UNCLASSIFIED

END

DATE
FILMED
8 - 78

AFOSR-TR-78-1069
ML
ENTHALPIES OF COMBUSTION OF exo-THDC, RJ-4, ISOMERIZED RJ-4, AND JP-9

by

N. K. Smith and W. D. Good

Bartlesville Energy Research Center,
Department of Energy,
Bartlesville, Oklahoma

Research sponsored by:
Air Force Office of Scientific Research (NA)
Department of the Air Force
Contract No. AFOSR-ISSA-78-0009

Approved for public release; distribution unlimited.

June 1978
The enthalpies of combustion of four liquid ramjet fuels, exo-THDC, RJ-4, RJ-4-I, and JP-9, were measured by precision oxygen-bomb combustion calorimetry. The following values are reported for the net enthalpy of combustion at 298.15 K (25°C):

- exo-THDC: $-(10081.5 \pm 2.3)$ cal g$^{-1}$
- RJ-4: $-(10153.1 \pm 2.3)$ cal g$^{-1}$
- RJ-4-I: $-(10144.4 \pm 2.2)$ cal g$^{-1}$
- JP-9: $-(10089.3 \pm 2.4)$ cal g$^{-1}$
ENTHALPIES OF COMBUSTION OF exo-THDC, RJ-4, ISOMERIZED RJ-4, AND JP-9

Bartlesville Energy Research Center
Department of Energy
Bartlesville, Oklahoma

Project Director: W. D. Good
Report prepared by: N. K. Smith
W. D. Good

Qualified requestors may obtain additional copies from the Defense Documentation Center, all others should apply to the National Technical Information Service.

Approved for public release; distribution unlimited.

Conditions of Reproduction
Reproduction, translation, publication, use and disposal in whole or in part by or for the United States Government is permitted.
ENTHALPIES OF COMBUSTION OF exo-THDC, RJ-4, ISOMERIZED RJ-4, AND JP-9

by

N. K. Smith and W. D. Good

Bartlesville Energy Research Center
Department of Energy

The enthalpies of combustion of four liquid ramjet fuels, exo-THDC, RJ-4, RJ-4-I, and JP-9, were measured by precision oxygen-bomb combustion calorimetry. The following values are reported for the net enthalpy of combustion at 298.15 K (25°C): exo-THDC, \(-10081.5 \pm 2.3\) cal g\(^{-1}\); RJ-4, \(-10153.1 \pm 2.3\) cal g\(^{-1}\); RJ-4-I, \(-10141.4 \pm 2.2\) cal g\(^{-1}\); and JP-9, \(-10089.3 \pm 2.4\) cal g\(^{-1}\).

1. INTRODUCTION

In cooperation with the Air Force Office of Scientific Research, this laboratory has studied compounds with high enthalpies of combustion per unit mass\(^{(1,3)}\) and per unit volume\(^{(2,4)}\). This report gives the details of experimental measurements of the enthalpies of combustion of four hydrocarbon liquids being evaluated as ramjet fuels.

\(^{a}\) Work conducted under an Interagency Agreement, AFOSR-ISSA-78-0009, between the Air Force Office of Scientific Research (AFSC) and the Department of Energy.
2. EXPERIMENTAL

MATERIALS

All four fuels studied are liquids. Carbon skeletons of three are shown in Figure 1. exo-THDC, exo-tetrahydrodicyclopentadiene, is a pure compound. RJ-4, exo-tetrahydrodi(methylcyclopentadiene), and RJ-4-I, endo-tetrahydro-di(methylcyclopentadiene) are mixtures of isomers in which the location of the methyl groups is unknown. JP-9 is a blend of 10.3 weight percent methylcyclohexane, 68.4 weight percent of exo-THDC, and 21.2 weight percent of the hydrogenated dimers of norbornadiene whose empirical formula is $\text{C}_{14}\text{H}_{18}$. Carbon skeletons of typical isomers are shown in Figure 2. The empirical formula for the blend is $\text{C}_{10.529}\text{H}_{16.202}$.

exo-THDC, RJ-4, and RJ-4-I were provided by G. W. Burdette, Propulsion Development Department, Naval Weapons Center, China Lake, California. The JP-9 sample was obtained from James R. McCoy, Fuels Branch, Fuels and Lubrication Division, Air Force Aero Propulsion Laboratory, Wright-Patterson Air Force Base, Ohio; it is from Sun Oil Co. Batch 24. All materials were used as received.

