INDIVIDUAL DIFFERENCES IN ATTENTIONAL FLEXIBILITY,

Steven W. Keele, W. Trammell Neill, Suzanne M. de Lemos

University of Oregon

15 May 78

12 p.

Research sponsored by:
Personnel and Training Research Programs
Psychological Sciences Division
Office of Naval Research
Under Contract No. N0014-77-C-0643
Contract Authority ID No. NR 150-407

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Approved for public release; distribution unlimited.
<table>
<thead>
<tr>
<th>REPORT DOCUMENTATION PAGE</th>
<th>READ INSTRUCTIONS BEFORE COMPLETING FORM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. REPORT NUMBER</td>
<td>Technical Report No. 1</td>
</tr>
<tr>
<td>2. GOVT ACCESSION NO.</td>
<td></td>
</tr>
<tr>
<td>3. RECIPIENT'S CATALOG NUMBER</td>
<td></td>
</tr>
<tr>
<td>4. TITLE (and Subtitle)</td>
<td>Individual Differences in Attentional Flexibility</td>
</tr>
<tr>
<td>5. TYPE OF REPORT & Period Covered</td>
<td>Technical Report</td>
</tr>
<tr>
<td>6. PERFORMING ORG. REPORT NUMBER</td>
<td></td>
</tr>
<tr>
<td>7. AUTHOR(s)</td>
<td>Steven W. Keele, W. Trammell Neill and Suzanne M. de Lemos</td>
</tr>
<tr>
<td>8. CONTRACT OR GRANT NUMBER(s)</td>
<td></td>
</tr>
<tr>
<td>9. PERFORMING ORGANIZATION NAME AND ADDRESS</td>
<td>Department of Psychology, University of Oregon, Eugene, OR 97403</td>
</tr>
<tr>
<td>10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS</td>
<td>NR 150-407</td>
</tr>
<tr>
<td>11. CONTROLLING OFFICE NAME AND ADDRESS</td>
<td>Personnel and Training Research Programs, Office of Naval Research (Code 458), Arlington, VA 22217</td>
</tr>
<tr>
<td>12. REPORT DATE</td>
<td>May 15, 1978</td>
</tr>
<tr>
<td>13. NUMBER OF PAGES</td>
<td>10</td>
</tr>
<tr>
<td>14. MONITORING AGENCY NAME & ADDRESS (If different from Controlling Office)</td>
<td></td>
</tr>
<tr>
<td>15. SECURITY CLASS. (of this report)</td>
<td>Unclassified</td>
</tr>
<tr>
<td>16. DISTRIBUTION STATEMENT (of this Report)</td>
<td>Approved for public release; distribution unlimited.</td>
</tr>
<tr>
<td>17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)</td>
<td></td>
</tr>
<tr>
<td>18. SUPPLEMENTARY NOTES</td>
<td></td>
</tr>
<tr>
<td>19. KEY WORDS (Continue on reverse side if necessary and identify by block number)</td>
<td>Attention, attention switching, flexibility, information processing</td>
</tr>
<tr>
<td>20. ABSTRACT (Continue on reverse side if necessary and identify by block number) (over)</td>
<td></td>
</tr>
</tbody>
</table>
Abstract

This report describes a preliminary study that attempts to develop the concept of attentional flexibility. Flexibility refers to the rapidity with which set or attention can be switched from one signal requiring attention to another. If a trait exists, then people that can rapidly switch set on one task should also be able to rapidly switch set in a different kind of setting. The existence of such a trait could ultimately be very useful as a predictor of performance on a variety of skilled tasks, and some evidence for that has been found by Kahneman, Gopher, and colleagues. We studied flexibility on four tasks: (1) The difficulty in dealing with an unexpected signal after just being primed for another; (2) The difficulty in dealing with a rarely occurring event that occurs in the context of much more frequent events; (3) The ability to prepare for signals in another category immediately after responding to a signal in a different category, even when the need for preparation is predictable; and (4) The ability to switch attention from one dichotic message to another. This preliminary study provides some promise for the concept of flexibility, so we are currently engaged in follow-up studies.
Introducction

The last few years have generated considerable interest in an information-processing approach to the study of individual differences. What is meant by an information-processing approach? There are two closely related ideas. One idea bases the study of individual differences on current theory regarding cognitive processes. In the past much investigation of individual differences was rather distant from the mainstream of experimental psychology and its theory; indeed, some people argue that much past study of individual differences had little basis in any theory of how the mind operates.

