INVESTIGATION OF A DISCRETE C-STAR TRANSIENT RESPONSE CONTROLLER FOR THE YF-16 AT A SELECTED FLIGHT CONDITION

THESIS

AFIT/GGC/EE/77-8
Paul D. Monico
Capt USAF

Approved for public release; distribution unlimited
INVESTIGATION OF A DISCRETE C-STAR
TRANSIENT RESPONSE CONTROLLER FOR
THE YF-16 AT A SELECTED FLIGHT CONDITION

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science

by
Paul D. Monico, B.S.
Captain USAF
Graduate Electrical Engineering
December 1977
Approved for public release; distribution unlimited
Preface

This thesis investigates the application of a discrete C-Star (C*) transient response controller to the unstable longitudinal dynamics of the YF-16 Lightweight Fighter Prototype Aircraft. A reduced state model of the aircraft is developed from wind tunnel data and analyzed for open loop stability. This model is transformed into a discrete time domain state model and a discrete cost function applied to develop a controller capable of tracking a commanded response with zero steady state error within the confines of a defined C* envelope boundary. The effects of both a Zero Order and First Order Hold on the system C* response are analyzed using a digital computer simulation. Topics such as sample rates, weighting parameters, saturation effects, and migration of closed loop system roots are also presented.

I would like to thank Mr. Gene James for sponsoring this thesis. I also would like to express my sincere appreciation to Dr. Gary B. Lamont, my thesis advisor, for his guidance and advice throughout this thesis effort. Finally, I wish to express the love I hold for my wife, Mary Ellen and children Chris, Eric, and Jamie who were my strongest supporters. Lastly, I am grateful to my friends, especially by thesis typist, Mrs. Dorothy Grimm, whose constant support, concern, and assistance made the completion of this work possible.

Paul D. Monico
# Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ii</td>
</tr>
<tr>
<td>List of Illustrations</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vii</td>
</tr>
<tr>
<td>List of Abbreviations and Symbols</td>
<td>viii</td>
</tr>
<tr>
<td>Abstract</td>
<td>xiv</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1. Background</td>
<td>1</td>
</tr>
<tr>
<td>2. Problem Statement</td>
<td>7</td>
</tr>
<tr>
<td>3. Order of Presentation</td>
<td>7</td>
</tr>
<tr>
<td>II. Mathematical Model and the Reduction of Data</td>
<td>10</td>
</tr>
<tr>
<td>4. Equations of Motion</td>
<td>10</td>
</tr>
<tr>
<td>5. Directional Convention</td>
<td>14</td>
</tr>
<tr>
<td>6. Trim Angle of Attack</td>
<td>16</td>
</tr>
<tr>
<td>7. Rigid Stability Derivatives</td>
<td>16</td>
</tr>
<tr>
<td>8. YF-16 Longitudinal Equations of Motion</td>
<td>25</td>
</tr>
<tr>
<td>III. Analysis of the Equations of Motion and System Stability</td>
<td>28</td>
</tr>
<tr>
<td>9. Analysis of Equations of Motion</td>
<td>29</td>
</tr>
<tr>
<td>10. Characteristic Equations</td>
<td>29</td>
</tr>
<tr>
<td>11. Response θ(t) to Inputs</td>
<td>35</td>
</tr>
<tr>
<td>12. Aircraft Actuator Servo</td>
<td>41</td>
</tr>
<tr>
<td>IV. Control System Model and the $C^*$ Concept</td>
<td>46</td>
</tr>
<tr>
<td>13. Control System Model</td>
<td>47</td>
</tr>
<tr>
<td>14. $C^*$ Concept</td>
<td>49</td>
</tr>
<tr>
<td>V. Continuous to Discrete System Transformation</td>
<td>54</td>
</tr>
<tr>
<td>15. Continuous System State Model</td>
<td>54</td>
</tr>
<tr>
<td>16. Discrete State Model</td>
<td>59</td>
</tr>
<tr>
<td>VI. ZOH, Optimal Controller and Simulation Development</td>
<td>62</td>
</tr>
<tr>
<td>17. Zero Order Hold Device</td>
<td>63</td>
</tr>
<tr>
<td>18. Penalty Function</td>
<td>66</td>
</tr>
<tr>
<td>19. Computer Program and Simulation</td>
<td>69</td>
</tr>
<tr>
<td>20. Closed Loop System Eigenvalues</td>
<td>79</td>
</tr>
</tbody>
</table>
# Table of Contents

VII. Simulation Results .................................................. 85
   Typical Results ....................................................... 86
   Modification of Control Scheme ................................. 91
   Simulation Observations ......................................... 95
   Saturation Effect ................................................. 105
   Root Migration .................................................... 110

VIII. Conclusions and Recommendations ............................. 114
   Conclusions .......................................................... 114
   Recommendations .................................................. 116

Bibliography ............................................................. 118

Appendix A: Determination of Length to Tail ....................... 120
Appendix B: TRANFUN Program Input/Output .......................... 122
Appendix C: Continuous State Variable Equation Development .. 129
Appendix D: Development of the Recursive Optimal Control .... 141
Appendix E: Simulation Computer Program ............................ 151
Appendix F: Zero Order Hold Simulation Output ..................... 168
Appendix G: Plotting Algorithm ....................................... 173
Vita ............................................................................. 181
### List of Illustrations

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>34</td>
</tr>
<tr>
<td>8</td>
<td>36</td>
</tr>
<tr>
<td>9</td>
<td>36</td>
</tr>
<tr>
<td>10</td>
<td>37</td>
</tr>
<tr>
<td>11a</td>
<td>39</td>
</tr>
<tr>
<td>11b</td>
<td>39</td>
</tr>
<tr>
<td>12a</td>
<td>40</td>
</tr>
<tr>
<td>12b</td>
<td>40</td>
</tr>
<tr>
<td>13</td>
<td>41</td>
</tr>
<tr>
<td>14</td>
<td>42</td>
</tr>
<tr>
<td>15</td>
<td>43</td>
</tr>
<tr>
<td>16</td>
<td>44</td>
</tr>
<tr>
<td>17</td>
<td>47</td>
</tr>
<tr>
<td>18</td>
<td>48</td>
</tr>
<tr>
<td>19</td>
<td>48</td>
</tr>
<tr>
<td>20</td>
<td>52</td>
</tr>
<tr>
<td>Figures</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>21</td>
<td>Nature of Optimal Controls</td>
</tr>
<tr>
<td>22</td>
<td>Simplified Computer Program Flow Diagram</td>
</tr>
<tr>
<td>23</td>
<td>FLAG = 1 Simulation Closed Loop System</td>
</tr>
<tr>
<td>24</td>
<td>Simplified Simulation Flow Design</td>
</tr>
<tr>
<td>25</td>
<td>Simplified Flow Diagram of $I_d$ and $N_d$ Calculation</td>
</tr>
<tr>
<td>26</td>
<td>CAL Thumbprint</td>
</tr>
<tr>
<td>27</td>
<td>Thumbprint in S-Plane</td>
</tr>
<tr>
<td>28</td>
<td>Thumbprint in Z-Plane</td>
</tr>
<tr>
<td>29</td>
<td>State vs Time ($T = 0.02$, $R = Q = 1$, ZOH)</td>
</tr>
<tr>
<td>30</td>
<td>Output vs Time ($T = 0.02$, $R = Q = 1$, ZOH)</td>
</tr>
<tr>
<td>31</td>
<td>Control vs Time ($T = 0.02$, $R = Q = 1$, ZOH)</td>
</tr>
<tr>
<td>32</td>
<td>Updated Control Plus Slope Projection Scheme</td>
</tr>
<tr>
<td>33</td>
<td>Control vs Time ($T = 0.01$, $R = Q = 1$, FOH)</td>
</tr>
<tr>
<td>34</td>
<td>Control vs Time ($T = 0.02$, $R = Q = 1$, FOH)</td>
</tr>
<tr>
<td>35</td>
<td>Sample Rate vs $I_d$ Gain ($Q = 1$, Variable $R$)</td>
</tr>
<tr>
<td>36</td>
<td>Sample Rate vs $N_{d_q}$ ($Q = 1$, Variable $R$)</td>
</tr>
<tr>
<td>37</td>
<td>States vs Output ($T = 1/30$, $Q = 1$, $R = 200$)</td>
</tr>
<tr>
<td>38</td>
<td>Output vs Time ($T = 1/30$, $Q = 1$, $R = 200$)</td>
</tr>
<tr>
<td>39</td>
<td>Control vs Time ($T = 1/30$, $Q = 1$, $R = 200$)</td>
</tr>
<tr>
<td>40</td>
<td>Curves of Constant $R$ and Variable Sample Rates</td>
</tr>
<tr>
<td>41</td>
<td>Root Curves of Constant Sample Rate but Variable $R$ vs Target Root Values</td>
</tr>
</tbody>
</table>
# List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Physical Specifications</td>
<td>15</td>
</tr>
<tr>
<td>II Atmospheric Conditions</td>
<td>15</td>
</tr>
<tr>
<td>III Data Summary</td>
<td>27</td>
</tr>
<tr>
<td>IV C* Terms Defined</td>
<td>50</td>
</tr>
<tr>
<td>V $\overline{A}_d$ and $\overline{B}_d$ Matrices as a Function of Sample Rate</td>
<td>61</td>
</tr>
<tr>
<td>VI Specified vs Actual Sample Rates</td>
<td>75</td>
</tr>
<tr>
<td>VII ZOH vs FOH Control Scheme</td>
<td>93</td>
</tr>
<tr>
<td>VIII Summary of Cases Investigated</td>
<td>96</td>
</tr>
<tr>
<td>IX Optimal $L_d$ Gains</td>
<td>97</td>
</tr>
<tr>
<td>X Optimal $N_{d_\alpha}$ Gains</td>
<td>99</td>
</tr>
<tr>
<td>XI Optimal $N_{d_\beta}$ Gains</td>
<td>101</td>
</tr>
<tr>
<td>XII Optimal $N_{d_\delta}$ Gains</td>
<td>102</td>
</tr>
<tr>
<td>XIII Summary of Time to Reach Steady State</td>
<td>103</td>
</tr>
<tr>
<td>XIV Summary of Gain Effects</td>
<td>104</td>
</tr>
</tbody>
</table>
**List of Abbreviations and Symbols**

### Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/C</td>
<td>Aircraft</td>
</tr>
<tr>
<td>AFIT</td>
<td>Air Force Institute of Technology</td>
</tr>
<tr>
<td>CAL</td>
<td>Cornell Aeronautical Laboratory</td>
</tr>
<tr>
<td>CDC</td>
<td>Control Data Corporation</td>
</tr>
<tr>
<td>D/A</td>
<td>Digital to Analog</td>
</tr>
<tr>
<td>FBW</td>
<td>Fly-by-Wire</td>
</tr>
<tr>
<td>FL</td>
<td>Flight Level</td>
</tr>
<tr>
<td>FOH</td>
<td>First Order Hold</td>
</tr>
<tr>
<td>FS</td>
<td>Fuselage Station</td>
</tr>
<tr>
<td>HT</td>
<td>Horizontal Tail</td>
</tr>
<tr>
<td>Imag</td>
<td>Imaginary</td>
</tr>
<tr>
<td>M</td>
<td>Mach</td>
</tr>
<tr>
<td>MAC</td>
<td>Mean Aerodynamic Chord</td>
</tr>
<tr>
<td>SL</td>
<td>Sea Level</td>
</tr>
<tr>
<td>SM</td>
<td>Static Margin</td>
</tr>
<tr>
<td>ZOH</td>
<td>Zero Order Hold</td>
</tr>
</tbody>
</table>

### Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{A}$</td>
<td>Continuous system dynamics matrix</td>
</tr>
<tr>
<td>a.c.</td>
<td>Aerodynamic center</td>
</tr>
<tr>
<td>$\bar{A}_d$</td>
<td>Discretized version of continuous A matrix</td>
</tr>
<tr>
<td>$A_o - A_m$</td>
<td>Variable coefficients</td>
</tr>
<tr>
<td>$\bar{B}$</td>
<td>Continuous system output matrix</td>
</tr>
<tr>
<td>$\bar{B}_d$</td>
<td>Discretized version of continuous B matrix</td>
</tr>
<tr>
<td>$C^*$</td>
<td>C-Star longitudinal response criteria</td>
</tr>
<tr>
<td>Symbols</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>$\bar{C}$</td>
<td>Observation matrix</td>
</tr>
<tr>
<td>$\bar{C}$</td>
<td>Mean aerodynamic chord length</td>
</tr>
<tr>
<td>$C_D$</td>
<td>Coefficient of drag</td>
</tr>
<tr>
<td>$C_{D}$</td>
<td>Coefficient of drag due to a change in angle of attack</td>
</tr>
<tr>
<td>$\bar{C}_d$</td>
<td>Discretized observation matrix</td>
</tr>
<tr>
<td>$C_{F_{X_a}}$</td>
<td>Effect on the forces in the $X$ direction due to the deflection of the elevator</td>
</tr>
<tr>
<td>$C_{F_{Z_a}}$</td>
<td>Effect on the forces in the $Z$ direction due to the deflection of the elevator</td>
</tr>
<tr>
<td>c.g.</td>
<td>Center of gravity</td>
</tr>
<tr>
<td>$C_L$</td>
<td>Coefficient of lift</td>
</tr>
<tr>
<td>$C_{L}$</td>
<td>Change in coefficient of lift with angle of attack</td>
</tr>
<tr>
<td>$C_{m_{q}}$</td>
<td>Pitch moment stability derivative due to pitch rate</td>
</tr>
<tr>
<td>$C_{m_{u}}$</td>
<td>Change in the pitching moment due to a change in forward velocity</td>
</tr>
<tr>
<td>$C_m$</td>
<td>Change in pitching moment due to a change in angle of attack</td>
</tr>
<tr>
<td>$C_{m}$</td>
<td>Effect of the rate of change of angle of attack caused by $\dot{w}$ on the pitching moment coefficient</td>
</tr>
<tr>
<td>$C_{m}$</td>
<td>Pitch moment stability derivative due to deflection of horizontal stabilizer</td>
</tr>
<tr>
<td>$C_w$</td>
<td>Coefficient due to acceleration of gravity</td>
</tr>
<tr>
<td>$C_{X_{q}}$</td>
<td>Change in force in the $X$ direction due to a change in pitch rate</td>
</tr>
<tr>
<td>$C_{X_{u}}$</td>
<td>Change in force in the $X$ direction due to a change in the forward velocity</td>
</tr>
<tr>
<td>$C_x$</td>
<td>Change in force in the $X$ direction due to a change in the angle of attack</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>$C_x$</td>
<td>Change in force in $X$ direction due to a change in rate of angle of attack</td>
</tr>
<tr>
<td>$C_{Zq}$</td>
<td>Change in the $Z$ force due to a pitching velocity</td>
</tr>
<tr>
<td>$C_{Zu}$</td>
<td>Change in the force in the $Z$ direction due to a change in the forward velocity</td>
</tr>
<tr>
<td>$C_{Za}$</td>
<td>Variation of the $Z$ force with angle of attack</td>
</tr>
<tr>
<td>$C_{Z\dot{a}}$</td>
<td>Variation of the $Z$ force with rate of change in angle of attack</td>
</tr>
<tr>
<td>$C_{Z_0\dot{a}}$</td>
<td>$Z$ force stability derivative due to deflection of horizontal stabilizer</td>
</tr>
<tr>
<td>$\ddot{D}$</td>
<td>Transformation/work matrix</td>
</tr>
<tr>
<td>$\Delta t$</td>
<td>Specified sample rate</td>
</tr>
<tr>
<td>$E\theta_c$</td>
<td>Error between $\theta$ and $\theta_c$</td>
</tr>
<tr>
<td>$f(\ )$</td>
<td>Function of</td>
</tr>
<tr>
<td>$g$</td>
<td>Acceleration due to gravity</td>
</tr>
<tr>
<td>$G(s)$</td>
<td>Forward transfer function of system</td>
</tr>
<tr>
<td>$H(s)$</td>
<td>Feedback transfer function of system</td>
</tr>
<tr>
<td>$I$</td>
<td>Identity matrix</td>
</tr>
<tr>
<td>$I_{yy}$</td>
<td>Mass moment of inertia about $Y$ axis of aircraft</td>
</tr>
<tr>
<td>$i$</td>
<td>Integer counter</td>
</tr>
<tr>
<td>$J$</td>
<td>Cost functional</td>
</tr>
<tr>
<td>$J_d$</td>
<td>Discrete cost functional</td>
</tr>
<tr>
<td>$\dot{J}$</td>
<td>Counter or imaginary axis</td>
</tr>
<tr>
<td>$K$</td>
<td>Gain</td>
</tr>
<tr>
<td>$K_T$</td>
<td>Discrete value of time</td>
</tr>
<tr>
<td>$K_Z$</td>
<td>Normal acceleration gain constant</td>
</tr>
<tr>
<td>$K_{\dot{a}}$</td>
<td>Pitch acceleration gain control</td>
</tr>
<tr>
<td>$K_{\dot{\theta}}$</td>
<td>Pitch rate gain constant</td>
</tr>
</tbody>
</table>
### Symbols (Continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_{d}$</td>
<td>$(1 \times 3)$ Ricatti gain used to calculate $N_d$</td>
</tr>
<tr>
<td>$K_{2d}$</td>
<td>$(1 \times 1)$ Ricatti gain used to calculate $I_d$</td>
</tr>
<tr>
<td>$L_d$</td>
<td>Scalar control gain</td>
</tr>
<tr>
<td>Long</td>
<td>Duration of simulation run</td>
</tr>
<tr>
<td>$L_t$</td>
<td>Length to tail from quarter chord point of wing to quarter chord point of horizontal stabilizer</td>
</tr>
<tr>
<td>$m$</td>
<td>Mass of aircraft</td>
</tr>
<tr>
<td>$N$</td>
<td>Finite number</td>
</tr>
<tr>
<td>$\bar{N}_d$</td>
<td>$1 \times 3$ matrix feedback gain; elements are $N_{d\alpha}$, $N_{d\dot{\varphi}}$, and $N_{d\dot{\psi}}$</td>
</tr>
<tr>
<td>$N_Z$</td>
<td>Normal acceleration</td>
</tr>
<tr>
<td>$P$</td>
<td>Discrete algebraic Ricatti solution matrix</td>
</tr>
<tr>
<td>p.h.</td>
<td>Phugoid oscillation</td>
</tr>
<tr>
<td>$q$</td>
<td>Pitch rate, the angular velocity of the aircraft about the Y axis</td>
</tr>
<tr>
<td>$Q$</td>
<td>Dynamic pressure</td>
</tr>
<tr>
<td>$Q_d$</td>
<td>Discrete trajectory error weighting penalty</td>
</tr>
<tr>
<td>$R_d$</td>
<td>Discrete control penalty weighting</td>
</tr>
<tr>
<td>$S$</td>
<td>Wing area</td>
</tr>
<tr>
<td>s.p.</td>
<td>Short period oscillation</td>
</tr>
<tr>
<td>$s$</td>
<td>Laplace operator</td>
</tr>
<tr>
<td>$S_{1,2}$</td>
<td>S-plane conjugate roots</td>
</tr>
<tr>
<td>$T$</td>
<td>Sample rate or thrust</td>
</tr>
<tr>
<td>TDEL</td>
<td>Actual sample rate used</td>
</tr>
<tr>
<td>$t_p$</td>
<td>Time to peak overshoot</td>
</tr>
<tr>
<td>$T_{ph}$</td>
<td>Period of the phugoid</td>
</tr>
<tr>
<td>$T_{sp}$</td>
<td>Period of the short period oscillation</td>
</tr>
</tbody>
</table>
Symbols (Continued)

- Total forward velocity of aircraft
- Velocity component of the aircraft in the X axis direction also the Z-plane X axis
- Control vector
- Initial value of control
- Cross over velocity
- Z-plane imaginary axis
- Nominal weight
- State vector, elements $\bar{x}_1$, $\bar{x}_2$, $\bar{x}_3$
- Distance from fixed control point to aero-dynamic center divided by chord length
- Distance from fixed control point to center of gravity divided by chord length
- Steady state value of state vector
- Initial values of state vector
- Output vector
- Angle of attack
- Angle of attack from trim
- Incremented change in the variable
- Deflection of the elevator
- Deflection of the horizontal stabilizer
- Commanded deflection of horizontal stabilizer
- Damping ratio
- Longitudinal damping ratio of the phugoid oscillation
- Longitudinal damping ratio of the short period oscillation
<table>
<thead>
<tr>
<th>Symbols</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \theta )</td>
<td>Pitch angle</td>
</tr>
<tr>
<td>( \theta_c )</td>
<td>Commanded pitch angle</td>
</tr>
<tr>
<td>( \Theta )</td>
<td>Angle between horizontal and X stability axis</td>
</tr>
<tr>
<td>( \rho )</td>
<td>Atmospheric density</td>
</tr>
<tr>
<td>( \tau )</td>
<td>Time variable</td>
</tr>
<tr>
<td>( \omega_s )</td>
<td>Damped natural frequency</td>
</tr>
<tr>
<td>( \omega_n )</td>
<td>Undamped natural frequency</td>
</tr>
<tr>
<td>( \forall )</td>
<td>For all</td>
</tr>
</tbody>
</table>
Abstract

The YF-16 fighter aircraft represents a radical departure from conventional aircraft design. Reduced longitudinal static stability results in an aircraft which is unstable in subsonic flight; a characteristic of considerable challenge in its control aspects. The present analog, fly-by-wire configuration of the aircraft's control system makes it an attractive candidate for digital control adaptation. Such a scheme, if successful, could mean a more compact, lighter, less failure prone, and more adaptable control system.

