BATTERY SEPARATOR FROM POLYPHENYL QUINOXALINE POLYMER BLENDS

BY DR. ISAAC ANGRES

RESEARCH AND TECHNOLOGY DEPARTMENT

APRIL 1978

Approved for public release; distribution unlimited.

NAVAL SURFACE WEAPONS CENTER
Dahlgren, Virginia 22448 • Silver Spring, Maryland 20910
Title: Battery Separators from Polyphenylquinoxaline Polymer Blends.

Authors: ISAAC/ANGRES

Performing Organization Name and Address:
Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910

Contract or Grant Number: CR33BB501; CR33GC601;

Report Date: Apr 1978

Number of Pages: 21

DISTRIBUTION STATEMENT (of this Report):
Approved for public release; distribution unlimited.

DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report):

SUPPLEMENTARY NOTES:

KEY WORDS:
Battery Separators, Polyphenylquinoxaline, Cellulose Acetate

ABSTRACT:
This work was performed to determine if polyphenylquinoxaline blends with polymers such as polyvinylacetate, cellulose acetate, can be made into polymeric membranes useful as battery separators. It was found that polyphenylquinoxaline and cellulose acetate blends offer the best membrane useful as battery separators.
SUMMARY

This investigation is a continuation of the development of a heat and oxidation resistant battery separator. It is established that a combination of polyphenyl quinoxaline with cellulose acetate provides a potentially useful battery separator. The work is being performed under NAVSEA Task Number SF 43431302 and NAVSEC Task Number 6157D-1001.

J. R. Dixon
By Direction
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>EXPERIMENTAL</td>
<td>5</td>
</tr>
<tr>
<td>SEPARATOR PREPARATION</td>
<td>5</td>
</tr>
<tr>
<td>RESISTANCE AND DIFFUSION MEASUREMENTS</td>
<td>6</td>
</tr>
<tr>
<td>STABILITY MEASUREMENTS</td>
<td>6</td>
</tr>
<tr>
<td>Dimensional</td>
<td>6</td>
</tr>
<tr>
<td>Chemical</td>
<td>6</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSION</td>
<td>6</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>9</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>9</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>10</td>
</tr>
</tbody>
</table>
TABLE

Table	Page
1 Properties of PPQ Composite Membranes | 8

FIGURES

Figure	Page
1 Dimensional Change (L x W) Vs Exposure Time in 45% KOH at 25°C | 11
2 Dimensional Change (Thickness) Vs Exposure Time in 45% KOH at 25°C | 12
3 Weight Change Vs Exposure Time in 45% KOH at 25°C and 80°C | 13
4 Comparative Rates of Achieving Constant Resistance | 14
5 Diffusion of OH Through Several Membranes | 15
INTRODUCTION

One of the problems associated with conventional alkaline batteries (i.e., AgO-Zn, Ni-Zn) is that the battery separator of choice, cellophane, undergoes oxidative degradation during long-term storage and operation.1,2

In addition to the standard characteristics required for normal battery operation, an improved separator should have the following characteristics:

1. Diffusion rates comparable to cellophane;
2. Specific resistance comparable to that of cellophane.
3. Hydrolytic and oxidative stability in 31\% KOH and 45\% KOH solutions under operating conditions.

This paper describes the preparation of new heat resistant separators based on blends containing polyphenylquinoxaline (PPQ), an aromatic polymer, as the matrix.

EXPERIMENTAL

The polyphenylquinoxaline (PPQ) polymer was prepared according to the method of Stille.3 The reported inherent viscosity for this polymer is 2.05 dL/g, and the glass transition temperature is 420°C.4 Cellulose acetate (CA) (39.8\% acetyl content), cellulose triacetate (CT), polyvinylacetate (PVAc), and polyvinylpyrrolidone (PVP) were all obtained from Aldrich Chemical Company.

SEPARATOR PREPARATION

The following procedure applies to all of the above polymers when blended with the PPQ and using chloroform as the solvent: 30g of a 10\% PPQ solution in m-cresol was added to a suitable container followed by the addition of 2g of any polymer (CA, CT, PVAc, PVP) or 2g of a mixture of the above polymers. To the above mixture there was added 100ml of chloroform and the resulting composition was stirred thoroughly until a homogeneous solution was obtained. The homogeneous solution was used for casting purposes.

Following the casting of the film, (i.e., on a suitable glass plate) the solvent was allowed to evaporate slowly for about 2–3 minutes by partially enclosing the plate with a plastic container. The plate was then immersed in a 1:1 methanol–water bath, and allowed to stand for ten minutes. The film was washed with water and dried in air.

RESISTANCE AND DIFFUSION MEASUREMENTS

Resistance measurements were made using the method of Kilroy and Moynihan. Hydroxyl diffusion measurements were performed using the method of Harris.

STABILITY MEASUREMENTS

DIMENSIONAL. Rectangular pieces (approximately 50 x 60 mm) of membranes were cut and accurately weighed after equilibration at ambient laboratory conditions. The sample was then accurately measured with calipers and a micrometer to determine its true dimensions.