The second idea underlying an information-processing approach involves the measurement of processes that comprise task performance. Usually in past studies of individual differences, whole task scores from a variety of tasks were correlated with each other to determine whether the tasks had processes in common. Such correlations tend to be low because although two tasks may have processes in common that produce a correlation, they also involve different processes that reduce the correlation. An information-processing approach, in contrast, attempts to derive process scores, not task scores, and correlate such scores derived from different tasks to infer a common process. To the extent that theory has postulated appropriate processes and to the extent the measurement methods isolate the processes, correlations should be higher than traditional correlations between tasks.

Basically, Donders' historic subtractive method is used to isolate process scores. Theory is used to select two or more conditions of the same task to reflect different levels of difficulty on a single process. Subtracting the two scores from each other yields a derived measure of the process. Sometimes several conditions that manipulate difficulty along a single process are run, and a function is fit to the results and used to estimate a parameter that reflects the process. But a parameter estimate from a function is basically an estimate derived from subtracting conditions, except that more than two conditions are used. Two examples of the subtractive method are: (1) The subtraction of physical match reaction times in Posner's letter matching paradigm (Posner & Mitchell, 1967) from name match reaction times yields a measure of the relative
speed of access to a name code; (2) Fitting the equation \(RT = a + bH \) to reaction time (RT) as a function of stimulus uncertainty (H) yields a parameter \(b \) that estimates choice time.

We have begun a project using information-processing analysis to study individual differences in attentional flexibility. This project is still underway; the data we have to report are from a preliminary study that yielded promising results but at the same time clearly indicates needed changes in our studies to firmly establish a trait of attentional flexibility.

The germination point for our research came from studies by Gopher and Kahneman (1971) and Kahneman, Ben-Ishai, and Lotan (1973). They devised a dichotic listening task that involved two parts in each trial. In Part 1 a high or low tone occurred informing subjects whether to report digits from the left or right ear. Then a series of word pairs or digit and word pairs occurred at a rapid rate and subjects reported back only the digits that occurred in the indicated ear. After several pairs another tone occurred with no pause in the rate to initiate Part 2. In Part 2 three digit pairs were presented, and subjects reported the three digits from the ear cued by the second tone. Number of errors on Part 2 correlated modestly with accident ratings of Israeli bus drivers, with flight school success of student pilots, and with skill assignment of professional pilots. Part 1, on the other hand, correlated less well with the criterion tasks.

Why did Part 2 but not Part 1 correlate with flying and driving skills? Kahneman and colleagues suggested that Part 2 requires switching attention (or set) from an already committed state. Part 1 does not. Ease of switching attention in the dichotic task may be related to flying and driving because they can benefit from flexible changes in set. For example, an accident in bus driving may more likely be avoided by a person that can quickly switch attention from the task at hand to an unexpected event.

If this notion is correct, it implies that people reliably differ on a trait of attentional flexibility, and that trait is common both to Part 2 of the dichotic listening task and both flying and driving. The present study was devised to determine in a more fundamental manner whether a trait of flexibility exists.

In general flexibility may be identified with the ease with which one can switch set from one expectation to another. Moreover, we concerned ourselves with situations in which set is changed in a time range of milliseconds to perhaps a second. Our eventual hope is that this type of flexibility might be
predictive of performance in fast action motor skills such as driving, flying, or many dynamic sports.

Switching of set can occur in two different manners. In one case people may expect a particular signal type and then get an unexpected signal. Posner and Snyder (1975) and LaBerge (1973) have extensively analyzed this paradigm. People typically are fast in responding to an expected signal—i.e., they show RT benefit compared to neutral expectations. But RT to unexpected signals exhibits cost compared to the neutral signal. Our initial notion was that RT cost is a measure of flexibility. People that suffer little cost can rapidly switch set to deal with an unexpected event. We devised two different situations that involved switching set from one signal to an unexpected signal and measured both RT costs and benefits of expectations.

The other case of interest is one in which set is switched in a predictable manner. In essence one can ask whether flexibility refers to dealing with unexpected signals (i.e., cost) or whether it refers simply to switching of set regardless of whether the switch is predictable or not. We devised one situation that required constant switching of set but the signal source to which attention should be directed was perfectly predictable.

Finally we examined a version of Kahneman and colleagues' dichotic listening task.

If a general trait of flexibility exists, then the various derived measures of cost and benefit should correlate with one another. Let's turn to consider in more detail the actual tasks used.

Tasks

A total of 15 subjects were run through four tasks extending over several sessions. Each task was designed to yield one or more measures of flexibility. Then these measures of flexibility were correlated with each other. Most of the measures involved subtracting one condition from another. Several of the measures were prompted by Posner and Snyder's theoretical treatment of attention switching in terms of costs and benefits.

