The singularity expansion of time-domain reflectometer data has been computed and used to calculate lumped-element equivalent circuits for the impedance of some typical antennas. Prony's algorithm was used to obtain the poles of the antennas' terminal voltage waveform due to a step-like excitation. The residues, however, were calculated subject to the uniform error norm instead of the least squared error norm. Although it...
requires much longer to calculate, the uniform error norm approximation is often orders of magnitude better than the least squared error approximation. The physical realizability of impedance functions obtained from experimental data has been investigated. Also, the procedures necessary to synthesize the lumped-element network have been evaluated. A simple partial fraction expansion of a realizable impedance function representing an antenna was found to yield nonrealizable element values. A general network synthesis procedure, such as Brune's method, is required.
CONTENTS

1. INTRODUCTION ... 5
2. RELATIONSHIP BETWEEN Z(s) AND MEASURED QUANTITIES 5
3. SINGULARITY EXPANSION AND PRONY'S METHOD 7
4. UNIFORM NORM APPROXIMATION 9
5. PHYSICAL REALIZABILITY OF Z(s) 12
6. SYNTHESIS OF LUMPED-ELEMENT EQUIVALENT CIRCUITS 13
7. TRANSFER FUNCTION CALCULATIONS 22
8. CONCLUSIONS .. 23
 LITERATURE CITED ... 25
 SELECTED BIBLIOGRAPHY ... 26
 DISTRIBUTION .. 33

APPENDICES

A.--PHYSICAL REALIZABILITY VIA MULTIPLICATIVE FACTOR 27
B.--BRUNE SYNTHESIS OF RLC NETWORKS 29

FIGURES

1 Time-domain reflectometer measurement of antenna impedance 6
2 Typical L_2-norm approximation of time-domain reflectometer (TDR) data .. 10
3 Test waveforms for comparison of L_2- and L_n-norm approximations:
 (a) receive impulse response of dipole with corner reflector and
 (b) time-domain reflectometer data of dipole 11
4 Time-domain reflectometer data of impedance of dipole
 with λ/4 balun ... 16
5 Twelve-pole singularity expansion method (SEM) approximation to
 time-domain reflectometer (TDR) data of dipole antenna 16
6 Real part of Z(s) for dipole 17
FIGURES (Cont'd)

7 Lumped-element equivalent circuit for dipole with λ/4 balun 18

8 Lumped-element circuit representation of time-domain reflectometer measurement of dipole antenna 18

9 Comparison of desired (singularity expansion method--SEM--approximation) and calculated responses of lumped-element equivalent circuit for dipole 19

10 Ten-pole singularity expansion method (SEM) approximation to time-domain reflectometer (TDR) data of yagi antenna 20

11 Real part of Z(s) for yagi ... 21

12 Lumped-element equivalent circuit for yagi antenna 21

13 Comparison of desired (singularity expansion method--SEM--approximation) and calculated responses of lumped-element equivalent circuit for yagi 22

TABLES

I Comparison of L_2 and L_∞ Norm Approximations 11

II Poles and Residues of Singularity Expansion Method Approximation to Dipole Data ... 16

III Poles and Zeros of Z(s) for Dipole 17

IV Poles and Residues of Singularity Expansion Method Approximation to Yagi Data .. 20

V Poles and Zeros of Z(s) for Yagi .. 21
1. INTRODUCTION

The singularity expansion method (SEM) has been used to express the transient response of antennas and scatterers in a compact and useful form. By using Prony's algorithm, Van Blaricum and Mittra\(^1\) were able to extract the SEM poles and residues from analytical waveforms. The singularity expansions of experimental data have also been obtained,\(^\dagger\) and Van Blaricum and Schaubert\(^2\) have demonstrated that the SEM can be used effectively to compute an antenna's impulse response from measured data.

The use of the SEM to calculate equivalent impedance circuits has also been discussed by many authors.\(^\ddagger\) However, there has been no previous application of the SEM to calculate equivalent lumped-element impedance circuits for antennas. Such circuits, when calculated by using the SEM, will be valid over a wide frequency range and will, therefore, be extremely useful for transient and out-of-band response analyses. Additional advantages of the SEM approach are that the goodness of fit to the data can be judged prior to calculating the circuit element values, and the impedance function can be readily synthesized by existing techniques.

Several problems relevant to the computation of equivalent circuits for antennas have been investigated, and the results are presented in sections 2, 3, and 4. Throughout the investigation, primary importance has been placed upon utilization of experimentally or numerically derived data. The SEM expansion of time-domain reflectometer (TDR) data for a dipole antenna with a quarter-wavelength (1/4) balun has been obtained and used to calculate a lumped-element equivalent circuit.

2. RELATIONSHIP BETWEEN \(Z(s)\) AND MEASURED QUANTITIES

The first step in calculating an equivalent circuit is deriving the relationship between the antenna impedance function \(Z(s)\), where \(s\) is the Laplace transform frequency variable, and a measurable quantity. One of the most common and most easily used instruments for measuring impedance is the TDR, which excites the antenna with a step voltage and displays

*See Selected Bibliography—Transient Response of Antennas and Scatterers.

\(\dagger\)See Selected Bibliography—Experimental Data.

\(\ddagger\)See Selected Bibliography—Equivalent Circuit Synthesis.
the resulting terminal voltage as a function of time (fig. 1). This terminal voltage, \(v(t) \), is related to the antenna's impedance through the reflection coefficient and a convolution integral. Specifically, if the Laplace transform pair is defined by

\[
V(s) = \int_0^\infty v(t) e^{-st} \, dt,
\]

\[
v(t) = \frac{1}{2\pi j} \int_{\alpha-j\infty}^{\alpha+j\infty} V(s) e^{st} \, ds,
\]

where \(\alpha \) is an appropriate constant, and \(j = \sqrt{-1} \), then

\[
V(s) = \frac{1}{2} V_0(s) [1 + R(s)] .
\]