This thesis investigates the feasibility of a discrete digital flight controller for the YF-16 through the design and analysis of an optimal discrete controller at $M = .8$ at sea level. The investigation is limited to the longitudinal pitch axis only. A reduced state, short period approximation mathematical YF-16 model is developed from available data. The open loop stability and response characteristics of the model are shown to be unacceptable, necessitating the use of closed loop compensation. The minimization of a discrete cost function is used to develop a recursive discrete control formula which uses present values of output and past error information to successfully control this intentionally unstable aircraft system. The thesis discusses and incorporates the concept of a proposed $C^\star$ (C-Star) handling qualities criterion in the determination of acceptable response. The concept of $C^\star$, which blends system states, is incorporated as an integral part of a closed loop, discrete control model for the YF-16. Digital computer simulation, using a Zero Order Hold (ZOH) or First Order Hold (FOH) control scheme, results in a stabilized system model whose output
falls within the bounds of a defined C* envelope, and capable of performing the limited tracking task of following a 1-G climb, pilot, input command. Typical results in the form of plotted time history information are discussed. Results of the simulation show the ZOH superior to the FOH control scheme in reducing the elapsed time to reach steady state. The time required to achieve steady state is also shown to be appreciably unaffected at sample rates greater than T = 1/50 second. More frequent sampling, however, does result in the production of smaller controls. The variation in optimal feedforward and feedback gain for various combinations of sample rate and cost function penalty parameters is also presented in tabular form. An increase in the control penalty weighting (R), while holding the sample rate constant, is seen as having the same effect on the elapsed time for the transient response to reach a zero error steady state value, as decreasing the sample rate, while R is held constant. In either case, the elapsed time increases.

The possibility of actuator saturation due to excessive control movement rates is pointed out and discussed in relation to the simulation conducted. Finally, an investigation of the closed loop system complex conjugate root migrations show R as being inversely proportional to the system natural frequency (\( \omega_n \)), with the trajectory error penalty weighting (Q) determining the damping ratio (\( \zeta \)).
I. Introduction

The introduction of flight control systems totally based upon an electrical primary flight control system, emphasizing feedback, such that vehicle motion is the controlled parameter, is a recent occurrence in aircraft flight control system design. This is in part due to the infancy of its technology and the sense of security attached to proven mechanical flight control systems. In an effort to dispel this resistance, and add to the literature, but moreover, to analyze some of the problems encountered in such an approach, this investigation develops a linear time-invariant model of the YF-16 Lightweight Fighter Prototype and combines with it a digital flight control system capable of tracking step inputs.

Background

The important credentials of any would be air-superiority fighter are its speed, maneuverability and loiter capability.

Speed is enhanced by lightweight aircraft components which contribute to favorable thrust to weight ratios; maneuverability is enhanced by the aerodynamic design including the displacement control surface technique used; and loiter capability is enhanced by low fuel consumption and low failure rates. In many instances, one attribute is enhanced at the expense of another. More often than not, the
resulting design reflects a compromise of these important attributes and a corresponding compromise in the resulting aircraft performance. With these considerations in mind, the design of fighter aircraft becomes a challenging task and is a subject of intense interest in the Air Force. The YF-16 Lightweight Fighter Prototype was designed to meet this challenge. It represents a radical departure from conventional aircraft design in an attempt to achieve an optimal blend of speed, maneuverability, and loiter capability.

With a length of just over forty-six feet, a wing-span of thirty-one feet, and a maximum weight of 27,000 pounds, the YF-16 is considerably lighter and quite a bit smaller than most present-day fighters. Less discernable to the eye, however, the YF-16 exhibits a novel center of gravity (cg), aerodynamic center (ac) relationship. A short discussion of this important relationship is in order.

If the aircraft center of gravity is located at the aerodynamic center, there is a condition of zero static margin or neutral stability (Fig. 1). This situation, though not unstable, could present a difficult dynamic situation for a pilot to control. If the cg is moved aft of the ac, the aircraft becomes unstable (Fig. 2). The aircraft will not maintain a trim condition and if disturbed, will continue to pitch up or down at the induced rate. The amount the cg is aft or forward of the ac is the margin of stability. If the cg is aft of the ac, the static margin is termed negative while a cg ahead of the ac describes positive static stability.
Traditionally, aircraft have been designed to be aerodynamically stable (positive static margin) in the longitudinal mode. In addition to allowing for a trim condition, this traditional design tends to bring the aircraft back to a straight and level attitude when disturbed.
from a trimmed flight condition. Were it not for this intentionally designed-in characteristic of static stability, a pilot would be continuously adjusting and compensating to keep the aircraft flying.

In subsonic flight this type of stability (positive static stability) is desirable; however, as the aircraft passes through the transonic region (Mach \(0.8 < M < 1.2\)) and becomes supersonic, the ac moves aft. Here, its statically stable nature becomes detrimental. In effect, since the ac is now further aft of the cg, the statically stable aircraft becomes "super stable." This means that the aircraft displays greater resistance to any disturbance which might cause it to move from its stable attitude. When such disturbances result from control commands transmitted by a pilot, the aircraft, not being able to discriminate between a gust or legitimate command, resists. This is an obvious handicap for a modern high-performance fighter which is expected to display exceptional agility in maneuvers at supersonic speeds.

The obvious solution to this problem is to reduce the longitudinal stability margin in order to make the aircraft more maneuverable at supersonic speeds. Such a solution, however, would cause an aircraft to be unstable in subsonic flight. Such a situation could not be tolerated. This obvious dilemma existed for sometime, until recent developments in automatic control system technology offered a solution.

The solution to this dilemma takes the form of what is called a fly-by-wire (FBW) control system. Instead of a complex network of mechanical linkages, this system uses electronic signals to relay requested response requirements from the pilot to electro-hydraulic servos which move the control surfaces. In a constant-G climb, for instance, as the aircraft response to a command begins, the response
is fed back to the flight control computer where it is compared to the pilot's G requirements. When the two match, the signal is nulled; no further control is applied. The aircraft maintains the constant G climb until the command is changed.

The YF-16 uses such a system. However, the relaxation of static stability and all its performance benefits have not been without cost. Since the YF-16 is intentionally designed to maintain from seven to ten percent negative static margin, the stability of the aircraft is reduced to the extent that the YF-16 is unstable in pitching motion at all subsonic airspeeds. Therefore, with an airframe intentionally designed to be unstable in subsonic flight, the YF-16 relies upon the flight control system to maintain tight closed-loop control over its unstable dynamics.

The fly-by-wire control system is used to keep a tight rein on the aircraft, especially during the subsonic portion of the flight envelope where it is inherently unstable. Because of the implementation of relaxed static stability technology, the flight control systems acts as a compensator to fill in for the inadequacy of the aircraft design in terms of stability. The end result is that the YF-16 is not only stabilized but has the advantages of reduced drag as a result of the unstable airframe design and greater ease of maneuverability especially at supersonic speeds. As the gains and compensation networks in the control system are changed, the stability of the aircraft can be varied. The advantage, then, is that in subsonic flight, the aircraft can be made stable, to fly in the conventional manner, and in supersonic flight, the stability can be relaxed to allow greater maneuverability.
At present, the controller for the unstable pitch axis is a complex analog computer. Gain adjustments are controlled by this on-board device. Gains are "scheduled" as a function of flight condition in an adaptive control scheme. For example, one particular airspeed, altitude, angle of attack and pitch rate might identify a particular gain from the schedule of possible gains, while a slightly different airspeed, angle of attack, and pitch rate might identify another. In its analog configuration, the present controller is not only bulky and difficult to mechanize, but also presents problems in terms of future modification.

With some appreciation for the present control configuration of the YF-16 just described, it has been suggested that digital computers be substituted for present analog computer controllers (Ref. 5). This suggestion is reasonable in light of the advent of small digital computers and recent advances in digital integrated circuits which make the digital computer an attractive candidate as a controller. Much effort has been expended in researching this proposed substitution approach (Ref. 18).

A digital controller would have the advantage of being more compact, of less mechanical complexity, lighter, less failure prone, and more adaptable to changes in the form of software adjustments to modify control laws. However, with these advantages, are associated new problems not encountered with the analog controller. Two such problems, among a list of others including the areas of sufficient word length and adequate memory size, are the identification of an adequate recursive digital control algorithm and the determination of the sampling rate with which to implement this algorithm.
Problem Statement

Along this vein, the problem addressed in this study is the design and analysis of an optimal discrete controller at a selected flight condition for the longitudinal pitch axis of the YF-16 using a specific $C^*$ (pronounced C-Star) performance criteria. The scope of the analysis is limited to the consideration of the unstable longitudinal mode of the YF-16 only. It is this mode which is applicable to the $C^*$ performance criteria. Additionally, it is pitch response which is the most divergent dynamic mode.

The cases of both Mach .8 and Mach 1.2 at sea level and 30,000 feet for trim angles of attack are considered. These particular flight conditions were selected based on the availability of data (Ref. 13 and 14), and in consideration of the fact that high subsonic flight at sea level is considered the most critical area for pitch response for this aircraft. Here, control surface deflections produce the greatest dynamic effect on the statically unstable airframe.

Order of Presentation

In an effort to develop, simulate, and discuss a suitable discrete control concept for a pitching model of the YF-16, the remaining chapters of this investigation are organized as follows.

In Chapter II, non-dimensional stability derivatives for Mach .8 at sea level for a three degree of freedom aircraft model are developed. The corresponding derivatives for the three remaining flight conditions are also listed. The model is derived from available wind tunnel data.

In Chapter III, the equations of motion developed in the preceding chapter are investigated. The nature of the open loop system stability
and the character of its response performance are discussed.

In Chapter IV, a discrete model of the proposed control system is presented. Additionally, the concept of $C^*$ as a plausible stability criteria is presented. This approach, which has gained some popularity, uses a linear blend of normal acceleration, pitch rate, and pitch acceleration to define proper performance. The $C^*$ concept is included as an integral part of the proposed control system.

Chapter V details the development of a discrete system model from its continuous representation. Also included is the development of the observer matrix needed to transform the system states into usable $C^*$ parameters.

Chapter VI presents the mathematical development of the optimal discrete controller using this $C^*$ performance criterion and the recursive digital control algorithm which results. Also discussed is the concept of a hold device. The chapter concludes with a discussion of the structure of the software developed for this investigation and used to implement the controller concept. This program, as a function of sample rate, determines the optimal gains to be applied in the control algorithm to achieve satisfactory transient $C^*$ response of the system. Various assumptions and limitations are also discussed along with the simulation technique conducted. The controller is simulated at various sample rates using a CDC 6600 Digital Computer. The migration of the closed loop system roots as a function of sample rate is investigated along with saturation effects on the horizontal stabilizer servo. Using the simulation, an attempt is made to identify a minimum sample rate which, based upon the saturation limit of the pitch control
servo and characteristic root locations, still results in a response within defined $C^k$ envelope bounds.

Chapter VII discusses observations on the controllability of the system resulting from the simulation effort. Typical results are presented and explained. The effects of sample rates and cost function penalty weighting variations are also included.

Finally, in Chapter VIII, the conclusions drawn from this investigative effort are presented and recommendations are discussed pertaining to further research.
II. Mathematical Model and the Reduction of Data

Before the implementation of any controller and an analysis of its effectiveness can be undertaken, an adequate mathematical model of the aircraft must first be developed. The purpose of this chapter is, therefore, to develop a mathematical model of the YF-16 for longitudinal pitching motion. Generalized equations of motion are first presented and then reduced in complexity through the use of simplifying assumptions. The remainder of the chapter presents the development of rigid stability derivatives which constitute the individual terms of the equations of motion. These derivatives are summarized in table format at the conclusion of the chapter.

Equations of Motion

As explained in the preceding chapter, this investigation is concerned only with the longitudinal pitching mode of the YF-16. Therefore, disregarding the negligible cross-coupling effects of lateral-directional motion, the small perturbation equations of motion which describe the dynamics of the aircraft follow:

\[
\left( \frac{2\mu}{S^q} \alpha' - C_{\alpha \alpha} \right) \left( -\frac{e}{2} C_{\phi \alpha} \alpha' - C_{\phi \phi} \right) + \left( -\frac{e}{2} C_{\phi \alpha} \dot{\phi} - C_{\phi \phi} \theta \cos(\theta) \right) = C'_{F_{\alpha \alpha}} \tag{1}
\]
\[
\left(-C_{n\alpha} \ddot{\alpha}\right) + \left[\frac{\mu}{S_f} C_{\alpha} \frac{\ddot{\alpha}}{C_{\alpha}}\right] + \left(-\frac{\mu}{S_f} C_{\alpha} \dot{\alpha}\right) - C_{\alpha \alpha} \left(S \sin \Theta \right) \dot{\Theta} = C_{m_{\alpha}}
\]

These equations are Blakelock's non-dimensional equations of motion for the longitudinal axis of an aircraft and will be used to model the YF-16. Their development will not be presented here but can be found in Reference 1. Definitions of individual equation elements are included in the previous List of Abbreviations and Symbols, p.viii.

The various non-dimensional coefficients in these equations are referred to as stability derivatives. The equations can be simplified somewhat by the judicious elimination of three of these derivatives. It is possible to eliminate \( C_{x_\alpha} \), \( C_{X_q} \), and \( C_{m_u} \) terms from the equations thus considerably simplifying the modeling equations.

As Blakelock points out, \( C_{x_\alpha} \) and \( C_{X_q} \), the effect of downwash from the wing on the horizontal tail and the effect of pitch rate on drag, respectively, have negligible contributions to the equations and are usually neglected.

\( C_{m_u} \), a term resulting from slipstream, thrust, and flexibility effects, is the change in pitching moment due to a change in forward velocity. As pointed out in Reference 1, this term can be safely
neglected for jet aircraft. Using these simplifications for all the flight conditions in this study results in equations (1), (2), and (3) being expressed as:

\[
\begin{align*}
\left[ \frac{2\mu \dot{\alpha}}{S_y} - c_{xa} \dot{\alpha} \right] + \left[ -c_{xa} \right] + \left[ -c_w (\cos \Theta) \dot{\Theta} \right] &= C_{F_{xa}} \\
\left[ -c_{zm} \dot{\phi} \right] + \left[ \left( \frac{2\mu}{S_y} - \frac{\bar{C}_{L_{za}}}{2\mu} \right) \dot{\phi} - c_{zm} \dot{\phi} \right] + \left[ \left( -\frac{2\mu}{S_y} - \frac{\bar{C}_{L_{za}}}{2\mu} \right) \dot{\phi} - c_w (\sin \Theta) \dot{\Theta} \right] &= C_{F_{za}} \\
\left[ -\frac{\bar{C}_{m_{za}}}{2\mu} \dot{\alpha} - c_{ma} \dot{\alpha} \right] + \left[ \frac{T_{yy}}{S_f c} \dot{\Theta} - \frac{\bar{C}_{m_{za}}}{2\mu} C_{m_{za}} \dot{\Theta} \right] &= C_{m_{za}}
\end{align*}
\]

As Reference 1 points out, the forcing function of \( C_{F_{xa}} \) can be approximated as equaling zero, while \( C_{F_{za}} \) and \( C_{ma} \) equal \( C_{L_{za}} \delta_e \) and \( C_{m_{za}} \delta_e \), respectively. Now, substituting for the forcing functions on the right-hand side of equations (4), (5), and (6), with the notational difference that \( \delta_h \), the deflection of the horizontal stabilizer, replaces \( \delta_e \), the deflection of the elevator, since the YF-16 has a movable horizontal stabilizer and no elevator, the equations become:
\[ \left[ \frac{2 \omega^2}{S_P} \mathbf{u} - c_x \mathbf{u} \right] + \left[ -c_x \mathbf{u} \right] + \left[ -c_w \left( \cos \Theta \right) \Theta \right] = 0 \quad (7) \]

\[ \left[ -c_x \mathbf{u} \right] + \left[ \left( \frac{2 \omega^2}{S_P} - \frac{\dot{c}_w^2}{2 \omega^2} \right) \mathbf{u} - c_w \mathbf{u} \right] + \left[ \left( \frac{2 \omega^2}{S_P} - \frac{\dot{c}_w^2}{2 \omega^2} \right) \Theta - c_w \left( \sin \Theta \right) \Theta \right] = c_z \mathbf{S_h} \quad (8) \]

\[ \left[ \frac{\ddot{c}_m}{2 \omega^2} \mathbf{u} - c_m \mathbf{u} \right] + \left[ \frac{T_{gy}}{S_P^2} \ddot{\Theta} - \frac{\ddot{c}_m}{2 \omega^2} \mathbf{u} \right] = C_m \mathbf{S_h} \quad (9) \]

In Laplace notation the equations become:

\[ \left[ \frac{2 \omega^2}{S_P} \mathbf{u} - c_x \mathbf{u} \right] \mathbf{U}(s) - \left[ -c_x \mathbf{u} \right] \mathbf{U}(s) - \left[ -c_w \left( \cos \Theta \right) \Theta \right] \Theta(s) = 0 \quad (10) \]

\[ \left[ -c_x \right] \mathbf{U}(s) + \left[ \left( \frac{2 \omega^2}{S_P} - \frac{\dot{c}_w^2}{2 \omega^2} \right) \mathbf{u} - c_w \mathbf{u} \right] \mathbf{U}(s) + \left[ \left( \frac{2 \omega^2}{S_P} - \frac{\dot{c}_w^2}{2 \omega^2} \right) \Theta - c_w \left( \sin \Theta \right) \Theta \right] \Theta(s) = c_z \mathbf{S_h}(s) \quad (11) \]

\[ \left[ \frac{\ddot{c}_m}{2 \omega^2} \mathbf{u} - c_m \mathbf{u} \right] \mathbf{U}(s) + \left[ \frac{T_{gy}}{S_P^2} \dot{\Theta} - \frac{\ddot{c}_m}{2 \omega^2} \mathbf{u} \right] \Theta(s) = C_m \mathbf{S_h}(s) \quad (12) \]

13
In order to evaluate and apply these equations to the YF-16, the various terms must be replaced by actual values. The remainder of this chapter presents the detailed development of each of these stability derivatives for the flight conditions at Mach .8 at sea level. Flexible aircraft effects will not be considered.