The Priming Task

One task was closely analogous to the cost-benefit paradigm of Posner and Snyder. On each trial a warning signal occurred. On half the trials the warning
was a neutral plus indicating that any of four possible signals was equally likely. Those signals were a red light, a square, triangle, or trapezoid. The red light required a toggle switch press with the left hand and the forms required key-press responses with the right hand. Both the red light and the forms were centered on a scope face. On the other half of the trials the warning signal was the word red, cueing the subjects that the red light would follow with a probability of .70. If the red light failed to occur, the forms occurred with equal probability. These two trial types, cued and noncued, were randomly intermixed. The warning signal occurred 500 msec before a signal requiring a response.

Benefit was calculated by subtracting reaction times to the red light when it was cued from reaction times to the red light under neutral expectations. Cost was calculated by subtracting reaction time to neutral forms from reaction time to unexpected forms.

Rare Event Task

The second task used the same stimuli—red light, square, trapezoid, and triangle—and the same response assignments. On 99% of all trials, one of the three forms occurred. Response to one signal was followed 20 msec later by another stimulus. On only 1% of the trials, averaging once every two blocks of trials and 12 times a session, did a red light occur. Because in the context subjects were expecting forms, reaction time to red lights suffered large cost. Half the trials were preceded by a plus sign warning for any of the three forms and the other trials were preceded by a word warning for a particular one of the three forms. Although cost to the red light was larger when subjects were prepared for a particular form than for any form, the variable had little effect on other results and will be ignored.

Cost to the red light can be calculated by subtracting the neutral reaction time to red lights in the priming study from reaction time to the red light when it rarely occurred in the rare event task. Cost calculated in this manner tended to be four or five times larger than cost in the priming study.

Alternation Task

Both preceding tasks measured flexibility by the additional time required to respond to an unexpected signal. The alternation task required switching set but not in an unpredictable manner. Subjects were presented with six sig-
nals. Three colored lights—red, green, and yellow—were assigned to keys operated by the left hand and three forms—square, triangle, and trapezoid—were assigned to keys operated by the right hand.

In pure blocks subjects expected and responded only to colors or only to forms. In alternating blocks subjects responded to both colors and forms, but the two signal types strictly alternated. Response to a color was followed by a form and vice versa.

One way of viewing the difference between the two conditions is this: Should alternating blocks be viewed as six-choice or three-choice? If subjects efficiently switch attention, then the alternating condition is like three-choice. But if they fail to constantly use the predictability inherent in the situation and alternate attention, the task is like six-choice. In general alternating reaction time minus pure block reaction time yields a measure of flexibility.

In this task no warning signals were employed, but two different response-stimulus intervals were used. At the fast rate only 50 msec transpired between one response and the next stimulus. At the slow rate 750 msec transpired. The slow rate provides time for switching set, but even at that rate all subjects had slower RTs in the alternating condition than in the pure block condition. This suggested it would be useful to try two measures of flexibility. One measure was simply alternation reaction times at the fast rate minus pure block reaction times at the fast rate. The other measure adjusted the first one by additionally subtracting slow rate alternating RTs minus pure RTs. The rationale of the adjustment was that some people do not alternate attention very effectively even at slow rates where ample time should be available. The adjusted measure therefore reflects flexibility that was due to the high rate of action rather than one's reluctance to optimally prepare set.

Dichotic Listening Task

Our final task was a version of the Gopher and Kahneman dichotic listening task. This version was constructed by Dick Pew at Bolt, Beranek and Newman and kindly lent to us. Pairs of words, either pairs of color names or a color name and a digit, were presented at two pairs per second with one member of a pair directed to each ear through earphones. A high or low tone indicating from which ear to report the digits started a string of pairs, and then as the input progressed the subjects spoke the indicated digits aloud. After three, four, five, or six pairs another tone occurred at the same timing interval as
the pairs. Altogether four tones occurred in a block before subjects were
given a brief rest pause before another block.

The primary measure of flexibility is simply number of errors in reporting
the correct digits. The measure combines both errors of digit omission and
of reporting the wrong digit.

Expectations

If people differ from one another on a general trait of flexibility, then
we would expect the various measures of flexibility derived from the different
tasks to correlate with one another.

Results

The flexibility scores for each reaction time task can be derived from
either reaction times or errors. When both scores are used a large number of
correlations exist. Correlations involving error scores generally were smaller
than correlations involving only reaction time scores, so to simplify the data
presentation only reaction time correlations are shown in Table 1.