The specimens were then placed in vials which contained 45% by weight of KOH and stored at 25°C or 80°C. The specimens were removed from the alkali solution at regular intervals and after blotting the excess solution, were again accurately measured and weighed. The results were recorded over a period of 28 days and are reported as percent change.

CHEMICAL. The chemical stability in the silver-zinc battery environment was evaluated in a qualitative fashion by visual observation of exposed specimens. Samples (0.5x3 cm) were cut and immersed in a 45% solution of KOH which had been saturated with AgO. The samples were placed in an oven at 80°C and removed at regular intervals for inspection. Samples which had changed color or had become deformed or brittle were judged to be chemically unstable.

RESULTS AND DISCUSSION

PPQ is a nonpolar polymer hydrophobic to the KOH electrolyte with a high inherent electrical resistance. In order to reduce the electrical resistance, polymers such as polyvinylpyrrolidone, cellulose acetate, cellulose triacetate, and polyvinylacetate which are polar and hydrophilic were incorporated to form codispersed heterogeneous membranes. The polar component was removed by extraction in a suitable solvent or hydrolysis in 45% KOH in order to create a semi-porous film consisting of a PPQ matrix with an unknown amount of the more polar polymer remaining.

By blending PPQ (60%) in chloroform solution with the other polymers (40%), polymeric membranes were obtained which showed promise for use as battery separators. The resistance and thickness of several codispersed membranes are illustrated in Table 1.

Table 1 suggests that a combination of PPQ with cellulose acetate gives the membrane with the lowest resistance thereby making it the separator of choice. We found that after heating for three months at 80°C in a 45% KOH solution saturated with silver(II) oxide, the PPQ/CA separator remained intact with no appreciable deterioration while the cellophane deteriorated after 16 hours.

The dimensional changes were compared with cellophane and plotted as percentage change versus time. The results are illustrated in Figures 1, 2, and 3. As expected, the hydrophilic cellophane has absorbed KOH electrolyte to more than double its thickness. Similarly, this is observed in the weight changes in cellophane. The large percentage weight increase in cellophane compared to PPQ or PPQ/X-polymer is in agreement with its hydrophilic nature and the dimensional change in its thickness.

Figure 4 illustrates the relative rates of achieving constant resistance for cellophane and PPQ/CA. The speed (10 minutes) at which cellophane achieves constant resistance is again in agreement with its hydrophilic nature. It takes approximately nine times longer for PPQ/CA to achieve constant resistance indicating the PPQ matrix together with cellulose acetate is not as hydrophilic as cellophane.

The diffusion of OH⁻ ions through the separator was studied by following the pH changes across the separator by the method of Harris. The flux of OH⁻ ions was calculated according to the expression:

\[\text{FLUX} = \frac{\Delta M}{A \Delta t} = \frac{AC}{At} \times V \text{ (Moles/unit time-unit area)} \]

The results of the diffusion studies across several membranes are represented in Figure 5. Hydroxyl ion diffusion is faster through cellophane than for PPQ/CA. The average flux of OH⁻ ions through cellophane was \(1.61 \times 10^{-3}\) mole/min-square inch whereas the flux for PPQ/CA was \(1.06 \times 10^{-3}\) mole/min square inch. The differences in fluxes are readily accounted for by the fact that at the molecular level cellophane comes close to a heterogeneous molecular sieve, and at the same time its intra-molecular hydrogen-bonded interactions allows for wettability and diffusion to occur somewhat faster. The slower flux for PPQ/CA can be explained by the non-polar and hydrophobic nature of the PPQ. Similarly, it will be immediately appreciated that it is the cellulose acetate that provides the basis for wettability and electrolyte flow.

Table 1. Properties of PPQ Composite Membranes

<table>
<thead>
<tr>
<th>MEMBRANE<sup>a</sup></th>
<th>RESISTANCE IN 45% KOH ohm-cm</th>
<th>FILM THICKNESS MILS DRY</th>
<th>FILM THICKNESS MILS IN 45% KOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPQ/CA</td>
<td>40</td>
<td>1.3</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>1.8</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>1.7</td>
<td>2.9</td>
</tr>
<tr>
<td>PPQ/CT</td>
<td>100</td>
<td>2.2</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>2.8</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>2.1</td>
<td>3.3</td>
</tr>
<tr>
<td>PPQ/PVA</td>
<td>200</td>
<td>1.1</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>230</td>
<td>1.4</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>280</td>
<td>1.8</td>
<td>2.7</td>
</tr>
<tr>
<td>PPQ/PVP</td>
<td>> 1000</td>
<td>1.0</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>> 1000</td>
<td>0.7</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>> 1000</td>
<td>0.4</td>
<td>0.6</td>
</tr>
</tbody>
</table>

^a THE RATIO OF PPQ/X-POLYMER IS 60/40
CONCLUSION

It has been shown that an aromatic heterocyclic polymer such as polyphenyl-
quinoxaline, can be blended with CA to produce potential battery separators.