In equation (2), \(V(s) \) and \(V_0(s) \) are the Laplace transforms of the terminal voltage and excitation voltage, respectively, and \(R(s) \) is the voltage reflection coefficient of the antenna,

\[
R(s) = \frac{Z(s) - Z_0}{Z(s) + Z_0},
\]

where \(Z_0 \) is the source impedance of the TDR.
Applying the inverse Laplace transform \((1b) \) to equation (2) yields

\[
v(t) = \frac{1}{2} \int_0^t v_0(t - \tau) \left[\delta(\tau) + R(\tau) \right] \, d\tau.
\]

(4)

Since \(R(t) \) is the inverse Laplace transform of equation (3), the relationship between \(v(t) \) and \(Z(s) \) is not trivial. In the Laplace frequency domain, however, the relationship is quite simple. Substituting equation (3) into equation (2) yields

\[
V(s) = V_0(s) \frac{Z(s)}{Z(s) + Z_0}.
\]

That is,

\[
Z(s) = Z_0 \frac{V(s)}{V_0(s) - V(s)}.
\]

(6)

It is clear that an analytical expression for \(Z(s) \) can be obtained if analytical expressions for \(V_0(s) \) and \(V(s) \), which are the Laplace transforms of measurable quantities, are available. The SEM, together with Prony's method, provides an efficient means of obtaining analytical expressions for \(V_0(s) \) and \(V(s) \) when \(v_0(t) \) and \(v(t) \) are known in sampled data form.

3. SINGULARITY EXPANSION AND PRONY'S METHOD

The singularity expansion of a transient waveform \(v(t) \) is defined as the exponential approximation

\[
v(t) = \sum_{n=1}^{N} A_n e^{s_n t}.
\]

(7)

This expansion can be readily transformed to yield

\[
V(s) = \sum_{n=1}^{N} \frac{A_n}{s - s_n}.
\]

(8)

The \(s_n \) are the poles of the expansion and the \(A_n \) are the residues.
The problem of importance in this section is, given \(v(t) \) at discrete points \(t = t_i, i = 1, 2, \ldots \), find the \(a_n \) and \(s \) that provide the best approximation in the form of equation (7). Because the \(s \) are not known, this is a nonlinear approximation problem. However, Prony has developed an algorithm that converts this problem into two linear problems plus one polynomial root finding problem, which can be readily solved on a digital computer.

An outline of Prony's method is presented below. Readers unfamiliar with the method may consult one of the references.1,*

If the waveform \(v(t) \) is sampled at uniform intervals \(\Delta t \), then equation (7) becomes

\[
v_k = v(k\Delta t) = \sum_{n=1}^{N} a_n e^{s/n}, \quad k = 0, 1, 2, \ldots \quad (9)
\]

Defining \(z_k = e^{s/n} \), equation (9) becomes

\[
v_k = \sum_{n=1}^{N} a_n z_k^n, \quad k = 0, 1, 2, \ldots \quad (10)
\]

It can be shown that \(z_n \) satisfying equation (10) are the roots of the polynomial equation

\[
a_0 + a_1 z + a_2 z^2 + \ldots + z^n = 0, \quad (11)
\]

*See Selected Bibliography—Transient Response of Antennas and Scatterers.
where the a_i are the solutions of the linear set of equations

$$
\begin{bmatrix}
 v_0 & v_1 & v_2 & \ldots & v_{N-1} \\
 v_1 & v_2 & v_3 & \ldots & v_N \\
 v_2 & v_3 & v_4 & \ldots & v_{N+1} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 v_{N-1} & v_N & v_{N+1} & \ldots & v_{2N-1}
\end{bmatrix}
\begin{bmatrix}
 a_0 \\
 a_1 \\
 a_2 \\
 \vdots \\
 a_{N-1}
\end{bmatrix}
=
\begin{bmatrix}
 v_N \\
 v_{N+1} \\
 v_{N+2} \\
 \vdots \\
 v_{2N}
\end{bmatrix}

(12)

Prony's method, therefore, consists of three steps:

a. Solve the linear set of equations (12) for the coefficients a_i.

b. Obtain the N roots of the polynomial equation (11) and, therefore, the $s_n = (\ln Z_n)/\Delta t$.

c. Solve the linear set of equations (10) for the residues A_n (Z_n are known from step b).

Since $v(t)$ is real, the poles s_n (and the roots Z_n) must either be real or occur in complex conjugate pairs.

4. UNIFORM NORM APPROXIMATION

Once the poles s_n are known, step c of Prony's method is a linear approximation problem. That is, one must find the A_n that provide the best approximation to $v(t)$ for a given set of s_n. Most workers in electromagnetic scattering have used the L_2 (least squared error) norm when calculating the A_n. This norm has the advantage that it leads to a linear set of algebraic equations for the residues A_n. However, the L_2 norm has the disadvantage that it is not sensitive to the large deviations that often occur near $t = 0$. Figure 2 shows a singularity expansion obtained by the L_2 norm approximation method.
Figure 2. Typical L_2-norm approximation of time-domain reflectometer (TDR) data.

In order to improve the accuracy of calculated singularity expansions, the third step of Prony's method has been replaced by the uniform norm approximation problem: Given the poles s_n, determine the residues A_n that minimize $\|e(t)\|$ where

$$\|e(t)\| = \max_{t} \left| v(t) - \sum_{n=1}^{N} A_n s_n^t \right|.$$

The norm $\| \cdot \|$ defined by equation (13) is the uniform norm and is sensitive to any large deviations of the approximation. However, computation of the best uniform norm approximation is not a linear problem. Therefore, additional computation time is required. A comparison of the L_2 and L_∞ (uniform norm) approximation problems for step c of Prony's method is contained in table I. The two waveforms that were used for this comparison are shown in figure 3, and the parameters are defined by the discrete problem

$$\min_{A_n} \| e(k\Delta t) \|_\infty = \min_{A_n} \max_{0 \leq k \leq K} \left| v(k\Delta t) - \sum_{n=1}^{N} A_n s_n^{k\Delta t} \right|.$$

(14)
<table>
<thead>
<tr>
<th>Number of poles, N</th>
<th>Number of points, K</th>
<th>Δt (ns)</th>
<th>Computation time (s)</th>
<th>Squared error</th>
<th>Type of data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L_2 L_∞</td>
<td>L_2 L_∞</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>0.25</td>
<td>* 3.13</td>
<td>* 3.3</td>
<td>Impulse response</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>0.25</td>
<td>0.12 5.62</td>
<td>3.0 3.0</td>
<td>Impulse response</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>0.25</td>
<td>0.46 12.3</td>
<td>105.5 2.9</td>
<td>Impulse response</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>0.2</td>
<td>0.53 44.3</td>
<td>917.4 0.01</td>
<td>TDR</td>
</tr>
<tr>
<td>24</td>
<td>30</td>
<td>0.2</td>
<td>1.89 64.9</td>
<td>3.75 0.07</td>
<td>TDR</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>0.2</td>
<td>0.62 53.1</td>
<td>0.15 0.003</td>
<td>TDR</td>
</tr>
<tr>
<td>26</td>
<td>30</td>
<td>0.2</td>
<td>2.24 69.7</td>
<td>1076.1 0.0005</td>
<td>TDR</td>
</tr>
</tbody>
</table>

a underspecified problem does not have unique solution.

