LABORATORY MEASUREMENTS OF SELECTED D-REGION REACTIONS

National Oceanic & Atmospheric Administration
Aeronomy Laboratory
Environmental Research Laboratories
Department of Commerce
Boulder, Colorado 80302

30 September 1977

Final Report for Period 1 October 1976—30 September 1977

DNA IACRO No. 77-828

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

THIS WORK SPONSORED BY THE DEFENSE NUCLEAR AGENCY
UNDER SUBTASK 99QAXH0411-06.

Prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, D. C. 20305
The following afterglow and flow-draft instrumental laboratory capabilities have been applied during the past year to the experimental investigation of the kinetics and thermochemistry of important D-region atomic and molecular ions. The information obtained will be used to redefine the atmospheric ionic composition and the processes by which this ionic composition may be modified.
The positive ion chemistry below 80 km is dominated by the reactions that convert O_2^+ to $(H_2O^+ \cdot nH_2O)$. Interactions of CO_2, O_3, and CH_4 with O_2^+, $(O_2^+ \cdot O_2)$ or $(O_2^+ \cdot H_2O)$ could alter this conversion process, but the end product of the altered reaction scheme will still be $(H_3O^+ \cdot nH_2O)$.

Current models predict $(H_3O^+ \cdot nH_2O)$ as the terminal positive ions below 80 km. However, below 60 km ions other than $(H_3O^+ \cdot nH_2O)$ are observed as the terminal ions. To understand this conversion, the reaction of $(H_3O^+ \cdot nH_2O)$ with H_2CO or CH_3OH, both of which are present in the atmosphere, has been investigated. We conclude that, if present, CH_3OH will destroy the hydronium ions, while H_2CO will not.

The unstable neutral N_2O_5 was found to react rapidly with NO^+, H_3O^+, $(H_3O^+ \cdot H_2O)$ and $(H_3O^+ \cdot 2H_2O)$. These reactions have important implications for the neutral, as well as the ion, chemistry in this region.

In other positive ion studies, ground state S^+ ions are found to react with O_2 and NO. This indicates that the positive ions observed in the mesosphere at mass 32 and 34 cannot be S^+. In addition, metastable NO^+ (a $3 \Sigma^+$) ions are found to react rapidly with N_2. This reaction is important in F-region ion chemistry under disturbed conditions.

In the negative ion studies, CO_3^-, Cl^-, I^-, and F^- are found to react rapidly with N_2O_5 to produce NO_3^-. These reactions indicate that NO_3^- will be the terminal negative ion in the middle-atmospheric ion chemistry.

Flow drift tube measurements have been used to measure the mobilities of F^-, Cl^-, Br^-, and I^- in He and Ar. These data are of great use in the modeling of rare-gas halide lasers.

Finally, significant progress has been made toward the development of a selected ion source to be used in conjunction with the flowing afterglow and flow-drift systems and will greatly increase the species of ions that can be studied.
During the past year, the program for measuring ion-molecule reaction rate constants and ion thermochemical values has been involved with a number of current problems of atmospheric ion chemistry pertaining to both normal and disturbed conditions. The present investigations include studies carried out as a function of relative kinetic energy in the flow-drift system and as a function of temperature in the variable-temperature flowing afterglow, as well as room-temperature measurements in the conventional flowing afterglow. Several reaction studies involving unstable neutral reactants were carried out in the flowing afterglow, which remains the chief source of information concerning these reactions. Some specific results are listed below.

1. The conversion of O_2^+ to H_3O^+ and $[H_3O^+\cdot H_2O]$ plays an important role in the production of $[H_3O^+\cdot nH_2O]$, $n = 0, 1, 2, \ldots$, which are observed to be the dominant ions in the lower mesosphere and upper stratosphere. As a consequence, any reaction that could alter this process would be important to the ion chemistry below 80 km. In this connection, the reactions of O_2^+ and $[O_2^+\cdot O_2]$ with CH_4, CO_2, and O_3 and the reaction of...
The following results were obtained:

1. \(\text{O}_2^+ + \text{CH}_4 \rightarrow \text{CH}_3\text{O}_2^+ + \text{H} \)
 \(k_1 = 7.5 \times 10^{-12} \text{ cm}^3 \text{ sec}^{-1} \)

2. \(\left[\text{O}_2^+ \cdot \text{O}_2 \right]^+ + \text{CH}_4 \rightarrow \text{O}_2^+ \cdot \text{CH}_4 + \text{O}_2 \)
 \(k_2 = 3 \times 10^{-12} \text{ cm}^3 \text{ sec}^{-1} \) at 130K

3. \(\left[\text{O}_2^+ \cdot \text{O}_3 \right]^+ + \text{CH}_4 \rightarrow \text{products} \)
 \(k_3 \leq 5 \times 10^{-13} \text{ cm}^3 \text{ sec}^{-1} \) at 260K

4. \(\left[\text{O}_2^+ \cdot \text{O}_3 \right]^+ + \text{H}_2\text{O} + \text{O}_2^+ \cdot \text{H}_2\text{O} + \text{O}_3 \)
 \(k_4 = 1.2 \times 10^{-9} \text{ cm}^3 \text{ sec}^{-1} \) at 260K

5. \(\left[\text{O}_2^+ \cdot \text{O}_2 \right]^+ + \text{CO}_2 \rightarrow \text{O}_2^+ \cdot \text{CO}_2 + \text{O}_2 \)
 \(\Delta H^o_{273} (5) = 0.31 \pm 1.0 \text{ kcal mole}^{-1} \)
 \(\Delta S^o_{273} (5) = 4.3 \pm 3.0 \text{ cal mole}^{-1} \text{ K}^{-1} \)

6. \(\left[\text{O}_2^+ \cdot \text{O}_2 \right]^+ + \text{O}_3 \rightarrow \text{O}_2^+ \cdot \text{O}_3 + \text{O}_2 \)
 \(\Delta H^o_{273} (6) = 3.3 \pm 1.0 \text{ kcal mole}^{-1} \)
 \(\Delta S^o_{273} (6) = 4.5 \pm 4.0 \text{ cal mole}^{-1} \text{ K}^{-1} \)

The above equilibrium constants indicate that the concentration of \(\left[\text{O}_2^+ \cdot \text{CO}_2 \right] \) will be negligibly small relative to \(\left[\text{O}_2^+ \cdot \text{O}_2 \right] \) in the atmosphere, while the concentration of \(\left[\text{O}_2^+ \cdot \text{O}_3 \right] \) relative to \(\left[\text{O}_2^+ \cdot \text{O}_2 \right] \) will depend strongly on the \(\text{O}_3 \) to \(\text{O}_2 \) mixing ratio and temperature. However, since reactions (1), (2), and (3) are slow and in contrast reaction (4) is fast, the conversion of \(\text{O}_2^+ \) to \(\left[\text{H}_3\text{O}^+ \cdot \text{nH}_2\text{O} \right] \) will not be altered.

2. Current atmospheric models predict significant concentrations of \(\text{CH}_2\text{O} \) in the stratosphere as by-products of the oxidation of methane. For this reason the reactions

7. \(\left[\text{H}_3\text{O}^+ \cdot \text{n(H}_2\text{O} \right] + \text{CH}_2\text{O} \rightarrow \left[\text{CH}_2\text{OH}^+ \cdot \text{n(H}_2\text{O} \right] + \text{H}_2\text{O} \)

