UNCLASSIFIED

THE MOST EFFICIENT METHOD TO NUMERICALLY COMPUTE THE SCALAR SOL--ETC(U)

1976 D W REPPERGER

AMRL-TR-76-88
THE MOST EFFICIENT METHOD TO NUMERICALLY COMPUTE
THE SOLUTION OF THE STEADY STATE RICCATI EQUATION

Diagnosis

Authors

Daniel W. Repperger

Performing Organization

Aerospace Medical Research Laboratory, Aerospace Medical Division, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio 45433

Report Date

1976

Approved for

Public release; distribution unlimited

Abstract

Keywords

Steady state
Riccati equation
Algorithm

(See reverse side)
Abstract

This paper will consider the numerical calculation of the steady state riccati equation utilizing a continued fraction approach. The method considered here has many similarities with the partitioned algorithm approach [1,2] considered by D.C. Lainiotis for the solution of riccati type equations. First the matrix riccati equation in steady state is converted (by a coordinate transformation) into another riccati equation which can be expanded in a matrix continued fraction form. The transformed matrix riccati equation may not be invertible and therefore restrictions are made on the general matrix case to guarantee the proper inversion properties.

The scalar riccati equation is then considered in an effort to give insight into the solution of the matrix equation. A numerical procedure is outlined to iterate on the solution of the scalar steady state equation. Upper and lower bound approximations are obtained for the steady state case based on N terms of the continued fraction expansion. Theorems are proved on the convergence properties of the continued fraction expansion utilizing mathematical induction. By using the continued fraction algorithm, the difference (or error) between the riccati solution and the first N terms of the continued fraction expansion can be bounded from above and below.

A theorem from Number Theory demonstrates that the riccati equation is a quadratic surd and it must exhibit periodicity in its continued fraction expansion. This result was demonstrated in [1] using the partitioned algorithm method. The type of periodicity obtained here is slightly different but has many of the same similarities as obtained in [1].

If the problem of interest were to approximate the numerical solution of the riccati equation using a mathematical approach called, "Approximation by Convergents," an investigation is made on this approach of continued fractions in the calculation of an irrational number (such as π). By considering the continued fraction expansion of π using the largest reciprocals of the difference between π and its respective convergences as the elements of the fraction expansion, this method is most efficient. For the case of the riccati equation, the periodic property of the continued fraction coefficients gives convergents which are identical to the periodic terms (hence, most efficient). It is hoped that these results can be extended to the matrix case to obtain the most efficient expansion.
THE MOST EFFICIENT METHOD TO NUMERICALLY COMPUTE THE SCALAR SOLUTION OF THE STEADY STATE RICCATI EQUATION

DANIEL W. REPPERGER
Wright Patterson Air Force Base
Dayton, Ohio (U.S.A.)

Abstract

This paper will consider the numerical calculation of the steady state riccati equation utilizing a continued fraction approach. The method considered here has many similarities with the partitioned algorithm approach [1,2] considered by D.C. Lainiotis for the solution of riccati type equations. First the matrix riccati equation in steady state is converted (by a coordinate transformation) into another riccati equation which can be expanded in a matrix continued fraction form. The transformed matrix riccati equation may not be invertible and therefore restrictions are made on the general matrix case to guarantee the proper inversion properties.

The scalar riccati equation is then considered in an effort to give insight into the solution of the matrix equation. A numerical procedure is outlined to iterate on the solution of the scalar steady state equation. Upper and lower bound approximations are obtained for the steady state case based on N terms of the continued fraction expansion. Theorems are proved on the convergence properties of the continued fraction expansion utilizing mathematical induction. By using the continued fraction approach, the difference (or error) between the riccati solution and the first N terms of the continued fraction expansion can be bounded from above and below.

A theorem from Number Theory demonstrates that the riccati equation is a quadratic surd and it must exhibit periodicity in its continued fraction expansion. This result was demonstrated in [1] using the partitioned algorithm method. The type of periodicity obtained here is slightly different but has many of the same similarities as obtained in [1].

If the problem of interest were to approximate the numerical solution of the riccati equation using a mathematical approach called, "Approximation by Convergents", an investigation is made on this approach of continued fractions in the calculation of an irrational number (such as \(\sqrt{2} \)). By considering the continued fraction expansion of \(\sqrt{2} \) using the largest reciprocals of the difference between \(\sqrt{2} \) and its respective convergences as the elements of the fraction expansion, this method is most efficient. For the case of the riccati equation, the periodic property of the continued fraction coefficients gives convergents which are identical to the periodic terms (hence, most efficient). It is hoped that these results can be extended to the matrix case to obtain the most efficient expansion.