Figure 3. Test waveforms for comparison of L_2- and L_∞-norm approximations: (a) receive impulse response of dipole with corner reflector and (b) time-domain reflectometer data of dipole.
Although the computation time is significantly greater for the L_∞-norm approximation than for the L_2-norm approximation, the errors are sufficiently less to make the L_∞-norm attractive. In fact, the uniform norm often yields a very good approximation when the L_2 norm totally fails due to ill-conditioning of the matrix equation.

Since the uniform norm is equivalent to the L_p norm when $p \to \infty$, the above approximation problem could also be solved by using the L_p norm with p equal to a large number. Doing so may result in some computational advantages.

5. PHYSICAL REALIZABILITY OF $Z(s)$

The impedance function $Z(s)$ derived from a TDR voltage $v(t)$ must be physically realizable to be synthesized with resistors, inductors, and capacitors. For a $Z(s)$ given by

$$Z(s) = \frac{a_0 + a_1 s + a_2 s^2 + \ldots + a_m s^m}{b_0 + b_1 s + b_2 s^2 + \ldots + b_n s^n},$$

these conditions for physical realizability can be expressed:

a. All of the a_i and b_i in equation (15) are real and positive.

b. The poles and zeros of $Z(s)$ are in the left half of the s plane or on the imaginary axis.

c. The poles and zeros on the imaginary axis are simple.

d. The real part of $Z(j \omega)$ is not negative for any value of ω.

It would be desirable if the conditions a through d could be guaranteed, or at least checked, at the early stages of the calculation. However, the relationship between the poles and residues of the SEM expansion for $v(t)$ and the poles and zeros of $Z(s)$ is complicated. To see this relationship, consider equation (8) for $V(s)$:

$$V(s) = \sum_{n=1}^{N} \frac{A_n}{s - s_n} = \frac{P(s)}{Q(s)}.$$

where \(P(s) \) and \(Q(s) \) are polynomials of degree \(N-1 \) and \(N \), respectively. Similarly, the SEM expansion of \(v_0(t) \) leads to

\[
V_0(s) = \frac{P_0(s)}{Q_0(s)}.
\]

(17)

Substituting equations (16) and (17) into equation (6) yields

\[
Z(s) = \frac{Z_0 Q_0(s) P(s)}{P_0(s) Q(s) - Q_0(s) P(s)} \equiv \frac{\hat{P}(s)}{Q(s)}.
\]

(18)

The zeros of \(Z(s) \) are the zeros of \(V(s) \) plus the poles of \(V_0(s) \). On the other hand, the poles of \(Z(s) \) are different from the poles and zeros of either \(V(s) \) or \(V_0(s) \).

Usually, the generator voltage \(v_0(t) \) is a unit step function so that \(V_0(s) = 1/s \). Then equation (18) can be simplified to

\[
Z(s) = Z_0 \frac{s P(s)}{Q(s) - s P(s)}.
\]

(19)

This equation provides an easily computed relationship between the SEM expansion of the measurable terminal voltage and the desired impedance function. Checks for the satisfaction of conditions a through d have been programmed for automatic testing with the digital computer.

A procedure for generating a physically realizable impedance function from a given \(V(s) \) has been developed and tested. The procedure is based on a theorem in Weinberg\(^4\) and is described in appendix A. The results of numerical tests using the procedure, however, have not been encouraging. In general, when a nonrealizable impedance function is obtained, it is best to return to the original \(v(t) \) and calculate a new SEM approximation with different values of \(N \), \(K \), or \(At \).

6. SYNTHESIS OF LUMPED-ELEMENT EQUIVALENT CIRCUITS

When a physically realizable impedance function in the form of equation (15) has been obtained, a number of standard circuit synthesis procedures may be employed to determine an RLC network having the prescribed input impedance. The simplest synthesis

procedure is based on the partial fraction expansion of the impedance function in equation (15). This procedure has failed for the examples considered because the individual terms of the partial fraction expansion are not all physically realizable. Therefore, more general synthesis procedures such as those of Brune or Bott and Duffin must be used. 3, 4

The Brune procedure has been selected for the examples that follow. This procedure leads to the least number of circuit elements for a given impedance function. A brief description of the Brune synthesis procedure is given in appendix B.

To illustrate the SEM method of equivalent circuit synthesis, a standard gain dipole with a ½ balun has been measured, and its equivalent circuit has been calculated. The original data obtained from the TDR experiment are shown in figure 4. An SEM approximation having 12 poles is shown in figure 5. The values of the poles and residues are given in table II. * The maximum deviation of this approximation is 20 dB below the 0.5-V signal level, and the total energy in the error signal is 20 dB below the energy in the actual signal. The impedance function calculated from equation (19) is

\[Z(s) = \frac{a_0 + a_1 s + \ldots + a_{12} s^{12}}{b_0 + b_1 s + \ldots + b_{12} s^{12}} \]

(20)