The priming task yields two scores, cost and benefit. The rare event task
yields a single score of cost. Two measures were derived from the alternating
colors and forms task, one in which alternation minus pure block reaction times
at the fast rate were measured and one in which that score was adjusted by the
alternation minus pure block scores at the slow rate. A single error score
was used for the dichotic listening task.

The major diagonal in the table lists the reliability of the tasks. The
reliabilities were all quite good except for very low reliability of the pri-
miming cost measure. The other correlations are between tasks, and they adopt
the convention that positive correlations fit the hypothesis and negative cor-
relations do not.

In general the correlations are not large, but several encourage us that
we are tapping a common factor of flexibility.

One surprise is that priming task cost did not correlate with the scores
from other tasks. This may partly be due to the extremely low reliability
of the prime cost score. On the other hand, prime benefit showed some tendency
to correlate with the other scores and that also was unexpected. Why might
benefit, which one would think measures preparation, correlate with the other
scores that measure ability to switch attention? One clue is that the priming
Table 1

Correlations Between Derived Scores of Flexibility

<table>
<thead>
<tr>
<th></th>
<th>Prime benefit</th>
<th>Prime cost</th>
<th>Rare event</th>
<th>A-P fast</th>
<th>A-P fast minus A-P slow</th>
<th>Dichotic Listening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prime benefit</td>
<td>.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prime cost</td>
<td>.75*</td>
<td>.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rare event</td>
<td>.45*</td>
<td>-.20</td>
<td>.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-P fast</td>
<td>.44</td>
<td>-.01</td>
<td>.31</td>
<td>.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-P fast minus A-P slow</td>
<td>.59*</td>
<td>-.20</td>
<td>.61*</td>
<td>.77*</td>
<td>.80</td>
<td></td>
</tr>
<tr>
<td>Dichotic listening</td>
<td>.43</td>
<td>-.22</td>
<td>.21</td>
<td>.47*</td>
<td>.45*</td>
<td>.92</td>
</tr>
</tbody>
</table>

Underlined values are reliabilities.

* p < .05
study is itself a rather fast moving task that requires one to attend to a new prime about every second. People that are relatively inflexible may be deficient in using the prime and hence show low benefit. They also would tend to show low prime cost because a prerequisite of cost is that the prime cue is effectively used. Although flexibility may show up in benefit on the priming task, it would show up on cost on the rare event task. On the rare event task subjects have the context of hundreds of trials all with the same expectation for forms. They do not have to drive attention to expect a form in response to a priming cue. Since no person should have difficulty in expecting the likely source of signals, everyone should have large benefit, and flexibility then would show up only in dealing with unexpected signals—i.e., in cost.

Both measures on the alternating task also correlated moderately well with some of the other scores, and this was particularly true for the fast rate flexibility score adjusted for slow rate use of the predictability inherent in alternation. The important conclusion to be derived from these observations is that flexibility appears to reflect the proficiency with which one can switch set, whether switching is predictable or not, and not just the proficiency of dealing with unexpected signals.

Performance on the dichotic listening task also correlated with other tasks, though generally to a lesser degree. However, another problem occurred in conjunction with that task. Not only did the derived scores shown in Table 1 correlate with dichotic performance, but straight reaction time, which measures overall speed and not cost or benefit, correlated even more highly with the dichotic listening scores. When reaction time was partialed out, little or no predictability of the flexibility scores for dichotic listening remained. This was not true for correlations among other measures: Overall reaction speed had little influence on the correlations between the flexibility data. Some reflection reveals a possible reason why the dichotic task is influenced by speed, and flexibility scores offer little beyond that. The dichotic task is forced in pace and errors result when subjects have insufficient time to deal with a signal. People that are relatively slow in encoding one signal on the dichotic task may have less time available for dealing with a succeeding signal whether that signal is a word or tone. Problems in dealing with the dichotic task may therefore derive not from being slow in attention shifts but from having inadequate time for a shift even if one is relatively fast in shifting.

The data presentation here is rather cursory, ignoring details of error
rates on most of the tasks, alternate scoring systems, and partial correla-
tions. More detailed analysis, however, would not clarify issues. The corre-
lations between tasks are sufficiently large to indicate promise for the con-
cept of attentional flexibility as a trait. However, the correlations are not
as large or consistent as we would desire so that clearly further investiga-
tion is required. This report constitutes a preliminary presentation of what
we are attempting and the promise shown. In our ongoing work we have tried to
improve individual paradigms to eliminate some problems with each. We have
dropped the dichotic listening task as a good one for tapping flexibility be-
cause of its correlations with speed. And we have added new tasks.