As a prelude to this development, the following directional convention is presented.

**Directional Convention**

A positive control force produces a negative surface deflection and causes a positive moment about the pitch axis (Fig. 3).

Note that for the horizontal stabilizer control surface, trailing edge up is defined as negative, i.e., $S_h$ $\rightarrow$ pitch up.

The rigid stability derivative calculations are based on stability and flight control data furnished by General Dynamics Convair Aerospace Division (Ref. 13 and 14).
The configuration chosen was that of a clean aircraft (i.e., gear up, flaps retracted, etc.) with external fuel tanks removed. The physical specifications and atmospheric conditions listed in Tables I and II apply.

### Table I
#### Physical Specifications

<table>
<thead>
<tr>
<th>Nominal Weight (WT)</th>
<th>16,519 lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wing Area (S)</td>
<td>280 ft²</td>
</tr>
<tr>
<td>Mean Aerodynamics chord (c)</td>
<td>10.937 ft</td>
</tr>
<tr>
<td>Mass Moment of Inertia (Iyy)</td>
<td>39,199 ft-lbs-sec²</td>
</tr>
<tr>
<td>Distance from c/4 of wing MAC to c/4 of Horizontal Tail MAC (l_e)</td>
<td>15.66 ft</td>
</tr>
</tbody>
</table>

(See Appendix A)

### Table II
#### Atmospheric Conditions

<table>
<thead>
<tr>
<th>Altitude</th>
<th>Sea Level</th>
<th>30,000' (FL 300)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mach No.</td>
<td>.8</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>.8</td>
<td>1.2</td>
</tr>
<tr>
<td>Density (ρ)</td>
<td>.002378</td>
<td>.002378</td>
</tr>
<tr>
<td>slug/ft³</td>
<td>.00890</td>
<td>.00890</td>
</tr>
<tr>
<td>Dynamic Pressure (q)</td>
<td>949.44</td>
<td>2136.24</td>
</tr>
<tr>
<td>lb/ft²</td>
<td>282.02</td>
<td>634.51</td>
</tr>
<tr>
<td>Velocity (V)</td>
<td>893.6</td>
<td>1340.4</td>
</tr>
<tr>
<td>ft/sec</td>
<td>796.08</td>
<td>1194.1</td>
</tr>
</tbody>
</table>
As a preliminary step, it was necessary to determine the trim angle of attack for the selected flight condition \((M = 0.8, \text{ sea level})\).

**Trim Angle of Attack**

At the trim condition \(g's = 1.0\).

\[
\begin{align*}
\# g' \alpha & = \frac{\rho \cdot S}{W \cdot T} \left[ C_{L_{\alpha = 0}} + C_{L_{\alpha}} \alpha_{trim} \right] = 1.0 \\
& = \frac{949.44 \cdot (280)}{14,519} \left[ 0.005 + 0.078 \alpha \right] = 1.0 \\
\therefore \alpha_{trim} & = 7.3^\circ
\end{align*}
\]  

Here, it has been assumed that the pitching moment and drag equations are satisfied at this trim angle of attack. This angle of attack was used to extract data from the various graphs and tables found in References 13 and 14.

**Rigid Stability Derivatives**

The purpose of this section is the determination of exact values of the stability derivatives at \(M = 0.8\) at sea level needed to mathematically model the aircraft. These derivatives are based on a stability axis system with its centroid at the wing quarter chord and waterline of 91.0 inches. Detailed definitions of each derivative beyond the short definitions found in the List of Symbols on page viii, are found in Reference 1 and will not be included here.
a. $C_{m \dot{\alpha}}$:

This derivative was extracted directly from the data tables (Ref. 14).

$$C_{m \dot{\alpha}} = -1.520/\text{Rad}$$ \hspace{1cm} (15)

b. $C_{z \dot{\alpha}}$:

$$C_{z \dot{\alpha}} = f(C_{m \dot{\alpha}}) = \frac{\bar{c}}{\bar{f}} C_{m \dot{\alpha}}$$ \hspace{1cm} (16)

$$= \frac{10,937'}{15.666'} (-1.520)$$

$$C_{z \dot{\alpha}} = -1.0611/\text{Rad}$$

c. Mass ($M$):

$$M = \frac{\text{weight}}{\text{gravity}} = \frac{16,519 \text{ lbs}}{32.1725 \text{ ft/sec}^2}$$ \hspace{1cm} (17)

$$M = 513.45 \text{ slugs}$$

d. Forward Vel ($U$):

Speed of sound at sea level

$$c = 1117 \text{ ft/sec}$$ \hspace{1cm} (18)

$$\text{Mach} .8 = .8 (1117)$$ \hspace{1cm} (19)

$$U = 893.6 \text{ ft/sec}$$
e. Dynamic Pressure \( q \):

\[
q = \frac{1}{2} U^2
\]

\[
q = \frac{0.002378}{2} (893.6)^2
\]

\[
q = 949.44 \text{ lb/ft}^2
\]

f. \( \frac{hU}{S_f} \):

\[
\frac{hU}{S_f} = \frac{(513.45)(893.6)}{(280)(949.44)}
\]

\[
= 1.726
\]

g. \( \frac{I_{yy}}{S_f \bar{e}} \):

\[
\frac{I_{yy}}{S_f \bar{e}} = \frac{39,199}{280 (849.44)(10.937)}
\]

\[
= 0.135 \text{ sec}^2
\]

h. \( \frac{\bar{e}}{2U} \):

\[
\frac{\bar{e}}{2U} = \frac{10.937}{2 (893.6)}
\]

\[
= 0.0061 \text{ sec}
\]

i. \( C_w \):

\[
C_w = \frac{-Ng}{S_{q}} = \frac{-513.45 (32.1725)}{(280)(949.44)}
\]

\[
C_w = -0.0621
\]
j. \( C_{m_{S_h}} \):

\( C_{m_{S_h}} \) was determined for pitch up only. Data was available for horizontal tail deflections of \( 0^\circ \rightarrow -10^\circ \) which, based upon the previously set convention, causes the aircraft's nose to pitch up.

\[
C_{m_{S_h}} = \frac{\Delta C_m}{\Delta \delta_{S_h}} \tag{25}
\]

A linear interpolation of the data between \( \alpha = 0^\circ \) and \( \alpha = 2.5^\circ \) was performed to determine \( C_m \) for \( \alpha_r = .73 \)

<table>
<thead>
<tr>
<th>( \alpha )</th>
<th>( \Delta C_m )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^\circ</td>
<td>.1120</td>
</tr>
<tr>
<td>.73^\circ</td>
<td>.1126</td>
</tr>
<tr>
<td>2.50^\circ</td>
<td>.1140</td>
</tr>
</tbody>
</table>

\[
\frac{\Delta C_m}{\Delta \delta_{S_h}} = \frac{.1126}{-10 \text{ deg}} \tag{26}
\]

\( C_{m_{S_h}} = -.6452/\text{Rad} \)

k. \( C_{m_q} \):

\[ C_{m_q} = C_{m_0} \tag{27} \]
This value was extracted directly from the tables.

\[ C_{mq} = -4.3900 \]  \hspace{1cm} (28)

1. \( C_{zq} \):

\[ C_{zq} = f(C_{mq}) \]  \hspace{1cm} (29)

\[ = \frac{\bar{c}}{l_c} C_{mq} = 0.6981 \cdot (-4.3900) \]

\[ C_{zq} = -3.0647 \]

m. \( C_{x_a} \):

\[ C_{x_a} = C_l - \frac{\partial C_{ba}}{\partial \alpha} = C_l - C_{ba} \]  \hspace{1cm} (30)

for \( \alpha = 0.73 \)

\[ C_{ba} = 0.0011/\text{deg} = 0.0630/\text{Rad} \]  \hspace{1cm} (31)

\[ C_l = 0.0625 \text{ (interpolation result)} \]  \hspace{1cm} (32)

\[ C_{x_a} = C_l - C_{ba} = 0.0625 - 0.0630 \]  \hspace{1cm} (33)

\[ C_{x_a} = -0.0005 \]

n. \( C_{x_u} \):

\[ C_{x_u} = \frac{\nu}{s_f} \frac{\partial T}{\partial u} - 2C_l + \nu \frac{\partial C_b}{\partial \nu} \]  \hspace{1cm} (33)

20
The first term on the right-hand side of equation (33) reduces to zero, that is \( \frac{\partial T}{\partial \mu} = 0 \), since thrust is essentially constant for jet aircraft. Equation (33) can now be expressed as:

\[
C_{xu} = -2C_b - \mu \frac{\partial C_b}{\partial \mu}
\]  

(34)

or equivalently as:

\[
C_{xu} = -2C_b - \text{Mach} \left[ \frac{\Delta C_b}{\Delta \text{Mach}} \right]
\]  

(35)

\[
C_b = 0.0248 \quad \text{(interpolation result)}
\]

(36)

\[
-2C_b = 0.0496
\]

(37)

\[
\text{M} \left[ \frac{\Delta C_b}{\Delta \text{Mach}} \right] = 0.8 \left[ \frac{C_b_{M=0.8} - C_b_{M=0.9}}{0.8 - 0.9} \right]
\]

(38)

\[
= 0.8 \left[ \frac{0.0248 - 0.0268}{0.8 - 0.9} \right]
\]

\[
= 0.0160
\]

\[
\therefore C_{xu} = -2C_b - \text{Mach} \left[ \frac{\Delta C_b}{\Delta \text{Mach}} \right] = -0.0496 - 0.0160 = -0.0656
\]

(35)
\( C_{x_0} \):

\[
C_{x_0} = -c_d - \frac{\partial c_z}{\partial \alpha} 
\]

\( C_{x_0} = -c_d - c_{L\alpha} \)

\( -c_d = -0.0248 \)

\( c_{L\alpha} = (57.3)(.078) \)

\( c_{L\alpha} = 4.4694/\text{Rad} \)

\[
C_{z_0} = -c_d - c_{L\alpha} 
\]

\( C_{z_0} = -0.0248 - 4.4694 \)

\( C_{z_0} = -4.4942 \)

\( p. C_{zS_h} \):

\[
C_{zS_h} = f(c_{mS_h}) 
\]

\[
= \frac{\partial}{\partial c} c_{mS_h} \quad \alpha \rightarrow -\alpha 
\]

\( = (0.6981)(-0.6452) \)

\( = -0.4504 \)
If $C_{m_d}$ is positive, the aircraft is statically unstable.

Recalling the discussion of stability in the previous chapter, we would expect the YF-16 to have a positive $C_{m_d}$ for this subsonic flight condition. As shown earlier:

$$\frac{\partial C_l}{\partial \alpha} = 4.4694/\text{Rad}$$

$$\text{S.M.} = \begin{bmatrix} \bar{x}_{c.g} - \bar{x}_{a.c.} \end{bmatrix} = \begin{bmatrix} .35 & .31 \end{bmatrix}$$

$$\text{S.M.} = .04$$

$$C_{m_d} = (\text{S.M.}) \frac{\partial C_l}{\partial \alpha} = (.04)(4.4694) = .1788$$
As anticipated, $C_{m_a}, M = .8$, S.L. is positive. A check of $C_{m_a}, M = 1.2$, S.L. shows this coefficient as negative.

$$C_{m_a} = (\text{S.M.}) \quad (48)$$

$$= (.35 - .56)(5.2143)$$

$$C_{m_a} = -1.0950$$

For this stability derivative then, the model truly reflects the variable stability aspect of the YF-16, i.e., a shift from instability to a stable nature as the aircraft accelerates past $M = 1.0$.

r. $C_{z_a}$:

$$C_{z_a} = -2C_L - 2\mu \left[ \frac{\partial C_L}{\partial \mu} \right] \quad (49)$$

or equivalently as:

$$C_{z_a} = -2C_L - \text{Mach} \left[ \frac{\Delta C_L}{\Delta \text{Mach}} \right] \quad (50)$$

As earlier,

$$C_L = .0625 \quad (32)$$

and

$$-2C_L = -.1250 \quad (51)$$

$$M \left[ \frac{\Delta C_L}{\Delta M} \right] = .8 \left[ \frac{C_{L,M = .8} - C_{L,M = .9}}{.8 - .9} \right] \quad (52)$$
\[
M \left[ \frac{\Delta C_l}{\Delta M} \right] = .8 \left[ \frac{.0625 -.0704}{-.1} \right]
\]

\[
M \left[ \frac{\Delta C_l}{\Delta M} \right] = .0632
\]

\[
\therefore C_{Z_k} = -2C_l - M \left[ \frac{\Delta C_l}{\Delta M} \right]
\]

\[
= -.1250 - .0632
\]

\[
C_{Z_k} = -.1882
\]

A tabulation of the values just calculated to be used in equations (10), (11), and (12) follows in Table III. Also involved are the stability derivatives for the three remaining flight conditions. These values were calculated in the same manner as the case of \(M = .8\) at sea level, just presented.

Using the appropriate data from Table III, equations (10), (11), and (12) can be expressed numerically.

**YP-16 Longitudinal Equations of Motion**

\(M = .8, \text{ Sea Level}\)

\[
\begin{bmatrix}
1.726s + .0656 \\
.1882
\end{bmatrix} \dot{u}(s) + \begin{bmatrix}
.0005 \\
.0621
\end{bmatrix} \dot{\alpha}(s) + \begin{bmatrix}
0 \\
.4504 \delta_k(s)
\end{bmatrix} = 0
\]

\[
\begin{bmatrix}
1.7325s + 4.4942 \\
1.7073s
\end{bmatrix} \dot{\theta}(s) = 0
\]

25
\[
\begin{align*}
\begin{bmatrix} 0.0093s - 1.1788 \end{bmatrix} \ddot{\alpha}(s) + \begin{bmatrix} 0.0135s^2 + 0.268s \end{bmatrix} \Theta(s) &= -0.6452\xi(s) \\
M = 1.2, Sea Level
\end{align*}
\]

\[
\begin{align*}
\begin{bmatrix} 1.1506s + 1.103 \end{bmatrix} \dot{\alpha}(s) + \begin{bmatrix} 0.0813 \end{bmatrix} \ddot{\alpha}(s) + \begin{bmatrix} 0.0276 \end{bmatrix} \Theta(s) &= 0 \\
(56)
\end{align*}
\]

\[
\begin{align*}
\begin{bmatrix} 1.11862s \end{bmatrix} \Theta(s) &= -0.361\xi(s) \\
(57)
\end{align*}
\]

\[
\begin{align*}
\begin{bmatrix} -0.0064s + 0.7392 \end{bmatrix} \ddot{\alpha}(s) + \begin{bmatrix} 0.006s^2 + 0.0185s \end{bmatrix} \Theta(s) &= -0.5157\xi(s) \\
(58)
\end{align*}
\]

Analysis of these equation sets is the subject of Chapter III.

Investigation of the corresponding sets of equations for the remaining two flight conditions at 30,000 feet shows a close correspondence in root locations to the roots of the sets of equations above. Due to this situation, the remainder of the investigation will concentrate on the above sets of equations leaving the higher altitude flight cases for reference and future investigation.
Table III

Data Summary

<table>
<thead>
<tr>
<th></th>
<th>Sea Level</th>
<th></th>
<th></th>
<th>30,000'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mach</td>
<td>.8</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha_T)</td>
<td>.73°</td>
<td>1.30°</td>
<td></td>
<td>2.66°</td>
</tr>
<tr>
<td>mass</td>
<td>513.45</td>
<td>513.45</td>
<td></td>
<td>513.45</td>
</tr>
<tr>
<td>(\mathbf{U})</td>
<td>893.6</td>
<td>1340.4</td>
<td></td>
<td>796.08</td>
</tr>
<tr>
<td>(q)</td>
<td>949.44</td>
<td>2136.24</td>
<td></td>
<td>282.02</td>
</tr>
<tr>
<td>(\frac{a_m}{S_p})</td>
<td>1.726</td>
<td>1.1506</td>
<td></td>
<td>5.176</td>
</tr>
<tr>
<td>(C_{x,n})</td>
<td>-.0656</td>
<td>-.1033</td>
<td></td>
<td>-.0789</td>
</tr>
<tr>
<td>(C_{x,k})</td>
<td>-.0005</td>
<td>-.0813</td>
<td></td>
<td>-.1061</td>
</tr>
<tr>
<td>(C_{w,n})</td>
<td>-.0621</td>
<td>-.0276</td>
<td></td>
<td>-.2092</td>
</tr>
<tr>
<td>(\Theta)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>(C_{z,\text{u}})</td>
<td>-.1882</td>
<td>-.1200</td>
<td></td>
<td>-.5404</td>
</tr>
<tr>
<td>(\delta / \Delta K)</td>
<td>.0061</td>
<td>.0041</td>
<td></td>
<td>.0069</td>
</tr>
<tr>
<td>(C_{z,k})</td>
<td>-1.0611</td>
<td>1.000</td>
<td></td>
<td>-1.0960</td>
</tr>
<tr>
<td>(C_{z,\text{u}})</td>
<td>-4.4942</td>
<td>-4.8132</td>
<td></td>
<td>-4.5554</td>
</tr>
<tr>
<td>(C_{z,\text{q}})</td>
<td>-3.0647</td>
<td>-7.8000</td>
<td></td>
<td>-3.8000</td>
</tr>
<tr>
<td>(C_{z,s_h})</td>
<td>-.4504</td>
<td>-.3610</td>
<td></td>
<td>-.5157</td>
</tr>
<tr>
<td>(C_{m,n})</td>
<td>-1.520</td>
<td>.400</td>
<td></td>
<td>-1.500</td>
</tr>
<tr>
<td>(C_{m,k})</td>
<td>.1788</td>
<td>-.7392</td>
<td></td>
<td>.0917</td>
</tr>
<tr>
<td>(\frac{\delta / \Delta \dot{S}}{})</td>
<td>.0135</td>
<td>.0060</td>
<td></td>
<td>.0454</td>
</tr>
<tr>
<td>(C_{m,\text{sq}})</td>
<td>-4.3900</td>
<td>-4.5252</td>
<td></td>
<td>-4.490</td>
</tr>
<tr>
<td>(C_{m,s_{sh}})</td>
<td>-.6452</td>
<td>-.5157</td>
<td></td>
<td>-.6017</td>
</tr>
</tbody>
</table>
III. Analysis of the Equations of Motion and System Stability

Having derived two sets of equations of motion in the preceding chapter, the YF-16 model can now be analyzed regarding its stability and response performance. To accomplish this, this chapter begins with the determination of the characteristic equations for flight at $M = .8$, and 1.2 at sea level. For a given system, there is only one polynomial, termed the system characteristic equation, which determines the form of the system transient response regardless of the type of signal chosen as the input. This polynomial is determined and its roots investigated. Short period approximations of both flight conditions, which assume zero perturbation in forward velocity as the aircraft maneuvers, are then developed and the roots of the associated characteristic polynomials investigated. Open loop system responses to various inputs are discussed. After a brief discussion on the high frequency nature of the aircraft actuator servo, the chapter concludes with a variable gain root locus analysis of system stability for both flight conditions.

For reference, the modeling equations are repeated here.