*Since the SEM is an analytical representation of the experimental data, the poles and residues can be expressed to several significant figures. Maintaining these significant figures throughout the calculations insures that the resulting equivalent circuit will accurately model the SEM approximation to the data. Of course, the equivalent circuit model for the antenna cannot be more accurate than the original data.
where

\[
\begin{align*}
\bar{s} & = s \times 10^{-9} \\
a_0 & = 0.00 \quad b_0 = 0.765 \times 10^5 \\
a_1 & = 0.668 \times 10^7 \quad b_1 = 0.258 \times 10^6 \\
a_2 & = 0.197 \times 10^8 \quad b_2 = 0.286 \times 10^6 \\
a_3 & = 0.156 \times 10^8 \quad b_3 = 0.254 \times 10^6 \\
a_4 & = 0.112 \times 10^8 \quad b_4 = 0.177 \times 10^6 \\
a_5 & = 0.512 \times 10^7 \quad b_5 = 0.774 \times 10^5 \\
a_6 & = 0.206 \times 10^7 \quad b_6 = 0.353 \times 10^5 \\
a_7 & = 0.592 \times 10^6 \quad b_7 = 0.952 \times 10^4 \\
a_8 & = 0.157 \times 10^6 \quad b_8 = 0.287 \times 10^4 \\
a_9 & = 0.273 \times 10^5 \quad b_9 = 0.487 \times 10^3 \\
a_{10} & = 0.493 \times 10^4 \quad b_{10} = 0.957 \times 10^2 \\
a_{11} & = 0.428 \times 10^3 \quad b_{11} = 0.830 \times 10^1 \\
a_{12} & = 0.477 \times 10^2 \quad b_{12} = 0.105 \times 10^1
\end{align*}
\]

This impedance function is physically realizable as can be seen from the coefficients of equation (20), the locations of the poles and zeros (table III), and the value of the real part (fig. 6). By using Brune's synthesis procedure, the lumped-element equivalent circuit in figure 7 is obtained. This circuit can be substituted for the antenna in any network analysis code. For any frequency within the range of validity of the equivalent circuit (typically several decades), the computed voltages and currents within the network would be the same as if the antenna were attached. For receiver applications, a Thévenin representation of the antenna consisting of a source and the calculated equivalent impedance circuit can be used.
Figure 4. Time-domain reflectometer data of impedance of dipole with λ/4 balun.

Figure 5. Twelve-pole singularity expansion method (SEM) approximation to time-domain reflectometer (TDR) data of dipole antenna.

TABLE II. POLES AND RESIDUES OF SINGULARITY EXPANSION METHOD APPROXIMATION TO DIPOLE DATA

<table>
<thead>
<tr>
<th>Poles (×10⁻²)</th>
<th>Residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.93124 ± j5.05272</td>
<td>-0.04076 ± j0.12436</td>
</tr>
<tr>
<td>-0.83504 ± j3.97729</td>
<td>-0.19291 ± j0.44911</td>
</tr>
<tr>
<td>-0.72280 ± j1.82908</td>
<td>-0.31189 ± j0.06252</td>
</tr>
<tr>
<td>-0.63500 ± j2.92050</td>
<td>-0.10172 ± j0.40237</td>
</tr>
<tr>
<td>-0.62839 ± j3.38884</td>
<td>0.49460 ± j0.00000</td>
</tr>
<tr>
<td>-0.46253 ± j0.00000</td>
<td>0.39124 ± j0.00000</td>
</tr>
</tbody>
</table>
TABLE III. POLES AND ZEROS OF Z(s) FOR DIPOLE

<table>
<thead>
<tr>
<th>Poles ($\times 10^3$)</th>
<th>Zeros ($\times 10^3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.3542 \pm j4.0616</td>
<td>-2.1230 \pm j1.8792</td>
</tr>
<tr>
<td>-0.3345 \pm j5.2596</td>
<td>-1.5150 \pm j5.6375</td>
</tr>
<tr>
<td>-0.1807 \pm j3.5347</td>
<td>-0.3259 \pm j2.3158</td>
</tr>
<tr>
<td>-0.1739 \pm j2.7866</td>
<td>-0.2395 \pm j3.2719</td>
</tr>
<tr>
<td>-0.0864 \pm j1.4718</td>
<td>-0.0504 \pm j4.3324</td>
</tr>
<tr>
<td>-0.4625 \pm j0.0000</td>
<td>-0.4625 \pm j0.0000</td>
</tr>
<tr>
<td>-1.2186 \pm j0.0000</td>
<td>0.0000 \pm j0.0000</td>
</tr>
</tbody>
</table>

Figure 6. Real part of Z(s) for dipole.

To check the synthesis procedure, a circuit that represents the TDR experiment has been analyzed by using the SPICE computer code. The circuit consisted of a 1-V step generator, a 50-ohm source resistor, and the lumped-element equivalent circuit (fig. 8). The calculated network response and the expected response (SEM approximation) are compared in figure 9. The comparison is excellent, and the equivalent circuit is a very good representation (errors at least 20 dB below signal) of the actual antenna.
Figure 7. Lumped-element equivalent circuit for dipole with λ/4 balun.

Figure 8. Lumped-element circuit representation of time-domain reflectometer measurement of dipole antenna.
Figure 9. Comparison of desired (singularity expansion method--SEM--approximation) and calculated responses of lumped-element equivalent circuit for dipole.

The equivalent circuit for a yagi antenna has also been calculated. The TDR data and the 10-pole SEM approximation are shown in figure 10. The poles and residues of the approximation are given in table IV. The energy of the error signal is 26 dB below the energy of the actual signal. The impedance function for this voltage is

\[Z(s) = \frac{a_0 + a_1 s + \ldots + a_{10} s^{10}}{b_0 + b_1 s + \ldots + b_{10} s^{10}} \]

(21)

where

\[s = s \times 10^{-10} \]

\[a_0 = 0.00 \quad b_0 = 0.151 \times 10^{-7} \]

\[a_1 = 0.194 \times 10^{-4} \quad b_1 = 0.918 \times 10^{-6} \]

\[a_2 = 0.112 \times 10^{-2} \quad b_2 = 0.200 \times 10^{-4} \]

\[a_3 = 0.218 \times 10^{-1} \quad b_3 = 0.237 \times 10^{-3} \]

\[a_4 = 0.184 \times 10^{0} \quad b_4 = 0.225 \times 10^{-2} \]

\[a_5 = 0.887 \times 10^{0} \quad b_5 = 0.161 \times 10^{-1} \]
Examination of equation (21), the data in table V, and figure 11 reveals that this impedance is physically realizable. The Brune synthesis procedure yielded the equivalent circuit in figure 12.

\[
\begin{align*}
 a_6 &= 0.451 \times 10^1 \\
 b_6 &= 0.564 \times 10^{-1} \\
 a_7 &= 0.107 \times 10^2 \\
 b_7 &= 0.256 \times 10^0 \\
 a_8 &= 0.312 \times 10^2 \\
 b_8 &= 0.456 \times 10^0 \\
 a_9 &= 0.315 \times 10^2 \\
 b_9 &= 0.101 \times 10^1 \\
 a_{10} &= 0.489 \times 10^{-2} \\
 b_{10} &= 0.102 \times 10^1
\end{align*}
\]

Figure 10. Ten-pole singularity expansion method (SEM) approximation to time-domain reflectometer (TDR) data of yagi antenna.