Carbon dioxide was recovered from the combustion products of typical calorimetric experiments with all four fuels. Quantitative carbon dioxide recovery is a good indication that combustion was complete, that the sample was dry, and that sample composition was understood. A summary of carbon dioxide recovery is given in Table 1. The value for JP-9 is noticeably lower than the recoveries from the other three fuels.
FIGURE 1. Carbon skeletons of hydrocarbon fuels.
FIGURE 2. Carbon skeletons of typical isomers of hydrogenated dimer of norbornadiene.
TABLE 1. Carbon dioxide recovery

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Number of experiments</th>
<th>Percent recovery a</th>
</tr>
</thead>
<tbody>
<tr>
<td>exo-THDC</td>
<td>6</td>
<td>99.99</td>
</tr>
<tr>
<td>RJ-4</td>
<td>6</td>
<td>99.98</td>
</tr>
<tr>
<td>RJ-4-I</td>
<td>3</td>
<td>99.96</td>
</tr>
<tr>
<td>JP-9</td>
<td>4</td>
<td>99.63</td>
</tr>
</tbody>
</table>

a Mean value.

National Bureau of Standards benzoic acid sample 39t was used for calibration. Its certified energy of combustion, -(26434 ± 3) J g⁻¹, was converted to standard conditions⁸ giving -(6313.02 ± 0.72) cal g⁻¹ for ΔEₒ/M, the specific energy of the idealized combustion reaction.

Previous combustion experiments on the auxiliary oil, laboratory designation TKL 66, gave a value for ΔEₒ/M of -(11004.41 ± 0.42) cal g⁻¹.

For the cotton thread fuse, empirical formula CH₁.77⁴O₀.88⁷, ΔEₒ/M = -4050 cal g⁻¹.

APPARATUS AND PROCEDURE

Experimental procedures used for the combustion calorimetry of hydrocarbons by this laboratory have been described.⁸,⁹ Rotating-bomb calorimeter BMR II⁸ and platinum-lined bomb Pt-3b⁹, internal volume 0.349 ⁴ dm³, were used without bomb rotation. For each experiment, 1 cm³ of water was added to
the bomb, and the bomb was flushed and charged to 30 atm (3040 kPa) with pure oxygen. Because the oxygen was pure, nitric acid formation was negligible. Each experiment was started at 296.15 K, and the final temperatures were very nearly 298.15 K. Fragile flexible ampoules of borosilicate glass confined the liquid samples. In filling ampoules with JP-9, the apparatus was charged with enough methylcyclohexane to provide its saturation vapor pressure before introducing the sample in order to minimize the evaporation of that component from the fuel.

UNITS OF MEASUREMENT AND AUXILIARY QUANTITIES
The results are based on the 1961 atomic weights and the 1963 definition of the thermochemical calorie (cal = 4.184 J). The reference temperature is 298.15 K (25°C). For reducing weights in air to masses, converting the energy of the actual bomb process to that of the isothermal process, and reducing to standard states, the values in Table 2 were used for density \(\rho \), specific heat capacity \(c_p \), and \(\left(\frac{\partial E}{\partial P} \right)_T \). The values of density were obtained from the mass of material contained by ampoules of known volume. Values of \(c_p \) for exo-THDC and RJ-4 were from differential scanning calorimetry. Values of \(c_p \) for RJ-4-I and JP-9 are estimates as are all values of \(\left(\frac{\partial E}{\partial P} \right)_T \).

