A solution is presented for the calculation of mutual coupling between elements in a finite planar rectangular waveguide antenna array. The aperture dimensions can be less than the feeding waveguide dimensions and the elements are uniformly spaced in each of two directions in either a rectangular or isosceles triangular lattice. The problem is formulated as an integral equation by requiring the transverse electric and magnetic fields to be continuous across the apertures. The integral equation is solved by the method of moments for the equivalent magnetic current in the aperture region.
single expansion function is used to approximate the electric field in each aperture. For apertures that are close together the normal quadruple half-space admittance integral is reduced to single integrals which are evaluated numerically. For apertures farther apart, a double numerical integral solution is used. In addition, the symmetry property of the symmetric Toeplitz admittance matrix for the linear array case and the symmetric block-Toeplitz admittance matrix for the rectangular array case is utilized when solving for the unknown magnetic current coefficients.
CONTENTS

I. INTRODUCTION	1
II. STATEMENT OF THE PROBLEM	3
III. ADMITTANCE FORMULATION	10
IV. SINGULAR POINTS OF Y_{hs}	25
V. SCATTERING MATRIX - $[S]$	27
VI. SAMPLE COMPUTATIONS	30
VII. DISCUSSION AND CONCLUSIONS	34
VIII. REFERENCES	41
I. INTRODUCTION

Finite array analysis is useful both for determining the characteristics of finite size arrays and also for determining edge effects for elements close to or at the edge of very large arrays. In this report the solution to the finite array problem is expressed in terms of an aperture half-space admittance matrix and coupling coefficients (scattering parameters) between elements of the array.

The problem of calculating the mutual coupling between apertures in a perfectly conducting ground plane previously has been studied by other authors [1-7]. Borgiotti [1] obtained an expression for the mutual admittance between two identical radiating apertures in the form of a Fourier transform of a function strictly related to the power radiation pattern of the element.

In the first of two papers [2-3], Mailloux found the near field coupling between two collinear open-ended waveguide slots by formulating the problem as a set of simultaneous integral equations and solving the resulting equations approximately by expanding the aperture field in a Fourier series. In the second paper, Mailloux found the near field coupling between two closely spaced open-ended square waveguide slots by a first-order analysis which is based on the method of moments using a single-mode approximation to the aperture field. He also gave an improved first-order analysis which uses a higher order mode solution.

by Steyskal [6] and Bailey and Bostian [7] dealt with finite circular waveguide arrays. Steyskal's method is similar to the one used in this report. He found the scattering matrix for a finite circular waveguide array by using two dominant orthogonal modes as expansion functions in a method of moments solution.

Formulas for the computation of the aperture half-space admittance and scattering matrices of a finite planar rectangular waveguide array are derived in this report. The procedure assumes a cosine aperture electric field. For apertures that are close together the normal quadruple half-space admittance integral is analytically reduced to single integrals which are then evaluated numerically. For apertures farther apart, the quadruple half-space admittance integral is analytically reduced to double integrals which are evaluated numerically.

The general theory of solution is an extension of that presented in a previous paper [8]. The basic procedure is an application of the method of moments to an integral equation formulation of the problem. The unknowns to be determined are the equivalent magnetic current coefficients. The magnetic current is equal to the tangential electric field in the aperture regions, rotated 90°. The Toeplitz property of the admittance matrices for the linear and rectangular lattice arrays is utilized when solving for the unknown magnetic current coefficients. The computer program which uses the solution derived in this report will be given in a subsequent report [15].
II. STATEMENT OF THE PROBLEM

Figure 1 shows the problem to be considered and defines the coordinates and parameters to be used. The infinitely conducting plate covers the entire \(z = 0 \) plane except for the apertures which are rectangular in shape with side lengths \(a' \) and \(b' \) in the \(x \) and \(y \) directions, respectively. The feeding waveguides have inside side lengths of \(a \) and \(b \) in the \(x \) and \(y \) directions, respectively. Note that all feeding waveguides have the same dimensions \((a,b)\) and all the apertures have the same dimensions \((a',b')\). Also \(z \) is less than zero in the waveguide region and \(z \) is greater than zero in the half-space region. The excitations of the waveguides are sources which produce the dominant mode wave traveling toward the apertures. The waveguides are assumed terminated in matched loads when viewed from the aperture.

We first consider the problem of a single waveguide-fed aperture radiating into a half-space region (see Fig. 2a). The equivalence principle [9, Sec. 3-5] is used to divide this problem into two separate regions as follows (see Fig. 2b). The aperture is covered by an electric conductor. The fields in the waveguide region are produced by the impressed sources \(J^{\text{imp}}, M^{\text{imp}} \), and the equivalent magnetic current \(M = n \times E \)

over the aperture region with the aperture covered by an electric conductor. The fields in the half-space region are produced by the equivalent magnetic current, \(-M\), with the aperture covered by an
Fig. 1. Waveguide-fed rectangular apertures in a perfectly conducting plane.
Fig. 2. A single waveguide-fed aperture radiating into half-space bounded by an electric conductor.
electric conductor. The condition that the equivalent magnetic current in the waveguide region is +M and in the half-space region −M ensures that the tangential component of electric field is continuous across the aperture.

Another necessary boundary condition is the continuity of the tangential component of magnetic field across the aperture. The tangential magnetic field over the aperture on the waveguide side, \(H_{\text{wg}} \), is equal to

\[
H_{\text{wg}} = H_{\text{imp}} + H_{\text{wg}}(M) \tag{2}
\]

where

- \(H_{\text{imp}} \) is the tangential magnetic field due to impressed sources
- \(H_{\text{wg}}(M) \) is the tangential magnetic field due to the equivalent magnetic source M.

On the half-space side of the aperture we have

\[
H_{\text{hs}} = H_{\text{hs}}(-M) = - H_{\text{hs}}(M) . \tag{3}
\]

The last equality in (3) is a consequence of the linearity of the \(H_{\text{hs}} \) operator. Note that \(H_{\text{imp}} \), \(H_{\text{wg}}(M) \), and \(H_{\text{hs}}(M) \) are all computed with an electric conductor covering the aperture. The true solution is obtained when \(H_{\text{wg}} \) of (2) equals \(H_{\text{hs}} \) of (3) or

\[
H_{\text{wg}}(M) + H_{\text{hs}}(M) = - H_{\text{imp}} . \tag{4}
\]

This is the basic operator equation for determining the equivalent magnetic current M.
Although (4) was derived for a single waveguide in a ground plane, it applies equally well for an N-element waveguide array. In this case the waveguide region is considered to include all of the waveguides and the half-space region is as before. For the multiple aperture case, (4) becomes

\[
\mathbf{H}^{\text{wg}}(\mathbf{M}_i^j) + \sum_{j=1}^{N} \mathbf{H}^{\text{hs}}(\mathbf{M}_j) = -\mathbf{H}^{\text{imp}}
\]

\(i = 1, 2, \ldots, N.\)

In (5), \(\mathbf{M}_j^j\) is the equivalent magnetic current for the jth aperture. The subscript \(i\) denotes magnetic field evaluation in the \(i\)th aperture. Let

\[
\mathbf{M}_j^i = V_j \mathbf{M}_j
\]

where \(V_j\) is a complex constant to be determined and \(\mathbf{M}_j\) is an expansion function to be specified. Substituting (6) into (5), we obtain

\[
V_i \mathbf{H}^{\text{wg}}(\mathbf{M}_i^i) + \sum_{j=1}^{N} V_j \mathbf{H}^{\text{hs}}(\mathbf{M}_j) = -\mathbf{H}^{\text{imp}}
\]

\(i = 1, 2, \ldots, N.\)

Next, define the symmetric product \(<A, B>\) of two vectors \(A\) and \(B\) by

\[
<A, B> = \iint A \cdot B \, ds
\]

where the integral is over all aperture regions. Also define a set of testing functions \(\mathbf{W}_i\), \(i=1, 2, \ldots, N\) which may or may not be equal to the expansion functions. Then, taking the symmetric product of (7) with the testing function \(\mathbf{W}_i\), we obtain
\[\langle \mathbf{V}_1, \mathbf{H}^{\text{WG}}_1 \rangle + \sum_{j=1}^{N} \langle \mathbf{V}_j, \mathbf{H}^{\text{HS}}_j \rangle = -\langle \mathbf{V}_1, \mathbf{H}^{\text{imp}}_1 \rangle \quad (9) \]

where \(i = 1, 2, \ldots, N \).