\textbf{M = .8, Sea Level (Set A)}

\begin{align*}
[1.726s + .0656] & \ddot{u}(s) + [.0005] \dot{\alpha}(s) + [.0621] \dot{q}(s) = 0 \quad (53) \\
[.1882] & \ddot{u}(s) + [1.7325s + 4.4942] \dot{\alpha}(s) - [1.7073s] \dot{q}(s) = -.4504 s \xi_n (s) \quad (54) \\
[.0093s - .1788] & \ddot{u}(s) + [.0135s^2 + .0268s] \dot{q}(s) = -.6452 s \xi_n (s) \quad (55)
\end{align*}
\[ M = 1.2, \text{ Sea Level (Set B)} \]

\[
\begin{bmatrix} 1.1506s + .1033 \end{bmatrix} \dot{u}(s) + \begin{bmatrix} .0813 \end{bmatrix} \dot{\alpha}(s) + \begin{bmatrix} .0276 \end{bmatrix} \theta(s) = 0 \tag{56}
\]

\[
\begin{bmatrix} .12 \end{bmatrix} \dot{u}(s) + \begin{bmatrix} 1.1465s + 4.8132 \end{bmatrix} \dot{\alpha}(s) - \begin{bmatrix} 1.11862s \end{bmatrix} \theta(s) = -0.361 S_k(s) \tag{57}
\]

\[
\begin{bmatrix} -.00164s + .7392 \end{bmatrix} \ddot{\alpha}(s) + \begin{bmatrix} .006s^2 + .01855s \end{bmatrix} \theta(s) = -0.5157 S_k(s) \tag{58}
\]

The first set of three equations will be referred to as Set A while the latter as Set B.

**Analysis of Equations of Motion**

The characteristic equations for both sets of equations were determined using a digital computer subroutine specifically designed for control systems analysis (Ref. 16). Details of the formatted instructions and computer results are presented in Appendix B. The results of this analysis, the model characteristic equations and respective roots, are as follows:

**Characteristic Equations**

**Set A:**

\[ .040369s^4 + .213799s^3 - .310934s^2 - .012018s - .002090 = 0 \tag{59} \]

**Set B:**

\[ .007915s^4 + .056299s^3 - 1.059076s^2 + .094454s + .002448 = 0 \tag{60} \]
The negative terms in equation (59) are indicative of roots in the right half of the S-plane corresponding to an unstable situation. This is not the case in equation (60) where all roots appear positive. This is confirmed, as the results of Appendix B show, by factoring the characteristic equations into their corresponding roots.

**Characteristic Roots of Set A**

<table>
<thead>
<tr>
<th>Real</th>
<th>Imag</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.1223932E + 01)</td>
<td>0.</td>
</tr>
<tr>
<td>(-0.2093674E - 01)</td>
<td>(0.7804015E - 01)</td>
</tr>
<tr>
<td>(-0.2093674E - 01)</td>
<td>(-0.7804015E - 01)</td>
</tr>
<tr>
<td>(-0.6478175E + 01)</td>
<td>(0.6967083E - 01)</td>
</tr>
</tbody>
</table>

**Characteristic Roots of Set B**

<table>
<thead>
<tr>
<th>Real</th>
<th>Imag</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-0.4474255E - 01)</td>
<td>(-0.1790868E - 01)</td>
</tr>
<tr>
<td>(-0.4474255E - 01)</td>
<td>(-0.1790868E - 01)</td>
</tr>
<tr>
<td>(-0.3511721E + 01)</td>
<td>(0.1099289E + 02)</td>
</tr>
<tr>
<td>(-0.3511721E + 01)</td>
<td>(-0.1099289E + 02)</td>
</tr>
</tbody>
</table>

These system root locations can be shown pictorially in the S-plane of Figure 4 and Figure 5.
The root in the right half plane confirms the unstable nature of the system described by Set A. The conjugate roots, close to the imaginary axis, are conventional phugoid roots due to the low frequency and correspondingly long period associated with their oscillatory motion, while the two remaining aperiodic roots (Ref. 4) are considered as short period roots.

For the Set B flight condition, unlike Set A, the roots indicate that the system is stable (Fig. 5). Again, the phugoid roots lie close to the imaginary axis while the remaining two roots appear as normal short period roots. Such a shift in system characteristics, from the unstable case of Set A to the stable situation of Set B, is due to the variable location relationship of the center of gravity and aerodynamic center, as a function of Mach number, discussed in
Chapter I. This relationship is expressed in the stability derivative \( C_{m_x} \) discussed earlier and is the key term in determining the stability of this system of equations.

Since in both cases, the phugoid roots are well behaved and stable, a short period approximation disregarding the phugoid oscillatory mode is sufficient to adequately model the system. Additionally, it is the rapid, transient response of the aircraft, represented by the short period mode, which is of interest. Again, based upon Reference 1, the short period equations can be expressed as follows:

\[
\begin{align*}
\left[ \frac{h}{S} \alpha - C_{m_x} \right] \dot{\alpha}(s) + \left[ - \frac{h}{S} \tau \dot{\Theta}(s) \right] = C_{\alpha} \int \hat{s}_h(s) \Theta(s) & \\
\left[ -\frac{\partial}{\partial \alpha} C_{m_x} \alpha - C_{m_x} \right] \dot{\Theta}(s) + \left[ \frac{T_{yy}}{S} \dot{\alpha} + \frac{\partial^2}{\partial \alpha^2} C_{m_x} \alpha \right] \Theta(s) = C_{\alpha} \int \hat{s}_h(s) & 
\end{align*}
\]

The Set A equations reduce to the following:

\[
(1.726s + 4.4942) \dot{\alpha}(s) + (1.726s) \Theta(s) = -0.4504 \int \hat{s}_h(s) \]

\[
(0.009272s - 0.1788) \dot{\Theta}(s) + (0.0135s^2 + 0.026779s) \Theta(s) = -0.6452 \int \hat{s}_h(s) \]

Likewise, the Set B equations reduce to:

\[
(1.1506s + 4.8132) \dot{\alpha}(s) + (-1.1506s) \Theta(s) = -0.361 \int \hat{s}_h(s) \]

\[
(-0.0016s + 0.7392) \dot{\Theta}(s) + (0.006s^2 + 0.018553s) \Theta(s) = -0.5157 \int \hat{s}_h(s) \]
The TRANFUN analysis program (Ref. 16) is used in a similar manner as presented in Appendix B. Results show the characteristic equation of the short period system described by equations (63) and (64) to be:

\[ 0.023301s^3 + 0.122895s^2 - 0.1882536s = 0 \]  \hspace{1cm} (67)

which produces the following roots:

<table>
<thead>
<tr>
<th>Real</th>
<th>Imag</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>0.1240223E + 01</td>
<td>0.</td>
</tr>
<tr>
<td>-0.654491E + 01</td>
<td>0.</td>
</tr>
</tbody>
</table>

In the S-plane, these appear as shown in Figure 6.

Again, the instability is present while the root locations, due to the simplification, have migrated less than one percent. The pole at \( S = 0 \) results from the fact that \( \Theta \) was taken as zero in equations (61) and (62) which effectively eliminates the effects of gravity.

The system transfer functions of the reduced Set A equations (63) and (64) become:
The same process can be performed on Set B equations (65) and (66). The resulting short period characteristic equation is:

\[0.0069s^3 + 0.4834s^2 + 0.392s = 0\]  \hspace{1cm} (70)

The roots of this equation are:

<table>
<thead>
<tr>
<th>Real</th>
<th>Imag</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>-3.501</td>
<td>-11.130</td>
</tr>
<tr>
<td>-3.501</td>
<td>+11.130</td>
</tr>
</tbody>
</table>

In the S-plane, these appear as shown in Figure 7.

Fig. 7. Short Period Approximation Roots (Set B)
As expected, the system remains stable with only a minor shift in the root locations. Also, an additional root at the origin is introduced for the reason given earlier.

The two short period approximation transfer functions of Set B equations (65) and (66):

\[
\frac{\alpha(s)}{\delta_{h}(s)} = \frac{-0.31375 (s + 277.037)}{(s + 3.501021 \pm 11.13j)}
\]

\[
\frac{\theta(s)}{\delta_{h}(s)} = \frac{-86.03576 (s + 3.729762)}{s (s + 3.501021 \pm 11.13j)}
\]

where \( \omega_n \), \( \omega_d \), \( \zeta_{sp} \), and \( T_{sp} \) become:

\[
\begin{align*}
\omega_n & = 11.667 \text{ Rad/sec} \\
\omega_d & = 11.130 \text{ Rad/sec} \\
\zeta_{sp} & = 0.3 \\
T_{sp} & = 0.539 \text{ sec}
\end{align*}
\]

Response to Inputs

A further appreciation for the dynamic characteristics of the system can be gained by looking at the open-loop system response to various inputs.

The transfer function \( \frac{\theta}{\delta_{h}} \) (Fig. 8) is used to demonstrate this response. This particular transfer function is chosen since pitch (\( \theta \)), and ultimately pitch rate (\( \dot{\theta} \)), are of interest in investigating the longitudinal dynamics of an aircraft. The digital computer program PARTL is used to calculate the various responses (Ref. 10). Figure 9 shows the pole-zero locations of the basic airframe for the \( M = .8 \) condition at sea level reflected in equation (69).
The instability of the model in this flight condition is evident from the pole which lies in the right half plane. Figure 10 shows the pole-zero configuration based on equation (72) for the $M = 1.2$ case at sea level. In this flight condition, the stability of the model is reflected by the fact that all roots lie in the left half plane.
Fig. 10. Open Loop Pole Zero Locations.

Noting that \( F(T) \) represents \( \Theta \) in the plots which follow, Figure 11a shows the response to a step horizontal stabilizer deflection for the \( M = .8 \) at sea level case; while, Figure 11b shows the corresponding response for the high Mach case.

The need for some type of control is clearly apparent in both cases. Figure 11a shows a very rapid parabolic divergence in the system for the \( M = .8 \) case. Figure 11b shows a lightly damped oscillation superimposed on a ramp type response. Here, although
the response to the constant step input, as expected, is ramp-like and stable, the light damping indicated by equation (73) to be $\zeta = 0.3$, is unsatisfactory. These response characteristics are more obvious in Figure 12. In this set of figures, the input is similar to a unit impulse. This input is given physical significance by imagining a pilot pulling back on the control stick slightly and then immediately returning the stick to neutral to null the command. Such a rapid series of commands should cause the nose to pitch-up as the aircraft attempts to begin a climb and then quickly lowering as the command is removed.

Figure 12a, reflecting the low Mach condition, is very similar to Figure 11a. Again, a rapid parabolic divergence results as the aircraft pitches up and continues to do so even when the command is removed. This phenomenon definitely reflects a dynamically unstable condition. Figure 12a, however, reflects the stable nature of the high Mach condition since the aircraft returns to a stable steady state after the perturbing command is removed. The extremely light damping ($\zeta = 0.3$), more evident here than in Figure 11b, remains unsatisfactory. For both flight conditions, these plots show the response of the open-loop is unacceptable. Some type of feedback control scheme is definitely necessary.
Fig. 11a. Step Response at \( M = 0.8 \).

Fig. 11b. Step Response at \( M = 1.2 \).
Fig. 12a. Impulse Response at $M = .8$.

Fig. 12b. Impulse Response at $M = 1.2$. 

40
Aircraft Actuator Servo

Before proceeding any further, the dynamics of the aircraft servo, which positions the horizontal stabilizer, must be considered. Reference 13 indicates that the command servo transfer function for this aircraft is:

\[
\frac{S_{hc}(s)}{S_c(s)} = \frac{(52)^2}{s^2 + 2(0.7)52s + 52^2} \tag{74}
\]

while that of the power actuator is:

\[
\frac{S_h(s)}{S_{ha}(s)} = \frac{20}{s + 20} \tag{75}
\]

These are integrated with the aircraft dynamics as shown in Figure 13.

The open loop transfer function of the cascaded network becomes:

\[
\frac{\Theta(s)}{\Theta_c(s)} = \frac{K \text{ gain (Zero of A/C Dynamics)}}{(s + 36.4 \pm 37.135j)(s + 20)\text{(Poles of A/C Dynamics)}} \tag{76}
\]
The conjugate roots produced by the command servo \((-36.4 \pm 37.135j)\) are to the extreme left in the S-plane. Their effect on the system can be safely disregarded because of their high frequency. Their only appreciable effect would be the introduction of a small phase lag in the system. Therefore, the command servo will not be considered further in the remainder of this investigation.

Having accomplished this simplification, the system reduces to the closed loop representation shown in Figure 14.

![Fig. 14. Closing Loop on Servo and Aircraft.](image)

The effect of the addition of the actuator servo to the system can now be analyzed. Use of the ROOTL computer program (Ref. 11) produces a variable gain root locus for each flight condition. The Mach .8 results appear in Figure 15 while Mach 1.2 results appear in Figure 16.
Fig. 15. Variable Gain Root Locus for Low Mach Case.

(A/C + SERVO) M = .8, S.L.
Fig. 16. Variable Gain Root Locus for High Mach Case.

\[
\frac{G(s)}{H(s)} = \frac{K(s+3.730)}{s(s+20)(s^2+7.0023+136.135)}
\]
The results of this root locus analysis, in which a rudimentary, unity feedback system is implemented, indicate that the high Mach case can be stabilized for a limited range of gain. Figure 15 points up a different situation. Here, no value of gain will stabilize the system. Compensation*, beyond more gain adjustment, is required for this flight condition.

Summary

This chapter, through the development and investigation of system characteristic equations and system input responses has shown the open loop dynamic character of the YF-16 modeling equations to be unsatisfactory. A short period approximation of the system, varying only slightly from a fully developed model considering both phugoid and short period oscillating modes, was shown to adequately represent the system. Additionally, a root locus analysis pointed out the need to compensate the system especially for \( M = 0.8 \) flight at sea level.

It is the compensation of this critical flight condition reflected in the Set A equations, which will be the focus of attention for the remainder of this investigation. The application of a classical lag compensator for analog implementation might suffice; however, as intimated earlier, investigation will focus on the implementation of a discrete optimal controller scheme specifically designed for digital computer implementation.

*Compensation: the introduction of additional equipment into a system to reshape its root locus in order to improve system performance.
IV. Control System Model and the \( C^* \) Concept

The purpose of this chapter is to present the development of a discretely controlled system model of the YF-16 incorporating in its design consideration the handling qualities response criteria \( C^* \). First, the general form of a discrete servo control system model is presented. This is followed by a discussion of the \( C^* \) concept and its application to the proposed model.

The preceding chapter pointed out the unstable nature of Mach .8 flight at sea level for the YF-16. A requirement for some type of control system for this novel aircraft in this flight regime was repeatedly demonstrated. At this juncture, several options are available:

a. Synthesize a continuous control law using classical techniques and adapt it to a digital computer;
b. Synthesize a control law using continuous optimal control theory and again adapt it for a digital computer; or
c. Synthesize a control law using discrete regulator/servo theory (Ref. 18)

The latter approach is addressed here, due to its direct digital design nature. The theoretical approach which is implemented was first developed by Sandell (Ref. 12) and is similar to the more recent proposals of Stengel (Ref. 15) and Lee (Ref. 8). Lee points out the equivalence of his approach with that of Stengel; however, Lee's application is to a statically stable aircraft for a fixed sample rate. Here, a discrete optimal control formulation with a discrete quadratic performance index will be tested on a statically unstable
airframe for a variety of sample rates taking servo saturation effects into consideration.

As opposed to a regulator problem where perturbed states are returned to zero steady state values, this controller scheme will produce a sequence of controls to force the trajectory of the aircraft to follow some input reference signal introduced by the pilot. Pilot dynamics are not considered beyond the intimation that maneuvering commands originate with him with no time delays.

Control System Model

Recall that the continuous control system model as depicted in the state space representation of Figure 17, is based upon a continuous, linear, differential system of equations. The system is considered deterministic with no uncertainty or random inputs present while $\bar{u}$, $\bar{x}$ and $\bar{y}$, represent the control, state, and output vectors, respectively.

![Fig. 17. Continuous State Space System Representation.](image)

It should be noted that the observer matrix with its associated output vector $\bar{y}$ could be incorporated into the controller. However, for the purpose of clarity, it is desirable to separate the two. The above
figure, closely represents a regulator controller in that no external commands enter into the control scheme. If an external command signal is introduced into the system, the regulator problem is biased to follow that signal. The problem would then enter the realm of a servo or tracking problem. Such a situation is depicted in Figure 18.

![Figure 18. Servo/Tracker System Representation with Bias Introduced to Define $\bar{x}_{s.s.}$ Other Than Zero.](image)

Since a commitment to a discrete approach for digital computer implementation has been made, a digital equivalent of Figure 18 is necessary.

The proposed equivalent control system representation appears in Figure 19.

![Figure 19. Discrete System Servo Controller Scheme.](image)
The symbolic T in Figure 19 represents the sample rate or how often samples of the continuous system are taken. The dashed line indicates that all switches close in unison. The continuous aircraft dynamic model is represented by the familiar linear equation set:

\[
\frac{dx}{dt} = Ax + Bu \\
y = Cx
\]  

(77)  

(78)

where \(A\), \(B\), and \(C\) are the dynamics, control and observer matrix, respectively (Ref. 3). Other than determining what \(A\), \(B\), and \(C\) are, it is necessary to define the system states \((x)\), the system output \((y)\), and the nature of the input command \((C_{\text{command}})\).

\(C^*\) Concept

In 1966, Tobie, Elliott, and Malcom introduced the \(C^*\) concept as a new longitudinal performance criterion as an outgrowth of the Cornell Aeronautical Laboratory "Thumbprint" (Fig. 26), and in response to an effort of determining what levels and types of handling qualities are required by pilots (Ref. 17). The \(C^*\) criterion is an example of specifying short period handling qualities in terms of aircraft parameters familiar to a pilot \((\dot{\phi} \text{ and } N_z)\) while still including the traditional short period frequency \((\omega_n)\) and damping requirements \((\zeta)\). As these authors point out:

"It appears likely that the pilot responds to the motions that naturally tend to dominate the aircraft's characteristic response. For example, at low velocity where \(N_z\) cues are weak, pitch cues would be most important. At high velocity where very slight pitching may accompany sizable acceleration changes \(N_z\) cues would predominate. It is
postulated that the pilot then responds to a blend of pitch rate and normal acceleration, with the blend rates varying in accordance with natural variations in aircraft response. The blend of response parameters has been named \( C^* \)."

\[ C^* = K_z N_z + K_{\dot{\phi}} \dot{\phi} + K_{\ddot{\phi}} \ddot{\phi} \]  \hfill (79)

where the units/values of Table IV apply.

<table>
<thead>
<tr>
<th>Term</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>( C^* )</td>
<td>g's</td>
<td>variable</td>
</tr>
<tr>
<td>( N_z )</td>
<td>g's</td>
<td>variable</td>
</tr>
<tr>
<td>( \dot{\phi} )</td>
<td>Rad/sec</td>
<td>variable</td>
</tr>
<tr>
<td>( \ddot{\phi} )</td>
<td>Rad/sec²</td>
<td>variable</td>
</tr>
<tr>
<td>( K_z )</td>
<td>g's·sec²</td>
<td>1.0 (arbitrarily chosen as unity)</td>
</tr>
<tr>
<td>( K_{\dot{\phi}} )</td>
<td>g's·sec</td>
<td>( \frac{V_{co}}{32.2} ) (where ( V_{co} ) = 400 ft/sec)</td>
</tr>
<tr>
<td>( K_{\ddot{\phi}} )</td>
<td>g's·sec</td>
<td>distance to c.g. from pilot/( g ) = ( \frac{11.58}{32.2} = .36 )</td>
</tr>
</tbody>
</table>

\( V_{co} \): cross over velocity at which the normal acceleration and pitch rate give equal cues to the pilot.
The acceptable range of the C* transient response to a step input falls within the appropriate bounds of the C* time history envelopes of Figure 20. The four regions indicated have the following significance:

I - Optimal response (aerial combat, ground attack, and penetration);
II - Not as critical response area (air refueling, cruise);
III - Category for conditions not covered by I, II (loiter);
IV - Power approach (landing).