<p>| TABLE IV. POLES AND RESIDUES OF SINGULARITY EXPANSION METHOD APPROXIMATION TO YAGI DATA |
|-------------------------------------|-------------------------------------|</p>
<table>
<thead>
<tr>
<th>Poles ((10^{-1}))</th>
<th>Residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.09150 + j1.36453</td>
<td>-1.05713 + j1.29353</td>
</tr>
<tr>
<td>-0.58429 + j4.24343</td>
<td>-0.03312 + j0.06859</td>
</tr>
<tr>
<td>-0.14017 + j2.47081</td>
<td>0.03728 + j0.00743</td>
</tr>
<tr>
<td>-0.34856 + j0.00000</td>
<td>0.40960 + j0.00000</td>
</tr>
<tr>
<td>-0.94222 + j0.00000</td>
<td>0.88773 + j0.00000</td>
</tr>
</tbody>
</table>
TABLE V. POLES AND ZEROS OF Z(s) FOR YAGI

<table>
<thead>
<tr>
<th>Poles (×10^-13)</th>
<th>Zeros (×10^-13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.06556 ± j0.01119</td>
<td>-0.14879 ± j0.54307</td>
</tr>
<tr>
<td>-0.02358 ± j0.40602</td>
<td>-0.08271 ± j0.33522</td>
</tr>
<tr>
<td>-0.00976 ± j0.26028</td>
<td>-0.07111 ± j0.01615</td>
</tr>
<tr>
<td>-0.00260 ± j0.10659</td>
<td>-0.00267 ± j0.23826</td>
</tr>
<tr>
<td>-0.75164 ± j0.00000</td>
<td>-0.03486 ± j0.00000</td>
</tr>
<tr>
<td>-0.03486 ± j0.00000</td>
<td>0.00000 ± j0.00000</td>
</tr>
</tbody>
</table>

Figure 11. Real part of Z(s) for yagi.

Figure 12. Lumped-element equivalent circuit for yagi antenna.
A SPICE analysis of the TDR response of this lumped-element equivalent circuit yielded the result shown in figure 13. There is excellent agreement between the expected and calculated waveforms.

![Figure 13](image-url)

Figure 13. Comparison of desired (singularity expansion method—SEM—approximation) and calculated responses of lumped-element equivalent circuit for yagi.

7. TRANSFER FUNCTION CALCULATIONS

The terminal properties of a linear, time-invariant antenna can be completely described by a Thevenin or Norton equivalent circuit. These circuits consist of two parts: (1) an independent source that represents the open circuit voltage or short circuit current of the antenna when it is illuminated by an electromagnetic field and (2) an equivalent circuit that represents the antenna's input impedance or admittance. This equivalent impedance or admittance circuit can be synthesized by the techniques described above. Furthermore, the SEM can be used to characterize the independent source.

The SEM characterization of the antenna's voltage or current is obtained by calculating the impulse response or the frequency domain transfer function of the antenna in the form of equation (7) or (8). The characterization is calculated by finding an SEM approximation to the measured or calculated response of the antenna (open circuit voltage or short circuit current) to a short pulse of electromagnetic energy. This SEM approximation is an analytical estimate of the

antenna's impulse response, and it may be convolved with any incident waveform to obtain the resulting terminal voltage or current. Therefore, the SEM can be used to generate equivalent circuits that completely characterize the terminal properties of an antenna.

8. CONCLUSIONS

The singularity expansion method (SEM) has been shown to be an effective tool for synthesizing lumped-element equivalent circuits from experimentally derived time-domain reflectometer (TDR) data. The poles of the SEM expansion are calculated by using the standard Prony algorithm. The residues, however, are calculated by an iterative scheme that yields a uniform norm approximation instead of a least squared error norm approximation. The uniform norm provides much better control of the early time errors and leads to a better overall approximation. The increased computation time required for the uniform norm approximation is readily justified because this time is not large compared to the total time for calculating the equivalent circuit. Furthermore, the time spent in calculating the SEM approximation is repaid by the final circuit, which produces exactly the voltage response prescribed by the SEM approximation.

Once the physical realizability of the calculated impedance function has been verified, a standard circuit synthesis procedure, such as that of Brune or Bott and Duffin, may be used to obtain the desired RLC equivalent circuit. In general, the partial fraction expansion of $Z(s)$ will not yield subcircuits that are physically realizable.

When combined with the previously developed technique for measuring the impulse response of antennas, SEM synthesis of equivalent impedance circuits is a powerful and generally applicable tool for converting experimentally obtained data into Thevenin and Norton equivalent circuits for use in wide-bandwidth analytical modelling of transmitter and receiver systems.
LITERATURE CITED

SELECTED BIBLIOGRAPHY

Transient Response of Antennas and Scatterers

Experimental Data

Equivalent Circuit Synthesis

APPENDIX A.--PHYSICAL REALIZABILITY VIA MULTIPLICATIVE FACTOR

Theorem 6.5 in Weinberg1 states that $Z(s) = Z_0 \frac{1 + R(s)}{1 - R(s)}$ is a physically realizable function if and only if

1. $R(s)$ is a real rational function with no poles in the right half plane or on the imaginary axis, and

2. $|R(j\omega)| \leq 1$ for all real ω.