CALIBRATION
One set of calibration experiments with benzoic acid was run concurrently with the series of experiments with exo-THDC and RJ-4. The calibration result was \(E_{\text{calor}} = 4008.11 \pm 0.20 \) cal\(_{\text{th}}\) K\(^{-1}\) (mean and standard deviation of the mean). A second set of calibration experiments was run concurrently with
TABLE 2. Physical properties at 298.15 Ka
(cal\textsubscript{th} = 4.184 J; atm = 101.325 kPa)

<table>
<thead>
<tr>
<th>Fuel</th>
<th>(\rho) (\text{g cm}^{-3})</th>
<th>((\partial E/\partial p)) (\text{cal}_{\text{th}} \text{ atm}^{-1} \text{ g}^{-1})</th>
<th>(c_p) (\text{cal}_{\text{th}} \text{ K}^{-1} \text{ g}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>exo-THDC</td>
<td>0.939</td>
<td>(-0.003)</td>
<td>(0.42)</td>
</tr>
<tr>
<td>RJ-4</td>
<td>0.920</td>
<td>(-0.003)</td>
<td>(0.44)</td>
</tr>
<tr>
<td>RJ-4-I</td>
<td>0.917</td>
<td>(-0.003)</td>
<td>(0.30)</td>
</tr>
<tr>
<td>JP-9</td>
<td>0.946</td>
<td>(-0.003)</td>
<td>(0.30)</td>
</tr>
</tbody>
</table>

a Values in parentheses are estimates.
the series of experiments with RJ-4-I and JP-9. The calibration result was
\[\varepsilon(\text{calor}) = (4007.02 \pm 0.26) \text{ cal}_\text{th} K^{-1} \] (mean and standard deviation of the mean).

3. CALORIMETRIC RESULTS

Results of typical experiments with the four fuels are summarized in Table 3. Values of \(\Delta E_c^\circ/M \), the specific energy of the idealized combustion reaction, for all experiments are given in Table 4; all values refer to the reaction of unit mass of sample. The idealized combustion and formation reactions for exo-THDC are represented by equations 1 and 2, respectively. The idealized combustion and formation reactions for RJ-4 and RJ-4-I are represented by equations 3 and 4, respectively.

\[C_{10}H_{16}(l) + 14 O_2(g) = 10 CO_2(g) + 8 H_2O(l) \] (1)

\[10 C(\text{c, graphite}) + 8 H_2(g) = C_{10}H_{16}(l) \] (2)

The reader should be reminded that RJ-4 and RJ-4-I are mixtures of isomers.

The idealized combustion reaction for JP-9 is represented by equation 5.

\[C_{10.529}H_{16.202}(l) + 14.579 O_2(g) = 10.529 CO_2(g) + 8.101 H_2O(l) \] (5)
<table>
<thead>
<tr>
<th></th>
<th>exo-THDC</th>
<th>RJ-4</th>
<th>RJ-4-I</th>
<th>JP-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>m^\prime (fuel)/g</td>
<td>0.693077</td>
<td>0.671733</td>
<td>0.661629</td>
<td>0.675054</td>
</tr>
<tr>
<td>m^\prime (auxiliary substance)/g</td>
<td>0.056663</td>
<td>0.071059</td>
<td>0.081998</td>
<td>0.073573</td>
</tr>
<tr>
<td>m^\prime (fusible)/g</td>
<td>0.001316</td>
<td>0.001200</td>
<td>0.001250</td>
<td>0.001078</td>
</tr>
<tr>
<td>n^\prime(H$_2$O)/mol</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
</tr>
<tr>
<td>$\Delta T_c/k = (T_f - T_i + \Delta T_{corr})/K$</td>
<td>2.00216</td>
<td>2.00052</td>
<td>2.00235</td>
<td>1.99890</td>
</tr>
<tr>
<td>ϵ(calor)/ΔT_c/cal$_{th}$</td>
<td>-8024.89</td>
<td>-8018.33</td>
<td>-8023.45</td>
<td>-8009.63</td>
</tr>
<tr>
<td>ϵ(cont)/ΔT_c/cal$_{th}$</td>
<td>-10.20</td>
<td>-10.19</td>
<td>-10.00</td>
<td>-10.02</td>
</tr>
<tr>
<td>ΔE_{ign}/cal$_{th}$</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>ΔE(corr to std states)/cal$_{th}$</td>
<td>3.02</td>
<td>2.90</td>
<td>2.91</td>
<td>3.09</td>
</tr>
<tr>
<td>[-m$^\prime$(DE$^\circ$/M)(auxiliary substance)]/cal$_{th}$</td>
<td>623.54</td>
<td>781.96</td>
<td>902.33</td>
<td>809.63</td>
</tr>
<tr>
<td>[-m$^\prime$(DE$^\circ$/M)(fusible)]/cal$_{th}$</td>
<td>5.33</td>
<td>4.86</td>
<td>5.06</td>
<td>4.36</td>
</tr>
<tr>
<td>[m$^\prime$(DE$^\circ$/M)(fuel)]/cal$_{th}$</td>
<td>-7403.02</td>
<td>-7238.62</td>
<td>-7122.97</td>
<td>-7202.39</td>
</tr>
<tr>
<td>[(DE$^\circ$/M)(fuel)]/cal$_{th}$ g$^{-1}$</td>
<td>-10681.37</td>
<td>-10776.04</td>
<td>-10765.81</td>
<td>-10669.36</td>
</tr>
</tbody>
</table>

