UNCLASSIFIED
ERADCOM/ASL-TR-0008

MAY 78
F V HANSEN

THE GROWTH AND PREDICTION OF NOCTURNAL INVERSIONS. (U)

END
DATE FILMED
9 - 78
DOC
THE GROWTH AND PREDICTION OF NOCTURNAL INVERSIONS

MAY 1978

By

Frank V. Hansen

Approved for public release; distribution unlimited.

US Army Electronics Research and Development Command
Atmospheric Sciences Laboratory
White Sands Missile Range, N.M. 88002
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.
The growth of nocturnal inversions is investigated by utilizing concepts originally proposed by Taylor, with respect to experimental data extracted from the literature. Generally, it was found that the Taylor formulation adequately describes the growth of nocturnal inversion with time in the form $z_1 = 2 (k_t t)^{1/2}$, where k_t is the eddy viscosity and t is time in minutes, after inversion onset.

This investigative effort is applicable to the dispersion and transport of smoke screening and obscurant aerosols and particulates released in nocturnal conditions.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>BASIC CONSIDERATIONS FOR THE SURFACE BOUNDARY LAYER</td>
<td>3</td>
</tr>
<tr>
<td>ESTIMATES OF INVERSION HEIGHTS</td>
<td>5</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>7</td>
</tr>
<tr>
<td>FIGURES</td>
<td>8</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>12</td>
</tr>
</tbody>
</table>
The formation of the nocturnal inversion was probably first examined formally by Taylor [1]. His investigation was based upon the eddy transfer of heat with the eddy conductivity K_H independent of height, which can be stated as

$$\frac{\partial T}{\partial t} = K_H \frac{\partial^2 T}{\partial z^2} \quad (1)$$

where T is temperature, t time, and z height above the surface. For the case of a nocturnal inversion, where the rate of temperature change at the surface can be considered to be fairly uniform, Taylor suggested that the temperature diminishes n-degrees per unit time so that at time t the temperature, T, is $T_O - nT$ where T_O is the temperature at t_0.

At time t, the temperature at z will be

$$T = T_O - \delta z - nt \left[\left(1 + \frac{z^2}{2K_H t} \right) \left(1 - \frac{2}{\sqrt{\pi}} \int_0^{z/\sqrt{4K_H t}} e^{-\mu^2} \, d\mu \right) - \frac{2}{\sqrt{\pi}} \frac{z}{\sqrt{4K_H t}} e^{-z^2/4K_H t} \right] \quad (2)$$

where δ is a constant lapse rate, and μ the kinematic viscosity. Taylor found that the term multiplying nt was unity at the surface and 0.1 at $z(4K_H t)^{1/2} = 0.8$ and suggested that no effect existed beyond $z(4K_H t)^{1/2} = 1$, so that surface changes of temperature over time t extend to a height defined by

$$z_I^2 = 4K_H t \quad (3)$$

where z_I is the top of the inversion.

Sutton [2], using a multilayer approach, but similar reasoning, verifies the approximation of Eq. (3) for the growth of nocturnal inversions with time where K_H is a maximum at some height h above the surface.
Estimates of the depth of nocturnal inversions are of some importance to transport and dispersion of smoke/obscuration materials released into the atmosphere during stable conditions. Crosswind integrated concentrations, source strengths, and downwind diffusion of materials released into the atmosphere are highly dependent upon stability and inversion depths. In turn, these parameters determine munition expenditures and obscuration.

BASIC CONSIDERATIONS FOR THE SURFACE BOUNDARY LAYER

The lower portion of the atmosphere may be considered to consist of two layers, the surface boundary layer \(z_0 < z < h \) and the planetary layer proper extending to the gradient wind level \(h < z < Z \), where \(z_0 \) is the roughness length, \(h \) the top of the surface layer, and \(z \) the gradient wind level. It may also be assumed that the exchange coefficients for heat and momentum reach a maximum at \(h \), decreasing again to a residual value at \(z \).

In a thermally stratified stable regime, vertical fluxes of heat and momentum can be considered to be functions of mechanical turbulence alone, which suggests that \(K_H = K_M \), where \(K_M \) is the eddy viscosity, with the dimensionless parameters of the Obukhov [3] similarity theory given by

\[
\frac{Z}{L} = Ri \Phi_M; \quad \Phi_H = \Phi_M; \text{ and } R_f = \frac{K_H}{K_M}
\]

where \(L \) is the Obukhov scaling length, \(Ri \) and \(R_f \) the gradient and flux Richardson numbers, respectively, with \(\Phi_M \) a dimensionless wind shear and \(\Phi_H \) a dimensionless lapse rate. Hansen [4] has demonstrated that for stable flow the wind profile may be written as

\[
V = \frac{u_*}{k} \left[\ln \frac{Z}{Z_0} + (\Phi_M - 1) \right]
\]
where \bar{V} is the mean horizontal windspeed, u_* a friction velocity, and k Karman's constant. Furthermore, Hansen [4] also found that

$$\frac{Z}{L} = R_1 + 15 R_1^2$$

(5)

$$\phi_M = 1 + \frac{Z}{L} = 1 + 15 R_1$$

(6)

where $\bar{\beta}$ is the average over a height interval of a variable given by

$$\bar{\beta} = \frac{Z/L - R_1}{R_1}$$

(7)