1. Introduction

The riccati equation has been extensively studied. The approach used here will consider a continued fraction method for numerical calculation of the steady state matrix riccati equation. The continued fraction approach has similarities to the partitioned algorithm method [1,2]. By using the continued fraction approach, the main advantage occurs due to the fact that the riccati equation can be approximated by a finite number of terms of the known matrices. If a truncation is made after N terms of the continued fraction expansion, then an upper and lower bound for the difference between the actual riccati solution and the approximation can be obtained for the scalar case. The difference between the two bounds can also be calculated which gives an idea of the ability of this approach to squeeze the true riccati solution between the respective bounds. Some examples are worked to illustrate the advantages of this approach. In order to apply this approach, it is necessary for the development of basic theorems before the continued fraction method can be utilized.

2. Conversion of The Riccati Equation Into The Continued Fraction Form

The problem of interest is the solution of the following matrix equation:

\[
AP + PA^T - PRP + Q = 0
\] (1)

The unknown matrix \(P \) is n×n and the matrices \(A, R, \) and \(Q \) are all n×n and known. It is initially assumed that \(R \) is positive definite; the remaining conditions...

The research reported in this paper was sponsored by Aerospace Medical Research Laboratory, Aerospace Medical Division, Air Force Systems Command, Wright Patterson Air Force Base, Ohio 45433. Further reproduction is authorized to satisfy needs of the U.S. Government.
(such as P and Q both symmetric and positive definite, A canonical and stable, and the controllability and observability conditions) will not be stated initially in an effort to derive theorems based on as few assumptions as possible. Theorem 1 illustrates the method to convert the matrix Riccati equation (1) into the form in which the continued fraction approach can be used.

Theorem 1: The solution to equation (1) with P positive definite can be specified as the solution of the following matrix equation:

$$WW - KW - L = 0$$ \hspace{1cm} (2)

where

$$P = WR^{-1} + R^{-1}AT$$ \hspace{1cm} (3)

Proof: Substitute equation (3) into equation (1) yields:

$$AWR^{-1} + AR^{-1}AT + WR^{-1}AT + R^{-1}ATA^T$$
$$-WR^{-1}AT + WR^{-1}AT + R^{-1}ATA^T - WR^{-1}$$
$$= 0$$

$simplifying yields:

$$WW + \begin{bmatrix} R^{-1}AR - A \\ -AR^{-1}AT - QR \end{bmatrix} = 0$$

Hence, if the choice is made of the form:

$$K = -R^{-1}AR + A$$ \hspace{1cm} (4a)

$$L = QR + AR^{-1}AT$$ \hspace{1cm} (4b)

then equation (2) will follow.

It is noted that the matrix K may be singular but if R is symmetric, Q positive definite and symmetric, then the matrix L will be positive definite. To conclude the study on the matrix Riccati equation, the continued fraction approach (for the matrix case) will be investigated using equation (2) in lieu of equation (1). The next theorem demonstrates the advantage of expressing equation (1) in the form of equation (2) for matrix continued fractions.

Theorem 2: If W^{-1} exists and $K \neq 0$, then

$$W = K + L$$

$$K = -WR^{-1}AT - QR$$

if W^{-1} exists and $K = 0$, then $W = [L^{-1}]^{1/2}$ which is different from standard matrix square root notation.

Proof: Equation (2) can be written

$$W = K + LW^{-1} = K + W$$

Thus equation (5) follows; if $K = 0$, then $W = L$ as indicated above.

The scalar Riccati equation will now be considered in an effort to study the numerical algorithm presented here and to gain incite into the solution of the matrix case.
Note: \(K_0 = 1 \), \(K_1 = a_1 K_0 + K_0 \), \(K_2 > K_1 \)

Hence: \(K_2 > K_{N-1} > 1 \) for \(N \geq 2 \)

\[K_N > K_0 = 1 \]

Theorem 3
For any positive real number \(x \)

\[\left< a_0, a_1, \ldots, a_N \right> = \frac{x h_{N-1} + h_N}{x k_{N-1} + k_N} \]

Proof: if \(N = 0 \) implies:

\[\frac{x h_{-1} + h_0}{x k_{-1} + k_0} \]

which is true from the substitutions (8a-b). For \(N = 1 \) the result is

\[\left< a_0, a_1 \right> = a_0 + \frac{1}{a_1} = \frac{x h_0 + h_1}{x k_0 + k_1} \]

which is true by the substitutions (8a-b). Using mathematical induction it is necessary to assume that the results hold for \(\left< a_0, a_1, \ldots, a_{N-1}, x \right> \).