These regions have a direct correlation with the category system of MIL-F-8785B (Ref. 9).

With this background in the evaluation and meaning of the C* concept as a well defined criterion on the handling qualities of an aircraft, the system model (Fig. 19) can be put into perspective.

In this study, the C* envelope will be used to measure the response of the system with satisfactory response defined as falling within the innermost C* boundary limit. The output of the system (y(t)) is replaced by the term c* act; c* act(t) being the actual system C* response. In this manner, the C* response becomes a function in the performance index of the system. Additionally, the input to the system C* command is replaced by C* com(t) which represents the desired C* response requested by the pilot. In a physical sense, the YF-16 model is asked to track a pilot step input command, here chosen as unity since it lies in the center of the envelope bounds. In the YF-16, using a side mount control stick, the pilot inputs a desired steady state value of the C* parameter to the controller which is then required to have a short period response which tracks the system C* response to the
Fig. 20. $C^*$ Time History Envelope (Ref. 8)
commanded $C^*$ value. It is apparent that the observer matrix ($\bar{C}$) must transform the system states ($\bar{x}$) into a blend of system states now redefined by equation (79) as $C^*_{\text{act}(t)}$.

The next chapter will determine the nature of this transformation matrix based upon a definition of the system states in equation (77).
V. Continuous to Discrete System Transformation

This chapter presents the transformation from a continuous system representation to a discrete system representation necessary to continue development toward the discrete model presented in Figure 19.

The chapter begins with the continuous system state model. Here, the nature of the observer matrix, which transforms the system states into a $C^*$ representation, is developed. The chapter concludes with a brief discussion of the discretization process used to represent the continuous system in discrete time.

Continuous System State Model

Recall from Chapter IV that an open loop linear continuous system can be defined by the first order state variable equation set:

\[
\frac{d}{dt} \mathbf{x}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B} u(t) \tag{77}
\]

\[
y(t) = \mathbf{C} \mathbf{x}(t) \tag{78}
\]

It is necessary, therefore, to transform the three original equations of motion (equations (1), (2), and (3)) into such a representation for their implementation in the controlled system model developed in the previous chapter (Fig. 19). This is done as detailed in Appendix C using the short period approximation with the resulting state variable equation being:
\[
\begin{bmatrix}
\dot{\mathbf{x}} \\ \dot{\mathbf{\phi}} \\ \dot{\mathbf{s}}_h
\end{bmatrix} =
\begin{bmatrix}
-2.603975 & 1.0 & -2.60965 \\
15.058542 & -2.682339 & -47.676367 \\
0 & 0 & -20.0
\end{bmatrix}
\begin{bmatrix}
\mathbf{x} \\ \mathbf{\phi} \\ \mathbf{s}_h
\end{bmatrix} +
\begin{bmatrix}
0 \\
0 \\
20.0
\end{bmatrix}
\]

(182)

The resulting dynamics matrix \( \mathbf{A} \) is \((3 \times 3)\) while the control matrix \( \mathbf{B} \) is seen to be \((3 \times 1)\). A check of the controllability of the system, determined by assuring that \( \mathbf{B}^T \mathbf{A} \mathbf{B} \neq 0 \), shows the system is completely controllable.

Referring now to the output equation:

\[
y(t) = \mathbf{C} \mathbf{x}(t)
\]

(78)

We can replace the output vector \( y(t) \) by \( \mathbf{C}^* \mathbf{x}(t) \) as discussed in the previous chapter. The resulting output equation is:

\[
\mathbf{C}^* \mathbf{x}(t) = \mathbf{C} \mathbf{x}(t)
\]

(80)

As shown earlier, \( \mathbf{C}^* \) is a linear blend of \( \mathbf{N}_z \), \( \mathbf{\phi} \), and \( \bar{\mathbf{\phi}} \) expressed as:

\[
\mathbf{C}^* = \mathbf{K}_z \mathbf{N}_z + \mathbf{K}_\phi \mathbf{\phi} + \mathbf{K}_{\bar{\phi}} \bar{\mathbf{\phi}}
\]

(79)

or equivalently as:

\[
\mathbf{C}^* = \begin{bmatrix} \mathbf{K}_\phi & \mathbf{K}_z \mathbf{K}_\phi^* \end{bmatrix} \begin{bmatrix} \mathbf{\phi} \\ \mathbf{N}_z \\ \bar{\mathbf{\phi}} \end{bmatrix}
\]

(81)

It is evident that a mismatch exists between the states required to calculate \( \mathbf{C}^* \), indicated in equation (81) and the actual system states, developed in Appendix C, and shown in equation (182). Some transformation matrix \( \mathbf{\bar{C}} \) must be found to transform system states to
the required states needed to calculate $c^*$. This situation is expressed in equation (82) where some conformal, $(3 \times 3)$, $D$ matrix is shown accomplishing the transformation.

$$
\begin{bmatrix}
\dot{\alpha} \\
N_z \\
\dot{\phi}
\end{bmatrix} =
\begin{bmatrix}
D_{11} & D_{12} & D_{13} \\
D_{21} & D_{22} & D_{23} \\
D_{31} & D_{32} & D_{33}
\end{bmatrix} \cdot
\begin{bmatrix}
\dot{\alpha} \\
\phi \\
\Delta_h
\end{bmatrix}
$$

(82)

Three linear combinations of $\alpha$, $\dot{\phi}$, and $\Delta_h$ must be found which are equal to $\dot{\alpha}$, $N_z$, and $\phi$, respectively.

The first expression is the trivial relationship:

$$\dot{\phi} = D_{11} \alpha + D_{12} \dot{\phi} + D_{13} \Delta_h$$

(83)

$$\phi = 0 + 1.0 \dot{\phi} + 0 \Delta_h$$

(84)

For the next equation,

$$N_z = D_{21} \alpha + D_{22} \dot{\phi} + D_{23} \Delta_h$$

(85)

recall that,

$$N_z = \frac{k}{j} \left[ \dot{\phi} - \dot{\alpha} \right] = k_{\alpha} \left[ \dot{\phi} - \dot{\alpha} \right]$$

(86)

From Appendix C, equation (174) shows $\dot{\alpha}$ as:

$$\dot{\alpha} = \frac{cZ_k}{k} \alpha + 1.0 \dot{\phi} + \frac{cZ_{k_h}}{k_h} \Delta_h$$

(174)

This equation can be substituted into equation (86) leading to the following development:
From this development, it is now evident that:

\[ D_{21} = - \frac{k_m}{k_i} C_{z \alpha} \] \hspace{1cm} (89)

\[ D_{22} = 0 \] \hspace{1cm} (90)

\[ D_{23} = - \frac{k_m}{k_i} C_z \xi_h \] \hspace{1cm} (91)

Similarly, Appendix C, equation (78) shows the relationship of \( \bar{\phi} \) to \( \alpha, \phi, \) and \( \xi_h \) as:

\[ \bar{\phi} = \frac{1}{k_2} \left[ C_{m \alpha} + \frac{k_1}{k_i} C_{m \alpha} C_{z \alpha} \right] \alpha + \frac{k_2}{k_2} \left[ C_{m \phi} + C_{m \xi_h} \right] \phi + \frac{1}{k_2} \left[ \frac{k_1}{k_i} C_{m \alpha} C_{z \xi_h} + C_{m \xi_h} \right] \xi_h \] \hspace{1cm} (178)

which completes the development of the \( D \) matrix by defining \( D_{31}, D_{32}, \) and \( D_{33} \) as:

\[ \frac{1}{k_2} \left[ C_{m \alpha} + \frac{k_3}{k_i} C_{m \alpha} C_{z \alpha} \right], \quad \frac{k_3}{k_2} \left[ C_{m \phi} + C_{m \xi_h} \right] \]

and,

\[ \frac{1}{k_2} \left[ \frac{k_1}{k_i} C_{m \alpha} C_{z \xi_h} + C_{m \xi_h} \right] \]

respectively.
Having determined $\bar{D}$, equation (82) can be written as:

$$
\begin{bmatrix}
\dot{x} \\
\dot{\phi} \\
N_x \\
\phi
\end{bmatrix} =
\begin{bmatrix}
0 & 1.0 & 0 \\
-k_e C_{\alpha \alpha} & 0 & -k_e C_{\alpha \beta} \\
\frac{1}{k_e} [C_{\alpha \beta} + \frac{k_e}{k_i} C_{\alpha \gamma} C_{\beta \gamma}] & \frac{k_e}{k_i} [C_{\beta \gamma} + C_{\beta \delta}] & \frac{4}{k_e} [k_e \frac{k_e}{k_i} C_{\beta \gamma} + C_{\beta \delta}] \\
\end{bmatrix}
\begin{bmatrix}
\alpha \\
\phi \\
\phi \\
\delta
\end{bmatrix}
$$

(92)

Substituting this expression into equation (81), the resulting expression for $C^*$ is:

$$
C^* = \begin{bmatrix}
K_{\alpha} K_{\beta} K_{\delta} \\
\frac{-k_e}{k_i} C_{\alpha \alpha} \\
\frac{4}{k_e} [k_e \frac{k_e}{k_i} C_{\beta \gamma} + C_{\beta \delta}] \\
\frac{4}{k_e} [k_e \frac{k_e}{k_i} C_{\beta \gamma} + C_{\beta \delta}]
\end{bmatrix}
\begin{bmatrix}
0 & 1.0 & 0 \\
-k_e C_{\alpha \alpha} & 0 & -k_e C_{\alpha \beta} \\
\frac{1}{k_e} [C_{\alpha \beta} + \frac{k_e}{k_i} C_{\alpha \gamma} C_{\beta \gamma}] & \frac{k_e}{k_i} [C_{\beta \gamma} + C_{\beta \delta}] & \frac{4}{k_e} [k_e \frac{k_e}{k_i} C_{\beta \gamma} + C_{\beta \delta}]
\end{bmatrix}
\begin{bmatrix}
\alpha \\
\phi \\
\phi \\
\delta
\end{bmatrix}
$$

(93)

This expression can be simplified to:

$$
C^* = \begin{bmatrix}
\frac{-k_e k_e C_{\alpha \alpha} + k_e \frac{k_e}{k_i} C_{\alpha \beta} C_{\beta \gamma} + k_e k_e \frac{k_e}{k_i} C_{\alpha \beta} C_{\beta \delta}}{k_i} \\
\frac{-k_e k_e C_{\alpha \alpha} + k_e \frac{k_e}{k_i} C_{\alpha \beta} C_{\beta \gamma} + k_e k_e \frac{k_e}{k_i} C_{\alpha \beta} C_{\beta \delta}}{k_i} \\
\frac{-k_e k_e C_{\alpha \alpha} + k_e \frac{k_e}{k_i} C_{\alpha \beta} C_{\beta \gamma} + k_e k_e \frac{k_e}{k_i} C_{\alpha \beta} C_{\beta \delta}}{k_i} \\
\frac{-k_e k_e C_{\alpha \alpha} + k_e \frac{k_e}{k_i} C_{\alpha \beta} C_{\beta \gamma} + k_e k_e \frac{k_e}{k_i} C_{\alpha \beta} C_{\beta \delta}}{k_i}
\end{bmatrix}
\begin{bmatrix}
\alpha \\
\phi \\
\phi \\
\delta
\end{bmatrix}
$$

(94)

Substituting into this expression the appropriate values from Table III, Table IV, and the value of $K_1 = \frac{u}{3} = 27.75155$ based on .8 Mach at sea level, results in the following expression:

$$
C^* = \begin{bmatrix}
77.685 & 11.423 & -9.921
\end{bmatrix}
\begin{bmatrix}
\alpha \\
\phi \\
\delta
\end{bmatrix}
$$

(95)
Equation (95) fixes the value of the observer matrix indicated in Figure 19. It is this matrix which will transform the system states into the system scalar output $C^\star$. Additionally, the system is found to be completely observable since the determinant of $[C^T A^T C^T (A^T)^2 C^T]$ is nonsingular.

The continuous system described by equations (182) and (95) is then completely controllable and observable which provide the sufficient conditions for the regulation of the system output.

**Discrete State Model**

Because of the need to implement the control system in a digital flight computer, equation set (77) and (78) must be transformed into an equivalent discrete form. When the state model of a continuous system is given by the equation set (77) and (78), the discrete state model for the same system with a piecewise constant input is given by a difference equation set of the form:

$$\overline{x}(K+1)T = \overline{A}_d \overline{x}(KT) + \overline{B}_d u(KT)$$  \hspace{1cm} (96)

$$y(KT) = \overline{C}_d \overline{x}(KT)$$  \hspace{1cm} (97)

where,

$$\overline{A}_d = e^{AT}$$  \hspace{1cm} (98)

$$\overline{B}_d = \int_0^T e^{\overline{A}T} \overline{B} dt$$  \hspace{1cm} (99)

and $T$ is the sample rate (Ref. 2).

Numerous methods are available for the calculation of the state transition matrix $\overline{A}_d$. For example, the "Solution by Functions of a
Matrix method (Ref. 2) could be used with the values of the $\bar{A}_d$ and $\bar{E}_d$ matrices determined by hand as a general function of the variable $T$. Additionally, digital computer software packages are available to compute the values of $\bar{A}_d$ and $\bar{E}_d$. This is the method chosen in this study since the matrices may be determined rapidly for any specified sample rate in a call to a subroutine nested in a more complex main program.

In particular, $\bar{A}_d$ and $\bar{E}_d$ are digitally calculated in this research by use of the digital subroutine DSCRT discussed in Ref. 6. In the calculation, $\bar{E}_d$ is determined by evaluating the series:

$$\bar{E}_d = I S + \frac{A S^2}{2!} + \frac{A^2 S^3}{3!} + \ldots + \bar{A}^{NT-1} \frac{S^{NT}}{NT!}$$

(100)

while,

$$\bar{A}_d = I + A \cdot \bar{E}_d$$

(101)

where $S$ and $NT$ are specified in the call to the subroutine (see Appendix E).

Examples of $\bar{A}_d$ and $\bar{E}_d$ for various values of $T$ are listed in Table V.
<table>
<thead>
<tr>
<th>Table V</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \bar{A}_d ) and ( \bar{B}_d ) Matrices as a Function of Sample Rate</td>
</tr>
<tr>
<td>$T = 1/50 \text{ sec}$</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>$T = 1/70 \text{ sec}$</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>$T = 1/100 \text{ sec}$</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
VI. ZOH, Optimal Controller and Simulation Development

This chapter presents the development of the sequence of optimal scalar controls $u(KT)$ which will drive the system shown in Figure 19 to the commanded steady state value of $C^*$ input by the pilot. As Figure 19 indicates, the controller accepts sampled information about the system and uses this information to construct control inputs to the system. The determination of the control law will be accomplished by minimizing an appropriate discrete penalty function with zero steady state error. The resulting controls are step-like in nature as shown in Figure 21.

![Figure 21. Nature of Optimal Controls.](image)

From Figure 21, it is apparent that the control $u(KT)$ takes some constant value during the time period between samples. That is:

$$u(KT) = \text{constant \ \forall (KT) \leq \tau < (K+1)T, \ K = 0, 1, 2, 3, ..., N}$$

(102)
Additionally, the sample interval (T) remains constant while the magnitude of the control is allowed to vary. This series of piecewise constant step controls corresponds to the shift-like, control stick input commands introduced by a pilot. Although a step command may not represent the most common pilot input, the step response implicitly describes the response to other inputs that a pilot uses. Additionally, Figure 21 is indicative of the output of a Zero Order Hold device.

This chapter will first discuss the general concepts of a hold device and in particular, the Zero Order Hold. Next, a discussion of the discrete penalty function selected with respect to which the performance of the system is optimized is presented. The recursive control algorithm which minimizes this cost function is then incorporated in a computer program developed for this investigation. A discussion of the structuring of this simulation program is presented. The chapter concludes with the development of the closed loop system eigenvalues. The determination of these eigenvalues is incorporated as a part of the software and used to track the migration of system roots as a function of sample rate.

**Zero Order Hold Device**

The type of hold device incorporated in a digital control system can play a decisive role in determining whether the system is stable especially at lower sample rates. A hold device serves to convert a discrete time sequence of numbers, separated in time by T-second intervals, into a continuous time function in order to provide a suitable input to a continuous-time component. The particular hold device chosen represents a D/A converter which constructs a piecewise
continuous control signal from a pulse sequence of numbers each of which represent a discrete control signal. For a control problem such as this, it is more appropriate to think in terms of extrapolating the present control over the time interval between samples rather than trying to reconstruct some signal which is more along the vein of a communications problem.

Between sampling instances, the hold device extrapolates between the most recent sample and the next to follow.

A power series expansion of a continuous signal $u(t)$ in the interval between sampling instant $KT$ and $(K+1)T$ can be expressed as:

$$u(t) = u(KT) + \frac{d}{dT} [u(KT)] (t-KT) + \frac{d^2}{dT^2} [u(KT)] (t-KT)^2 + \ldots$$

$$\forall KT < t < (K+1)T$$  \hspace{1cm} (103)

Using the higher order derivatives of $u(t)$, for the purpose of more accurate extrapolation, can meet with serious difficulties in maintaining system stability. This is due to the fact that the higher the order of the derivative to be approximated, the larger the number of delay pulses required since one time interval must pass for each discrete control needed in the power series. The accuracy of the estimate of a derivative is then a function of the number of time delays. It is these time delays which have an adverse effect on the stability of a feedback control system. The value of the first derivative is known from the calculus to be approximated by the simple difference equation:

$$\frac{1}{T} \left[ u(KT) - u(K-1)T \right] = \dot{u}(t)$$  \hspace{1cm} (104)
It is apparent that for this first derivative approximation, both the present sample value and the immediate past sample value are needed.

For higher order derivatives, the number of past control pulses required grows larger and larger. For example, the second derivative:

\[
\ddot{u}(t) \approx \frac{1}{T^2} \left[ u(KT) - 2u(K-1)T + u(K-2)T \right]
\] (105)

requires three consecutive controls. Equation (103) can be thought of as a best-fit \( m^{th} \) order polynomial approximation of \( u(t) \) which may be rewritten as:

\[
u(t) = u(KT + \tau) = A_0 + A_1 \tau + A_2 \tau^2 + ... + A_m \tau^m
\] (106)

where:

\[
\tau = t - KT
\]

\[
A_0 = u(KT)
\]

\[
A_1 = \frac{\ddot{u}(t)}{1!}
\]

\[
A_2 = \frac{\dddot{u}(t)}{2!}
\]

where \( \dddot{u}(t) \) and \( \dddot{u}(t) \) are as in equations (104) and (105), respectively, and \( m = \) the order of the polynomial.

As Kuo points out (Ref. 7), when \( m = 0 \) the polynomial is of zero order and the ZOH extrapolator results which generates only \( u(KT) \):

\[

u(KT + \tau)\bigg|_{m=0} = A_0, \quad \forall \ 0 \leq \tau < T
\] (108)
where $A_0$ is equated to $u(KT)$. This makes sense since it is only natural to require the output signal $u(t)$ to have the value of the input sequence at the sample time. The Zero Order Hold is therefore expressed as:

$$u(KT + \gamma) = u(KT)$$

(109)

As Figure 21 confirms, the effect of the ZOH is to stretch the input pulse into a series of rectangular waves of width $T$. Finally, it should be noted in the change in system representation from Figure 19 to Figure 23 that the ZOH effect is taken into account in the process of discretizing equation (77) into equation (96).

Penalty Function

The cost criterion selected, with respect to which the performance of the system is optimized, is of the form of the quadratic functional:

$$J = \int_0^\infty \left\{ \left[ C_{\text{com}} - \bar{x}(t) \right]^T \bar{Q} \left[ C_{\text{com}} - \bar{x}(t) \right] + \bar{u}^T(t) \bar{R} \bar{u}(t) \right\} dt$$

(Ref. 8)

(110)

where $Q$ is the weighting which penalizes the trajectory deviation or difference between the $C^*$ commanded and the $C^*$ realized, i.e., $\bar{C}x(t)$, and $R$ is the weighting on the control where a penalty is exacted for large corrective control rates.