Solution of this set of linear equations determines the coefficients \(\mathbf{V}_j \) and, therefore, the equivalent magnetic current \(\mathbf{H}^j \).

Equation (9) can be rewritten in matrix notation as follows:

Define an admittance matrix for the waveguide regions as

\[[\mathbf{Y}^{\text{WG}}_{ij}] = [-\delta_{ij}, \mathbf{H}^{\text{WG}}_j \rangle_{N \times N} \quad (10) \]

where \(\delta_{ij} \) is the Kronecker-delta function

\[\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \quad (11) \]

and for the half-space region as

\[[\mathbf{Y}^{\text{HS}}_{ij}] = [\mathbf{H}^{\text{HS}}_j \rangle_{N \times N} \quad (12) \]

The minus signs are placed in (10) and (12) on the basis of power considerations. Define a source vector

\[\mathbf{i}^{\text{imp}} = [\mathbf{V}_1, \mathbf{H}^{\text{imp}}_1 \rangle_{N \times 1} \quad (13) \]

and a coefficient vector

\[\mathbf{\mathbf{\hat{V}}} = [\mathbf{V}_1]_{N \times 1} \quad (14) \]

The resulting matrix equation which is equivalent to (9) is

\[[\mathbf{Y}^{\text{WG}} + \mathbf{Y}^{\text{HS}}] \mathbf{\hat{V}} = \mathbf{i}^{\text{imp}} \quad (15) \]
The physical interpretation of (15) is that of two generalized admittance networks, \([Y^{\text{WG}}]\) and \([Y^{\text{HS}}]\), in parallel with the current source \(\mathbf{i}^{\text{imp}}\). By inverting (15), we obtain the resulting voltage vector \(\mathbf{V}\) which is the vector of coefficients which determines \(M\)

\[
\mathbf{V} = [Y^{\text{WG}} + Y^{\text{HS}}]^{-1} \mathbf{i}^{\text{imp}}.
\] (16)

The expansion \((M_1)\) and testing \((W_1)\) functions are defined as

\[
M_1 = W_1 = - u_1 P_1(x,y) \cos \frac{\pi}{a} (x-x_1)
\] (17)

where

\[
P_1(x,y) = \begin{cases}
\sqrt{\frac{2}{a'b'}} & \frac{x_1 - a'/2}{a'} < x < x_1 + a'/2 \\
\sqrt{\frac{2}{a'b'}} & \frac{y_1 - b'/2}{b'} \leq y \leq y_1 + b'/2 \\
0 & \text{all other } x, y.
\end{cases}
\] (18)

The equivalent magnetic current over the ith aperture region is

\[
M_i = V_i M_1 \\
= - u_1 V P_1(x,y) \cos \frac{\pi}{a} (x-x_1).
\] (19)

The electric field in the ith aperture is

\[
E_i = u_1 V P_1(x,y) \cos \frac{\pi}{a} (x-x_1).
\] (20)

We choose the minus sign in the magnetic current expression (19) to avoid an explicit minus sign in our expression for aperture electric field (20).
III. ADMITTANCE FORMULATION

a) Determination of Y_{ij}^{WG}

To evaluate the aperture admittance (10) in the waveguide region, we consider a single expansion function M_i on the $z = 0$ plane in the ith waveguide region. The tangential field produced by M_i can be expressed in modal form as [9, Sec. 8-1]

$$E_{t}^{WG}(M_i) = \sum_k A_{ik} e^{\frac{\gamma_k z}{2}} e_k$$

$$H_{t}^{WG}(M_i) = -\sum_k A_{ik} e^{\frac{\gamma_k z}{2}} u_z \times e_k$$

(21)

where A_{ik} are modal amplitudes, γ_k are modal propagation constants, Y_k are modal characteristic admittances, and e_k are normalized modal vectors. The modal vector orthogonality relationship is

$$\iint_{\text{guide}} e_i \cdot e_j \, ds = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

(22)

where the integration is over the waveguide cross section. At $z = 0$, we have

$$M_i = u_z \times E_{t}^{WG}(M_i) \bigg|_{z=0} = \sum_k A_{ik} u_z \times e_k$$

(23)

Multiply each side of this equation scalarly by $u_z \times e_j$ and integrate over the waveguide cross section obtaining

$$\iint_{\text{guide}} M_i \cdot u_z \times e_j \, ds = \sum_k A_{ik} \iint_{\text{guide}} (u_z \times e_k) \cdot (u_z \times e_j) \, ds$$

(24)

By orthogonality (22), all terms of the summation are zero except the $j=k$ term. Hence
\[A_{ik} = \int_{\text{apert.}} M_1 \cdot u_z \times e_k \, ds . \]

We have replaced the integral over the waveguide cross section by one over the aperture since \(M_1 \) exists only in the aperture region. Substituting the second equation of (21) evaluated at \(z = 0 \) into (10), we obtain the diagonal elements of the waveguide admittance matrix, \([Y^{\text{WG}}]\),

\[Y_{ij}^{\text{WG}} = \delta_{ij} \sum_k A_{ik} Y_k \int_{\text{apert.}} W_1 \cdot u_z \times e_k \, ds . \]

Since \(M_1 = W_1 \), (26) becomes

\[Y_{ij}^{\text{WG}} = \delta_{ij} \sum_k A_{ik}^2 Y_k . \]

The set \(e_{ik} \) of modes for the rectangular waveguide is split into a set \(e_k^{\text{TE}} \) of TE modes given by [9, Equations (8—34), (3—86), and (3—89) and Section 4-3]

\[e_{m+n(L_m+1)}^{\text{TE}} = \sqrt{ab \varepsilon_{mn}} \frac{u_m}{(mb)^2 + (na)^2} \left[b \frac{\cos \frac{mn_1}{a} \sin \frac{mn_2}{b}}{a \frac{\cos \frac{mn_1}{a} \sin \frac{mn_2}{b}}{b}} \right] \]

\[m = 0, 1, 2, \ldots, L_m \]

\[n = 0, 1, 2, \ldots, L_n \]

\[e_m = \begin{cases} 1 & m = 0 \\ 2 & m = 1, 2, \ldots \end{cases} \]

and a set \(e_k^{\text{TM}} \) of TM modes given by
\[
\frac{E_{m+(n-1)L_m}}{2} = \sqrt{\frac{ab}{(mb)^2 + (na)^2}} \left[u_m \frac{m}{a} \cos \frac{m\pi x}{a} \sin \frac{n\pi y}{b} \right. \\
+ \left. u_n \frac{n}{b} \sin \frac{m\pi x}{a} \cos \frac{n\pi y}{b} \right]
\]

\[
(m = 1, 2, 3, \ldots, L_m) \\
(n = 1, 2, 3, \ldots, L_n)
\]

Note that equations (28) and (29) are valid only when the origin is at a corner of the waveguide.