References

Gopher, D., & Kahneman, D. Individual differences in attention and the pre-
diction of flight criteria. Perceptual and Motor Skills, 1971, 33, 1335-
1342.
Kahneman, D., Ben-Ishai, R., & Lotan, M. Relation of a test of attention to
LaBerge, D. Identification of two components of the time to switch attention:
A test of a serial and a parallel model of attention. In S. Kornblum (Ed.),
Posner, M. I., & Snyder, C. R. R. Facilitation and inhibition in the processing
of signals. In P. M. A. Rabbitt & S. Dornic (Eds.), Attention and performance
Navy

1. **DR. JACK ADAMS**
 Office of Naval Research Branch
 22 Old Marylebone Road
 London, NW, 15th England
 CDR John Ferguson, MSC, USN
 Naval Medical R&D Command (Code 44)
 National Naval Medical Center
 Bethesda, MD 20014

1. **Dr. Jack R. Borsting**
 Provost & Academic Dean
 U.S. Naval Postgraduate School
 Monterey, CA 93940
 Dr. John Ford
 Navy Personnel R&D Center
 San Diego, CA 92152

1. **DR. MAURICE CALLAHAN**
 NODAC (Code 2)
 Dept. of the Navy
 Bldg. 2, Washington Navy Yard
 (Anacostia)
 Washington, DC 20374
 Dr. Eugene E. Gloye
 ONR Branch Office
 1030 East Green Street
 Pasadena, CA 91101

1. **Dept. of the Navy**
 CHNAVMAT (NMAT 034D)
 Washington, DC 20350
 Capt. D.M. Gragg, MC, USN
 Head, Section on Medical Education
 Uniformed Services Univ. of the
 Health Sciences
 6917 Arlington Road
 Bethesda, MD 20014

1. **Chief of Naval Education and**
 Training Support (01A)
 Pensacola, FL 32509
 Mr. George N. Graine
 Naval Sea Systems Command
 Sea 07C112
 Washington, DC 20362

1. **Dr. Charles E. Davis**
 ONR Branch Office
 556 S. Clark Street
 Chicago, IL 60605
 CDR Robert S. Kennedy
 Naval Aerospace Medical and
 Research Lab
 Box 29407
 New Orleans, LA 70189

1. **Mr. James S. Duva**
 Chief, Human Factors Laboratory
 Naval Training Equipment Center
 (Code N-215)
 Orlando, Florida 32813
 Dr. Norman J. Kerr
 Chief of Naval Technical Training
 Naval Air Station Memphis (75)
 Millington, TN 38054

1. **Mr. James S. Duva**
 Chief, Human Factors Laboratory
 Naval Training Equipment Center
 (Code N-215)
 Orlando, Florida 32813
 Dr. Leonard Kroeker
 Navy Personnel R&D Center
 San Diego, CA 92152

1. **Dr. Marshall J. Farr, Director**
 Personnel & Training Research Programs
 Office of Naval Research (Code 458)
 Arlington, VA 22217
 Dr. James Lester
 ONR Branch Office
 495 Summer Street
 Boston, MA 02210

1. **DR. PAT FEDERICO**
 Navy Personnel R&D Center
 San Diego, CA 92152

1. **1**
 22 Old Marylebone Road
 London, NW, 15th England
 Offi ce of Naval Research Branch
 22 Old Marylebone Road
 London, NW, 15th England
Navy

1 Dr. William L. Maloy
 Principal Civilian Advisor for
 Education and Training
 Naval Training Command, Code 00A
 Pensacola, FL 32508