ACKNOWLEDGEMENT:

This task was performed under support from the Naval Sea Systems Command and
the Department of Energy. We wish to thank Al Himy for his useful discussions
and suggestions.
REFERENCES

FIGURE 2. DIMENSIONAL CHANGE (THICKNESS) VS EXPOSURE TIME IN 45% KOH AT 25°C
FIGURE 3 WEIGHT CHANGE VS EXPOSURE TIME IN 45% KOH AT 25° AND 80°C
DISTRIBUTION

Naval Sea Systems Command
 Attn: Code SEA 09G32
 Code SEA 03B
 Code SEA 0331J (S. J. Matesky)
 Code SEA 0331 (J. W. Murrin)
 Code SEA 0841B (J. R. Cipriano)
 Washington, D.C. 20362

Office of Naval Research
 Attn: Library (ONR 715)
 800 N. Quincy Street
 Arlington, Virginia 22217

Naval Research Laboratory
 Attn: Code 6170 (A. C. Simon)
 Washington, D.C. 20390

Defense Nuclear Agency
 Attn: Library
 Washington, D.C. 20301

Headquarters, USAFSS
Air Force Special Communications Center
 Attn: Library
 San Antonio, TX 78243

Defense Documentation Center
 Attn: Library
 Cameron Station
 Alexandria, VA 22314

Headquarters, US Army Development & Readiness Command
 Attn: Code DRCDE-L (J. W. Crellin)
 5001 Eisenhower Avenue
 Alexandria, VA 22333

US Army Electronics Command
 Attn: Code DRSEL-TL-P (D. Linden)
 Code DRSEL-TL-P (Dr. S. Gilman)
 Fort Monmouth, NJ 07703

Naval Weapons Center
 Attn: Dr. Aaron Fletcher
 China Lake, CA 93555
Catholic University
Chemical Engineering Department
Attn: Dr. C. T. Moynihan
Washington, D.C. 20064

David W. Taylor Naval Ship R&D Center
Annapolis Laboratory
Attn: Code 2723 (A. B. Neild)
Code 2724 (J. Woerner)
Annapolis, MD 21402

Naval Electronics Systems Command
Attn: Code PME 124-31 (A. H. Sobel)
Washington, D.C. 20360

John Hopkins Applied Physics Lab
Attn: Library
John Hopkins Road
Laurel, MD 20810

Catalyst Research Corp.
Attn: George Bowser
1421 Clarkview Road
Baltimore, MD 21209

Headquarters, Dept of Transportation
Attn: Code GEOE-3/61 (R. Potter)
US Coast Guard, Ocean Engineering Division
Washington, D.C. 20590

Edgewood Arsenal
Attn: Library
Aberdeen Proving Ground, MD 21010

AF Aero Propulsion Lab
Attn: Code AFAPL/POE-1 (W. S. Bishop)
Code AFAPL/POE-1 (J. Lander)
Wright-Patterson AFB, OH 45433

NASA Goddard Space Flight Center
Attn: Code 771 (G. Halpert)
Greenbelt, MD 20771

NASA Lewis Research Center
Attn: Code MS 309/1 (Dr. J. S. Fordyce)
21000 Brookpark Road
Cleveland, OH 44135

Frank J. Seiler Research Laboratory
Attn: Code FJSRL/NC (Capt. J. K. Erbacker, USAF)
AFSC, USAF Academy, CO 80840
NSWC/WOL TR 78-56

Naval Weapons Support Center
Electrochemical Power Sources Division
Attn: Code 305 (D. G. Miley)
Crane, IN 47522

Department of Energy
Division of Electric Energy Systems
Attn: L. J. Rodgers
Room 2101
Washington, D.C. 20545

Department of Energy
Division of Applied Technology
Attn: Code M/S E-463 (Dr. A. Langrebe)
Washington, D.C. 20545

Strategic Systems Project Office
Engineering Development Project Office
Attn: Code NSP-2721 (K. N. Boyley)
Washington, D.C. 20360
TO AID IN UPDATING THE DISTRIBUTION LIST FOR NAVAL SURFACE WEAPONS CENTER, WHITE OAK LABORATORY TECHNICAL REPORTS PLEASE COMPLETE THE FORM BELOW:

TO ALL HOLDERS OF NSWC/WOL TR 78-56
by Isaac Angres, Code R-33
DO NOT RETURN THIS FORM IF ALL INFORMATION IS CURRENT

A. FACILITY NAME AND ADDRESS (OLD) (Show Zip Code)

NEW ADDRESS (Show Zip Code)

B. ATTENTION LINE ADDRESSES:

C.

☐ REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT.

D. NUMBER OF COPIES DESIRED
ATTENTION: CODE-R-33

WHITE OAK, SILVER SPRING, MARYLAND 20910

NAVY SURFACE WEAPONS CENTER

COMMANDER

OFFICIAL BUSINESS

POSTAGE AND FEES PAID

DEPARTMENT OF THE NAVY