a The symbols and abbreviations of this table are those of reference 5 except as noted. b ϵ(cont)(T$_f$ - 298.15 K) + ϵ(cont) (298.15 K - T$_i$ + ΔT_{corr}). c Items 81 to 85, 87 to 90, 93, and 94 of the computation form of reference 3.
TABLE 4. Summary of experimental results at 298.15 K
(cal\textsubscript{th} = 4.184 J)

\[
\frac{(\Delta E^\circ/M)}{cal_{th} g^{-1}}
\]

<table>
<thead>
<tr>
<th></th>
<th>exo-THDC</th>
<th>RJ-4</th>
<th>RJ-4-I</th>
<th>JP-9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-10685.70</td>
<td>-10776.90</td>
<td>-10764.58</td>
<td>-10672.20</td>
</tr>
<tr>
<td></td>
<td>81.04</td>
<td>74.78</td>
<td>63.98</td>
<td>68.51</td>
</tr>
<tr>
<td></td>
<td>79.84</td>
<td>76.04</td>
<td>65.81</td>
<td>69.36</td>
</tr>
<tr>
<td></td>
<td>83.59</td>
<td>76.14</td>
<td>62.83</td>
<td>66.61</td>
</tr>
<tr>
<td></td>
<td>81.37</td>
<td>77.91</td>
<td>62.17</td>
<td>70.21</td>
</tr>
<tr>
<td></td>
<td>-10680.53</td>
<td>-10772.28</td>
<td>-10762.49</td>
<td>-10668.09</td>
</tr>
<tr>
<td>Mean</td>
<td>-10682.01</td>
<td>-10775.68</td>
<td>-10763.64</td>
<td>-10669.16</td>
</tr>
<tr>
<td>Standard deviation of the mean</td>
<td>0.90</td>
<td>0.80</td>
<td>0.57</td>
<td>0.78</td>
</tr>
</tbody>
</table>
4. DERIVED RESULTS

Derived values of the standard molar energy of the idealized combustion reaction, \(\Delta E^\circ_c \), the standard molar enthalpy of combustion, \(\Delta H^\circ_c \), and the standard molar enthalpy of formation, \(\Delta H_f^\circ \), (exo-THDC, RJ-4, and RJ-4-I only), of the fuels in the liquid state are given in Table 5. Values of \(\Delta E^\circ_c \) and \(\Delta H^\circ_c \) refer to equations 1, 3, and 5; the values of \(\Delta H_f^\circ \) refer to equations 2 and 4. The uncertainties given in Table 5 are the "uncertainty intervals." The enthalpies of formation of \(\text{CO}_2(g) \) and \(\text{H}_2\text{O}(l) \) were taken to be \(-94.051\) and \(-68.315\) kcal mol\(^{-1}\), respectively. Uncertainties assigned to the respective values were 0.011 kcal mol\(^{-1}\) for \(\text{CO}_2 \) and 0.010 kcal mol\(^{-1}\) for \(\text{H}_2\text{O}(l) \).