Substituting (17), (28), and (29) into (25), we obtain

\[
A_{ik}^{TF} = \int \left[\mathcal{M}_i \cdot u_z \times \mathcal{E}_{ik}^{TE} \right] ds
\]

apert.

\[
= - \frac{m\pi}{k_i} \sqrt{2c} \frac{c}{m,n} \sqrt{\frac{aa'}{bb'}} I(m,n)
\]

\[
k = m+n(L_m+1) \left\{ \begin{array}{ll}
 m=0,1,2,\ldots,L_m & \quad m+n \neq 0 \\
 n=0,1,2,\ldots,L_n &
\end{array} \right.
\]

and

\[
A_{ik}^{TM} = \int \left[\mathcal{M}_i \cdot u_z \times \mathcal{E}_{ik}^{TM} \right] ds
\]

apert.

\[
= \frac{2n\pi}{k_i} \sqrt{2c} \frac{c}{m,n} \sqrt{\frac{aa'}{bb'}} I(m,n)
\]

\[
k = m+(n-1)L_m \left\{ \begin{array}{ll}
 m=1,2,3,\ldots,L_m & \\
 n=1,2,3,\ldots,L_n &
\end{array} \right.
\]

where

\[
k_i = \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2}
\]
\[
I(m,n) = \int_{(b-b')/2}^{(b+b')/2} \int_{(a-a')/2}^{(a+a')/2} dy \cos \frac{n\pi y}{b} \cos \frac{m\pi x}{a} \sin \frac{n\pi x}{a}
\]

\[
= - \frac{2b'}{\pi a'} \frac{1}{\left(\frac{m}{2} - \frac{1}{a'}^2\right)} \sin \frac{m\pi}{2} \cos \frac{n\pi}{2} \cos \frac{m\pi a'}{2a} \frac{\sin \frac{n\pi b'}{2b}}{\frac{n\pi b'}{2b}}. \quad (33)
\]

Note that the introduction of \(e_{TE}^k\) and \(e_{TM}^k\) has split the coefficients (25) into \(A_{1k}^{TE}\) and \(A_{1k}^{TM}\). If \(a/a' = m\) in (33), \(\cos \frac{m\pi a'}{2a} - \frac{1}{a'}^2\) is to be replaced by its limit \((-\pi a^2/4)\). If \(n\) is zero in (33), \((\sin(0)/0)\) is to be replaced by unity.

The characteristic admittances \(Y_i\) of a rectangular waveguide with relative dielectric constant \(\varepsilon_r\) and relative permeability unity are classified as either TE admittances \(Y_{iTE}\) or TM admittances \(Y_{iTM}\) given by [9, Section 4-3],

\[
Y_{iTE} = \begin{cases}
- \frac{1}{\eta} \sqrt{\left(\frac{k_{\parallel}}{k}\right)^2 - \varepsilon_r} & k\sqrt{\varepsilon_r} < k_1 \\
\frac{1}{\eta} \sqrt{\varepsilon_r - \left(\frac{k_{\parallel}}{k}\right)^2} & k\sqrt{\varepsilon_r} > k_1
\end{cases}
\]

\[
i = m+n(L+1) \quad \left\{ \begin{array}{l}
m=0,1,2,\ldots,L_m \\
n=0,1,2,\ldots,L_n \end{array} \right. \quad m+n \neq 0
\]

and

\[
Y_{iTM} = \begin{cases}
\frac{1}{\eta} \frac{\varepsilon_r}{\sqrt{\left(\frac{k_{\parallel}}{k}\right)^2 - \varepsilon_r}} & k\sqrt{\varepsilon_r} < k_1 \\
\frac{1}{\eta} \frac{\varepsilon_r}{\sqrt{\varepsilon_r - \left(\frac{k_{\parallel}}{k}\right)^2}} & k\sqrt{\varepsilon_r} > k_1
\end{cases}
\]

\[
i = m+(n-1)L_m \quad \left\{ \begin{array}{l}
m=1,2,3,\ldots,L_m \\
n=1,2,3,\ldots,L_n \end{array} \right.
\]
In (34) and (35), \(\eta \) is the characteristic impedance of free space, \(k \) is the free space wave number, and \(k_1 \) is the cut-off wave number given by (32).

b) Determination of \(Y_{ij}^{hs} \)

Since the apertures are covered by conductors, the \(z = 0 \) plane is a complete conducting plane and image theory applies. The magnetic current expansion functions are on the surface of the \(z = 0 \) plane. Their images are equal to them and are also on the \(z = 0 \) plane. The result is that \([Y^{hs}]\) is the admittance matrix obtained using expansion functions \(M_j \) radiating into free space everywhere. Therefore (12) can be written as

\[
Y_{ij}^{hs} = -2\langle \omega, H_{t1}^{fs}(M_j) \rangle \tag{36}
\]

where \(H_{t1}^{fs}(M_j) \) is the magnetic field in the \(i \)th aperture region produced by \(M_j \) radiating into free space. The magnetic field \(H_{t1}^{fs}(M_j) \) can be expressed in terms of an electric vector potential \(E_{ij} \) and a magnetic scalar potential \(\phi_{ij} \) as [10]

\[
H_{t1}^{fs}(M_j) = -j\omega E_{ij} - \nabla \phi_{ij} \tag{37}
\]

where

\[
E_{ij} = \frac{\varepsilon}{4\pi} \iint_{\text{apert.}} M_j \frac{-jk|z-z'|}{|z-z'|} \, ds \tag{38}
\]

\[
\phi_{ij} = \frac{1}{4\mu} \iint_{\text{apert.}} \rho_j \frac{-jk|z-z'|}{|z-z'|} \, ds \tag{39}
\]

\[
\rho_j = \frac{\nabla \cdot M_j}{-j\omega} \tag{40}
\]
where \mathbf{r} and \mathbf{r}' are respectively the vectors to the field and source points, ω is the angular frequency, ε is the permittivity of free space, μ is the permeability of free space, and k is the free space propagation constant. Substituting (37) into (36) and using (8), we obtain

$$Y_{ij}^{hs} = 2 \iint_{\text{apert.}} \mathbf{W}_i \cdot (j\omega \mathbf{F}_{ij} + \nabla \phi_{ij}) ds. \tag{41}$$

Because of the identity

$$0 = \iint_{\text{apert.}} \nabla \cdot (\phi_{ij} \mathbf{W}_i) ds = \iint_{\text{apert.}} \mathbf{W}_i \cdot \nabla \phi_{ij} ds + \iint_{\text{apert.}} \phi_{ij} \nabla \cdot \mathbf{W}_i ds \tag{42}$$

(41) becomes

$$Y_{ij}^{hs} = 2 j\omega \iint_{\text{apert.}} (\mathbf{F}_{ij} \cdot \mathbf{W}_i + \phi_{ij} \rho_1) ds \tag{43}$$

where

$$\rho_1 = \frac{\nabla \cdot \mathbf{W}_i}{j\omega}. \tag{44}$$

Next define Y_{ij}^{l} by

$$Y_{ij}^{l} = 2 j\omega \iint_{\text{apert.}} \mathbf{F}_{ij} \cdot \mathbf{W}_i ds. \tag{45}$$

Substituting (17) into (45), we obtain

$$Y_{ij}^{l} = \frac{i\omega c}{\pi a'b'} \int_{y_1-b'/2}^{y_1+b'/2} \int_{x_1-a'/2}^{x_1+a'/2} \int_{y_j-b'/2}^{y_j+b'/2} \int_{x_j-a'/2}^{x_j+a'/2} dy' \int dx' \cos \frac{\pi}{a'} (x'-x'_j) \int dy \int dx \cos \frac{\pi}{a} (x-x_j) G(x'-x, y'-y) \tag{46}$$

where
\[G(x' - x, y' - y) = \frac{e^{-j k \sqrt{(x' - x)^2 + (y' - y)^2}}}{\sqrt{(x' - x)^2 + (y' - y)^2}}. \] (47)