The mean reduces to

$$\bar{\beta} = \frac{15}{1 + 15 R_1}$$

(8)

If the wind profile in finite difference form is written for stable flow as

$$\frac{\Delta V}{h \Delta \ln h} = \frac{u_*}{k} R_1^{-1} L^{-1}$$

(9)

where $z = h = L R_1 \phi_M$, then

$$h = L \frac{k}{u_*} R_1 \frac{\Delta V}{\Delta \ln z}$$

(10)

If $\Delta V \Delta \ln^{-1} z$, the critical gradient at the geometric mean height h, is assumed to occur over the layer $\Delta \ln z = \ln e = 1$, then $R_i \Delta V = \bar{\beta}^{-1}$, and

$$h = mL \bar{\beta}^{-1} = mL \frac{\phi_M}{15}$$

(11)

where m is the profile slope k/u_*. If $h/L = R_i \phi_M$, then from Eq. (11)

$$R_i(h) = \frac{m}{15}$$

(12)
and from Eq. (5)

\[h = L \left(R_i(h) + 15 R_i(h)^2 \right). \] \hspace{1cm} (13)

The height \(h \) is taken to be the depth of the surface boundary layer in a stable flow regime and is the height where \(K_H \) or \(K_M \) maximum is evaluated for inversion depth estimates using Eq. (3). The eddy viscosity at \(h \) is given by

\[K_M(h) = \frac{ku_z z}{\Phi_M(h)}. \] \hspace{1cm} (14)

Lumley and Panofsky [5] suggest that the depth of the surface layer can be estimated from

\[h = 20 \tau_0 \] \hspace{1cm} (15)

where \(\tau_0 \) is the surface stress and assumed to be the equivalent of the Reynolds shearing stress, \(\tau = \rho u_*^2 \), where \(\rho \) is density. Calculations based upon stable regime data extracted from Lettau and Davidson [6] and Barad [7], as summarized in Figure 1, indicate that Eq. (15) provides estimates of \(h \) comparable with Eq. (13).

ESTIMATES OF INVERSION HEIGHTS

The scheme for estimating inversion heights was evaluated by using experimental data extracted from Lettau and Davidson [6]; Barad [7]; Bowne, Entrekin, and Smith [8]; and Stenmark and Drury [9]. Micrometeorological profile data from Lettau and Davidson, Stenmark and Drury, and Barad were utilized to calculate \(h \), \(K_M \) and \(z_I \) for the thermally stratified stable regime. Rawinsonde, aircraft soundings and wiresonde data summaries from all four data samples were used to obtain indicated inversion heights.
According to Milly [10], inversion conditions can be assumed to exist from approximately 60 minutes before sundown to about 60 minutes after sunrise. For those data samples where sunrise and sunset were not listed, these times were estimated from information in The American Ephemeris and Nautical Almanac, issued by the Nautical Almanac Office, US Navy Observatory, Washington, DC.

The calculated and observed values for \(z_1 \) from the 217 micrometeorological profiles and the 305 soundings used in this study were averaged by using two methods: (1) hourly, and (2) by means of a geometric progression where the overlapping time intervals serve to filter and smooth the data. The hourly averages of \(z_1 \) (observed) and \(z_1 \) (calculated) are shown in Figure 2 and the overlapping time averaged analysis in Figure 3. Note that the calculated values of \(z_1 \) overpredict inversion heights soon after sunset and underpredict in the early morning hours. No significant difference is apparent between the two averaging methods.

To simplify the prediction of inversion growth and height with time, a semiempirical formula based upon Eq. (3) where the value of \(K_M(h) \) is estimated from \(\Theta_M \) and \(V \) was developed and takes the form

\[
z_I = 7.75 \Theta_M^{-1} (V z t)^{1/3}
\]

(16)

where \(z \) is 2 m, \(V \) is windspeed in m sec\(^{-1}\) and \(t = \) minutes. Figure 4 shows values of \(z_I \) calculated by using Eq. (16) with respect to the observed average inversion heights with respect to time.
CONCLUSIONS

The results shown in Figures 2 through 4 are in good agreement with a study reported on by the US Weather Bureau [11] as summarized by Wanta [12]. It should be pointed out that the conditions indicated in Figures 2 through 4 are averages based upon four distinctly separate data samples observed in widely separated geographical locations over dissimilar terrain. The variations in observed or calculated inversion heights, as indicated by the one standard deviation bars about the meaned values of the figures, represent the variations that could occur in inversion heights, even in a single nocturnal period. This can be verified by considering the remotely sensed data of Hall [13] and the summary of the status of remote sensing prepared by Little [5]. The fluctuations in the inversion height with time can be easily recognized in Little's Figures 10 and 11.