have been studied for \(n = 0, 1, 2, 3 \), in the variable-temperature flowing afterglow. From these measurements thermochemical values for reactions (7) have been obtained. The results are as follows.
<table>
<thead>
<tr>
<th>Reactions</th>
<th>ΔH^0 (kcal/mole)</th>
<th>ΔS^0 (cal/mole·K)</th>
<th>Mean Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7a. $H_3O^+ + CH_2O + CH_2OH^+ + H_2O$</td>
<td>-5.2 ± 0.8</td>
<td>2.2 ± 3.0</td>
<td>470</td>
</tr>
<tr>
<td>7b. $[H_3O^+ .H_2O] + CH_2O + [CH_2OH^+.H_2O] + H_2O$</td>
<td>-0.41 ± 0.29</td>
<td>2.6 ± 2.5</td>
<td>400</td>
</tr>
<tr>
<td>7c. $[H_3O^+.2H_2O] + CH_2O + [CH_2OH^+.2H_2O] + H_2O$</td>
<td>0.58 ± 0.43</td>
<td>2.3 ± 2.8</td>
<td>400</td>
</tr>
<tr>
<td>7d. $[H_3O^+.3H_2O] + CH_2O + [CH_2OH^+.2H_2O] + H_2O$</td>
<td>1.1 ± 0.6</td>
<td>4.1 ± 2.0</td>
<td>325</td>
</tr>
<tr>
<td>8. $[CH_3O^+.H_2O] + CH_2O + [CH_2OH^+.CH_2O] + H_2O$</td>
<td>-0.80 ± 0.13</td>
<td>-0.71 ± 2.2</td>
<td>400</td>
</tr>
</tbody>
</table>

These measurements imply that the reactions of the hydrated hydronium ions with CH_2O in the stratosphere will not produce significant CH_2OH^+ and its clusters because of the small equilibrium constants and the large H_2O / H_2CO ratio.

3. In addition to CH_2O, atmospheric models suggest the possibility of large concentrations of CH_3OH. The reactions of $[H_3O^+.nH_2O]$ n = 0, 1, 2, 3 have been studied in the flowing afterglow and the flow-drift system. The reactions are fast at all energies studied and proceed predominately by proton transfer. Since CH_2OH^+ and its cluster ions are not observed in the stratosphere above 30 km where $[H_3O^+.nH_2O]$ dominant, the present results indicate that the CH_3OH concentration in this region is less than 10^6 molecules cm$^{-3}$, i.e., a mixing ratio of less than 10^{-11}.

4. The reactions of S^+ with O_2 and NO have been investigated as a function of ion kinetic energy in the flow-drift system. In the present studies, extensive checks were made to insure that the S^+ were not
excited. The present results are in good agreement with those results previously reported by this laboratory (F. C. Fehsenfeld, J. Geophys. Res. 78, 1966, 1973). These results indicated that the positive ions observed in the mesosphere at mass 32 and mass 34 cannot be S^+.

5. The investigation of the ion chemistry of N_2O_5 has been started. We find N_2O_5 reacts rapidly with CO_3^-, Cl^-, I^-, and F^-. In the case of the positive ions, we find

9. $NO^+ + N_2O_5 \rightarrow NO_2^+ + NO + NO_2 \quad k_9 = 6 \times 10^{-10} \text{ cm}^3 \text{ sec}^{-1}$

10. $NO_2^+ + N_2O_5 \rightarrow \text{products} \quad k_{10} \leq 1 \times 10^{-11} \text{ cm}^3 \text{ sec}^{-1}$

In addition the N_2O_5 reactions with H_3O^+, $H_3O^+ \cdot H_2O$ and $H_3O^+ \cdot 2H_2O$ will be studied. Since N_2O_5 is an important stratospheric neutral involved in the odd nitrogen cycle, the reactions of N_2O_5 with hydrated ions may have important consequences for the neutral, as well as the ion, chemistry of the stratosphere.

6. The metastable $NO^+(a^3 \Sigma^+)$ ion may be formed in the ionosphere by primary ionization of NO or as a product of ion-molecule reactions. The reaction of $NO^+(a^3 \Sigma^+)$ with N_2 has been studied as a function of ion kinetic energy in the flow-drift system between 0.063 eV and 1.6 eV. The reaction rate constant is large at all energies and is $7 \pm 3.5 \times 10^{-10}$ cm3 sec$^{-1}$ at 0.063 eV. This reaction will provide the major removal mechanism for $NO^+(a^3 \Sigma^+)$ in the atmosphere. Future studies of this metastable ion will include the assessment of the relative roles of quenching and reaction. Furthermore, the reactions with other neutrals, like O_2, will be examined.
7. The flow-drift tube has been used to measure the mobilities of the halogen negative ions F^-, Cl^-, Br^-, and I^- in helium and argon buffer gases. The measurements covered a wide range of ratios of electric field strengths to buffer gas number densities. Since no values were previously available, these data will be of great use in the modeling of the rare-gas halide lasers, which previously had to rely only on approximations of these mobilities.