It is required to determine a discrete control sequence which will minimize a discrete equivalent of equation (110). Using the first difference equivalent of the first derivative of the control
u(t), the cost functional \( J \) of equation (110) can be replaced by the following equivalent discrete expression:

\[
J_d = \sum_{K=0}^{\infty} \left\{ \begin{bmatrix} C_{\text{com}}^* - \bar{C} \bar{x}(KT) \end{bmatrix}^T Q_d \begin{bmatrix} C_{\text{com}}^* - \bar{C} \bar{x}(KT) \end{bmatrix} + \begin{bmatrix} u(K+1)T - u(KT) \end{bmatrix}^T R_d \begin{bmatrix} u(K+1)T - u(KT) \end{bmatrix} \right\}
\]  

or equivalently as:

\[
J_d = \sum_{K=0}^{\infty} \left\{ \begin{bmatrix} C_{\text{com}}^* - C_{\text{act}}^* \end{bmatrix}^T Q_d \begin{bmatrix} C_{\text{com}}^* - C_{\text{act}}^* \end{bmatrix} + \begin{bmatrix} u(K+1)T - u(KT) \end{bmatrix}^T R_d \begin{bmatrix} u(K+1)T - u(KT) \end{bmatrix} \right\}
\]  

As pointed out in Appendix D, the control which minimizes this cost function is given by:

\[
u(K+1)T - u(KT) = L_d (C_{\text{com}}^* - C_{\text{act}}^*) + \bar{N}_d [\bar{x}(K+1)T - \bar{x}(KT)]
\]

which, when evaluated for a few values of \( K \), i.e., \( K = 0, 1, 2 \ldots \), can be expressed by the recursive equation:

\[
u(KT) = \sum_{j=0}^{K-1} L_d (C_{\text{com}}^* - C_{\text{act}}^*) + N_d [\bar{x}(KT) - \bar{x}(0)] + u(0)
\]

where \( \bar{x}(0) \) and \( u(0) \) are the initial states and control and where:

\[
L_d = (\bar{K}_d - \bar{K}_d (\bar{A}_d - I)^{-1} \bar{E}_d) (\bar{C}_d (\bar{A}_d - I)^{-1} \bar{E}_d)^{-1}
\]
\[ N_d = (\overline{K}_d + L_d \overline{d})(\overline{A}_d - I)^{-1} \]  

(240)

The matrices \( \overline{K}_1 \) and \( \overline{K}_2 \) are found from the positive definite solution of the algebraic matrix Ricatti equation of the form:

\[ P = Q_{Ricatti} + \Phi^T P \Phi - \Phi P R (\gamma^T P \gamma + R_d)^{-1} \gamma^T P \Phi \]  

(219)

(Ref. 6)

or from Appendix D for this particular problem:

\[
\begin{bmatrix}
  P_{11_d} & P_{12_d} \\
  P_{12_d}^T & P_{22_d}
\end{bmatrix} =
\begin{bmatrix}
  C_d^T & O \\
  O & C_d
\end{bmatrix}
\begin{bmatrix}
  A_d & O \\
  O & A_d^T
\end{bmatrix}
\begin{bmatrix}
  P_{11_d} & P_{12_d} \\
  P_{12_d}^T & P_{22_d}
\end{bmatrix}
\begin{bmatrix}
  A_d B_d & A_d & O \\
  B_d^T & I & O \\
  P_{12_d} & P_{22_d}
\end{bmatrix}. 
\]

(Ref. 6)

where the resulting steady state solution matrix

\[
\begin{bmatrix}
  \overline{P}_{11} & \overline{P}_{12} \\
  \overline{P}_{12}^T & \overline{P}_{22}
\end{bmatrix}
\]

is

used in the gain calculation equation expressed by:

\[
\begin{bmatrix}
  \overline{K}_1 \overline{d} \\
  \overline{K}_2 \overline{d}
\end{bmatrix} = - \left( \gamma^T P \gamma + R_d \right)^{-1} \gamma^T P \Phi
\]

(218)

or more precisely as:

68
\[
\begin{bmatrix}
\bar{K}_1 & \bar{K}_2
\end{bmatrix} = -\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
P_{11d} & P_{12d} \\
P_{21d} & P_{22d}
\end{bmatrix}
\begin{bmatrix}
0 \\
1
\end{bmatrix}
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
-1
\begin{bmatrix}
P_{11d} & P_{12d} \\
P_{21d} & P_{22d}
\end{bmatrix}
\begin{bmatrix}
A_d & B_d \\
0 & I
\end{bmatrix}
\]

(114)

where \( \bar{B}_{11d}, \bar{B}_{12d}, \) and \( \bar{B}_{22d} \) for this application are matrices of dimension (3 x 3), (3 x 1), and (1 x 1), respectively.

**Computer Program and Simulation**

Equation (112) is suitable for recursive evaluation on a digital computer, along with the terms which comprise it expressed by equations (114), (219), (238), and (240). Appendix E, contains the digital computer program which follows the analytical solution to the servo problem expressed by the previous set of equations and simulates a system equivalent to Figure 19. A simplified flow diagram of the program is shown in Figure 22. The structure of the simulated closed-loop system appears in Figure 23 while its programming logic appears in Figure 24. The linear, time-invariant, continuous-time system given by equations (77) and (78), having been transformed into the equivalent discrete-time linear equation set:

\[
\tilde{x}(K+1)T = \bar{A}_d \tilde{x}(KT) + \bar{B}_d u(KT)
\]

(96)

\[
C^*(KT) = \bar{C}_d \tilde{x}(KT)
\]

(97)

where \( \bar{C}_d = \bar{C} \), with a quadratic cost functional used to determine \( u(KT) \), is simulated in the algorithm. All the required matrices are sequentially evaluated for a specific sampling interval with the
START

Specify Sample Rate (TDEL)

Set Simulation Flag

Specify Simulation duration in seconds (LONG)

Adjust sample rate for computer simulation use (DEL)

Load in continuous system A, B, and C matrices. (Built internally into program for this one flight condition.)

Specify Q and R weighting matrices

Calculate $L_d$ and $\bar{N}_d$

Run ZOH Simulation

List Results

Calculate System Roots

Plot Results ———— optional (See Appendix F)

END

Fig. 22. Simplified Computer Program Flow Diagram.
Fig. 23. Flag I Simulation Closed Loop System.
Start Simulation

Initialize all Variables

Print Listing and Write on Tape Initial Values

Increase Time and Iteration Counters

Time for control update?

Yes

Calculate New States and C* Output

Print Listing and Write on Tape New Values of states, C*, and control

Time to Stop Simulation?

Yes

STOP

No

Increase Time and Iteration counters

Calculate new Control

Calculate new states and C* output

Fig. 24. Simplified Simulation Flow Design.
Ricatti matrix equation steady state solution used to calculate the matrix of feedback gains. The algorithm was programmed in Fortran IV and was tested on a CDC 6600 digital computer.

Insert (a) of Figure 23 is a breakdown of the discrete plant dynamics. Since the system being modeled is continuous, some way must be found to simulate it on a digital computer. For this problem, the continuous system was discretized at a rate of $1/500$th second. This rate of plant discretization is kept constant no matter what the sample rate specified for investigation might be. In other words, the YF-16 plant is allowed to change states every $1/500$th second. Such a fast rate allows the plant to retain an almost continuous, real-world, nature while still satisfying the requirement for discretization. It is important to realize that the sample rate specified for a particular program run is the discrete rate with which this equally discretized plant model is sampled.

Initially, the plant was discretized to a rate of some multiple of the sample rate. For example, if the sample rate was set to $T = 0.333$ sec., the plant was always discretized to a rate ten times faster or 0.033 seconds. However, to standardize the runs, thus allowing a comparison of results, and remove this factor of ten, which might influence the results, it was decided to standardize the plant discretization rate. With the "factor of ten" scheme, however, it was much simpler to determine when it was time to build a new control. For example, if the sample rate specified was $T = 1/40$th second, ten iterations of the plant ($\frac{10}{400} = \frac{1}{40}$), this time running at $1/400$th second, passed before a new control was calculated. This latest control was then implemented and retained.
as the plant control for the next ten plant iterations (ZOH effect) before the cycle was repeated. It is evident that this factor of ten, while simplifying the iteration and update scheme, made the correlation of results from one sample rate to another almost impossible.

The standardization scheme, while eliminating this problem, introduced the new problem of how to determine when to update the control. The frequency of control updates now varied with the relationship of the sample rate to the 1/500th second plant discretization rate. If a sample rate of $T = 1/25$ second was used, twenty plant iterations passed ($20/500 = 1/25$ second) before control updates.

This was simple enough for even multiples of the plant discretization rate but more complicated for non-multiple cases. The problem could be eliminated by specifying the use of only convenient multiple sample rates (i.e., $T = 1/10, 1/20, 1/50, 1/100$, etc.). However, to retain program flexibility in the use of any sample rate, this limitation was not implemented. Instead, the flexibility was retained but at the cost of some slight error. The Fortran function IFIX is used in conjunction with the modulo arithmetic function MOD. This is best explained by use of an example. If the sample rate is specified to be $T = 1/30$th second, which in the program is referred to as $\text{TDEL} = .0333\ldots$, the program used the Fortran expressions:

$$\text{MODI} = \text{IFIX}(500.0 * \text{TDEL} + .5)$$

$$\text{DEL} = \text{MODI}/500.0$$

to come up with the adjusted sample rate of $\text{DEL} = .034$ seconds.

The value of $\text{DEL}$, in this case .034 seconds, is then used throughout the remainder of the program as the adjusted sample rate to simplify
the calculations. The amount of error introduced, in this case, the difference between .0333... and .034 seconds, is negligible. A comparison of the sample rate specified, to the actual rate selected by the algorithm for the simulation appears in Table VI. It is evident that for specified sample rates \( \frac{1}{f} \), where 500/f equals an integer, exactness between the sample rate specified and the sample rate used is maintained.

<table>
<thead>
<tr>
<th>Specified Sample Rate (DEL)</th>
<th>Actual Sample Rate Used (TDEL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/100.0</td>
<td>1/100.0</td>
</tr>
<tr>
<td>1/90.0</td>
<td>1/83.3</td>
</tr>
<tr>
<td>1/80.0</td>
<td>1/83.3</td>
</tr>
<tr>
<td>1/70.0</td>
<td>1/71.4</td>
</tr>
<tr>
<td>1/60.0</td>
<td>1/62.5</td>
</tr>
<tr>
<td>1/50.0</td>
<td>1/50.0</td>
</tr>
<tr>
<td>1/40.0</td>
<td>1/38.4</td>
</tr>
<tr>
<td>1/30.0</td>
<td>1/29.4</td>
</tr>
<tr>
<td>1/20.0</td>
<td>1/20.0</td>
</tr>
<tr>
<td>1/10.0</td>
<td>1/10.0</td>
</tr>
</tbody>
</table>
Additionally, the value of MODI is used to determine when a control update should occur using the Fortran modulo (MOD) arithmetic statement:

$$\text{If} \left( \text{MOD} (KK, \text{MODI}) \right) \equiv 2, 1, 2$$

Here, KK is an integer counter which keeps track of the number of system iterations. If the value of KK is divisible by MODI such that the remainder is zero, the program will jump to statement 1 where an update of the control occurs. For any other value of remainder, the program will continue using its present value of control. Such a scheme was used successfully in this study.

Insert (b) of Figure 23 is a detailed depiction of the mechanization of the discrete controller expressed by equation (96). The optimal scalar gain $I_d$ and the $(1 \times 3)$ optimal gain matrix $N_d$ are calculated based on the modified sample rate, DEL, just discussed. Since the control is calculated every DEL seconds, it is necessary that the gains be based on this same rate. The values of $I_d$ and $N_d$ are determined by sequential calls to subroutines as shown in Figure 25. Additionally, since the input to the simulation is a step of unity magnitude, a sample taken at any time will also be unity. That is:

$$C_{\text{com}}^{\text{discrete}} = C_{\text{com}}^{\text{continuous}} = 1.0. \quad (115)$$

Finally, with this unity step input driving the controller, and assuming the initial control $u(0)$ and initial states $\bar{x}(0)$ are taken as zero, it is apparent that the first control calculated will have the value of $I_d$. This is the approach taken in the simulation.
A key element in the determination of the control $u(KT)$ is the amount of computation time required for its calculation. With the plant running at a $1/500^{th}$ second state-change rate, the computation time required for both state-output and control calculations must be much less than this rate. This is especially true for the control
computation since it must be available on the next simulation iteration which occurs 1/500th second later. Such a state of affairs is true not only for this simulation but becomes even more critical when the computations are done on the type of onboard computer envisioned as the actual aircraft controller. Such computers are of much more limited capability in terms of wordlength and speed of computation than the ground based CDC computer used here. Algorithm computational time can be kept at a minimum by efficient programming, which limits the number of computer commands, and by proper sequencing of these computer commands. The most time consuming between iteration computation in this simulation is taken by the sequence of statements which calculate the new control. The calculation process has been reduced to five sequential statements by retaining information from previous control computations and, for this reason, is assumed to occur in much, much less than 1/500th second.

This assumption is reasonable in view of the amounts of time small computers require for computation purposes. Working on the micro-second (10^-6 second) level, no time problems are envisioned in the various data manipulations (shift commands, access memory location commands, complement commands, etc.) pursuant to the calculation of u(KT). By the elimination of the use of intermediate answers, as presently programmed, memory access time could be minimized even further lending greater credence to this assumption.

This assumption of negligible lapse in time for computation purposes is of additional importance when equation (112) is examined closely. From this equation, it is evident that the calculation of u(KT) requires knowledge of x(KT). The x(KT) used is the most current
set of values available. The resulting $u(KT)$ is actually $u(KT^+)$ owing to a finite amount of computational time delay. This $u(KT^+)$ is then used as the control $u(KT)$ in subsequent state evaluations using equation (96).

**Closed Loop System Eigenvalues**

An additional feature of the program is the inclusion of a subroutine (ROOT) which calculates the characteristic roots of the closed-loop system. The location of roots inside the unit circle and their migration with changes in the sample rate is of interest. Subroutine ROOT determines these roots by solving for the eigenvalues of the dynamics matrix of an augmented state space system representation.

This dynamics matrix is determined as follows. Let

\[
\bar{W}(KT) = \sum_{j=0}^{K-1} L_d \left[ C_{com}(KT) - C_{act}(KT) \right] \tag{116}
\]

then,

\[
\bar{W}(K+1)T = \bar{W}(KT) + L_d \left[ C_{com}^*(KT) - C_{act}^*(KT) \right] \tag{117}
\]

but,

\[
C^*(KT) = \bar{c}_d \bar{x}(KT) \tag{97}
\]

so,

\[
\bar{W}(K+1)T = \bar{W}(KT) + L_d \left( C_{com}^*(KT) - \bar{c}_d \bar{x}(KT) \right) \tag{118}
\]

or,

\[
\bar{W}(K+1) = \bar{W}(KT) + L_d C_{com}^*(KT) - L_d \bar{c}_d \bar{x}(KT) \tag{119}
\]
Investigation of a Discrete C-Star Transient Response Controller—ETC(U).

DEC 77 P D MONICO

UNCLASSIFIED

AFIT/66C/EE/77-8
Also from equation (112):\[ u(KT) = \overline{W}(KT) + \overline{N}D \begin{bmatrix} \overline{x}(KT) \end{bmatrix} \] (120)

Now substituting equation (120) into equation (96):
\[ \overline{x}(K+1)T = \left[ \overline{A}_d + \overline{B}_d \overline{N}_d \right] \overline{x}(KT) + \overline{B}_d \overline{W}(KT) \] (121)

Equations (119) and (121) are now incorporated into the following equation:
\[
\begin{bmatrix}
\overline{x}(K+1)T \\
\overline{W}(K+1)T
\end{bmatrix} =
\begin{bmatrix}
\overline{A}_d + \overline{B}_d \overline{N}_d & \overline{B}_d \\
-I_d \overline{B}_d & I
\end{bmatrix}
\begin{bmatrix}
\overline{x}(KT) \\
\overline{W}(KT)
\end{bmatrix}
+ \begin{bmatrix} 0 \\ I_d \end{bmatrix} \phi^*_\text{com}(KT) \] (122)

This last equation characterizes the dynamics of the closed-loop system of Figure 23. The eigenvalues of the (2 x 2) dynamics matrix of this equation, as a function of the sample rate, define the stability of the system in the Z-plane. Subroutine ROOT calculates these eigenvalues.

It is desirable that the resulting short period roots not only lie within the unit circle, insuring system stability, but also that they correspond to a natural frequency (\( \omega_n \)) and damping ratio (\( \zeta_n \)) that are preferred by pilots. Preferred values of \( \omega_n \) verses \( \zeta_n \) are given graphical significance in what is called the Cornell Aeronautical Lab "Thumbprint" (Fig. 26).

This particular \( \omega_n \) vs \( \zeta \) relationship is based on comprehensive data from several variable stability airplanes, primarily the F-94. The various \( \omega_n \) values and their associated \( \zeta \) values can be mapped into the S-plane and results in the "kidney-shaped" representation.
of Figure 27. In the Z-plane, Figure 26 corresponds to a similarly shaped region, albeit much smaller, shown as I in Figure 28. The exact size of the "thumbprint" in the Z-plane is determined by the sample rate selected. As the sample rate increases, approaching continuous sampling, i.e., \( T = \frac{1}{\omega_n} = 0 \), the Z-plane contour shrinks and converges to the single point at \( u = +1 \). If the sample rate is reduced, the contour expands while at the same time moving away from the \( u = +1 \) point as region II of Figure 28 depicts. If the center of the thumbprint (Fig. 26) is chosen as the most desirable operating point, corresponding to \( \omega_n = 5.5 \), the following conjugate set of S-plane root locations result:

\[
S_{1,2} = -3.89 \pm 3.389j
\]  

Using the direct Z-transform, \( Z = e^{st} \), this corresponds to pole locations in the Z-plane of:

\[
z = e^{(-3.89 \pm 3.89j)T}
\]
Fig. 27. Thumbprint in S-plane.
Fig. 28. Thumbprint in Z-plane.

which for \( T = \frac{1}{50} \) becomes:

\[
Z = e^{\frac{-3.89}{50}} \cdot e^{\frac{+3.89i}{50}}
\]

\[
= 0.925149 \sqrt{\pm 4.457°}
\]

\[
= 0.925149 (\cos 4.457° \pm j \sin 4.457°)
\]

\[
Z = 0.92235 \pm 0.0719j
\]

(125)

The Z-plane roots resulting from subroutine ROOT, which are fixed by the optimal solution to the problem, will be looked at with respect to this most desirable root location. It is evident from equation (124) that the particular location of the roots will vary with the sample rate selected.
In summary, this chapter, which begin with a brief discussion of hold devices, showed the development of a discrete cost criterion (penalty) function and its minimizing solution. A computer program implementing this optimal solution and some of the problems associated with its development were then discussed. The chapter concluded with a discussion of the determination of the system closed loop eigenvalues.
VII. Simulation Results

This chapter presents the results of the digital simulation. The digital program, listed in Appendix E, was exercised for various sample rates and weighting factors (R & Q) with the following prioritized questions in mind:

a. Can the system be controller?

b. Is the controlled response within the C* envelope bounds?

c. Is the solution a feasible one?