The values of enthalpy of combustion given in Tables 3, 4, and 5 are the "gross" heats of combustion for which the reaction products are gaseous carbon dioxide and liquid water. For combustion yielding gaseous carbon dioxide and gaseous water, the values of the "net" heat of combustion are: exo-THDC, \(-(10081.5 \pm 2.3)\) cal g\(^{-1}\); RJ-4, \(-(10153.1 \pm 2.3)\) cal g\(^{-1}\); RJ-4-I, \(-(10141.4 \pm 2.2)\) cal g\(^{-1}\); and JP-9, \(-(10089.3 \pm 2.4)\) cal g\(^{-1}\).
TABLE 5. Derived molar values for the liquid state at 298.15 K

\(\text{cal}_\text{th} = 4.184 \text{ J} \)

<table>
<thead>
<tr>
<th>Fuel</th>
<th>(\Delta E_c^o) (\text{kcal}_\text{th} \text{ mol}^{-1})</th>
<th>(\Delta H_c^o) (\text{kcal}_\text{th} \text{ mol}^{-1})</th>
<th>(\Delta H_f^o) (\text{kcal}_\text{th} \text{ mol}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>exo-THDC</td>
<td>-1455.31 ± 0.33</td>
<td>-1457.68 ± 0.33</td>
<td>-29.35 ± 0.35</td>
</tr>
<tr>
<td>RJ-4</td>
<td>-1770.37 ± 0.37</td>
<td>-1773.33 ± 0.37</td>
<td>-38.43 ± 0.40</td>
</tr>
<tr>
<td>RJ-4-I</td>
<td>-1768.39 ± 0.36</td>
<td>-1771.36 ± 0.36</td>
<td>-40.41 ± 0.39</td>
</tr>
<tr>
<td>JP-9</td>
<td>-1523.52 ± 0.34</td>
<td>-1525.92 ± 0.34</td>
<td>---------------</td>
</tr>
</tbody>
</table>
REFERENCES

DISTRIBUTION LIST

THERMOPHYSICAL PROPERTIES

Project 2308, Task B1

CONTRACTORS

<table>
<thead>
<tr>
<th>Aerospace Corporation</th>
<th>University of Nevada</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Ivan L Getting Laboratories</td>
<td>Mackay School of Mines</td>
</tr>
<tr>
<td>Attn: Dr Charles M Randall</td>
<td>Attn: Prof Eugene Miller</td>
</tr>
<tr>
<td>P. O. Box 95085</td>
<td>Reno, NV 89507</td>
</tr>
<tr>
<td>Los Angeles, CA 90045</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energy Research & Development Administration</th>
<th>Purdue University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bartlesville Energy Research Center</td>
<td>School of Mechanical Engineering</td>
</tr>
<tr>
<td>Attn: Mr William D Good</td>
<td>Properties Research Laboratory</td>
</tr>
<tr>
<td>Bartlesville, OK 74004</td>
<td>Attn: Dr R E Taylor</td>
</tr>
<tr>
<td></td>
<td>2595 Yeager Road</td>
</tr>
<tr>
<td></td>
<td>West Lafayette, IN 47907</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CINDAS</th>
<th>Space Sciences, Inc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purdue University Research Park</td>
<td>Attn: Mr Milton Farber</td>
</tr>
<tr>
<td>Attn: Dr H H Li</td>
<td>135 W Maple</td>
</tr>
<tr>
<td>2595 Yeager Road</td>
<td>Monrovia, CA 91016</td>
</tr>
<tr>
<td>West Lafayette, IN 47907</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dow Chemical Company</th>
<th>Stanford Research Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Laboratory, Bldg 1707</td>
<td>Physical Sciences Division</td>
</tr>
<tr>
<td>Attn: Dr Malcolm Chase</td>
<td>Attn: Dr D L Hildenbrand</td>
</tr>
<tr>
<td>Midland, MI 48640</td>
<td>Menlo Park, CA 94025</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>National Bureau of Standards</th>
<th>Stanford Research Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Chemistry Division, IMS</td>
<td>Physical Sciences Division</td>
</tr>
<tr>
<td>Attn: Dr Stan Abramowitz</td>
<td>Attn: Dr D L Hildenbrand</td>
</tr>
<tr>
<td>Dr Ared Cezairiljian</td>
<td>Menlo Park, CA 94025</td>
</tr>
<tr>
<td>Mr David Ditmars</td>
<td></td>
</tr>
<tr>
<td>Washington, DC 20234</td>
<td></td>
</tr>
</tbody>
</table>