To calculate the partial sum for \(N \) terms, it is necessary to use:

\[\left< a_0, a_1, \ldots, a_{N-1}, x \right> = \frac{x(a h_{N-1} + h_N) + h_N}{x(k_{N-1} + k_N)} \]

Thus if the results hold for \(N-1 \), then they hold for \(N \). Since they hold for \(N = 0 \) and \(N = 1 \), then they hold for all \(N \). Q.E.D.

The next theorem is useful for determining upper and lower bounds for sums of the sequences.

Definition:
Define \(r_N = \left< a_0, a_1, \ldots, a_N \right> \) for all integers \(N \geq 0 \). Notice that \(r_N \) is the approximation after \(N \) terms of the continued fraction expansion.

Theorem 4
\[r_N = \frac{h_N}{k_N} \]

Proof: \(\left< a_0, a_1, \ldots, a_N \right> = \frac{x h_{N-1} + h_N}{x k_{N-1} + k_N} \)

from theorem (3). Now replace \(x \) by \(a_N \). This implies

\[r_N = \frac{h_N}{k_N} \]

but the definitions (8a-b) imply that equation (9) can be written

\[r_N = \frac{h_N}{k_N} \] Q. E. D.

The next theorem examines convergence of the continued fraction expansion from the calculation of an upper and a lower bound.

Theorem 5
As a lower bound \(r_j \) for \(j \) even forms an increasing sequence, i.e.

\[r_0 < r_2 < r_4 < \ldots \]

As an upper bound \(r_j \) for \(j \) odd forms a decreasing sequence, i.e.

\[r_1 > r_3 > r_5 > \ldots \]

and \(\lim_{N \to \infty} r_N \) exists and for every \(j \geq 0 \)

\[r_{2j} \leq \lim_{N \to \infty} r_N \leq r_{2j+1} \] (\(j \) an integer)

i.e.

\[r_0 < r_2 < r_4 < \ldots \leq \lim_{N \to \infty} r_N \leq r_2 \]

In order to prove theorem 5, the following two lemmas must be shown:

Lemma (1): The following equations hold for \(i = 1 \)

\[h_{i-1} K_{i-1} - h_{i-1} K_i = (-1)^{i-1} \]

which implies

\[r_1 - r_{i-1} = k_{i-1} K_{i-1} \]

Lemma (2): for \(i = 2 \)

\[h_{i-2} K_{i-2} - h_{i-2} K_i = (-1)^i a_i \]

which implies:

\[r_1 - r_{i-2} = k_{i-2} K_{i-2} \]

First to prove (10a-b). Using equations (8a-b), the proof will follow by mathematical induction:

For \(i = 1 \), it is easily shown that:

\[h_{-1} K_{-2} - h_{-2} K_{-1} = 1 \]

Also using equations (8a-b), the following result holds for \(i = 0 \):

\[h_0 K_{-1} - h_{-1} K_0 = -1 \]

Now assume:

\[h_{i-1} K_{i-2} - h_{i-2} K_{i-1} = (-1)^{i-2} \]

using equations (8a-b) implies:

\[h_{i-1} K_{i-1} + h_{i-1} K_i = (a_i h_{i-1} + h_{i-2}) K_{i+1} \]

\[= (h_{i-1}) (a_i K_{i-1} + K_{i-2}) \]

\[= a_i h_{i-1} K_{i-1} + h_{i-2} K_{i-1} - a_i K_{i-1} h_{i-2} K_{i-2} \]

\[= (-h_{i-1} K_{i-2} - h_{i-2} K_{i-1}) = (-1)^{i-1} \]

since \(h_{i-1} K_{i-2} - h_{i-2} K_{i-1} = (-1)^{i-1} \)

this implies:

\[h_i K_{i-1} - h_{i-1} K_i = (-1)^{i-1} \]

\[\frac{h_i}{K_i} - \frac{h_{i-1}}{K_{i-1}} = (-1)^{i-1} \]

\[r_1 = r_{i-1} \]
Hence lemma 1 is shown. To prove lemma (2), it is observed that:

$$h_0 K_{-2} - h_{-2} K_0 = a_0$$

and equation (11a) holds for the case $i = 1$ (which is easily verified); proceeding as before:

$$h_1 K_{-2} - h_{-2} K_1 = (a_1 h_{-1} + h_{-2}) K_{-2} - h_{-2} (a_1 K_{-1} + K_{-2})$$

$$= a_1 h_{-1} K_{-2} - h_{-2} K_{-2} - a_1 h_{-2} K_{-1} - h_{-2} K_{-2}$$

$$= a_1 [h_{-1} K_{-2} - h_{-2} K_{-1}] = a_1 [(-1)^i]$$

which implies:

$$h_1 K_{-2} - h_{-2} K_1 = (-1)^i a_1$$

or$$
\frac{h_1}{K_1} = \frac{h_{-2}}{K_{-2}} = (-1)^i a_1
$$

or

$$r_1 - r_{-2} = \frac{(-1)^i a_1}{K_1 K_{-2}}$$

Hence the results of lemma 2 hold. Now the proof of theorem 5 will be demonstrated:

Since each $K_i > 0$, $a_i > 0$

we know

$$r_1 - r_{-1} = \frac{(-1)^i a_i}{K_1 K_{-1}}$$

It follows for j an integer:

$$r_{2j} < r_{2j+2}$$

from equation (13).

From equations (12, 13), we know for $a_i > 0$ and j an integer:

$$r_{2j-1} > r_{2j+1}$$

and $$r_{2j} < r_{2j-1}$$

Therefore:

$$r_0 < r_2 < r_4 < \cdots$$

and $$r_1 > r_3 > r_5 > \cdots$$

It remains to show that:

$$r_{2n} < r_{2n+2} < r_{2n+2j-1} < r_{2j-1}$$

The sequence r_0, r_2, r_4, \cdots is monotonically increasing and is bounded above by r_1 and since all $r_i > 0,$ it has a limit $[L]$. In a similar manner the sequence r_1, r_3, r_5, \ldots is monotonically decreasing and is bounded below by r_0 and thus has a limit. The two limits are equal because:

$$\lim_{i \to \infty} [r_i - r_{i-1}] = (-1)^{i-1} \to 0$$

Since each $K_i > K_{i-1}$ the proof of theorem 3 is complete.

Before examples are worked it is necessary to consider the periodicity of the Riccati equation in the coefficients of the continued fraction expansion.

Theorem 6

The continued fraction which represents a quadratic surd is periodic. The term quadratic surd from number theory [11] means a quadratic equation similar to the Riccati type.

Proof:

If $x = \left< a_0, a_1, a_2, \cdots \right>$

Let $a_L = \left< a_0, a_1, a_2, \cdots \right>$

Then $x = \left< a_L, a_L, \cdots \right>$ implies

$$x = \frac{x_0 + h_{n-1}}{x_{n+1} + h_{n-1}}$$

or x satisfies an equation of the form:

$$A x^2 + B x + c = 0$$

where $A \neq 0$ because each $K_i > 0$. The converse of this theorem can also be shown but the proof is more difficult.

5. A Scalar Example

Example 1:

Consider the solution to the following Riccati equation by the continued fraction approach:

$$ax^2 + bx + c = 0$$

where $a > 0, b > 0, c > 0$.

The positive root can be written:

$$x = r_1 + r_2$$

The sequence r_0, r_1, r_2, \ldots is monotonically increasing and is bounded above by r_1 and since all $r_i > 0,$ it has a limit $[L]$. In a similar manner the sequence r_1, r_3, r_5, \ldots is monotonically decreasing and is bounded below by r_0 and thus has a limit. The two limits are equal because:

$$\lim_{i \to \infty} [r_i - r_{i-1}] = (-1)^{i-1} \to 0$$

Since each $K_i > K_{i-1}$ the proof of theorem 3 is complete.
Since \(\sqrt{2} = 1.7320508 \)

Then the continued fraction of interest is:

\[
1.732 = 1 + \frac{1}{1 + \frac{1}{2 + \frac{1}{1 + \frac{1}{2 + \cdots}}}}
\]

(16)

Now it is necessary to calculate the \(K_n \) and \(h_n \) terms. Table I illustrates this calculation. Now the concept of "best possible approximations" will be considered for the scalar Riccati equation and for any irrational number.