This theorem and equation (18) in the main body of this report can be used to obtain an impedance function $Z_\alpha(s)$ that depends on the parameter α, $0 < \alpha \leq 1$. For $\alpha = 1$, $Z(s)$ equals the impedance corresponding to $R(s)$. For $0 < \alpha < 1$, $Z_\alpha(s)$ is the impedance corresponding to a reflection coefficient $\alpha R(s)$.

The proposed scheme for calculating a physically realizable impedance function requires that the singularity expansion method (SEM) approximation to $V(s)$ and $V_0(s)$ be manipulated to obtain $R(s) = N(s)/D(s)$, where $N(s)$ and $D(s)$ are polynomials. Then

$$Z_\alpha(s) = Z_0 \frac{1 + \alpha R(s)}{1 - \alpha R(s)} \quad (A-1)$$

can be calculated for various α, and the largest $\alpha < 1$ for which $Z_\alpha(s)$ is physically realizable is the "best" impedance function. ("Best" is used in the sense that the poles and zeros of the reflection coefficient are those obtained from $V(s)$ and $V_0(s)$ and $|R_\alpha(j\omega)| = \alpha |R(j\omega)| \leq 1$.)

The impedance function $Z_\alpha(s)$ can be related directly to the SEM expressions for $V(s)$ and $V_0(s)$. Equation (2) in the main body of the report implies that

$$R(s) = 2 \frac{V(s)}{V_0(s)} - 1 = 2 \frac{P(s)Q_0(s)}{Q(s)P_0(s)} - 1 \quad (A-2)$$

Therefore,

$$R_\alpha(s) = \alpha R(s) = \frac{2\alpha P(s)Q_0(s) - Q(s)P_0(s)}{Q(s)P_0(s)} \quad (A-3)$$

Substituting equation (A-3) into equation (A-1) yields

\[
Z_\alpha(s) = \frac{(1 - \alpha)Q(s)P_0(s) + 2\alpha P(s)Q_0(s)}{Z_0(1 + \alpha Q(s)P_0(s) - 2\alpha P(s)Q_0(s))}. \tag{A-4}
\]

For step function excitation, \(V_0(s) = 1/s\), and equation (A-4) reduces to

\[
Z_\alpha(s) = \frac{(1 - \alpha)Q(s) + 2\alpha sP(s)}{Z_0(1 + \alpha Q(s) - 2\alpha sP(s))}. \]
APPENDIX B.—BRUNE SYNTHESIS OF RLC NETWORKS

A detailed description of the Brune synthesis procedure can be found in many texts. The following is a brief summary of the procedure.

The Brune synthesis procedure is based on the tee representation of a transformer (fig. B-1). In the tee representation, one of the inductances \(L \) or \(L_c \) is negative, but the network is still considered physically realizable.

\[
\begin{align*}
\frac{a}{n} s^n + a_{n-1} s^{n-1} + \ldots + a_0 \\
\frac{b}{n} s^n + b_{n-1} s^{n-1} + \ldots + b_0
\end{align*}
\]

Starting with the \(n \)th order impedance function,

\[
Z(s) = \frac{a}{n} s^n + a_{n-1} s^{n-1} + \ldots + a_0
\]

\[
= \frac{b}{n} s^n + b_{n-1} s^{n-1} + \ldots + b_0
\]

a single cycle of the synthesis procedure yields the network in figure B-2, where \(Z(s) \) is of order \(n-2 \). The Brune cycle for reducing \(Z(s) \) consists of four steps:

1. Remove $R_1 = \begin{align*} \min \omega \Re Z(j\omega) \end{align*}$ (fig. B-3).

2. Remove $L_1 = \Im Z(j\omega_1)/\omega_1$.

3. Remove the shunt arm L_2C_2, which produces zeros in $Z_2(s)$ at $s = \pm j\omega_1$.

4. Remove L_3, which causes $Z_3(s)$ to have a pole at infinity.

Figure B-2. Realization of single Brune cycle.

Figure B-3. Typical resistance function for Brune synthesis procedure.
These four steps require polynomial manipulations that can be readily programmed on the digital computer. The equivalence in figure B-1 may be used to convert a Brune circuit containing a negative inductance into a transformer as shown in figure B-4.

![Figure B-4. Final Brune circuit with transformer.](image-url)
DISTRIBUTION

DEFENSE DOCUMENTATION CENTER
CAMERON STATION, BUILDING 5
ALEXANDRIA, VA 22314
ATTN DDC-TCA (12 COPIES)

COMMANDER
US ARMY MATERIEL DEVELOPMENT
& READINESS COMMAND
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333
ATTN DRKAM-TL, HC TECH LIBRARY
ATTN DRCFPM-SCM-WF
ATTN DRCDE-D/COL J. F. BLEECKER
ATTN DRCDE, DIR FOR DEV & ENGR
ATTN DRCDE-DE/H. DARRACOTT
ATTN DRCMS-I/DR. R. F. UHLIG
ATTN DRCMS-1/MR. E. O'DONNEL

COMMANDER
US ARMY ARMAMENT MATERIEL
READINESS COMMAND
ROCK ISLAND ARSENAL
ROCK ISLAND, IL 61201
ATTN DRAR-ASF, FUZE & MUNITION SPT DIV
ATTN DRAR-PDM/J. A. BRINKMAN
ATTN DRAR-PVF

COMMANDER
USA MISSILE & MUNITIONS
CENTER & SCHOOL
REDSTONE ARSENAL, AL 35809
ATTN ATSK-CTD-F

DIRECTOR
US ARMY BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MD 21005
ATTN DRAR-TSB-S (STINFO)

DEFENSE ADVANCED RESEARCH
PROJECTS AGENCY
1400 WILSON BLVD
ARLINGTON, VA 22209
ATTN TECH INFORMATION OFFICE

DIRECTOR
DEFENSE COMMUNICATION ENG CENTER
1960 WIEHLE AVENUE
RESTON, VA 22090
ATTN R104, M. J. RAFFENSPERGER
ATTN R800, R. E. LYONS

DIRECTOR
DEFENSE INTELLIGENCE AGENCY
WASHINGTON, DC 20301
ATTN DI-2, WEAPONS & SYSTEMS DIV

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, DC 20305
ATTN PETER HAAS, DEP DIR,
SCIENTIFIC TECHNOLOGY
ATTN RAEV, CPT WILSON
ATTN VLIS, LTC SHIMERDA