NON-CONTRACTORS

<table>
<thead>
<tr>
<th>Aerojet-General Corporation</th>
<th>AFML/LP (Dr Merrill L Minges)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Mr James P Coughlin</td>
<td>Wright-Patterson AFB, OH 45433</td>
</tr>
<tr>
<td>Dept 4940, Bldg 0525</td>
<td></td>
</tr>
<tr>
<td>P. O. Box 1947</td>
<td>AFML/MBC (Dr W C Kessler)</td>
</tr>
<tr>
<td>Sacramento, CA 95809</td>
<td>Wright-Patterson AFB, OH 45433</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aerospace Corporation</th>
<th>AFRPL/LKCB (Mr Curtis C Selph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Dr Nev A Gokcen</td>
<td>Edwards AFB, CA 93523</td>
</tr>
<tr>
<td>P. O. Box 95085</td>
<td>AFRPL/DYSP (Dr J D Stewart)</td>
</tr>
<tr>
<td>Los Angeles, CA 90045</td>
<td>Edwards AFB, CA 93523</td>
</tr>
</tbody>
</table>
NON-CONTRACTORS

AFWL/ALD (Dr Leroy Wilson)
Kirtland AFB, New Mexico 87117

AFWL/ALC (Major David S Olson)
Kirtland AFB, New Mexico 87117

U. S. Army Research Office
Attn: Dr David R Squire
P. O. Box 12211
Research Triangle Park, NC 27709

AFAPL/RJT (Dr F D Stull)
Wright-Patterson AFB, OH 45433

Atlantic Research Corporation
Attn: Dr Charles Henderson
5390 Cherokee Avenue
Alexandria, VA 22314

University of California
Department of Chemistry
Attn: Dr Leo Brewer
Berkeley, CA 94700

Chemical Propulsion Information Agency
AFL/JHU (2 copies)
Johns Hopkins Road
Laurel, MD 20810

Cornell University
Department of Chemistry
Attn: Dr S H Bauer
Ithica, New York 14850

ERDA
Pittsburgh Energy Research Center
Attn: Dr Francis E Spencer, Jr
4800 Forbes Avenue
Pittsburgh, PA 15213

Hercules Incorporated
P. O. Box 98
Attn: Dr Billings Brown
P. O. Box 98
Magna, UT 84044

Jet Propulsion Laboratory
Attn: Mr Theodore W Price
4800 Oak Grove Drive
Pasadena, CA 91103

Johns Hopkins University
Applied Physics Laboratory
Attn: Dr Robert Fristrom
Johns Hopkins Road
Laurel, MD 20810

Naval Ordnance Station
Attn: Mr Al Camp
Indian Head, MD 20640

NASA
Lewis Laboratories (Mail Stop 6-1)
Attn: Mr Sanford Gordon
Cleveland, OH 44135

NASA
Scientific and Technical Information Facility
5001 Calvert Road
College Park, MD 20740

NAS-NRC
Attn: Dr H Van Olphen
2101 Constitution Avenue, NW
Washington, DC 20418

National Bureau of Standards
ADM A-538
Attn: Dr David Lide
Washington, DC 20234

National Bureau of Standards
Institute for Materials Research
Attn: Mr Donald D Wagman
Washington, DC 20234

NSSC
Department of the Navy
Code NSEA-0331
Attn: Mr John W Murrin
Washington, DC 20360
NON-CONTRACTORS

Office of Naval Research
Attn: Mr Rudolph Marcus
1030 E Green Street
Pasadena, CA 91101

Office of Naval Research
Power Program, Code 473
Attn: Dr Richard Miller
800 North Quincy St
Arlington, VA 22217

Rice University
Department of Chemistry
Attn: Dr John Margrave
Houston, TX 77001

United Technologies Corporation
Chemical Systems Division
Attn: Dr R O MacLaren
Sunnyvalle, CA 94086