Consider
\[I_{ij}^y(x' - x) = \int_{y_1-b'/2}^{y_1+b'/2} dy \int_{y_j-b'/2}^{y_j+b'/2} dy' G(x' - x, y' - y). \] (48)

Substituting the transformation \(y' = v + y \) into (48), we obtain
\[I_{ij}^y(x' - x) = \int_{y_1-b'/2}^{y_1+b'/2} dy \int_{y_j-b'/2}^{y_j+b'/2} dv G(x' - x, v). \] (49)

Interchanging the order of integration, we obtain (see Fig. 3)
\[I_{ij}^y(x' - x) = \int_{y_j-b'/2}^{y_j+b'/2} dy \int_{y_1-b'/2}^{y_1+b'/2} dv G(x' - x, v) \int_{y_1-b'/2}^{y_1+b'/2} dy. \] (50)

Consider
\[I_{ij}^x = \int_{x_1-a'/2}^{x_1+a'/2} dx \cos \frac{\pi}{a} (x - x_1) \int_{x_j-a'/2}^{x_j+a'/2} dx' \cos \frac{\pi}{a} (x' - x_j) I_{ij}^y(x' - x). \] (51)

Substituting the transformation \(x' = u + x \) into (51), we obtain
\[I_{ij}^x = \int_{x_1-a'/2}^{x_1+a'/2} dx \cos \frac{\pi}{a} (x - x_1) \int_{x_j-a'/2}^{x_j+a'/2} du \cos \frac{\pi}{a} (u + x - x_j) I_{ij}^y(u). \] (52)
Fig. 3. Coordinate transformation.
Interchanging the order of integration, we obtain

\[I_{ij}^{1x} = \int_{x_j}^{x_i} \int_{x_i-a'}^{x_i+a'/2} du \, I_{ij}^y(u) \, dx \cos \frac{\pi}{a'} (x-x_i) \cos \frac{\pi}{a'} (u+x-x_j) \]

\[\int_{x_j}^{x_i-a'} \int_{x_i-a'/2}^{x_i+a'/2-u} \]

\[+ \int_{x_j}^{x_i} \int_{x_i-a'/2}^{x_i+a'/2-u} du \, I_{ij}^y(u) \, dx \cos \frac{\pi}{a'} (x-x_i) \cos \frac{\pi}{a'} (u+x-x_j). \]

(53)

Substituting (50) and (53) into (46), we obtain

\[Y_{ij}^1 = \frac{i \omega e}{\pi a' b'} I_{ij}^{1x}. \]

(54)

Next define \(Y_{ij}^2 \) by

\[Y_{ij}^2 = 2j\omega \int \int \phi_{ij} \rho_1 ds. \]

(55)

Substituting (17) into (55), we obtain

\[Y_{ij}^2 = \frac{-i\pi}{\omega \mu a' b'} \int \int dy' \int dx' \sin \frac{\pi}{a'} (x-x_i) \int dy' \int dx' \sin \frac{\pi}{a'} (x'-x_j) G(x'-x, y'-y). \]

(56)

Substituting the transformations \(x' = u+x \) and \(y' = v+y \) into (56) and interchanging the order of integration, we obtain

\[Y_{ij}^2 = \frac{-i\pi}{\omega \mu a' b'} I_{ij}^{2x}. \]

(57)

where
\[I_{ij}^{2x} = \int_{x_j}^{x_i} du \int_{x_{ij}}^{y_{ij}}(u) dx \sin \frac{\pi}{a'} (x-x_1) \sin \frac{\pi}{a'} (u+x-x_j) \]

\[= \int_{x_j}^{x_i} du \int_{x_{ij}}^{y_{ij}}(u) dx \sin \frac{\pi}{a'} (x-x_1) \sin \frac{\pi}{a'} (u+x-x_j) \]

After a tedious but straightforward evaluation of two integrations for each of the quadruple integrals \(I_{ij}^{1x} \) and \(I_{ij}^{2x} \), we obtain

\[y_{ij}^{hs} = y_{ij}^{1x} + y_{ij}^{2x} \]

\[= \frac{1}{2\pi a'} \left[\int_{x_j}^{x_i} \int_{y_{ij}^{-y_{ij}}} du \int_{y_{ij}^{-y_{ij}}} dv \right] \]

\[\left[(K_1+K_3) u \cos \frac{\pi u}{a'} + (K_4+K_5) u \sin \frac{\pi u}{a'} \right] \]

\[+ \int_{x_j}^{x_i} du \int_{x_{ij}^{-x_{ij}}} dv \right] \]

\[\left[(K_7-K_3) u \cos \frac{\pi u}{a'} + (K_8-K_5) u \sin \frac{\pi u}{a'} \right] \]

\[+ \int_{x_j}^{x_i} du \int_{x_{ij}^{-x_{ij}}} dv \right] \]

\[\left[(K_7-K_3) u \cos \frac{\pi u}{a'} + (K_8-K_5) u \sin \frac{\pi u}{a'} \right] \]

\[+ \int_{x_j}^{x_i} du \int_{x_{ij}^{-x_{ij}}} dv \right] \]
where
\[K_1 = y_j - y_i + b' \]
\[K_2 = (1 - \frac{\pi^2}{k^2 a_i^2})(x_i - x_j + a') \cos \left[\frac{\pi}{a_i} (x_j - x_i) \right] + \frac{a'}{a_i} \left(1 + \frac{\pi^2}{k^2 a_i^2} \right) \sin \left[\frac{\pi}{a_i} (x_j - x_i) \right] \]
\[K_3 = (1 - \frac{\pi^2}{k^2 a_i^2}) \cos \left[\frac{\pi}{a_i} (x_j - x_i) \right] \]
\[K_4 = (1 - \frac{\pi^2}{k^2 a_i^2})(x_i - x_j + a') \sin \left[\frac{\pi}{a_i} (x_j - x_i) \right] + \frac{a'}{a_i} \left(1 + \frac{\pi^2}{k^2 a_i^2} \right) \cos \left[\frac{\pi}{a_i} (x_j - x_i) \right] \]
\[K_5 = (1 - \frac{\pi^2}{k^2 a_i^2}) \sin \left[\frac{\pi}{a_i} (x_j - x_i) \right] \]
\[K_6 = y_j - y_i + b' \]
\[K_7 = (1 - \frac{\pi^2}{k^2 a_i^2})(x_j - x_i + a') \cos \left[\frac{\pi}{a_i} (x_j - x_i) \right] - \frac{a'}{a} \left(1 + \frac{\pi^2}{k^2 a_i^2} \right) \sin \left[\frac{\pi}{a_i} (x_j - x_i) \right] \]
\[K_8 = (1 - \frac{\pi^2}{k^2 a_i^2})(x_j - x_i + a') \sin \left[\frac{\pi}{a_i} (x_j - x_i) \right] + \frac{a'}{a_i} \left(1 + \frac{\pi^2}{k^2 a_i^2} \right) \cos \left[\frac{\pi}{a_i} (x_j - x_i) \right]. \]