DEPARTMENT OF DEFENSE
DIRECTOR OF DEFENSE RESEARCH
& ENGINEERING
WASHINGTON, DC 20301
ATTN DEP DIR (TACTICAL
WARFARE PROGRAMS)
ATTN DEP DIR (TEST & EVALUATION)
ATTN DEFENSE SCIENCE BOARD

CHAIRMAN
JOINT CHIEFS OF STAFF
WASHINGTON, DC 20301
ATTN J-3, NUCLEAR WEAPONS BR
ATTN J-3, EXER PLANS & ANALYSIS DIV
ATTN J-5, NUCLEAR DIR NUCLEAR POLICY BR
ATTN J-6, REQUIREMENT & DEV BR
ATTN J-6, COMMUNICATIONS-ELECTRONICS

DEPARTMENT OF DEFENSE
JOINT CHIEFS OF STAFF
STUDIES ANALYSIS & GAMING AGENCY
WASHINGTON, DC 20301
ATTN TAC NUC BR
ATTN SYS SUPPORT BR

ASSISTANT SECRETARY OF DEFENSE
PROGRAM ANALYSIS AND EVALUATION
WASHINGTON, DC 20301
ATTN DEP ASST SECY (GEN PURPOSE PROG)
ATTN DEP ASST SECY (REGIONAL PROGRAMS)
ATTN DEP ASST SECY (RESOURCE ANALYSIS)

DEPARTMENT OF THE ARMY
OFFICE, SECRETARY OF THE ARMY
WASHINGTON, DC 20301
ATTN ASST SECRETARY OF THE ARMY (I&L)
ATTN DEP FOR MATERIEL ACQUISITION
ATTN ASST SECRETARY OF THE ARMY (R&D)

DEPARTMENT OF THE ARMY
ASSISTANT CHIEF OF STAFF FOR INTELLIGENCE
WASHINGTON, DC 20301
ATTN DAMI-OC/COL J. A. DODDS
ATTN DAMI-CT/OLON F. M. GILBERT

US ARMY SECURITY AGENCY
ARLINGTON HALL STATION
4000 ARLINGTON BLVD
ARLINGTON, VA 22212
ATTN DEP CH OF STAFF RESEARCH & DEVELOPMENT
DISTRIBUTION (Cont'd)

DIRECTOR
WEAPONS SYSTEMS EVALUATION GROUP
OFFICE, SECRETARY OF DEFENSE
400 ARMY-NAVY DRIVE
WASHINGTON, DC 20305
ATTN DIR, LT GEN GLENN A. KENT

DEPARTMENT OF THE ARMY
DEPUTY CHIEF OF STAFF
FOR OPERATIONS & PLANS
WASHINGTON, DC 20301
ATTN DAMO-RQ/Col E. W. SHARP
ATTN DAMO-RQ/Col D. K. LYON
ATTN DAMO-SSN/LTC R. E. LEARD
ATTN DAMO-SSN/LTC B. C. ROBINSON
ATTN DAMO-NZ/Col G. A. POLLIN, JR.
ATTN DAMO-TZ/Col T. M. RIENZI
ATTN DAMO-ZD/A. GOLUB

DEPARTMENT OF THE ARMY
CHIEF OF RESEARCH, DEVELOPMENT,
AND ACQUISITION OFFICE
WASHINGTON, DC 20301
ATTN DAMO-RAZ/Col E. W. SHARP
ATTN DAMO-RAZ/Col D. K. LYON
ATTN DAMO-SSN/LTC R. E. LEARD
ATTN DAMO-SSN/LTC B. C. ROBINSON
ATTN DAMO-NZ/Col G. A. POLLIN, JR.
ATTN DAMO-TZ/Col T. M. RIENZI
ATTN DAMO-ZD/A. GOLUB

COMMANDER
BALLISTIC MISSILE DEFENSE SYSTEMS
P.O. BOX 1500
HUNTSVILLE, AL 35807
ATTN BMDS-TEN/MR. JOHN VEVFNAME

COMMANDER
US ARMY FOREIGN SCIENCE
AND TECHNOLOGY CENTER
220 SEVENTH ST., NE
CHARLOTTESVILLE, VA 22901

DIRECTOR
US ARMY MATERIAL SYSTEMS ANALYSES ACTIVITY
ABERDEEN PROVING GROUND, MD 21005
ATTN DRXYT-C/DON R. BARTHEL
ATTN DRXYT-P/F. REID

COMMANDER
US ARMY SATELLITE COMMUNICATIONS AGENCY
FT. MONMOUTH, NJ 07703
ATTN LTC HOSMER

DIRECTOR
BALLISTIC RESEARCH LABORATORIES
ABERDEEN PROVING GROUND, MD 21005
ATTN DXBR-XA/MR. J. MESZAROS

COMMANDER
US ARMY AVIATION SYSTEMS COMMAND
12TH AND SPRUCE STREETS
ST. LOUIS, MO 63160
ATTN DRCPM-AAH/ROBERT HUBBARD

DIRECTOR
EUSTIS DIRECTORATE
US ARMY AIR MOBILITY R&D LABORATORY
FORT EUSTIS, VA 23604
ATTN SVIDL-EU-MOS/MR. S. POCIULYKO
ATTN SVIDL-EU-TAS(TETRACORE)

