A Low-Frequency Limitation of FACT

R. M. FITZGERALD
Applied Ocean Acoustics Branch
Acoustic Division

January 31, 1978

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.
1. REPORT NUMBER
NRL Report 8186

2. RECIPIENT'S CATALOG NUMBER
D-NRL-81-86

3. TITLE (and Subtitle)
FACT

4. CONTRACT OR GRANT NUMBER
Navy Electronics Systems Command
Washington, D.C. 20360

5. PERFORMING ORGANIZATION NAME AND ADDRESS
Naval Research Laboratory
Washington, D.C. 20375

6. SPONSORING/Monitoring ORGANIZATION NAME AND ADDRESS
Naval Electronics Systems Command
Washington, D.C. 20360

7. PROCUREMENT AGENCY NAME AND ADDRESS
Naval Research Laboratory
Washington, D.C. 20375

8. SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
UNCLASSIFIED

9. SECURITY CLASSIFICATION OF THIS FORM
UNCLASSIFIED

10. SPONSORING/Monitoring AGENCY CODE
F

11. REPORT NUMBER
F52.552

12. REPORT DATE
January 31, 1978

13. NUMBER OF PAGES

14. PRICE

15. DISTRIBUTION STATEMENT
Approved for public release; distribution unlimited.

16. SUPPLEMENTARY NOTES

17. DISTRIBUTION STATEMENT (for reports distributed outside the U.S., only)

18. SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
F52.552-78-178

19. KEY WORDS
FACT

20. ABSTRACT
The inapplicability of the Fast Asymptotic Coherent Transmission (FACT) ray trace model at 14 Hz is demonstrated by comparison with normal mode calculation; whose predictions have been experimentally confirmed.
A LOW-FREQUENCY LIMITATION OF FACT

The Fast Asymptotic Coherent Transmission (FACT) model [1, 2] is a corrected ray theory model for calculating acoustic transmission loss (TL) in the ocean. Although it is generally realized that as a ray model FACT is more accurate at high frequencies, the model has been employed for frequencies into the infrasonic spectrum. The purpose of this report is to document a low-frequency case wherein the predictions of FACT are qualitatively incorrect when compared with those of a wave theory calculation.

The ocean environment was described in the calculations as follows. In the wave theory calculation, the sound speed C as a function of depth in meters is given by

- \(C(0) = 1539 \text{ m/s} \) (ocean surface),
- \(C(1100) = 1485 \text{ m/s} \) (SOFAR axis),
- \(C(5500) = 1552 \text{ m/s} \) (ocean bottom).

At intermediate depths we take \(C^{-2} \) to be a linear function of depth. The result is an approximately bilinear profile having a thermocline, SOFAR channel, and depth excess. For the FACT calculation, 42 points along the above profile were calculated and used to describe the profile.

The ocean bottom was modeled as an absorber or scatterer which directed the incident energy away from the direction of propagation. This was accomplished in the FACT model by disregarding those rays which intersected the bottom. In the wave model, the bottom effect was simulated by calculating the modes as though the bottom were a hard reflector and then dropping from the modal summation the modes whose phase velocity exceeded the speed of sound at the bottom.

Calculations were performed for two frequencies and two source depths in an effort originally aimed at modeling an experimental acoustic TL curve [3]. The input parameters to the calculations were:

- source depths: \(21 \text{ m, 104 m} \),
- receiver depths: \(1100 \text{ m} \),
- source frequencies: \(13.864 \text{ Hz, 110.85 Hz} \).

The dark and light lines in the figures refer respectively to the high and low frequencies.

Figure 1 shows the TL for a source depth of 104 m as calculated with a normal mode separation of the wave equation implemented on a digital computer. Examination of this figure reveals that the low-frequency energy is carried by two groups of modes which produce zones of constructive interference every 34.7 n.mi. and 36.3 n.mi., respectively. At the higher frequency, zones of constructive interference appear only with the 36.3 n.mi. period. The TL curve of Fig. 2 shows the same effect when both sources are at the 21-m depth.