Substituting the coordinate transformations \(u = \rho \cos \theta \) and \(v = \rho \sin \theta \) into (59) and integrating out the \(\rho \) variable, we obtain (see Fig. 4)

\[y_{ij}^{hs} = \frac{ik}{2\pi a_i b'} \int_{\theta_1}^{\theta_2} d\theta [K_1 L_1(\theta) + K_2 L_3(\theta) + K_4 L_2(\theta) + K_5 L_4(\theta)] \]

\[+ [K_2 L_5(\theta) + K_3 L_2(\theta) + K_4 L_6(\theta) + K_5 L_8(\theta)] \]

\[+ \int_{\theta_3}^{\theta_4} d\theta [K_1 L_1(\theta) - K_2 L_3(\theta) + K_8 L_2(\theta) - K_5 L_4(\theta)] \]

\[+ [K_7 L_5(\theta) - K_3 L_7(\theta) + K_8 L_6(\theta) - K_5 L_8(\theta)] \]
Fig. 4. Rectangular - polar coordinate integration area.
\[+ \int_{\theta_4}^{\theta_5} d\theta \left[K_6 \left(K_2 L_1(\theta) + K_3 L_3(\theta) + K_4 L_2(\theta) + K_5 L_4(\theta) \right) \right. \]
\[\left. - \left[K_2 L_5(\theta) + K_3 L_7(\theta) + K_4 L_6(\theta) + K_5 L_8(\theta) \right] \right] \]
\[+ \int_{\theta_6}^{\theta_7} d\theta \left[K_6 \left(K_7 L_1(\theta) - K_3 L_3(\theta) + K_8 L_2(\theta) - K_5 L_4(\theta) \right) \right. \]
\[\left. - \left[K_7 L_5(\theta) - K_3 L_7(\theta) + K_8 L_6(\theta) - K_5 L_8(\theta) \right] \right] \]

where

\[L_1(\theta) = \frac{1}{2} \left\{ \frac{M_1(\theta) - M_2(\theta)}{M_5(\theta)} - \frac{M_3(\theta) - M_4(\theta)}{M_6(\theta)} \right\} \]

\[L_2(\theta) = \frac{1}{2} \left\{ \frac{M_1(\theta) - M_2(\theta)}{M_5(\theta)} + \frac{M_3(\theta) - M_4(\theta)}{M_6(\theta)} \right\} \]

\[L_3(\theta) = \cos \theta \left\{ -\frac{1}{2} \left[\frac{\rho_2(\theta) M_1(\theta) - \rho_1(\theta) M_2(\theta)}{M_5(\theta)} - \frac{\rho_2(\theta) M_3(\theta) - \rho_1(\theta) M_4(\theta)}{M_6(\theta)} \right. \right. \]
\[+ \left. \left. \frac{1}{2} \left[\frac{M_1(\theta) - M_2(\theta)}{(M_5(\theta))^2} + \frac{M_3(\theta) - M_4(\theta)}{(M_6(\theta))^2} \right] \right\} \]

\[L_4(\theta) = \cos \theta \left\{ -\frac{1}{2} \left[\frac{\rho_2(\theta) M_1(\theta) - \rho_1(\theta) M_2(\theta)}{M_5(\theta)} + \frac{\rho_2(\theta) M_3(\theta) - \rho_1(\theta) M_4(\theta)}{M_6(\theta)} \right. \right. \]
\[+ \left. \left. \frac{1}{2} \left[\frac{M_1(\theta) - M_2(\theta)}{(M_5(\theta))^2} - \frac{M_3(\theta) - M_4(\theta)}{(M_6(\theta))^2} \right] \right\} \]

\[L_5(\theta) = L_3(\theta) \tan \theta \]

\[L_6(\theta) = L_4(\theta) \tan \theta \]
\[L_7(\theta) = \sin \theta \cos \theta \left(-\frac{1}{2} \frac{\rho_2^2(\theta)M_1(\theta) - \rho_1^2(\theta)M_2(\theta)}{M_5(\theta)} - \frac{\rho_2^2(\theta)M_3(\theta) - \rho_1^2(\theta)M_4(\theta)}{M_6(\theta)} \right) \]

\[+ \frac{\rho_2(\theta)M_1(\theta) - \rho_1(\theta)M_2(\theta)}{(M_5(\theta))^2} + \frac{\rho_2(\theta)M_3(\theta) - \rho_1(\theta)M_4(\theta)}{(M_6(\theta))^2} \]

\[+ j \left[\frac{M_1(\theta) - M_2(\theta)}{(M_5(\theta))^3} - \frac{M_3(\theta) - M_4(\theta)}{(M_6(\theta))^3} \right] \]

(75)

\[L_8(\theta) = \sin \theta \cos \theta \left(-\frac{1}{2} \frac{\rho_2^2(\theta)M_1(\theta) - \rho_1^2(\theta)M_2(\theta)}{M_5(\theta)} + \frac{\rho_2^2(\theta)M_3(\theta) - \rho_1^2(\theta)M_4(\theta)}{M_6(\theta)} \right) \]

\[- j \left[\frac{\rho_2(\theta)M_1(\theta) - \rho_1(\theta)M_2(\theta)}{(M_5(\theta))^2} - \frac{\rho_2(\theta)M_3(\theta) - \rho_1(\theta)M_4(\theta)}{(M_6(\theta))^2} \right] \]

\[+ \frac{M_1(\theta) - M_2(\theta)}{(M_5(\theta))^3} + \frac{M_3(\theta) - M_4(\theta)}{(M_6(\theta))^3} \]

(76)

\[M_1(\theta) = e^{j\rho_2(\theta)\left(\frac{\pi}{a} \cos \theta - k\right)} \]

(77)

\[M_2(\theta) = e^{j\rho_1(\theta)\left(\frac{\pi}{a} \cos \theta - k\right)} \]

(78)

\[M_3(\theta) = e^{-j\rho_2(\theta)\left(\frac{\pi}{a} \cos \theta + k\right)} \]

(79)

\[M_4(\theta) = e^{-j\rho_1(\theta)\left(\frac{\pi}{a} \cos \theta + k\right)} \]

(80)

\[M_5(\theta) = \frac{\pi}{a} \cos \theta - k \]

(81)

\[M_6(\theta) = \frac{\pi}{a} \cos \theta + k \].

(82)
The variables \(p_1(\theta) \) and \(p_2(\theta) \) are respectively the lower and upper limits of integration for the \(\rho \) integration in (59) after the transformations \(u = \rho \cos \theta \) and \(v = \rho \sin \theta \) are used. They are dependent on the \(\theta \) variable and the integration subarea. For instance, when integrating over region IV between \(\theta_4 \) and \(\theta_7 \) (see Fig. 4), \(p_1(\theta) = (x_j - x_1)/\cos \theta \) and \(p_2(\theta) = (y_j - y_1 + b')/\sin \theta \).

IV. SINGULAR POINTS OF \(y^{hs} \)

The integrand of (68) has removable singularities when \(ka' < \pi \).