An affirmative answer to question (a) was achieved and the system was considered controlled if the system successfully tracked the l-G climb command input to the system. This was evident when the steady state error between the C* input command and the actual system C* response was zero. Additionally, in such a steady state condition, the system states α, δ, and δ, would also achieve steady state values. A divergent, undamped response as Figures 11a and 12a depict, would be unacceptable and indicative of a total lack of control.

Having achieved a controlled system, question (b) could be answered by comparing the system C* response to the established C* envelope bounds of Figure 20. To do this, a rescaled plastic overlay of Figure 20 was superimposed over the C* response for a particular program run. In this way, cases which fell outside the bounds could be identified.

The final question of achieving a feasible solution, could be answered by observing the gains (T, N) determined as necessary by
the program, and the control deflections they produced. A set of gains which control the system and cause the response to fall within the required envelope but which are infeasible in terms of the amount of control surface deflection they require for implementation or the rate of control application (saturation effect), would also prove unacceptable.

The initial ZOH simulation runs were conducted with arbitrary values for both the Q and R weightings. After considerable trial and error, it became evident that a Q weighting of unity produced a consistent maximum response overshoot of the target value (1-G) of approximately five percent. It was convenient to think of the Q weighting (trajectory error penalty) as determining the amount of overshoot while the R weighting (energy expenditure penalty) determined the amount of control deflection employed.

Subsequent simulation runs were therefore conducted keeping the Q weighting equal to unity while the sample rate, and R weighting (affecting the ratio of Q to R) were allowed to vary.

Typical Results

ZOH simulation runs were reinitiated with both the trajectory error weighting and control penalty weighting set to unity. These values were selected to obtain an initial feel for the system response and some idea of the nature of the controls produced. The program output for a typical simulation run is contained in Appendix F. When this output information is made available to the plotting program listed in Appendix G, the output products of Figures 29, 30, and 31 result. These particular plots are for a sample rate of \( T = 1/50^{th} \) second with \( Q = 1.0 \) and \( R = 1.0 \).
Figure 29 presents a two second time history of the system states $\alpha$, $\dot{\alpha}$, and $\delta_e$. From this figure, it is apparent that after approximately .80 seconds, the states have achieved a steady state condition. The initial horizontal stabilizer deflection is negative which causes the nose of the aircraft to pitch up in almost immediate response to the climb command initiated at zero seconds. The controller, sensing the reducing magnitude of the error between $\alpha^*$ actual and $\alpha^*$ command, gradually reverses the stabilizer deflection direction thus lowering both the pitch rate and the angle of attack to their eventual steady state values. In the steady state, a slightly positive deflection of the stabilizer is required to maintain the climb.

The next figure in the series, Figure 30, shows both the actual $\alpha^*$ output of the system and its relation, as a function of time, to the commanded response.

After some initial hesitation, due to the delay before a sample of the system states occurs, the controller responds rapidly to drive the system to the commanded response with an overshoot of 5.1 percent before reaching a steady state lock-on to the commanded response in .556 seconds.

The final figure in the series, Figure 31, shows a time history of the controls which produce the state and output responses just discussed. Initially, the controls remain at zero until enough time (sample interval) has passed for a sample to be taken and a control calculated. In this case, this occurs after .02 seconds with the initial control equaling the value of the gain $L_q$. The control surface is deflected negatively a maximum of .01911 radians, then positively a maximum of .005695 radians. It finally stabilizes to a positive value of .001571 radians after .80 seconds which corresponds to the same elapsed time needed for
the states to stabilize. The Zero Order Hold effect of maintaining the
controls constant between samples is clearly evidenced by those portions
of the plot which remain constant over time before jumping to a new
constant value.

Modification of Control Scheme

In an effort to reduce the amount of time it took for the actual $C^*$
response to achieve and maintain $C^*$ commanded, with zero steady state
error, shown in this example (Fig. 30) to take .556 seconds, a modifi-
cation to the hold technique used in the simulation was undertaken.

From observing numerous control time history plots, of which Figure 31
is a typical example, it was felt that time could be conserved in the
control scheme. Conserving time, in this case, could reduce the time
required to reach steady state to something less than .556 seconds.

After the calculation and implementation of the first non-zero control,
for example, the controls remain negative and constant until the next
update. At the next update, it is apparent from Figure 31 that a yet
more negative control results from the update computation. It would
appear advantageous then to use some of the time the controls are held
constant to move toward this new control. This would appear especially
helpful in saving time on the positive, upward sloped, portion of the
plot (Fig. 31). Here, the control deflection has reversed and begins
to move positive until reaching its peak of .005695 radians at .202
seconds elapsed time. The scheme of the modified control would appear
as in Figure 32.

Figure 32 is, in effect, a First Order Hold (FOH) representation
of the control, where the control changes at a constant rate between
Updates at sample instances $T$

Iteration rate of simulation $\tau$

Discrete update intervals ($KT$). On any particular iteration, the control can be expressed as:

$$u(KT + \tau) = \left[ \frac{u(KT) - u(K-1)T}{T} \right] \tau + u(KT)$$  \hspace{1cm} (126)

This expression is in the same form as equation (106) discussed earlier where:

$$A_0 = u(KT) \text{ and,}$$
$$A_1 = \frac{\dot{u}(t)}{1!}$$ \hspace{1cm} (107)

and where $\dot{u}(t)$ has again been defined as in equation (104).

This modified scheme of control is mechanized as the FOH option of the program in Appendix E and is substituted for the ZOH in the simulation by specifying $\text{FLAG} = 2$ in the program.

Fig. 32. Updated Control Plus Sloped Projection Scheme.
The results of introducing a First Order Hold into the problem are expressed by two typical control time history plots which follow. Both plots are for Q and R weightings of unity. The first plot, Figure 33, is a sample rate of .01 seconds while Figure 34 is for the sample rate of .02 seconds, just discussed in connection with the ZOH control scheme.

It is evident from Figure 33 that the control has been smoothed considerably. To some extent, this is also the case for the lower sample rate control time history plot, Figure 34. In this figure, however, the "sawtooth" character of the FOH can be seen as the control propagates along the constant slope then abruptly jumps when the next control update occurs.

Of greater significance, however, is the effect of the FOH on the time it takes the system to reach steady state. This information is presented in comparative form to the ZOH, in Table VII.

<table>
<thead>
<tr>
<th>Table VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZOH vs FOH Control Scheme</td>
</tr>
<tr>
<td>T = .02  R = Q = 1</td>
</tr>
<tr>
<td>Time to achieve controlled</td>
</tr>
<tr>
<td>steady state (sec)</td>
</tr>
<tr>
<td>Maximum positive</td>
</tr>
<tr>
<td>deflection (Rad)</td>
</tr>
<tr>
<td>Maximum negative</td>
</tr>
<tr>
<td>deflection (Rad)</td>
</tr>
<tr>
<td>Final control value at</td>
</tr>
<tr>
<td>steady state (Rad)</td>
</tr>
</tbody>
</table>
FIG - 33. CONTROL VS TIME

FIG - 34. CONTROL VS TIME
It is apparent from Table VII that although both hold devices, as mechanized in the simulation, achieve the same steady state control value, it is the ZOH which achieves steady state the fastest. Additionally, although the maximum positive deflections of the control surface are comparable (the same at least for the first three significant figures), the maximum negative excursion of the FOH exceeds that of the ZOH by 29.7 percent. Though the same results are achieved, the FOH is not as energy efficient as the ZOH in light of the greater deflection needed to control the aircraft and in view of the fact that surface deflections produce drag. Longer elapsed times to achieve steady state and greater negative excursions of the control were the case whenever the First Order and Zero Order Holds were compared. In view of this situation, the ZOH was retained as the most efficient of the two hold schemes.

Simulation Observations

Concentrating on the ZOH then, Table VIII presents those combinations of sample rates and control rate penalty weightings (R) investigated while the trajectory error weighting (Q) was held at unity. These particular combinations were chosen in consideration of the time and resources available for this investigation, weighed against a desire to get reasonably good coverage of the available regime.

Table IX presents the optimal feedforward gains $I_d$ found for each case, while Tables X, XI, and XII present, respectively, the three optimal feedback gains $N_{d_h}$, $N_{d_s}$, and $N_{d_h}$, also determined as optimal for each case investigated. Selected points from Table IX and X have also been presented in graphical form in Figures 35 and 36, respectively.
Table VIII
Summary of Cases Investigated

<table>
<thead>
<tr>
<th>R</th>
<th>1/100</th>
<th>1/90</th>
<th>1/80</th>
<th>1/70</th>
<th>1/60</th>
<th>1/50</th>
<th>1/40</th>
<th>1/30</th>
<th>1/20</th>
<th>1/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>75</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>100</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>500</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

From Table IX and its associated Figure 35, it is seen that an increase in the control penalty weighting (R) while the sample rate (T) is held constant, produces an increase in the value (less negative value) of the $L_d$ gain. However, if the value of the control penalty is held constant while the sample rate is decreased, the optimal value of this gain decreases (more negative value). Similar observations can be taken from Table X with its associated Figure 36 and Tables XI and XII. An increase in the penalty weighting, while the sample rate is held constant, has the same effect as decreasing the sample rate while
<table>
<thead>
<tr>
<th>T</th>
<th>1/100</th>
<th>1/90</th>
<th>1/80</th>
<th>1/70</th>
<th>1/60</th>
<th>1/50</th>
<th>1/40</th>
<th>1/30</th>
<th>1/20</th>
<th>1/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 1</td>
<td>-0.00846</td>
<td>-0.00982</td>
<td>-0.10430</td>
<td>-0.01920</td>
<td>-0.02148</td>
<td>-0.01803</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 25</td>
<td>-0.00184</td>
<td>-0.00216</td>
<td>-0.00337</td>
<td>-0.00508</td>
<td>-0.00650</td>
<td>-0.00842</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 50</td>
<td>-0.00131</td>
<td>-0.00155</td>
<td>-0.00178</td>
<td>-0.00201</td>
<td>-0.00244</td>
<td>-0.00303</td>
<td>-0.11373</td>
<td>-0.00487</td>
<td>-0.00669</td>
<td></td>
</tr>
<tr>
<td>* 75</td>
<td>-0.00108</td>
<td>-0.00128</td>
<td>-0.00166</td>
<td>-0.00201</td>
<td>-0.00311</td>
<td>-0.00580</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 100</td>
<td>-0.00094</td>
<td>-0.00111</td>
<td>-0.00176</td>
<td>-0.00220</td>
<td>-0.00273</td>
<td>-0.00362</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
<td>-0.00158</td>
<td>-0.00198</td>
<td>-0.00247</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
<td>-0.00145</td>
<td>-0.00182</td>
<td>-0.00227</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td></td>
<td></td>
<td>-0.00135</td>
<td>-0.00169</td>
<td>-0.00211</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td>-0.00126</td>
<td>-0.00159</td>
<td>-0.00199</td>
<td>-0.00267</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td></td>
<td></td>
<td>-0.00120</td>
<td>-0.00150</td>
<td>-0.00188</td>
<td>-0.00254</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>-0.00055</td>
<td>-0.00065</td>
<td>-0.00104</td>
<td>-0.00131</td>
<td>-0.00165</td>
<td>-0.00223</td>
<td>-0.00344</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>-0.00048</td>
<td>-0.00057</td>
<td>-0.00091</td>
<td>-0.00115</td>
<td>-0.00144</td>
<td>-0.00196</td>
<td>-0.00307</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 500</td>
<td>-0.00043</td>
<td>-0.00051</td>
<td>-0.00081</td>
<td>-0.00103</td>
<td>-0.00130</td>
<td>-0.00177</td>
<td>-0.00280</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table IX
Optimal $L_d$ Gains

* = information plotted
<table>
<thead>
<tr>
<th></th>
<th>1/100</th>
<th>1/90</th>
<th>1/80</th>
<th>1/70</th>
<th>1/60</th>
<th>1/50</th>
<th>1/40</th>
<th>1/30</th>
<th>1/20</th>
<th>1/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5.8568</td>
<td>5.5609</td>
<td>5.1118</td>
<td>4.9732</td>
<td>2.9931</td>
<td>1.8084</td>
<td>1.5644</td>
<td>1.4324</td>
<td>1.3571</td>
<td>1.1909</td>
</tr>
<tr>
<td>25</td>
<td>2.3764</td>
<td>2.3210</td>
<td>2.2385</td>
<td>2.1389</td>
<td>1.7952</td>
<td>1.5644</td>
<td>1.4324</td>
<td>1.3571</td>
<td>1.3059</td>
<td>1.2266</td>
</tr>
<tr>
<td>50</td>
<td>1.9604</td>
<td>1.9216</td>
<td>1.8774</td>
<td>1.8366</td>
<td>1.6753</td>
<td>1.5333</td>
<td>1.4324</td>
<td>1.3571</td>
<td>1.3059</td>
<td>1.2266</td>
</tr>
<tr>
<td>75</td>
<td>1.7534</td>
<td>1.7218</td>
<td>1.6765</td>
<td>1.6321</td>
<td>1.5333</td>
<td>1.4652</td>
<td>1.3571</td>
<td>1.2812</td>
<td>1.2266</td>
<td>1.1677</td>
</tr>
<tr>
<td>100</td>
<td>1.6208</td>
<td>1.5935</td>
<td>1.5689</td>
<td>1.5356</td>
<td>1.4652</td>
<td>1.3971</td>
<td>1.3421</td>
<td>1.2812</td>
<td>1.2266</td>
<td>1.1677</td>
</tr>
<tr>
<td>125</td>
<td>1.5005</td>
<td>1.4724</td>
<td>1.4519</td>
<td>1.4230</td>
<td>1.3971</td>
<td>1.3421</td>
<td>1.2812</td>
<td>1.2266</td>
<td>1.2266</td>
<td>1.1677</td>
</tr>
<tr>
<td>150</td>
<td>1.3954</td>
<td>1.3724</td>
<td>1.3596</td>
<td>1.3421</td>
<td>1.3421</td>
<td>1.2964</td>
<td>1.2454</td>
<td>1.2266</td>
<td>1.2266</td>
<td>1.1677</td>
</tr>
<tr>
<td>175</td>
<td>1.2902</td>
<td>1.2729</td>
<td>1.2626</td>
<td>1.2626</td>
<td>1.2626</td>
<td>1.2626</td>
<td>1.2626</td>
<td>1.2266</td>
<td>1.2266</td>
<td>1.2266</td>
</tr>
<tr>
<td>200</td>
<td>1.2041</td>
<td>1.1811</td>
<td>1.1677</td>
<td>1.1677</td>
<td>1.1677</td>
<td>1.1677</td>
<td>1.1677</td>
<td>1.1677</td>
<td>1.1677</td>
<td>1.1677</td>
</tr>
<tr>
<td>225</td>
<td>1.1052</td>
<td>1.0967</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
</tr>
<tr>
<td>250</td>
<td>1.1052</td>
<td>1.0967</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
</tr>
<tr>
<td>300</td>
<td>1.1052</td>
<td>1.0967</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
</tr>
<tr>
<td>400</td>
<td>1.1052</td>
<td>1.0967</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
</tr>
<tr>
<td>500</td>
<td>1.1052</td>
<td>1.0967</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
<td>1.0890</td>
</tr>
</tbody>
</table>

* = plotted

Table 1: Optimal $N_d$ Gains
<table>
<thead>
<tr>
<th>R</th>
<th>1/100</th>
<th>1/90</th>
<th>1/80</th>
<th>1/70</th>
<th>1/60</th>
<th>1/50</th>
<th>1/40</th>
<th>1/30</th>
<th>1/20</th>
<th>1/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.0003</td>
<td>9692</td>
<td>9904</td>
<td>9492</td>
<td>9777</td>
<td>9777</td>
<td>9777</td>
<td>9777</td>
<td>9777</td>
<td>9777</td>
</tr>
<tr>
<td>25</td>
<td>4491</td>
<td>4468</td>
<td>4377</td>
<td>4377</td>
<td>4377</td>
<td>4377</td>
<td>4377</td>
<td>4377</td>
<td>4377</td>
<td>4377</td>
</tr>
<tr>
<td>50</td>
<td>.3799</td>
<td>.3798</td>
<td>.3798</td>
<td>.3798</td>
<td>.3798</td>
<td>.3798</td>
<td>.3798</td>
<td>.3798</td>
<td>.3798</td>
<td>.3798</td>
</tr>
<tr>
<td>75</td>
<td>.3448</td>
<td>.3407</td>
<td>.3407</td>
<td>.3407</td>
<td>.3407</td>
<td>.3407</td>
<td>.3407</td>
<td>.3407</td>
<td>.3407</td>
<td>.3407</td>
</tr>
<tr>
<td>100</td>
<td>.3222</td>
<td>.3210</td>
<td>.3210</td>
<td>.3210</td>
<td>.3210</td>
<td>.3210</td>
<td>.3210</td>
<td>.3210</td>
<td>.3210</td>
<td>.3210</td>
</tr>
<tr>
<td>125</td>
<td>.2176</td>
</tr>
<tr>
<td>175</td>
<td>.2192</td>
</tr>
<tr>
<td>200</td>
<td>.2211</td>
</tr>
<tr>
<td>225</td>
<td>.2241</td>
</tr>
<tr>
<td>250</td>
<td>.2271</td>
</tr>
<tr>
<td>300</td>
<td>.2291</td>
</tr>
<tr>
<td>400</td>
<td>.2334</td>
</tr>
<tr>
<td>500</td>
<td>.2341</td>
</tr>
</tbody>
</table>

Table XI: Optimal \( N_{R_0} \) Gains
<table>
<thead>
<tr>
<th>R</th>
<th>T</th>
<th>1/100</th>
<th>1/90</th>
<th>1/80</th>
<th>1/70</th>
<th>1/60</th>
<th>1/50</th>
<th>1/40</th>
<th>1/30</th>
<th>1/20</th>
<th>1/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.5812</td>
<td>-.5637</td>
<td></td>
<td></td>
<td>-.4886</td>
<td>-.3599</td>
<td>-.2175</td>
<td>-.8351</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>-.8316</td>
<td>-.8262</td>
<td></td>
<td>-.8044</td>
<td>-.7665</td>
<td>-.7238</td>
<td>-.5985</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>-.7233</td>
<td>-.7192</td>
<td>-.7150</td>
<td>-.7108</td>
<td>-.7025</td>
<td>-.6900</td>
<td>-.6734</td>
<td>-.6405</td>
<td>-.5430</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>-.6667</td>
<td>-.6631</td>
<td>-.6560</td>
<td>-.6489</td>
<td>-.6239</td>
<td></td>
<td>-.5116</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>-.6293</td>
<td>-.6261</td>
<td></td>
<td></td>
<td>-.6133</td>
<td>-.6037</td>
<td>-.5910</td>
<td>-.5657</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-.5871</td>
<td>-.5783</td>
<td>-.5666</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-.5666</td>
<td>-.5584</td>
<td>-.5474</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-.5998</td>
<td>-.5421</td>
<td>-.5317</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-.5357</td>
<td>-.5283</td>
<td>-.5185</td>
<td>-.4990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-.5235</td>
<td>-.5165</td>
<td>-.5071</td>
<td>-.4884</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-.5056</td>
<td>-.5035</td>
<td>-.4951</td>
<td>-.4888</td>
<td>-.4803</td>
<td>-.4636</td>
</tr>
<tr>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-.4778</td>
<td>-.4759</td>
<td>-.4683</td>
<td>-.4626</td>
<td>-.4551</td>
<td>-.4400</td>
</tr>
<tr>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-.4573</td>
<td>-.4556</td>
<td>-.4486</td>
<td>-.4434</td>
<td>-.4364</td>
<td>-.4225</td>
</tr>
<tr>
<td>1/100</td>
<td>1/90</td>
<td>1/80</td>
<td>1/70</td>
<td>1/60</td>
<td>1/50</td>
<td>1/40</td>
<td>1/30</td>
<td>1/20</td>
<td>1/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.554</td>
<td>1.084</td>
<td>1.1258</td>
<td>1.258</td>
<td>1.372</td>
<td>1.462</td>
<td>1.460</td>
<td>1.374</td>
<td>1.260</td>
<td>1.264</td>
<td>1.268</td>
<td>1.276</td>
</tr>
<tr>
<td>.560</td>
<td>.564</td>
<td>.102</td>
<td>1.142</td>
<td>1.170</td>
<td>1.192</td>
<td>1.206</td>
<td>1.238</td>
<td>1.262</td>
<td>1.266</td>
<td>1.270</td>
<td>1.276</td>
</tr>
<tr>
<td>1.870</td>
<td>1.998</td>
<td>&gt;2.00</td>
</tr>
</tbody>
</table>

Table XIII: Summary of Times to Reach Steady State

R: 1, 25, 50, 75, 100, 125, 150, 175, 200, 225, 300, 400, 500

103
holding the control penalty weighting constant. The result is an effective decrease in the value of gain. This is true for both the \(N_{d_a}\) and \(N_{d_b}\) feedback gains. From Table XII, it is seen that an increase in the control penalty weighting \(R\), while the sample rate is held constant, has the same effect as decreasing the sample rate, while holding the control penalty weighting constant. The effect is to increase the gain \(N_{d_b}\). Finally, Table XIII presents the time required, as a function of sample rate and control penalty, for the simulation to achieve steady state lock-on to the commanded response with zero error. It is interesting to note that for higher sample rates (i.e., sample rates greater than \(T = 1/50\)) there is little change in this amount of elapsed time required.