1 Dr. Sylvia B. Mayer (MCIT)
 HQ Electronic Systems Div.
 Hanscom AFB
 Bedford, MA 01731

1 Dr. James McBride
 Code 301
 Navy Personnel R&D Center
 San Diego, CA 92152

2 Dr. James McGrath
 Navy Personnel R&D Center
 Code 306
 San Diego, CA 92152

1 DR. WILLIAM MONTAGUE
 NAVY PERSONNEL R&D CENTER
 SAN DIEGO, CA 92152

1 Commanding Officer
 U.S. Naval Amphibious School
 Coronado, CA 92155

1 Commanding Officer
 Naval Health Research Center
 Attn: Library
 San Diego, CA 92152

1 CDR PAUL NELSON
 NAVAL MEDICAL R&D COMMAND
 CODE 4
 NATIONAL NAVAL MEDICAL CENTER
 BETHESDA, MD 20014

1 Library
 Navy Personnel R&D Center
 San Diego, CA 92152

6 Commanding Officer
 Naval Research Laboratory
 Code 2627
 Washington, DC 20390

Navy

1 OFFICE OF CIVILIAN PERSONNEL
 (CODE 26)
 DEPT. OF THE NAVY
 WASHINGTON, DC 20390

1 JOHN OLSEN
 CHIEF OF NAVAL EDUCATION &
 TRAINING SUPPORT
 PENSACOLA, FL 32509

1 Office of Naval Research
 Code 200
 Arlington, VA 22217

1 Office of Naval Research
 Code 441
 800 N. Quincy Street
 Arlington, VA 22217

1 Scientific Director
 Office of Naval Research
 Scientific Liaison Group/Tokyo
 American Embassy
 APO San Francisco, CA 96502

1 SCIENTIFIC ADVISOR TO THE CHIEF
 OF NAVAL PERSONNEL
 NAVAL BUREAU OF PERSONNEL (PERS OR)
 RM. 4410, ARLINGTON ANNEX
 WASHINGTON, DC 20370

1 DR. RICHARD A. POLLAK
 ACADEMIC COMPUTING CENTER
 U.S. NAVAL ACADEMY
 ANNAPOLIS, MD 21402

1 Mr. Arnold I. Rubinstein
 Human Resources Program Manager
 Naval Material Command (0344)
 Room 1044, Crystal Plaza #5
 Washington, DC 20360

1 Dr. Worth Sonnland
 Chief of Naval Education and Training
 Code N-5
 NAS, Pensacola, FL 32509
Navy

1. A. A. SJOHOLM
 TECH. SUPPORT, CODE 201
 NAVY PERSONNEL R&D CENTER
 SAN DIEGO, CA 92152

1. Mr. Robert Smith
 Office of Chief of Naval Operations
 CP-9878
 Washington, DC 20350

1. Dr. Alfred F. Smode
 Training Analysis & Evaluation Group
 (TAEG)
 Dept. of the Navy
 Orlando, FL 32813

1. CDR Charles J. Thiesen, Jr. MSC, USN
 Head Human Factors Engineering Div.
 Naval Air Development Center
 Warminster, PA 18974

1. W. Gary Thommoen
 Naval Ocean Systems Center
 Code 7112
 San Diego, CA 92152

1. DR. MARTIN F WISKOFF
 NAVY PERSONNEL R&D CENTER
 SAN DIEGO, CA 92152

Army

1. HG USAREUE & 7th Army
 ODCSOPS
 USAREUE Director of GED
 APF New York 19403

1. Commandant
 U.S. Army Infantry School
 Ft. Benning, GA 31905
 Attn: ATSH-I-V-1T (Capt. Hinton)

1. DR. JAMES PAKER
 U.S. ARMY RESEARCH INSTITUTE
 5001 EISENHOWER AVENUE
 ALEXANDRIA, VA 22333

1. DR. RALPH DUSEK
 U.S. ARMY RESEARCH INSTITUTE
 5001 EISENHOWER AVENUE
 ALEXANDRIA, VA 22333

1. DR. FRANK J. HARRIS
 U.S. ARMY RESEARCH INSTITUTE
 5001 EISENHOWER AVENUE
 ALEXANDRIA, VA 22333

1. Col. Frank Hart, Director
 Training Development Institute
 ATTN: TDI
 Ft. Eustis, VA 23604

1. Dr. Milton S. Katz
 Individual Training & Skill
 Evaluation Technical Area
 U.S. Army Research Institute
 5001 Eisenhower Avenue
 Alexandria, VA 22333

1. Dr. Harold F. O'Neil, Jr.
 ATTN: PERI-OK
 5001 EISENHOWER AVENUE
 ALEXANDRIA, VA 22333

1. Director, Training Development
 U.S. Army Administration Center
 ATTN: Dr. Sherrill
 Ft. Benjamin Harrison, IN 46218
Army

