<td>McDonnell-Douglas Corporation</td>
<td>1</td>
<td>Cornell University</td>
</tr>
<tr>
<td></td>
<td>Douglas Aircraft Company</td>
<td></td>
<td>ATTN: Graduate School of Aero Engr</td>
</tr>
<tr>
<td></td>
<td>ATTN: T. Cebeci</td>
<td></td>
<td>Library</td>
</tr>
<tr>
<td></td>
<td>T. Cebeci</td>
<td></td>
<td>Ithaca, New York 14850</td>
</tr>
<tr>
<td></td>
<td>3855 Lakewood Boulevard</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Long Beach, California 90801</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Northrup Corporation</td>
<td>2</td>
<td>Illinois Institute of Technology</td>
</tr>
<tr>
<td></td>
<td>Aircraft Division</td>
<td></td>
<td>ATTN: M. V. Morkovin</td>
</tr>
<tr>
<td></td>
<td>ATTN: S. Powers</td>
<td></td>
<td>H. M. Nagib</td>
</tr>
<tr>
<td></td>
<td>S. Powers</td>
<td></td>
<td>3300 South Federal</td>
</tr>
<tr>
<td></td>
<td>3901 W. Broadway</td>
<td></td>
<td>Chicago, Illinois 60616</td>
</tr>
<tr>
<td></td>
<td>Hawthorne, California 90250</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

44
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
</table>
| 2 | The Johns Hopkins University
ATTN: S. H. Davis
S. Corrsin
Dept. of Mechanics
and Materials Science
Baltimore, Maryland 21218 | 4 | Princeton University
James Forrestal Research Center
Gas Dynamics Laboratory
ATTN: I. E. Vas
S. M. Bogdonoff
S. I. Cheng
Tech Library
Princeton, NJ 08540 |
| 1 | Louisiana State University
Department of Physics
ATTN: R. G. Hussey
Baton Rouge, LA 70803 | 1 | Purdue University
Thermal Science & Prop Center
ATTN: D. E. Abbott
W. Lafayette, IN 47907 |
| 3 | Massachusetts Institute of Technology
ATTN: E. Covert
H. Greenspan
Tech Library
77 Massachusetts Avenue
Cambridge, MA 02139 | 1 | Rensselaer Polytechnic Institute
Department of Math. Sciences
ATTN: R. C. DiPrima
Troy, NY 12181 |
| 2 | North Carolina State University
Mechanical and Aerospace Engineering Department
ATTN: F. F. DeJarnette
J. C. Williams
Raleigh, NC 27607 | 1 | Rutgers University
Department of Mechanical,
Industrial and Aerospace Engineering
ATTN: R. H. Page
New Brunswick, NJ 08903 |
| 1 | Notre Dame University
ATTN: T. J. Mueller
Dept. of Aero Engr
South Bend, Indiana 46556 | 1 | Southern Methodist University
Department of Civil and Mechanical Engineering
ATTN: R. L. Simpson
Dallas, TX 75275 |
| 2 | Ohio State University
Dept. of Aeronautical and Astronautical Engineering
ATTN: S. L. Petrie
O. R. Burggraf
Columbus, Ohio 43210 | 1 | Southwest Research Institute
Applied Mechanics Reviews
8500 Culebra Road
San Antonio, TX 78228 |
| 2 | Polytechnic Institute of New York
ATTN: G. Moretti
S. G. Rubin
Route 110
Farmingdale, NY 11735 | 1 | University of California-Berkeley
Department of Aerospace Engineering
ATTN: M. Holt
Berkeley, CA 94720 |
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>University of California-Davis</td>
<td>1</td>
<td>University of Santa Clara Department of Physics</td>
</tr>
<tr>
<td></td>
<td>ATTN: H. A. Dwyer</td>
<td></td>
<td>ATTN: R. Greeley</td>
</tr>
<tr>
<td></td>
<td>Davis, CA 95616</td>
<td></td>
<td>Santa Clara, CA 95053</td>
</tr>
<tr>
<td>2</td>
<td>University of California-San Diego</td>
<td>3</td>
<td>University of Southern California Department of Aerospace Engineering</td>
</tr>
<tr>
<td></td>
<td>Department of Aerospace Engineering and Mechanical Engineering Sciences</td>
<td></td>
<td>ATTN: T. Maxworthy</td>
</tr>
<tr>
<td></td>
<td>ATTN: P. Libby</td>
<td></td>
<td>P. Weidman</td>
</tr>
<tr>
<td></td>
<td>Tech Library</td>
<td></td>
<td>L. G. Redekopp</td>
</tr>
<tr>
<td></td>
<td>La Jolla, CA 92037</td>
<td></td>
<td>Los Angeles, CA 90007</td>
</tr>
<tr>
<td>2</td>
<td>University of Cincinnati</td>
<td>1</td>
<td>University of Texas Department of Aerospace Engineering</td>
</tr>
<tr>
<td></td>
<td>Department of Aerospace Engineering</td>
<td></td>
<td>ATTN: J. C. Westkaemper</td>
</tr>
<tr>
<td></td>
<td>ATTN: R. T. Davis</td>
<td></td>
<td>Austin, TX 78712</td>
</tr>
<tr>
<td></td>
<td>M. J. Werle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cincinnati, OH 45221</td>
<td>1</td>
<td>University of Virginia Department of Aerospace Engineering and Engineering Physics</td>
</tr>
<tr>
<td></td>
<td>ATTN: E. R. Benton</td>
<td></td>
<td>ATTN: I. D. Jacobson</td>
</tr>
<tr>
<td></td>
<td>Boulder, CO 80302</td>
<td></td>
<td>Charlottesville, VA 22904</td>
</tr>
<tr>
<td>1</td>
<td>University of Hawaii Department of Ocean Engineering</td>
<td>1</td>
<td>University of Washington Department of Mechanical Engineering</td>
</tr>
<tr>
<td></td>
<td>ATTN: G. Venezian</td>
<td></td>
<td>ATTN: Tech Library</td>
</tr>
<tr>
<td></td>
<td>Honolulu, HI 96822</td>
<td></td>
<td>Seattle, WA 98195</td>
</tr>
<tr>
<td>2</td>
<td>University of Maryland</td>
<td>1</td>
<td>University of Wyoming ATTN: D. L. Boyer University Station</td>
</tr>
<tr>
<td></td>
<td>ATTN: W. Melnik</td>
<td></td>
<td>Laramie, WY 82071</td>
</tr>
<tr>
<td></td>
<td>J. D. Anderson</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>College Park, MD 20740</td>
<td>2</td>
<td>Virginia Polytechnic Institute Department of Aerospace Engineering</td>
</tr>
<tr>
<td></td>
<td>ATTN: Tech Library</td>
<td></td>
<td>ATTN: G. R. Inger</td>
</tr>
<tr>
<td></td>
<td>East Engineering Building</td>
<td></td>
<td>F. J. Pierce</td>
</tr>
<tr>
<td></td>
<td>Ann Arbor, MI 48104</td>
<td></td>
<td>Blacksburg, VA 24061</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

No. of Copies Organization

1 Woods Hole Oceanographic Institute
 ATTN: J. A. Whitehead
 Woods Hole, MA 02543

Aberdeen Proving Ground

Dir, USAMSAA
Cdr, USATECOM
 ATTN: DRSTE-SG-H
Cdr/Dir, USA CSL, EA
 ATTN: Munitions Sys Div
 Bldg. 3330
 E. A. Jeffers
 W. C. Dee
 W. J. Pribyl
Armament Concepts Ofc
 Bldg. 3516 (DRDAR-ACW)
 M. C. Miller