Table I

<table>
<thead>
<tr>
<th>(h_i)</th>
<th>(K_i)</th>
<th>(r_n)</th>
<th>(r_{i-1})</th>
<th>(a_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1.667</td>
<td>1.667</td>
<td>1.667</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1.750</td>
<td>1.750</td>
<td>1.750</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1.7333</td>
<td>1.7333</td>
<td>1.7333</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1.7317</td>
<td>1.7317</td>
<td>1.7317</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>1.73214</td>
<td>1.73214</td>
<td>1.73214</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>1.73206</td>
<td>1.73206</td>
<td>1.73206</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1.732057</td>
<td>1.732057</td>
<td>1.732057</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1.732059</td>
<td>1.732059</td>
<td>1.732059</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>1.732059</td>
<td>1.732059</td>
<td>1.732059</td>
</tr>
</tbody>
</table>

6. The "Best Possible Approximation"

Given an irrational number \(\tilde{\xi} \), the following continued fraction expansion is "best possible" [5] for numerical computation of \(\tilde{\xi} \):

Procedure:

Using the notation \(a_i = \left[\tilde{\xi}_i \right] \) where \(a_i \) denotes the nearest integer smaller than the irrational number \(\tilde{\xi}_i \), then \(a_i \) (1=0, \(\cdots \)) is computed as follows:

\[a_0 = \left[\xi_0 \right] \]

now proceeding as an algorithm,

let

\[\tilde{\xi}_1 = \frac{1}{\xi_0 - a_0} \]

and \(a_1 = \left[\tilde{\xi}_1 \right] \)

inductively it follows that

\[\tilde{\xi}_{i+1} = \frac{1}{\xi_i - a_i} \]

and \(a_i = \left[\tilde{\xi}_i \right] \)

An example will now be worked with the irrational number \(\tilde{\xi} \) to illustrate this approach.

Now compute \(a_i = \left[\tilde{\xi}_i \right] \) = 7. In this manner we calculate (using double precision (29 digits) on a CDC 6600 computer) the following numerical results:

<table>
<thead>
<tr>
<th>(\tilde{\xi}_0)</th>
<th>(\tilde{\xi}_1)</th>
<th>(\tilde{\xi}_2)</th>
<th>(\tilde{\xi}_3)</th>
<th>(\tilde{\xi}_4)</th>
<th>(\tilde{\xi}_5)</th>
<th>(\tilde{\xi}_6)</th>
<th>(\tilde{\xi}_7)</th>
<th>(\tilde{\xi}_8)</th>
<th>(\tilde{\xi}_9)</th>
<th>(\tilde{\xi}_10)</th>
<th>(\tilde{\xi}_11)</th>
<th>(\tilde{\xi}_12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.141592653589793238462643383279</td>
<td>7.062513309310457697930051531</td>
<td>15.996594406685658654941130399874</td>
<td>32.634951012228646070785852178</td>
<td>65.75818094814629954327421461</td>
<td>131.51636595609113341887024369765</td>
<td>263.032731912087591977860287024369765</td>
<td>526.06546382417518595598057495559195</td>
<td>1052.13092764834937191196114991190390</td>
<td>2104.26185529669874382392229982380780</td>
<td>4208.5237105933974876478466661982560</td>
<td>8417.0474211867949752956933323965120</td>
<td>16834.0948423735899505913866792024120</td>
</tr>
</tbody>
</table>

This gives rise to \(a_0 = 3, a_1 = 7, a_2 = 15, a_3 = 292, a_4 = 7, a_5 = 1, a_6 = 2, a_7 = 2, a_8 = 7, a_9 = 1, a_{10} = 1, a_{11} = 1, a_{12} = 7 \)

which results in the following partial fraction expansion:
It is noted that this expansion is identical to the one given in equation (16). This result occurs due to the following identity:

$$1 + \sqrt{3} = \frac{1}{\sqrt{3} - 1}$$

which results in: $F_j = \frac{1}{F_{j+2}}$ for all j

with $a_1 = 1$ (i odd)

$a_{i+2} = 2$ (i odd)

Since the square root of 3 is an irrational number (as the solution of any quadratic equation may be), the "most efficient" method to numerically compute the solution to this riccati equation has been demonstrated by equation (16). This technique is numerically illustrated here in an effort to develop an algorithm for the matrix case and when the solution to equation (2) is not known apriori.

7. Conclusions

A continued fraction approach is used to investigate the solution to the steady state riccati equation. Theorems are proven to demonstrate an algorithm which converges for the steady state scalar case. Some examples are worked to demonstrate the "most efficient" method to compute the solution to the riccati equation.

References