8. Ions produced in a low pressure ion source have been injected at low energy (i.e. K.E. ≤ 10 eV) into the flowing afterglow in sufficient concentration to give usable signal levels after passage through the flowing afterglow and mass analysis. This confirms the feasibility of this technique and will serve as the basis for a selected ion flowing afterglow and flow-drift measurements. This new ion source will extend the laboratory's capabilities by greatly increasing the species of ions that can be studied.

SUMMARY

The flowing afterglow and flow-drift capabilities have been applied during the past year to the experimental investigation of the kinetics and thermochemistry of aeronomically important atomic and molecular ions. The information obtained from these studies is used to understand the chemistry that shapes the atmospheric ionic composition and the processes by which this ionic composition may be modified.
The positive ion chemistry below 80 km is dominated by the reactions that convert \(\text{O}_2^+ \) to \([\text{H}_3\text{O}^+\cdot\text{nH}_2\text{O}]\). Because the concentration of CO\(_2\), O\(_3\), and CH\(_4\) approach or exceed the concentration of H\(_2\)O, reactions of these compounds with \(\text{O}_2^+ \), \([\text{O}_2^+\cdot\text{O}_2]\) or \([\text{O}_2^+\cdot\text{H}_2\text{O}]\) could alter this conversion process. The present studies have shown that, although the conversion process is altered by these reactions, the end product of the altered reaction scheme is still \([\text{H}_3\text{O}^+\cdot\text{nH}_2\text{O}]\).

Current models would predict \([\text{H}_3\text{O}^+\cdot\text{nH}_2\text{O}]\) as the terminal positive ions below 80 km. However, below 60 km ions other than \([\text{H}_3\text{O}^+\cdot\text{nH}_2\text{O}]\) are observed as the terminal ions. To understand this conversion, the reaction of \([\text{H}_3\text{O}^+\cdot\text{nH}_2\text{O}]\) with H\(_2\)CO and CH\(_3\)OH, both of which are present in the atmosphere as a by-product of the oxidation of methane, have been studied. We conclude that, if present, CH\(_3\)OH will destroy the hydronium ions, while H\(_2\)CO will not. In addition, the unstable neutral \(\text{N}_2\text{O}_5\), which is an important product of the odd-nitrogen chemistry in the middle atmosphere, is found to react rapidly with NO\(^+\), H\(_3\)O\(^+\), \([\text{H}_3\text{O}^+\cdot\text{H}_2\text{O}]\) and \([\text{H}_3\text{O}^+\cdot2\text{H}_2\text{O}]\). These reactions have important implications for the neutral, as well as the ion chemistry in this region.

In other positive ion studies, ground state S\(^+\) ions are found to react with \(\text{O}_2\) and NO. These results indicate that the positive ions observed in the mesosphere at mass 32 and 34 cannot be S\(^+\). In addition metastable NO\(^+(a\ 3/2^+)\) ions are found to react rapidly with \(\text{N}_2\). This reaction is important in F-region ion chemistry under disturbed conditions.
In the negative ion studies, \(\text{CO}_3^- \), \(\text{Cl}^- \), \(\text{I}^- \), and \(\text{F}^- \) are found to react rapidly with \(\text{N}_2\text{O}_5 \) to produce \(\text{NO}_3^- \). These reactions indicate that \(\text{NO}_3^- \) will be the terminal negative ion in the middle-atmospheric ion chemistry. In addition, the flow drift tube has been used to measure the mobilities of \(\text{F}^- \), \(\text{Cl}^- \), \(\text{Br}^- \), and \(\text{I}^- \) in He and Ar. These data are of great use in the modeling of rare-gas halide lasers.

Finally, significant progress has been made toward the development of a selected ion source to be used in conjunction with the flowing after-glow and flow-drift systems and will greatly increase the species of ions that can be studied.