1 Dr. Joseph Ward
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Air Force

1 Air Force Human Resources Lab
AFHRL/PED
Brooks AFB, TX 78235

1 Air University Library
AUL/LSE 76443
Maxwell AFB, AL 36112

1 DR. G. A. ECKSTRAND
AFHRL/AS
WRIGHT-PATTERSON AFB, OH 45433

1 Dr. Alfred R. Freely
AFOSR/NL, Bldg. 410
Bolling AFB, DC 20332

1 CDR. MERCER
CMAST LIAISON OFFICER
AFHRL/FLYING TRAINING DIV.
WILLIAMS AFB, AL 85224

1 Dr. Ross L. Morgan (AFHRL/ASR)
Wright-Patterson AFB
Ohio 45433

1 Research Branch
AFMPC/DPMP
Randolph AFB, TX 78148

1 Dr. Marty Rockway (AFHRL/TT)
Lowry AFB
Colorado 80230

1 Brian K. Waters, Maj., USAF
Chief, Instructional Tech. Branch
AFHRL
Lowry AFB, CO 80230
Marines

1 Director, Office of Manpower Utilization
HQ, Marine Corps (MPU)
BEP, Bldg. 2039
Quantico, VA 22134

CoastGuard

1 MR. JOSEPH J. COWAN, CHIEF
PSYCHOLOGICAL RESEARCH (G-P-1/62)
U.S. COAST GUARD HQ
WASHINGTON, DC 20590

1 DR. A.L. SLAFKOSKY
SCIENTIFIC ADVISOR (CODE RD-1)
HQ, U.S. MARINE CORPS
WASHINGTON, DC 20380
Other DoD

1 Dr. Stephen Andriole
ADVANCED RESEARCH PROJECTS AGENCY
1400 WILSON BLVD.
ARLINGTON, VA 22209

12 Defense Documentation Center
Cameron Station, Bldg. 5
Alexandria, VA 22314
Attn: TC

1 Dr. Dexter Fletcher
ADVANCED RESEARCH PROJECTS AGENCY
1400 WILSON BLVD.
ARLINGTON, VA 22209

1 Military Assistant for Human Resources
Office of the Director of Defense
Research & Engineering
Room 3D129, the Pentagon
Washington, DC 20301

1 Director, Research & Data
USD/MRAAL (Rm. 3B919)
The Pentagon
Washington, DC 20301

Civil Govt

1 Dr. Susan Chipman
Basic Skills Program
National Institute of Education
1200 19th Street NW
Washington, DC 20208

11 Mr. James M. Ferstl
Bureau of Training
U.S. Civil Service Commission
Washington, D.C. 20415

1 Dr. William Gorham, Director
Personnel R&D Center
U.S. Civil Service Commission
1900 E Street NW
Washington, DC 20415

1 William J. McLaurin
Rm. 301, Internal Revenue Service
2221 Jefferson Davis Highway
Arlington, VA 22202

1 Dr. Andrew R. Molnar
Science Education Dev.
and Research
National Science Foundation
Washington, DC 20550

1 Dr. Thomas G. Sticht
Basic Skills Program
National Institute of Education
1200 19th Street NW
Washington, DC 20208

1 Dr. Joseph L. Young, Director
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550
1 Dr. Ruth Day
Center for Advanced Study
in Behavioral Sciences
202 Junipero Serra Blvd.
Stanford, CA 94305

1 ERIC Facility-Acquisitions
4833 Rugby Avenue
Bethesda, MD 20014

1 MAJOR I. N. EVONIC
CANADIAN FORCES PERS. APPLIED RESEARCH
1107 AVENUE ROAD
TORONTO, ONTARIO, CANADA

1 Dr. Richard L. Ferguson
The American College Testing Program
P.O. Box 168
Iowa City, IA 52240

1 Dr. Victor Fields
Dept. of Psychology
Montgomery College
Rockville, MD 20850

1 Dr. Edwin A. Fleishman
Advanced Research Resources Organ.
8555 Sixteenth Street
Silver Spring, MD 20910

1 Dr. John R. Frederiksen
Bolt Beranek & Newman
50 Moulton Street
Cambridge, MA 02138

1 Dr. Frederick C. Frick
MIT Lincoln Laboratory
Room D 268
P. O. Box 73
Lexington, MA 02173

1 DR. ROBERT GLASER
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213

1 DR. JAMES G. GREENO
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213

1 Dr. Ron Hambleton
School of Education
University of Massachusetts
Amherst, MA 01002

1 Dr. Barbara Hayes-Roth
The Hand Corporation
1700 Main Street
Santa Monica, CA 90406

1 Library
HumRRO/Western Division
27857 Berwick Drive
Carmel, CA 93921

1 Dr. Earl Hunt
Dept. of Psychology
University of Washington
Seattle, WA 98105

1 Mr. Gary Irving
Data Sciences Division
Technology Services Corporation
2811 Wilshire Blvd.
Santa Monica CA 90403

1 DR. LAWRENCE B. JOHNSON
LAWRENCE JOHNSON & ASSOC., INC.
SUITE 502
2001 S STREET NW
WASHINGTON, DC 20009

1 Dr. Wilson A. Judd
McDonnell-Douglas
Astronautics Co. East
Lowry AFE
Denver, CO 80230

1 Dr. Arnold F. Kanarick
Honeywell, Inc.
2600 Ridgeway Pkwy
Minneapolis, MN 55413
Dr. Roger A. Kaufman
203 Dodd Hall
Florida State Univ.
Tallahassee, FL 32306