When either \(|\cos \theta - 2a'| < \varepsilon \) (small value) or \(|\cos \theta + 2a'| < \varepsilon \), we replace equations (69)–(76) by their respective limits. For an example, consider equation (69),

\[
L_1(\theta) = -\frac{1}{2} \left\{ \frac{M_1(\theta) - M_2(\theta)}{M_5(\theta)} - \frac{M_3(\theta) - M_4(\theta)}{M_6(\theta)} \right\}
\]

\[
= -\frac{1}{2} \left\{ \frac{j\rho_2(\theta)(\frac{\pi}{a^t} \cos \theta - k)}{\left(\frac{\pi}{a^t} \cos \theta - k\right)} - \frac{e^{\frac{\pi}{a^t} \cos \theta - k}}{\left(\frac{\pi}{a^t} \cos \theta - k\right)} \right\}
\]

\[
- \frac{j\rho_2(\theta)(\frac{\pi}{a^t} \cos \theta + k)}{\left(\frac{\pi}{a^t} \cos \theta + k\right)} - \frac{e^{\frac{\pi}{a^t} \cos \theta + k}}{\left(\frac{\pi}{a^t} \cos \theta + k\right)} \right\}. \tag{69}
\]

If \(\left|\frac{\pi}{a^t} \cos \theta - k\right| < \varepsilon \), then by retaining the first three terms of the Taylor series for the exponentials in the first half of (69), we obtain

\[
L_1(\theta) = -\frac{1}{2} \left\{ 1 + j\rho_2(\theta)(\frac{\pi}{a^t} \cos \theta - k) - \frac{1}{2}[\rho_2(\theta)(\frac{\pi}{a^t} \cos \theta - k)]^2 \right\}
\]

\[
- 1 - j\rho_1(\theta)(\frac{\pi}{a^t} \cos \theta - k) + \frac{1}{2}[\rho_1(\theta)(\frac{\pi}{a^t} \cos \theta - k)]^2 \right\}
\]

\[
\frac{\pi}{a^t} \cos \theta - k
\]

\[
\frac{M_3(\theta) - M_4(\theta)}{M_6(\theta)} \right\}. \tag{83}
\]
If we take the limit as $\frac{\pi}{aT} \cos \theta$ approaches k for the first half of (83), we obtain

\[L_1(\theta) = \frac{1}{2} (\rho_2(\theta) - \rho_1(\theta)) + \frac{1}{2} \left(\frac{M_3(\theta) - M_4(\theta)}{M_6(\theta)} \right). \]

(84)

If $|\frac{\pi}{aT} \cos \theta + k| < \varepsilon$, then by retaining the first three terms of the Taylor series for the exponentials in the second half of (69), we obtain

\[L_1(\theta) = -\frac{i}{2} \left(\frac{1}{2} \frac{M_1(\theta) - M_2(\theta)}{M_5(\theta)} \right) + \frac{1}{2} (\rho_2(\theta) - \rho_1(\theta)). \]

(85)

If we apply the preceding procedure to equations (70)-(76), we obtain

\[L_2(\theta) = -\frac{i}{2} (\rho_2(\theta) - \rho_1(\theta)) - \frac{1}{2} \frac{M_3(\theta) - M_4(\theta)}{M_6(\theta)}. \]

(86)

\[L_3(\theta) = \cos \theta \left\{ \frac{1}{4} (\rho_2^2(\theta) - \rho_1^2(\theta)) + \frac{i}{2} \left(\frac{\rho_2(\theta) M_3(\theta) - \rho_1(\theta) M_4(\theta)}{M_6(\theta)} \right) + \frac{1}{2} \left(\frac{M_3(\theta) - M_4(\theta)}{(M_6(\theta))^2} \right) \right\}. \]

(87)

\[L_4(\theta) = \cos \theta \left\{ -\frac{1}{4} (\rho_2^2(\theta) - \rho_1^2(\theta)) - \frac{1}{2} \left(\frac{\rho_2(\theta) M_3(\theta) - \rho_1(\theta) M_4(\theta)}{M_6(\theta)} \right) + \frac{1}{2} \left(\frac{M_3(\theta) - M_4(\theta)}{(M_6(\theta))^2} \right) \right\}. \]

(88)

\[L_5(\theta) = L_3(\theta) \tan \theta. \]

(89)

\[L_6(\theta) = L_4(\theta) \tan \theta. \]

(90)

\[L_7(\theta) = \sin \theta \cos \theta \left\{ \frac{1}{6} (\rho_2^3(\theta) - \rho_1^3(\theta)) + \frac{1}{2} \left(\frac{\rho_2(\theta) M_3(\theta) - \rho_1(\theta) M_4(\theta)}{M_6(\theta)} \right) \right\} + \frac{\rho_2(\theta) M_3(\theta) - \rho_1(\theta) M_4(\theta)}{(M_6(\theta))^2} - \frac{1}{3} \left(\frac{M_3(\theta) - M_4(\theta)}{(M_6(\theta))^3} \right). \]

(91)
\[L_8(\theta) = \sin \theta \cos \theta \left\{ -\frac{1}{6}(\rho_2^3(\theta) - \rho_1^3(\theta)) - \frac{1}{2}\left(\frac{\rho_2^2(\theta)M_3(\theta) - \rho_1^2(\theta)M_4(\theta)}{M_6(\theta)}\right) \right. \\
+ j\left(\frac{\rho_2(\theta)M_3(\theta) - \rho_1(\theta)M_4(\theta)}{(M_6(\theta))^2} + \frac{M_3(\theta) - M_4(\theta)}{(M_6(\theta))^3}\right) \]

(92)

for \(|\frac{\pi}{a^2} \cos \theta - k| < \varepsilon\), and

\[L_2(\theta) = -\frac{1}{2}\left(\frac{M_1(\theta) - M_2(\theta)}{M_5(\theta)}\right) + \frac{1}{2}(\rho_2(\theta) - \rho_1(\theta)) \]

(93)

\[L_3(\theta) = \cos \theta \left\{ -\frac{1}{2}\left(\frac{\rho_2(\theta)M_1(\theta) - \rho_1(\theta)M_2(\theta)}{M_5(\theta)}\right) + \frac{1}{2}\left(\frac{M_1(\theta) - M_2(\theta)}{M_5(\theta))^2}\right) + \frac{1}{4}(\rho_2^2(\theta) - \rho_1^2(\theta))\right\} \]

(94)

\[L_4(\theta) = \cos \theta \left\{ -\frac{1}{2}\left(\frac{\rho_2(\theta)M_1(\theta) - \rho_1(\theta)M_2(\theta)}{M_5(\theta)}\right) - \frac{1}{2}\left(\frac{M_1(\theta) - M_2(\theta)}{M_5(\theta)^2}\right) + \frac{1}{4}(\rho_2^2(\theta) - \rho_1^2(\theta))\right\} \]

(95)

\[L_5(\theta) = L_3(\theta) \tan \theta \]

(96)

\[L_6(\theta) = L_4(\theta) \tan \theta \]

(97)

\[L_7(\theta) = \sin \theta \cos \theta \left\{ -\frac{1}{2}\left(\frac{\rho_2^2(\theta)M_1(\theta) - \rho_1^2(\theta)M_2(\theta)}{M_5(\theta)}\right) + \frac{\rho_2(\theta)M_1(\theta) - \rho_1(\theta)M_2(\theta)}{(M_5(\theta))^2} \right. \\
+ j\left(\frac{M_1(\theta) - M_2(\theta)}{(M_5(\theta))^3}\right) + \frac{1}{6}(\rho_2^3(\theta) - \rho_1^3(\theta))\right\} \]

(98)

\[L_8(\theta) = \sin \theta \cos \theta \left\{ -\frac{1}{2}\left(\frac{\rho_2^2(\theta)M_1(\theta) - \rho_1^2(\theta)M_2(\theta)}{M_5(\theta)}\right) - \frac{1}{2}\left(\frac{\rho_2(\theta)M_1(\theta) - \rho_1(\theta)M_2(\theta)}{M_5(\theta))^2}\right) \right. \\
+ \frac{M_1(\theta) - M_2(\theta)}{(M_5(\theta))^3} + \frac{1}{6}(\rho_2^3(\theta) - \rho_1^3(\theta))\right\} \]

(99)

for \(|\frac{\pi}{a^2} \cos \theta + k| < \varepsilon\).
V. SCATTERING MATRIX - [S]

To determine the scattering parameters \(S_{ij} \) for a waveguide fed aperture antenna array radiating into a half-space region, a source is placed in waveguide \(j \) and all waveguides are terminated in matched loads. \(S_{ij} \) relates the backward wave traveling toward the load in waveguide \(i \) to a forward wave traveling toward the aperture in waveguide \(j \). Besides the field directly coupled from waveguide \(j \) to \(i \), there are components due to the radiated fields from the other apertures resulting from induced aperture fields. Therefore, the scattering matrix explicitly identifies the incident and reflected (or coupled) wave in every waveguide element.

