Title: Monte-Carlo Modeling of Phase Changes in the Chemisorption System O/W(110)

Authors: W.Y. Ching, D.L. Huber, M. Fishkin, M.G. Lagally

Performing Organization: Board of Regents of the University of Wisconsin System, 750 University Avenue, Madison, WI 53706

Contract or Grant Number: N00014-76-C-0727-31

Distribution Statement: Approved for public release; distribution unlimited.

Abstract: Monte-Carlo calculations have been made for a number of different models of adatom interactions in the chemisorbed layer W(110)p(2x1)-0 to simulate observed phase transitions. In particular the island shape is taken into account.
OFFICE OF NAVAL RESEARCH
Contract No. N00014-76-C-0727-3
Project No. NR 392-014

TECHNICAL REPORT

MONTE-CARLO MODELING OF PHASE CHANGES IN THE CHEMISORPTION SYSTEM O/W(110)

by

W.Y. Ching, D.L. Huber, M. Fishkis, and M.G. Lagally
Materials Science Center
University of Wisconsin
Madison, Wisconsin 53706

December 16, 1977

To be published in J. Vac. Sci. Technol.

Reproduction in whole or in part is permitted for any purpose of the United State Government

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
MONTE-CARLO MODELING OF PHASE CHANGES IN
THE CHEMISORPTION SYSTEM O/W(110).*

W.Y. Ching, D.L. Huber, M. Fishkis, and
M.G. Lagally†,‡‡
Materials Science Center
University of Wisconsin, Madison 53706

Extended Abstract of Paper Presented at the
AVS Symposium, Boston, Nov. 1977

* Supported by the Office of Naval Research
† H.I. Romnes Fellow
‡‡ Please direct all correspondence to this author.
Monte-Carlo modeling of the experimentally determined transition temperature (1) as a function of coverage is reported for the chemisorption system W(110)p(2x1)-O. This system is one of the first to be studied in detail that is "closed"; i.e., it is in equilibrium neither with the gas phase nor with O dissolved into bulk W. Thus a determination of the temperature-coverage phase diagram presents the possibility of studying the thermodynamics of two-dimensional systems and through this the study of adatom-adatom interactions that lead to the formation of two-dimensional ordered phases. Additionally, of course, through use of the lever rule the concentration of adsorbed atoms in the ordered vs the disordered phase at any temperature and coverage can easily be determined.

The measurements to which the Monte Carlo calculations are compared were taken in a simple LEED diffractometer consisting of goniometer, Faraday cup collector, and electron gun. The angular distribution of intensity in a superlattice [e.g. (1/2 1/2)] reflection was measured as a function of coverage and temperature. The peak intensity can be related to the transition temperature, (1) while the angular width reflects the size of the ordered regions, or islands. (2)

The ordering of overlayer structures in general involves several interactions. Thus in modeling this ordering, a variety of experimental inputs is required. In the past, usually only the transition temperature at fixed coverage was fitted. A better approach is to fit transition temperatures as a function of coverage, but even here, a number of models with different interactions are satisfactory. An additional
experimental quantity that can be fitted is the island shape at low coverage. The present results demonstrate that the latter is a useful parameter in selecting the proper interactions.

Monte-Carlo calculations were performed for several models of the adatom-adatom interactions in the p(2x1)-O overlayer on W(110). The first corresponds to the model used in an analytical determination of the adatom-adatom interactions.~(1) The others represent two additional possibilities for the interactions. All gave good agreement with the transition temperature and varying but still reasonable agreement with the decay of the superlattice beam intensity (proportional to the square of the order parameter). All, however, gave incorrect island shapes.

The experimentally observed diffraction features are round, implying that on the average the islands are round. Since only two orientations are possible by symmetry, and these do not interfere with each other, this implies that individual islands are round. Model 1 (see Fig. 1) gave islands elongated along the open direction, implying the net attractive interaction along this direction was chosen relatively too strong in the model. Model 2 gave a slight elongation in the close-packed direction, implying relatively too much net attractive interaction along this direction. Model 3 had a poor tendency to order at temperatures where the other two were well-ordered, and indicated row formation as in Model 2.

Figure 2 shows the calculated island size distribution at two different temperatures and a coverage of $\theta = 0.2$ for Model 2. At the
lower temperature, the adsorbed atoms are more or less in one ordered island, with an equilibrium density of adatoms in the "sea". The tendency toward elongation of the island mentioned above is evident. At the higher temperature, several smaller islands exist, with both orientations now present. The size of these islands corresponds quite well with the experimentally observed sizes. (2)

The results as listed in Figure 1 still have too wide a range of uncertainty for meaningful comparison to calculations of the indirect oscillatory interaction in chemisorbed layers. (4,5) However, in this particular system an r^{-5} decay appears to be too rapid. An extension of the experimentally determined phase boundaries to lower coverages, as well as continued Monte-Carlo modeling to improve the fit to island shapes, is in progress.

Further Monte-Carlo calculations are also underway with a goal of providing a qualitative description of the phase boundaries over the full coverage range $0 \leq \theta \leq 1$. For coverages greater than $\theta = 0.5$, the phase diagram looks quite different (1) than for $\theta < 0.5$. To fit these data requires the inclusion of three-body forces in the calculations. Detailed results of this work will be reported elsewhere. (6)

3. This model is similar to that of E. Williams, S. Cunningham, and W.H. Weinberg, this issue.
5. K.H. Lau and W. Kohn, to be published.
FIGURE CAPTIONS

Figure 1 Models of adatom interactions in the p(2x1) 0 overlayer. Model 1 is the same as the analytical model of Ref. 1, and is the one with the least number of parameters for a bridge-bonded site. Models 2 and 3 are appropriate for the 3-coordinated peak and center bonding sites.

Figure 2 Monte-Carlo calculation of the distribution of adatoms on a 30 x 30 lattice for Model 2 at two different temperatures. a) 275°K, order parameter = .972, b) 325°K, order parameter = .804. Each atom has had on the average 700 chances to take a step.
MODEL 1
\[\varepsilon_a = \varepsilon_{2b} = -0.069 \text{ eV} \]
\[\varepsilon_b = +0.15 \text{ eV} \]

MODEL 2
\[\varepsilon_a = -0.072 \text{ eV} \]
\[\varepsilon_b = +0.080 \text{ eV} \]
\[\varepsilon_c = -0.049 \text{ eV} \]

MODEL 3
\[\varepsilon_a = -0.09 \text{ eV} \]
\[\varepsilon_b = \varepsilon_c = +0.075 \text{ eV} \]
\[\varepsilon_d = -0.03 \text{ eV} \]