Manuscript submitted November 10, 1977
Fig. 1 - Normal mode calculation of TL (dB) vs Range (n.m.) for source depth of 104 m.
Fig. 2 - Normal mode calculation of TL (dB) vs Range (n.mi.) for source depth of 21 m.
Figures 3 to 8 show the results of the FACT calculations. All combinations of source depth, frequency, and type of ray addition (incoherent, semicoherent, fully coherent) are represented. Although the high-frequency FACT calculations produce convergence zones whose positions agree with those produced by the high-frequency normal mode calculations, none of the FACT calculations shows the aforementioned low-frequency effect.

A normal mode model which allows for discontinuous profile changes in range has been developed and exercised in order to test its predictions against experiment [4]. Figure 9, which was taken from Ref. 4, shows the TL calculated using, not the environmental parameters given earlier, but only archival sound speed and bottom characteristics for the geographic area of the experiment of Ref. 3. The first 700 km of Fig. 9 again show the double periodicity in the low-frequency TL curve not modeled by FACT.

As explained in Ref. 3, the additional low-frequency TL peaks with a period of 34.7 n.mi. are due to the excitation of modes whose phase velocities are less than the speed of sound at the surface. These modes correspond to energy traveling via purely refracted (RR) paths. The discrepancy between ray and wave models thus cannot be attributed to different methods for treating the bottom. Rather, the problem seems to lie in the insufficient allowance by FACT for RR excitation by a low-frequency source located in the thermocline near the surface. The reality of the additional low-frequency TL peaks with period 34.7 n.mi. has been confirmed in the experimental data reported in Ref. 3.

I am grateful to Dr. John Hanna, who had the FACT model run with the given inputs.

REFERENCES
Fig. 5 - FACT calculation of TL (dB) vs Range (n.mi.) for source depth of 104 m with fully coherent summation of rays.
Fig. 6 — FACT calculation of TL (dB) vs Range (n.mi.) for source depth of 21 m with incoherent summation of rays.
Fig. 7 - FACT calculation of TL (dB) vs Range (n.mi.) for source depth of 21 m with semicoherent summation of rays.
Fig. 9 — Normal mode calculation of TL (dB) vs Range (km) for source depth of 104 m using archival environmental parameters (Climatology results).
MEMORANDUM FOR DISTRIBUTION LIST

Subj: DECLASSIFICATION OF LONG RANGE ACOUSTIC PROPAGATION PROJECT (LRAPP) DOCUMENTS

Ref: (a) SECNAVINST 5510.36

Encl: (1) List of DECLASSIFIED LRAPP Documents

1. In accordance with reference (a), a declassification review has been conducted on a number of classified LRAPP documents.

2. The LRAPP documents listed in enclosure (1) have been downgraded to UNCLASSIFIED and have been approved for public release. These documents should be remarked as follows:

 Classification changed to UNCLASSIFIED by authority of the Chief of Naval Operations (N772) letter N772A/6U875630, 20 January 2006.

 DISTRIBUTION STATEMENT A: Approved for Public Release; Distribution is unlimited.

3. Questions may be directed to the undersigned on (703) 696-4619, DSN 426-4619.

BRIAN LINK
By direction
Subj: DECLASSIFICATION OF LONG RANGE ACOUSTIC PROPAGATION PROJECT (LRAPP) DOCUMENTS

DISTRIBUTION LIST:
- NAVOCEANO (Code N121LC – Jaime Ratliff)
- NRL Washington (Code 5596.3 – Mary Templeman)
- PEO LMW Det San Diego (PMS 181)
- DTIC-OCQ (Larry Downing)
- ARL, U of Texas
- Blue Sea Corporation (Dr. Roy Gaul)
- ONR 32B (CAPT Paul Stewart)
- ONR 321OA (Dr. Ellen Livingston)
- APL, U of Washington
- APL, Johns Hopkins University
- ARL, Penn State University
- MPL of Scripps Institution of Oceanography
- WHOI
- NAVSEA
- NAVAIR
- NUWC
- SAIC