Let a source which excites only the dominant mode be placed in the \(j \)th equivalent waveguide region and represent the fields transverse to the \(z \)-direction as

\[
E_{t_j}(z) = (e^{-\gamma o z} - e^{\gamma o z}) e_o + E_{t}^{WG}(M^j)
\]

\[
= (e^{-\gamma o z} - e^{\gamma o z}) e_o + V_j \sum_{k} A_{jk} e^{\gamma k z} e_k
\]

\[
H_{t_j}(z) = Y_o (e^{-\gamma o z} + e^{\gamma o z}) u_z \times e_o - V_j \sum_{k} A_{jk} \gamma k e^{\gamma k z} u_z \times e_k
\]

where the index \(o \) denotes the dominant mode, \(\gamma_k \) are the modal propagation constants, \(A_{jk} \) are the modal constants defined by (25), \(V_j \) is the unknown magnetic current coefficient determined by (15), and the \(\gamma_k \) are modal characteristic admittances defined by (34) and (35). The electric field transverse to the \(z \)-direction in the \(i \)th equivalent waveguide region (no impressed source) is
The scattering parameter S_{ij} is the ratio of the backward traveling wave in waveguide i to the forward traveling wave excited by a source in waveguide j. (It is assumed that only the dominant mode wave propagates in the waveguide region.)

For $i = j$, we obtain from (100)

$$S_{ij} = V_j A_1 - 1.$$ \hspace{1cm} (103)

For $i \neq j$, we obtain from (100) and (102)

$$S_{ij} = V_i A_{10}.$$ \hspace{1cm} (104)

To determine V_1, let us consider equations (15) and (13)

$$[\gamma^{WG} + \gamma^{hs}] \vec{V} = \vec{\tau}^{imp}$$ \hspace{1cm} (15)

where

$$\vec{\tau}^{imp} = [\langle W_j, H_{t_j}^{imp} \rangle_{N \times 1}.$$ \hspace{1cm} (13)

$H_{t_j}^{imp}$ is equal to the first term on the right side of (101) when $z = 0$.

When the aperture is covered by a conductor, the waveguide is terminated by a conducting plane. According to image theory, the tangential magnetic field at $z = 0$ is then just twice the incident wave, or

$$H_{t_j}^{imp} = 2 \gamma_0 \mu_0 \times \vec{e}_o.$$ \hspace{1cm} (105)
This is the H_{tj} used in (13) to evaluate the excitation vector I_{imp}. Hence, the components of the excitation vector are

$$I_{imp}^{j} = 2 \mathcal{Y}_{0} \iint_{\text{apert.}} u_{j} \cdot u_{z} \times \varepsilon_{o} \, ds$$

$$= 2 \mathcal{Y}_{0} A_{j0} \quad \text{if } i = j$$

$$I_{imp}^{i} = 0 \quad \text{if } i \neq j.$$

(106)

(107)

For an equally spaced linear array, the matrix $[Y_{wg} + Y_{hs}]$ in (15) is symmetric Toeplitz. Equation (15) is solved by a recursion relation given by Zohar [11] which is based on an algorithm by Trench [12].

For a uniformly spaced rectangular array, the matrix $[Y_{wg} + Y_{hs}]$ in (15) is symmetric block-Toeplitz. It is symmetric since we have used a Galerkin solution (choosing expansion functions equal to the testing functions). The block-Toeplitz property for a uniformly spaced rectangular array is given by a matrix of the form

$$[Y] = \begin{bmatrix} Y_{0} & Y_{1} & \cdots & Y_{n} \\ Y_{1} & Y_{0} & \cdots & Y_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ Y_{n} & Y_{n-1} & \cdots & Y_{0} \end{bmatrix}$$

(108)

where Y_{0} is that submatrix which defines the self-admittance of an element of the array and Y_{ij}, $i \neq j$ is that submatrix which defines the mutual admittance between elements i and j of the array. An element
(submatrix) for the rectangular array is either the shortest row or column of apertures in the x-y plane (see Fig. 5). A recursion relation which uses this block-Toeplitz symmetry property [13] is used to solve (15).

For uniformly spaced isosceles triangular arrays, equation (15) is solved by Gaussian elimination and LU decomposition [14].

It should be mentioned that all three methods used in solving the linear, rectangular, and triangular arrays solve (15) directly without computing the inverse matrix to \([Y^\text{wg} + Y^\text{hs}].\)

VI. SAMPLE COMPUTATIONS

A computer program using the formulas derived in the preceding sections has been written. It is described and listed in a subsequent report [15]. In this section we give some examples of the computations that can be made using the general program.

Figure 6 shows the half-space admittance between two narrow slots in echelon \([Y^\text{hs}]_{12}\) as the separation distance is varied while the angular position is held fixed. This example tested the limiting expressions derived in Section IV since for \(\theta = 0, (\frac{\pi}{a} \cos \theta - k) = 0\). Our computations are compared to those of Borgiotti [1].

Figure 7 shows the scattering parameter \(S_{12}\) (amplitude and phase) for two slots as the angular position of one is varied with respect to the other while the separation distance is held fixed. Our computations are compared to those of Mailloux [3].
Fig. 5. Choice of elements for a block-Toeplitz admittance matrix for a uniformly spaced 2×3 rectangular aperture array.

\[
[Y] = \begin{bmatrix}
Y_1 & Y_2 & Y_3 \\
Y_2 & Y_1 & Y_2 \\
Y_3 & Y_2 & Y_1 \\
\end{bmatrix}
\]
Fig. 6. The half-space admittance between two narrow slots in echelon \(y_{12}^{hs}\) where \(a'/\lambda = 0.5\) and \(b'/\lambda = 0.05\). Our computed results are compared to those calculated by Borgiotti [1].
Fig. 7. The scattering parameter S_{12} between two slots where
\[a/\lambda = a'/\lambda = b/\lambda = b'/\lambda = 0.6 \text{ and } S/\lambda = 0.9. \]
Our computed results are compared to those calculated by Mailloux [3].
Figure 8 shows the half-space admittance between two slots in echelon \(Y_{12}^{bs} \) as the separation distance is varied while the angular position is held fixed. Three different slot size cases are shown.

Figure 9 is the same as Figure 8 except that the angular position of one slot with respect to the other is varied while the separation distance is held fixed.

Figure 10 shows the coupled power (20 log \(|S_{11}| \)) and phase of \(S_{11}(i = 2,3, \ldots, 49) \) between a driven element and the other elements of a 7 \times 7 waveguide-fed aperture array with a rectangular lattice.

Figure 11 is the same as Figure 10 except that the lattice is now isosceles triangular.

VII. DISCUSSION AND CONCLUSIONS

A method of computing the mutual coupling for an array of uniformly spaced rectangular waveguide-fed apertures radiating into a half-space region has been developed. The array may have a rectangular lattice or an isosceles triangular lattice. The formulation uses one expansion function per aperture so as to be efficient when relatively large numbers of apertures are concerned.