COMMANDER
US ARMY COMMUNICATIONS RES & DEV COMMAND
PT. MONMOUTH, NJ 07703
ATTN PM, ATACS/DRCPM-ATC/LTC DOBBINS
ATTN DRCPM-ATC-TM
ATTN PM, ARTADS/DRCPM-TDS/CG A. CRAWFORD
ATTN DRCPM-TDS-TH/Col D. EMERSON
ATTN DRCPM-TDS-TH
ATTN DRCPM-TDS-FB/LTC A. KIRKPATRICK
ATTN PM, MALOR/DRCPM-MALR/Col W. HARRISON
ATTN PM, NAVCOM/DRCPM-NC/Col C. MCDOWELL, JR.
ATTN PM, REMBASS/DRCPM-RBS/Col R. COTTEY, SR.
ATTN DSSEL-TL-TR/Col R. FREIBERG
ATTN DSSEL-SA/NORMAN MILLESTEIN
ATTN DSSEL-MC/C/J. REAVIS
ATTN DSSEL-CT-HDK, ABRAHAM E. COHEN
ATTN DSSEL-CT, T. PREIFFER
ATTN DSSEL-TL-MD, GERHART K. GAULE
ATTN DSSEL-EX-I-D, W. F. WERK
ATTN DSSEL-TR-ENV, HANS A BOMKE
ATTN DSSEL-TL-WE, M. W. POMERANTZ
ATTN DSSEL-WL-D
ATTN DSSEL-NL-D
ATTN DSSEL-TL-TR/Col W. T. HUNTER
ATTN DSSEL-CT, RADAR
ATTN DSSEL-CT, RADAR DEVELOPMENT GROUP
ATTN DSSEL-WL, ELECTRONIC WARFARE LAB
ATTN DSSEL-CT-R, MR. BOAZ GELENTER
ATTN DSSEL-WL-S, MR. GEORGE HABER
ATTN DSSEL-VL-G, MR. SOL PERLMAN
ATTN DSSEL-NL-CR-1, DR, FELIX SCHEVERING

COMMANDER
US ARMY MISSILE MATERIAL READINESS COMMAND
REDSTONE ARSENAL, AL 35809
ATTN DRSMI-FR/DR. F. GIPSON
ATTN DRCPP-M/Col P. RODDY
ATTN DRCPP-LCCX/L. B. SEGEL (LANCE)
ATTN DRCPP-MD/GENE ASHLEY (Patriot)
ATTN DRCPP-MT
ATTN DRCPP-FL/Col SKEMP (Pershing)
ATTN DRCPP-SH
ATTN DRCPP-TO
ATTN DRSMI-B, RDE & MSL DIRECTORATE
HEADQUARTERS, NAVAL MATERIEL COMMAND
STRATEGIC SYSTEMS PROJECTS OFFICE
1931 JEFFERSON DAVIS HIGHWAY
ARLINGTON, VA 20390
ATTN NSP2201, LAUNCHING & HANDLING
BRANCH, BR ENGINEER, P. R. FAUROT
ATTN NSP-230, FIRE CONTROL & GUIDANCE
BRANCH, BR ENGINEER, D. GOLD
ATTN NSP-2701, MISSILE BRANCH,
BR ENGINEER, J. W. PITSENBERGER
COMANDER
NAVAL SURFACE WEAPONS CENTER
WHITE OAK, MD 20910
ATTN CODE 222, ELECTRONICS & ELECTRO-
MAGNETICS DIV
ATTN CODE 431, ADVANCED ENGR DIV
US AIR FORCE, HEADQUARTERS
DCS, RESEARCH & DEVELOPMENT
WASHINGTON, DC 20330
ATTN DIR OF OPERATIONAL REQUIREMENTS
AND DEVELOPMENT PLANS, S/V
LTC P. T. DUESBERRY
COMANIDER
AF WEAPONS LABORATORY, AFSC
KIRTLAND AFB, NM 87117
ATTN ES, ELECTRONICS DIVISION
ATTN EL, J. DARRAH
ATTN TECHNICAL LIBRARY
ATTN D. I. LAWRY
COMANIDER
AERONAUTICAL SYSTEMS DIVISION, AFSC
WRIGHT-PATTERSON AFB, OH 45433
ATTN ASD/YH, DEPUTY FOR B-1
COMANIDER
HQ SPACE AND MISSILE SYSTEMS ORGANIZATION
P.O. BOX 96960 WORLDWAYS POSTAL CENTER
LOS ANGELES, CA 90009
ATTN STN, DEFENSE SYSTEMS APF SPO
ATTN XRT, STRATEGIC SYSTEMS DIV
ATTN SYS, SURVIVABILITY OFC
COMANIDER
AF SPECIAL WEAPONS CENTER, AFSC
KIRTLAND AFB, NM 87117

DISTRIBUTION (Cont'd)

HARRY DIAMOND LABORATORIES
ATTN COMMANDER/
FLYER, I.N./LANDIS, P.E./
SOMMER, H./OSWALD, R. B.
ATTN CARTER, W.W., DR., TECHNICAL
DIRECTOR
ATTN WISEMAN, ROBERT S., DR.,
DRNEL-CT
ATTN MARCUS, S. M., 003
ATTN KIMMEL, S., PAO
ATTN/CHIEF, 0021
ATTN CHIEF, 0022
ATTN CHIEF, LAB 100
ATTN CHIEF, LAB 200
ATTN CHIEF, LAB 300
ATTN CHIEF, LAB 400
ATTN CHIEF, LAB 500
ATTN CHIEF, LAB 600
ATTN CHIEF, DIV 700
ATTN CHIEF, DIV 800
ATTN CHIEF, LAB 900
ATTN CHIEF, LAB 1000
ATTN RECORD COPY, BR 041
ATTN HDL LIBRARY (5 COPIES)
ATTN CHAIRMAN, EDITORIAL COMMITTEE
ATTN CHIEF, 047
ATTN TECH REPORTS, 013
ATTN PATENT LAW BRANCH, 071
ATTN GIDEF OFFICE, 741
ATTN LANHAM, C., 0021
ATTN CHIEF, BR 110
ATTN CHIEF, BR 120
ATTN CHIEF, BR 130
ATTN CHIEF, BR 140
ATTN CHIEF, BR 150
ATTN CHIEF, BR 1010 (2 COPIES)
ATTN CHIEF, BR 1020 (2 COPIES)
ATTN CHIEF, BR 1030 (2 COPIES)
ATTN CHIEF, BR 1040 (2 COPIES)
ATTN CHIEF, BR 1050 (2 COPIES)
ATTN TOMPKINS, J. E., 230
ATTN WYATT, W. T., 1000
ATTN WIMENLTS, F. N., 0024
ATTN DROPKIN, H., 110
ATTN STARK, W., 1030
ATTN HEINARD W., 150
ATTN SCHUBERT, D. (25 COPIES)