Mr. Marlin Kroger
1117 Via Goleta
Palo Verdes Estates, CA 90274

LCol. C.R.J. Laplleur
PERSONNEL APPLIED RESEARCH
NATIONAL DEFENSE POS
101 COLONEL BY DRIVE
OTTAWA, CANADA K1A 0K2

Dr. Robert R. Mackie
Human Factors Research, Inc.
6780 Cortona Drive
Santa Barbara Research Pk.
Goleta, CA 93017

Dr. Richard B. Millward
Dept. of Psychology
Hunter Lab.
Brown University
Providence, RI 02912

Dr. Donald A. Norman
Dept. of Psychology C-009
Univ. of California, San Diego
La Jolla, CA 92039

Dr. Melvin H. Novick
Iowa Testing Programs
University of Iowa
Iowa City, IA 52242

Dr. Jesse Orlansky
Institute for Defense Analysis
400 Army Navy Drive
Arlington, VA 22202

Dr. Seymour A. Papert
Massachusetts Institute of Technology
Artificial Intelligence Lab
545 Technology Square
Cambridge, MA 02139

Mr. A. J. Peach, President
Eclectech Associates, Inc.
P. O. Box 178
N. Stonington, CT 06359

Mr. Luigi Petruillo
2471 N. EDGWOOD STREET
ARLINGTON, VA 22207

Dr. Peter Polson
DEPT. OF PSYCHOLOGY
UNIVERSITY OF COLORADO
BOULDER, CO 80302

Dr. Frank Prattner
Cntr. for Vocational Education
Ohio State University
1960 Kenny Road
Columbus, OH 43210

Dr. Diane M. Ramsey-Klee
R-K RESEARCH & SYSTEM DESIGN
3947 RIDGEMONT DRIVE
MALIBU, CA 90265

Min. Ret. M. Rauch
P II 4
BUNDESMINISTERIUM DER VERTEIDIGUNG
POSTFACH 161
53 BONN 1, GERMANY

Dr. Mark D. Reckase
Educational Psychology Dept.
University of Missouri-Columbia
12 Hill Hall
Columbia, MO 65201

Dr. Joseph W. Rigney
Univ. of So. California
Behavioral Technology Labs
3717 South Hope Street
Los Angeles, CA 90007

Dr. Andrew M. Rose
American Institutes for Research
1055 Thomas Jefferson St. NW
Washington, DC 20007
Dr. Leonard L. Rosenbaum, Chairman
Department of Psychology
Montgomery College
Rockville, MD 20850

Mr. D. J. Sullivan
o/o Canyon Research Group, Inc.
741 Lakefield Road
Westlake Village, CA 91361

Dr. Ernst Z. Rothkopf
Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

Dr. Patrick Suppes
INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES
STANFORD UNIVERSITY
STANFORD, CA 94305

Prof. Fumiko Samejima
DEPT. OF PSYCHOLOGY
UNIVERSITY OF TENNESSEE
KNOXVILLE, TN 37916

Dr. Kikumi Tatsuoka
Computer Based Education Research Laboratory
252 Engineering Research Laboratory
University of Illinois
Urbana, IL 61801

Dr. Walter Schneider
DEPT. OF PSYCHOLOGY
UNIVERSITY OF ILLINOIS
CHAMPAIGN, IL 61820

Dr. Perry Thorndyke
THE RAND CORPORATION
1700 MAIN STREET
SANTA MONICA, CA 90406

Dr. Robert J. Seidel
INSTRUCTIONAL TECHNOLOGY GROUP
HUMRO
300 W. WASHINGTON ST.
ALEXANDRIA, VA 22314

Dr. Benton J. Underwood
Dept. of Psychology
Northwestern University
Evanston, IL 60201

Dr. Thomas Wallsten
PSYCHOMETRIC LABORATORY
DAVIE HALL 012A
UNIVERSITY OF NORTH CAROLINA
CHAPEL HILL, NC 27514

Dr. Claire E. Weinstein
Educational Psychology Dept.
Univ. of Texas at Austin
Austin, TX 78712

Dr. David J. Weiss
K660 Elliott Hall
University of Minnesota
75 S. River Road
Minneapolis, MN 55455

Dr. Susan B. Whitely
PSYCHOLOGY DEPARTMENT
UNIVERSITY OF KANSAS
LAWRENCE, KANSAS 66044