One difficulty encountered while operating upon the profile data using Eqs. (3) and (16) was the low windspeed cases. Speeds less than 2 to 3 m sec\(^{-1}\) at 2 meters height tended to underestimate inversion heights badly, especially 6 to 8 hours into the nocturnal regime. Thus, the use of the prediction estimators is not recommended during periods of low windspeeds. Generally though, Eqs. (3) and (16) do a reasonably accurate job of estimating inversion heights as long as the atmosphere is stable and the 2-meter windspeed is greater than 3 m sec\(^{-1}\).

The results presented are applicable to US Army problems associated with the dispersion and transport of smoke/aerosols utilized for screening and obscuration.
Figure 3. Overlapping time averaged analysis of observed and calculated inversion depths.
FIGURE 4. INVERSION DEPTHS BASED UPON SEMIEMPIRICAL PREDICTION FORMULA.
REFERENCES

DISTRIBUTION LIST

Commander
US Army Aviation Center
ATTN: ATZQ-D-MA
Fort Rucker, AL 36362

Chief, Atmospheric Sciences Div
Code ES-81
NASA
Marshall Space Flight Center,
AL 35812

Commander
US Army Missile Command
ATTN: DRSMI-RRB, Bldg 7770
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRDMI-TEM
Redstone Arsenal, AL 35809

Commander
US Army Missile Rsch & Dev Command
ATTN: DRDMI-TR
Redstone Arsenal, AL 35809

Redstone Scientific Information Ctr
ATTN: DRDMI-TBD
US Army Missile Rsch & Dev Command
Redstone Arsenal, AL 35809

Commander
HQ, Fort Huachua
ATTN: Tech Ref Div
Fort Huachua, AZ 85613

Commander
US Army Intelligence Ctr & School
ATTN: ATSI-CD-MD
Fort Huachua, AZ 85613

Commander
US Army Proving Ground
ATTN: Technical Library
Bldg 2100
Yuma, AZ 85364

Naval Weapons Ctr (Code 3173)
ATTN: Dr. A. Shlanta
China Lake, CA 93555

Sylvania Elec Sys Western Div
ATTN: Technical Reports Library
PO Box 205
Mountain View, CA 94040

Range Commanders Council
ATTN: Mr. Hixon
PMTC Code 3252
Pacific Missile Test Center
Point Mugu, CA 93042

Commander
Naval Ocean Systems Center
ATTN: Research Library
San Diego, CA 92152

Meteorologist in Charge
Kwajalein Missile Range
PO Box 67
APO
San Francisco, CA 96555

Director
Atmospheric Physics & Chem Lab
Code R31, NOAA
Department of Commerce
Boulder, CO 80302

Library-R-51-Tech Reports
Environmental Research Labs
NOAA
Boulder, CO 80302

National Center for Atmos Res
NCAR Library
PO Box 3000
Boulder, CO 80307

R. B. Girardo
Bureau of Reclamation
E&R Center, Code 1220
Denver Federal Ctr, Bldg 67
Denver, CO 80225
Head, Atmospheric Rsch Section
National Science Foundation
1800 G. Street, NW
Washington, DC 20550

Defense Communications Agency
Technical Library Center
Code 205
Washington, DC 20305

Director
Defense Nuclear Agency
ATTN: Tech Library
Washington, DC 20305

HQDA (DAEN-RDM/Dr. De Percin)
Forrestal Bldg.
Washington, DC 20314

CPT Hugh Albers, Exec Sec
Interdept Committee on Atmos Sci
Fed Council for Sci & Tech
National Sci Foundation
Washington, DC 20550

The Library of Congress
ATTN: Exchange & Gift Div
Washington, DC 20540

Mil Assistant for
Environmental Sciences
DAD (E & LS), 3D129
The Pentagon
Washington, DC 20301

National Weather Service
National Meteorological Center
World Weather Bldg-5200 Auth Rd
ATTN: Mr. Quiroz
Washington, DC 20233

Dir, US Naval Research Lab
Code 5530
Washington, DC 20375

Office, Asst Sec Army (R&D)
ATTN: Dep for Science & Tech
HQ, Department of the Army
Washington, DC 20310

Director, Systems R&D Service
Federal Aviation Administration
ATTN: ARD-54
2100 Second Street, SW
Washington, DC 20590