For calculating the half-space self admittance for a single aperture an eight-point Gaussian quadrature numerical integration [16] is performed on the single integrals in (68). The same method of solution is used for calculating the half-space mutual admittance for apertures which are close together (centers of any two given apertures are separated by less than 4a'). For greater aperture separations a six
Fig. 8. The half-space admittance between two slots in echelon \(V_{12}^{hs} \)
where \(A = (a'/\lambda = 1.0000, b'/\lambda = 0.4761) \), \(B = (a'/\lambda = 0.7500, b'/\lambda = 0.3571) \), and \(C = (a'/\lambda = 0.5000, b'/\lambda = 0.2381) \).
Fig. 9. The half-space admittance between two slots in echelon $[Y^h_{12}]$ where $S/\lambda = 1.3$, $A = (a'/\lambda = 1.00, b'/\lambda = 0.4761)$, $B = (a'/\lambda = 0.7500, b'/\lambda = 0.3571)$, and $C = (a'/\lambda = 0.5000, b'/\lambda = 0.2381)$.
Fig. 10. The coupled power ($20 \log |S_{11}|$) and phase of $S_{11}(i=2,3,\ldots,49)$ for a 49 element waveguide-fed aperture array with a rectangular lattice where $a/\lambda = 1.0000$, $a'/\lambda = 0.7500$, $b/\lambda = 0.4761$, $b'/\lambda = 0.3571$, $D_x/\lambda = D_y/\lambda = 0$, and $D_z/\lambda = 0.0515$. The upper number in each aperture represents coupled power in dB while the lower number represents the phase of S_{11} in degrees.
Fig. 11. The coupled power \(20 \log |S_{11}|\) and phase of \(S_{11}\) (i=2,3,…,49) for a 49 element waveguide-fed aperture array with an isosceles triangular lattice where \(a/\lambda = 1.000\), \(a'/\lambda = 0.7500\), \(b/\lambda = 0.4761\), \(b'/\lambda = 0.3571\), \(D_x/\lambda = D_y/\lambda = 0\), and \(D_t/\lambda = 0.0515\). The upper number in each aperture represents the coupled power in dB while the lower number represents the phase of \(S_{11}\) in degrees.
point double numerical integration (six points in each variable for a total of 36 points) is performed on the double integrals in (59).

It was found that for apertures which are close together, the solution involving the single integrals of (68) was both more accurate and efficient than the solution involving the double integrals of (59) (an eight point single numerical integration versus a ten point double numerical integration). As the separation distance between apertures increased, the complexity of the solution involving single integrals, specifically, the number of required subdivisions, was not necessary and the solution involving double integrals proved just as accurate and more efficient (a four point single numerical integration versus a six point double numerical integration).

For finding the unknown coefficient vector \hat{V} which is required for determining the scattering matrix $[S]$, the computer program uses Zohar's algorithm [11] for the linear array case and Sinnott's algorithm [13] for the rectangular array case. Both algorithms utilize the Toeplitz symmetry properties of the admittance matrix $[Y^w + Y^h]$. Both algorithms are more efficient than inversion of $[Y^w + Y^h]$ or even a Gaussian elimination-LU decomposition algorithm for large N. (Zohar's algorithm requires approximately $2N^2$ multiplications and divisions, Sinnott's algorithm requires approximately $(n+1)^2N_p^2$ multiplications and divisions where $n+1$ is the number of blocks of the block-Toeplitz admittance matrix and N_p is the dimension of a block, Gaussian elimination-LU decomposition requires $N^3/3$ multiplications and divisions, and a solution involving inversion of $[Y^w + Y^h]$ requires N^3 multiplications and divisions.
for the inverse and another N^2 multiplications for finding \mathbf{v} given the inverse.) In addition to the efficiency of Zohar's and Sinnott's algorithms, the storage requirements are considerably less than Gaussian elimination-LU decomposition or inversion. (Zohar's algorithm requires the storage of only one row of $[Y^W + Y^H]$ while Sinnott's algorithm requires storing one row of blocks of $[Y^W + Y^H]$.)

If very large arrays are encountered, further simplification of the program could be made by using the present formulation for apertures which are close together, and using a far-field approximation where the field is assumed constant over the aperture for the rest of the apertures.
REFERENCES

DISTRIBUTION LIST FOR ONR ELECTRONICS PROGRAM OFFICE

Director
Advanced Research Projects Agency
Attn: Technical Library
1400 Wilson Boulevard
Arlington, Virginia 22209

Office of Naval Research
Electronics Program Office (Code/427)
800 North Quincy Street
Arlington, Virginia 22217

Naval Research Laboratory
Department of the Navy
Attn: Code 2627
Washington, D.C. 20375

Office of the Director of Defense Research and Engineering
Information Office Library Branch
The Pentagon
Washington, D.C. 20301

U.S. Army Research Office
Box CM, Duke Station
Durham, North Carolina 27706

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

Director National Bureau of Standards
Attn: Technical Library
Washington, D.C. 20234

Commanding Officer
Office of Naval Research Branch Office
536 South Clark Street
Chicago, Illinois 60605

San Francisco Area Office
Office of Naval Research
50 Fell Street
San Francisco, California 94102

Air Force Office of Scientific Research
Department of the Air Force
Washington, D.C. 20333

Commanding Officer
Office of Naval Research Branch Office
1030 East Green Street
Pasadena, California 91101

Commanding Officer
Office of Naval Research Branch Office
495 Summer Street
Boston, Massachusetts 02210

Director
U.S. Army Engineering Research and Development Laboratories
Fort Belvoir, Virginia 22060
Attn: Technical Documents Center

ODDR&E Advisory Group on Electron Devices
201 Varick Street
New York, New York 10014

New York Area Office
Office of Naval Research
207 West 24th Street
New York, New York 10011

Air Force Weapons Laboratory
Technical Library
Kirtland Air Force Base
Albuquerque, New Mexico 87117

Air Force Avionics Laboratory
Air Force Systems Command
Technical Library
Wright-Patterson Air Force Base
Dayton, Ohio 45433
Air Force Cambridge Research Laboratory
L. G. Hanscom Field
Technical Library
Cambridge, Massachusetts 02138

Harry Diamond Laboratories
Technical Library
Connecticut Avenue at Van Ness, N. W.
Washington, D. C. 20438

Naval Air Development Center
Attn: Technical Library
Johnsville
Warminster, Pennsylvania 18974

Naval Weapons Center
Technical Library (Code 753)
China Lake, California 93555

Naval Training Device Center
Technical Library
Orlando, Florida 22813

Naval Research Laboratory
Underwater Sound Reference Division
Technical Library
P. O. Box 8337
Orlando, Florida 32806

Navy Underwater Sound Laboratory
Technical Library
Fort Trumbull
New London, Connecticut 06320

Commandant, Marine Corps
Scientific Advisor (Code AX)
Washington, D. C. 20380

Naval Ordnance Station
Technical Library
Indian Head, Maryland 20640

Naval Ship Engineering Center
Philadelphia Division
Technical Library
Philadelphia, Pennsylvania 19112

Naval Postgraduate School
Technical Library (Code 0212)
Monterey, California 93940

Naval Missile Center
Technical Library (Code 5632.2)
Point Mugu, California 93010

Naval Ordnance Station
Technical Library
Louisville, Kentucky 40214

Naval Oceanographic Office
Technical Library (Code 1640)
Suitland, Maryland 20390

Naval Explosive Ordnance Disposal Facility
Technical Library
Indian Head, Maryland 20640

Naval Electronics Laboratory Center
Technical Library
San Diego, California 92152

Naval Undersea Warfare Center
Technical Library
3202 East Foothill Boulevard
Pasadena, California 91107

Naval Weapons Laboratory
Technical Library
Dahlgren, Virginia 22448

Naval Ship Research and Development Center
Central Library (Code L42 and L43)
Washington, D. C. 20007

Naval Ordnance Laboratory White Oak
Technical Library
Silver Spring, Maryland 20910

Naval Avionics Facility
Technical Library
Indianapolis, Indiana 46218