Dr. John L. Walsh
Code 4109
Navy Research Lab
Washington, DC 20375

Armament Dev & Test Center
ADTC (DLOS/L)
Eglin AFB, FL 32542

Naval Training Equipment Center
ATTN: Technical Library
Orlando, FL 32813

Det 1, SAMTEC
TOEL - ATTN: Maj Orondorff
Patrick AFB, FL 32925

HQ, ESD/DRI/S-22
Hanscom AFB
Bedford, MA 01731

Air Force Cambridge Rsch Labs
ATTN: LCB (A. S. Carten, Jr.)
Hanscom AFB
Bedford, MA 01731

Air Force Geophysics Laboratory
ATTN: LYD
Hanscom AFB
Bedford, MA 01731

Meteorology Laboratory
AFGL/LY
Hanscom AFB
Bedford, MA 01731

US Army Liaison Office
MIT-Lincoln Lab, Library A-082
PO Box 73
Lexington, MA 02173
Commander
ATTN: DRSEL-VL-D
Fort Monmouth, NJ 07703

Commander
US Army Electronics Command
ATTN: DRLSEL-WL-D1
Fort Monmouth, NJ 07703

Commanding Officer
US Army Armament Rsch & Dev Com
ATTN: DRDAR-TSS #59
Dover, NJ 07801

Commander
Aviation Flight Test Activity
ATTN: DELAF-CO
Lakehurst NAEC, NJ 08733
6585 TG/WE
Holloman AFB, NM 88330

Commander
AFWL/WE
Kirtland AFB, NM 87117
Air Force Weapons Laboratory
ATTN: Technical Library (SUL)
Kirtland AFB, NM 87117

Commander
US Army Test & Evaluation Command
ATTN: Technical Library
White Sands Missile Range, NM 88002

Rome Air Development Center
ATTN: Documents Library
TILD (Bette Smith)
Griffiss AFB, NY 13441

Commander
US Army Tropic Test Center
ATTN: STETC-MO (Tech Library)
APO New York 09827

Commandant
USAFAS
ATTN: ATSF-CD-MT (Mr. Farmer)
Fort Sill, OK 73503

Commander
US Army Field Artillery School
ATTN: ATSF-CF-R
Fort Sill, OK 73503

Director CFD
US Army Field Artillery School
ATTN: Met Division
Fort Sill, OK 73503

Commandant
US Army Field Artillery School
ATTN: Morris Swett Tech Library
Fort Sill, OK 73503

Commander
US Army Dugway Proving Ground
ATTN: MT-S
Dugway, UT 84022
William Peterson
Research Association
Utah State University, UNC 48
Logan, UT 84322

Inge Dirichirn, Professor
Utah State University, UMC 48
Logan, UT 84322

Defense Documentation Center
ATTN: DDC-TCA
Cameron Station (Bldg 5)
Alexandria, VA 22314

Commander
Department of the Army
PM, Concept Analysis Center
ATTN: DRCERP-CAC, Arlington Hall Sta
Arlington, VA 22312

Commander
Signals Warfare Laboratory
ATTN: DELSW-D
Arlington Hall Station
Arlington, VA 22312

Commander
US Army INSCOM
ATTN: IARDA-OS
Arlington Hall Station
Arlington, VA 22212
CO, USA Foreign Sci & Tech Center
ATTN: DRXST-ISI
220 7th Street, NE
Charlottesville, VA 22901

Naval Surface Weapons Center
Code DT-22 (Ms. Greeley)
Dahlgren, VA 22448

Commander
Night Vision & Electro-Optics Labs
ATTN: DELNV-D
Fort Belvoir, VA 22060

Commander and Director
US Army Engineer Topographic Labs
ETL-GS-AC
Fort Belvoir, VA 22060

US Army Nuclear Agency
ATTN: MONA-WE
Fort Belvoir, VA 22060

Commander
Eustis Directorate
US Army Air Mobility R&D Lab
ATTN: Technical Library
Fort Eustis, VA 23604

Department of the Air Force
OL-C, 5WW
Fort Monroe, VA 23651

Department of the Air Force
5 WW/DN
Langley AFB, VA 23665

Director
Development Center MCDEC
ATTN: Firepower Division
Quantico, VA 22134

Commander
USA Cold Regions Test Center
ATTN: STECR-OP-PM
APO Seattle 98733

Dr. Frank D. Eaton
PO Box 3038
University Station
Laramie, WY 82071

42. Gillespie, James B., and James D. Lindberg, "A Method to Obtain Diffuse Reflectance Measurements from 1.0 to 3.0 μm Using a Cary 171 Spectrophotometer," ECOM-5806, November 1976.

53. Rubio, Roberto, and Mike Izquierdo, “Measurements of Net Atmospheric Irradiance in the 0.7- to 2.8-Micrometer Infrared Region,” ECOM-5817, May 1977.