These observations are summarized in Table XIV. Also included are the observed effects of these operations on the time required for the \(C^*\) system output to match \(C^*\) commanded, with zero steady state error, from Table XIII.

<table>
<thead>
<tr>
<th>Operation</th>
<th>(L_d)</th>
<th>(N_d)</th>
<th>(N_{d_a})</th>
<th>(N_d)</th>
<th>(N_{d_b})</th>
<th>(\text{Time Required for } C^* \text{ act= } C^* \text{ com} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase (R) ((T) Constant)</td>
<td>(\uparrow)</td>
<td>(\downarrow)</td>
<td>(\downarrow)</td>
<td>(\downarrow)</td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
</tr>
<tr>
<td>Decrease (T) ((R) Constant)</td>
<td>(\downarrow)</td>
<td>(\downarrow)</td>
<td>(\downarrow)</td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
</tr>
</tbody>
</table>

* From Table XIII
Increasing the control penalty weighting \( R \) then, has the effect of decreasing the size of the controls. This has the same effect on the system as increasing the sample rate. These are reasonable effects in that increasing the penalty on using excessive control rate results in smaller controls, while decreasing the sample rate, or the frequency with which new controls are introduced, forces the system to adjust by producing larger controls in order to keep the system under control.

The sample rate can effectively be traded off against the control penalty weighting \( (R) \) to control the response. The time required to reach steady state with zero error increases in one case due to the use of smaller controls. In the other instance, with decreasing sample rates, the increase in time is due to the associated greater drop in the feedback gains \( N_{d_q} \) and \( N_{d_\theta} \) verses the rise in gain \( N_{d_b} \) and the use of larger values of \( I_d \).

**Saturation Effect**

Observations on the nature of the controls, especially the initial control, indicate that a possible problem may exist due to the large initial jump that occurs in the control. This jump in the control might very often be too fast and lead to the rate saturation of a "real-world" servo actuator. The effect of the ZOH, as can be seen from Figure 31, is to introduce a series of steps in the control. Consequently, a series of impulses would be characteristic of the control rate \( (\dot{u}) \) which might lead to rate saturation of the control actuator.

The maximum movement rate of the horizontal stabilizer for the YF-16 is currently 60 degrees/seconds. In radian measure, this is
1.047 radians/second. Realizing, of course, that the nature of the simulation is a constraint here in that .002 second was decided upon for its iteration rate, it is nevertheless valuable to characterize the nature of this possible flaw using the simulation.

In $\frac{1}{500}$th second, a displacement of the surface of .00209 radians or .12 degrees becomes the limiting rate of movement for this control surface. This limiting rate becomes significant. Consider the case in which the sample rate is slowed down considerably. During the time interval that the aircraft model is allowed to change states between updates, the plant may diverge considerably from that required to null the error between $C^*$ commanded and $C^*$ actual. When a new control is calculated, based on existing states, the result may be a control correction which exceeds the capability of the servo. As an example, consider the case in which the present control is $-0.0085$ radians. The control update rate is assumed to be $\frac{1}{\tau}$ seconds. After $\frac{1}{\tau}$ seconds have passed, the new updated control is calculated to be $+0.0065$ radians. The absolute range of control can be seen to be .015 radians. The servo of the aircraft is in effect being told to supply a .015 radian correction in $\frac{1}{500}$th second. Since this exceeds the servo limit, this control cannot be supplied indicating that the sample rate of $\frac{1}{\tau}$ seconds is infeasible. The possibility of such an effect must be considered.

For this simulation, it became apparent that a limit would be approached in terms of a minimum sample rate where the response just falls within the most restrictive of the $C^*$ response criteria envelopes using controls which are just below the saturation limit of the servo. Such a point was reached, the results of which are shown in Figure 37,
38, and 39. The minimum sample rate was found to be \( T = 1/30 \) seconds with a trajectory error penalty weighting of unity and a control penalty weighting of 200. The system \( C^* \) output achieved a steady state match-up with the commanded response in 1.716 seconds. Greater values of control penalty or slower sample rates caused the response to be stretched out sufficiently to fall outside the bounds of the envelope at some time in its time history.

**Root Migrations**

The effects of variation in sample rate for a constant control penalty and the effects of variation in the control penalty for constant sample rates are presented in Figures 40 and 41, respectively. Both figures portray limited data, for the purpose of clarity, in the upper right (positive) quadrant of the Z-plane unit circle. A conjugate counterpart root is assumed. Figure 40 depicts the concentric nature of the curves of constant control penalty weighting; the innermost curve having the greater weighting. It is apparent that for one particular sample instance, such as \( T = 1/100 \), the root locations vary considerably depending on the control penalty weighting selected. It appears, due to the consistency in the nature of the overshoot of the output, that the amount of overshoot (i.e., \( f(\xi) \)) is controlled by the trajectory error penalty. With \( Q \) fixed at unity, the system is operating in a less than critically damped region, in the neighborhood of a .69 damping ratio. The effect of a variation in the control penalty is to alter the particular damped natural frequency \( \omega_n \). The direction of this variation in natural frequency is inversely proportional to the direction of variation in the control penalty weighting; that is, a decrease in \( \omega_n \) results from an increase in \( R \).
reasonable. It was noted earlier that increasing the control penalty weighting "stretched-out" the C* response of the system. Such an effect would also increase the time required for the response to reach its peak (tₚ). Peak time, directly related in this way to the control penalty, is known to be inversely proportional to the natural frequency thus completing the relationship.

In Figure 41, target roots, based upon a $\zeta = .707$ and $\omega_n = .5.5$ as presented in the previous chapter have been calculated and superimposed for various sample rates. The locus of roots for two particular sample rates are shown. Due to the direct mapping nature of Figure 27 to Figure 28, the roots, being above the target in each case, confirm that a damping factor less than .707 is in operation.
VIII. Conclusions and Recommendations

Conclusions

This investigation demonstrates that a discrete optimal controller for the longitudinal pitch axis of the YF-16 Lightweight Fighter Prototype aircraft, based on the proposed \( C^* \) transient response handling qualities performance criteria, is possible at .8 Mach. A reduced state model, based on a short period approximation, was successfully developed using stability derivatives calculated from available wind tunnel information. For the case of subsonic flight at Mach .8 at sea level, a positive \( C_{m\alpha} \) stability derivative was shown to exist. Such a situation is indicative of a statically unstable aircraft. In this respect, the YF-16 is unique. Once disturbed from equilibrium by a pitch up command, for instance, the aircraft will continue to pitch up (Fig. 12a).

The design is based on the requirement that the aircraft successfully track, with zero steady state error, a 1-G climb step input command. Due to its unstable character, results confirm that the aircraft attempts to continue its pitch up necessitating the use of nose down elevator control, in the steady state, to continue the climbing maneuver.

In answer to the series of questions which introduced the previous chapter, the system could be controlled and controlled within the innermost \( C^* \) envelope bounds. The everpresent problem of rate saturation was shown as presenting limitations to the concept. The tendency for initial, large jumps in control position was shown to lead to control rates which could exceed the movement rate of the control surface.
Through the use of a digital simulation, a ZOH approach was found superior to a FOH control scheme in reducing the amount of elapsed time for the system to achieve a steady controlled state. Investigation of various sample rates using the simulation model showed the optimal approach to a solution only slightly effected, in terms of elapsed time to reach steady state lock-on, to the sample rate used. The time required to reach steady state was also shown to be appreciably uneffected at sample rates greater than $T = 1/50$ second. More frequent sampling, however, did result in the production of smaller magnitudes of control deflections.

Use of a trajectory error weighting of unity produced an overshoot in the response of approximately five percent associated with a damping ratio of .69.

The investigation of system closed loop conjugate root migrations showed the trajectory error weighting to be the dominant factor in determining the amount of overshoot and the effective system damping. Likewise, the control penalty weighting was seen as determining the system natural frequency. This relationship held that the natural frequency was inversely proportional to the control penalty weighting. Finally, increasing the control penalty weighting, while the sample rate is held constant, or decreasing the sample rate, while the control penalty weighting is held constant, is seen as causing an increase in the elapsed time to steady state lock-on of system response to commanded response.

In summary, digital longitudinal pitch control of the YF-16 using the discrete $C^*$ approach presented here, as an alternative to the present analog control configuration of the YF-16, is a viable possibility warranting further investigation.
Recommendations

It is recommended that this research be broadened to incorporate a larger portion of the YF-16 flight envelope. Stability derivative information for three additional flight conditions is presented for future research purposes. A full scale analysis of major subsonic and supersonic operating points is urged to confirm the applicability of a discrete $C^*$ controller and the nature of the $C^*$ response. Quite possibly, the use of a system of modeling stability derivatives based on simplifying assumptions and approximations different from the Blakelock approach used here, could be useful to confirm the validity of the YF-16 model developed in this investigation. From the small variation in the magnitude of the controller gains with sample rate, noted in this study, it would be valuable to investigate the magnitude of the gains for other flight conditions. Relatively close gain results between operating regions might foster the identification of one fixed set of gains or a limited range of gain values which control the system over a broad range of operating conditions. Failure to identify such "all purpose gains" might necessitate an adaptive controlling gain scheme. Additionally, the feasibility of substituting the optimal gains from one flight condition for its equivalent at some other operating condition should be investigated. Such a "mismatch analysis", though suboptimal in its approach, might still provide control of the system and aid in an all purpose gain identification.

This study concentrated on a step input pilot command to the system. Future investigations should address alternate inputs to the system. Additionally, the approach taken here was completely
deterministic. Attention should be given to the discrete stochastic aspects of a \( C^* \) control design which incorporates random disturbances to the system.

Finally, a sensitivity analysis should be conducted on the effective change in system response to changes in the values of the coefficients \( K_\alpha^* \), \( K_\alpha \), and \( K_\phi^* \) in the original \( C^* \) equation. Different weights to these terms, effecting the blending of pitch rate and normal acceleration, might yield among other characteristics, a more responsive control system.
Bibliography


Bibliography


Appendix A

Determination of Length to Tail $l_e$

This appendix first defines and then determines the value of $l_e$ needed in the evaluation of various stability derivatives in Chapter II. Dimensional values are taken from Reference 13.

\[ l_e = \text{distance between the quarter chord point of the wing mean aerodynamic chord (MAC) and the quarter chord point of the horizontal stabilizer MAC.} \]

The value of $l_e$ was determined from the physical dimensions of the aircraft.

Side View

YF-16 Lightweight Fighter Prototype

\[ \frac{\delta}{4} \quad \frac{\delta_{HS}}{4} = \frac{53.23}{4} \]

= 13.31" in from leading edge (127)
Top View of
Horizontal Stabilizer

\[ \text{F. S.} = 462.5'' + 21.44'' + 13.31'' = 497.25'' \quad \text{(128)} \]

\[ l_e = 497.25'' - 309.26'' = 187.99'' = 15.666' \quad \text{(129)} \]
Appendix B

TRANFUN Program Input/Output

The determination of the characteristic equations, characteristic roots and transfer functions from the three longitudinal equations of motion is accomplished using the TRANFUN digital computer program (Ref. 16).

For Set A, the equations can be expressed as:

\[
\begin{bmatrix}
1.726s + .0656 & .0005 & .0621 \\
.1882 & 1.7325s + 4.4942 & -1.7073s \\
0 & .0093s - .1788 & .0135s^2 + .0268s
\end{bmatrix}
\begin{bmatrix}
\frac{θ}{\dot{θ}} \\
\frac{θ}{\ddot{θ}} \\
\frac{θ}{\dddot{θ}}
\end{bmatrix}
= \begin{bmatrix}
0 \\
-.4504 \\
-.6452
\end{bmatrix} \quad (130)
\]

This information is input into TRANFUN in the following manner:

```
ENTER ABC INPUT DATA
$ABC A(2)=1.726, B(3)=.0005, C(3)=.0681$

ENTER DEF INPUT DATA
$DEF D(3)=.1882, E(2)=1.7325, F(2)=-1.7073$

ENTER GHP INPUT DATA
$GHP G(3)=0.0, H(2)=.0093, P(1)=.0135, Q(1)=.0268$

ENTER FORC INPUT DATA
$FORC FORC1(3)=0.0, FORC2(3)=-.4504, FORC3(3)=-.6452$
```

The following results are forthcoming:
**CHARACTERISTIC EQUATION**

\[
\begin{align*}
S^6 &+ 0S^5 + 0.40368963E-01S^4 + 0.21379568E+00S^3 \\
&- 3.1093424E+00S^2 + 1.8018967E-01S - 2.0098749E-02
\end{align*}
\]

**ROOTS ARE**

<table>
<thead>
<tr>
<th>REAL</th>
<th>IMAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1223832E+01</td>
<td>0.7804015E-01</td>
</tr>
<tr>
<td>-2.093674E-01</td>
<td>-2.093674E-01</td>
</tr>
<tr>
<td>-2.093674E-01</td>
<td>-2.093674E-01</td>
</tr>
<tr>
<td>-6.478175E+01</td>
<td>-6.567083E-30</td>
</tr>
</tbody>
</table>

**TRANSFER FUNCTION A**

**NUMERATOR EQUATION**

\[
\begin{align*}
S^6 &+ 0S^5 + 0.3042000E-05S^4 + 0.6871250E-01S^3 + 0.18566976E+00S^2 \\
&+ 1.72689\text{POLES AT} \text{ZEROES AT}
\end{align*}
\]

<table>
<thead>
<tr>
<th>REAL</th>
<th>IMAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.654752E+01</td>
<td>0.1223832E+01</td>
</tr>
<tr>
<td>-2.093674E-01</td>
<td>-2.093674E-01</td>
</tr>
<tr>
<td>-2.093674E-01</td>
<td>-2.093674E-01</td>
</tr>
<tr>
<td>-6.478175E+01</td>
<td>-6.567083E-30</td>
</tr>
</tbody>
</table>

**TRANSFER FUNCTION B**

**NUMERATOR EQUATION**

\[
\begin{align*}
S^6 &+ 0S^5 + 0S^4 + 0.10494770E-01S^3 \\
&- 1.9225082E+01S^2 + 1.73053817E-01S - 1.75405943E-02
\end{align*}
\]

<table>
<thead>
<tr>
<th>REAL</th>
<th>IMAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.8408276E-01</td>
<td>-1.5968549E-01</td>
</tr>
<tr>
<td>-1.8408276E-01</td>
<td>-1.807674E-01</td>
</tr>
<tr>
<td>-1.8408276E-01</td>
<td>-1.807674E-01</td>
</tr>
<tr>
<td>-0.25997</td>
<td>-2.5997</td>
</tr>
</tbody>
</table>
The results determine the system transfer functions which can be expressed as:

\[
\frac{u}{S_h} = \frac{0.000030402 s^2 + 0.06971263 s + 0.18506976}{0.040368983 s^4 + 0.2137988 s^3 + 0.31093424 s^2 - 0.012018067 s - 0.0020896749} \tag{131}
\]

\[
\frac{\alpha}{S_h} = \frac{-0.25997 (s + 0.01899276 \pm 0.05968549 j) (s + 183.1493)}{(s - 1.223932) (s + 0.02093674 \pm 0.07804015 j) (s + 6.478175)} \tag{132}
\]

\[
\frac{\theta}{S_h} = \frac{-47.6135 (s - 0.03799498) (s + 2.676139)}{(s - 1.223932) (s + 0.02093674 \pm 0.07804015 j) (s + 6.478175)} \tag{133}
\]
Phugoid Roots (Set A)

The phugoid factor of the characteristic equation is:

\[ s + 0.02093674 \pm 0.07804015j \]  

(134)

From this \( \omega_n \), \( \omega_d \), \( \zeta_n \), and \( T_n \) for this oscillatory mode can be determined:

\[
\omega_n = \sqrt{\frac{\omega^2}{\omega_d}} = 0.0808 \\
\omega_d = 0.07804 \\
\zeta_n = \frac{\sigma}{\omega_n} = 0.25912 \\
T_n = \frac{2\pi}{\omega_n} = 77.762 \text{ sec}
\]  

(135)

Short Period Root (Set A)

The short period factor of the characteristic equation for this unstable situation is:

\[ s^2 + 5.254243s - 7.928845684 = 0 \]  

(136)

For Set B, the equations can likewise be expressed as:

\[
\begin{pmatrix}
1.1506s + 0.1033 & 0.0813 & 0.0276 \\
0.1200 & 1.1465s + 4.8132 & -1.11862s \\
0 & -0.00164s + 0.7392 & 0.006s^2 + 0.01855s
\end{pmatrix}\begin{pmatrix}
\frac{s}{T_A} \\
\frac{s}{T_B} \\
\frac{s}{T_C}
\end{pmatrix} = \begin{pmatrix}
0 \\
-0.361 \\
-0.5157
\end{pmatrix}
\]  

(137)

This information is input into TRANFUN as:

125
ENTER ABC INPUT DATA
$ABC A(0)=1.1566,1.035,B(0)=.08132,C(0)=.0876$

ENTER $\text{DEF}$ INPUT DATA
$\text{DEF D}(0)=1.1465,4.8132,F(2)=-1.11862$

ENTER $\text{GHP}$ INPUT DATA
$\text{GHP G}(0)=0.0,\text{H}(2)=.00164,7.392,P(1)=.006,0.01855$

ENTER $\text{FORCE}$ INPUT DATA
$\text{FORCE FORC1}(3)=0.6,\text{FORC2}(3)=-.361,\text{FORC3}(3)=-.5157$

The following output information results:

**VF=16, MACH=1.2, ALPHA=1.3, SEA LEVEL**

**CHARACTERISTIC EQUATION**

<table>
<thead>
<tr>
<th>$s_6$</th>
<th>$s_5$</th>
<th>$s_4$</th>
<th>$s_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>0.</td>
<td>.79149774E-02</td>
<td>.56299662E-01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$s_2$</th>
<th>$s_1$</th>
<th>$s_0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.10590759E+01</td>
<td>.94453888E-01</td>
<td>.24482864E-02</td>
</tr>
</tbody>
</table>

**ROOTS ARE**

REAL | IMAG
--- | ---
-.4474255E-01 | .1790666E-01
-.4474255E-01 | -.1790666E-01
-.3511721E+01 | .1099399E+00
-.3511721E+01 | -.1099399E+00

**TRANSFER FUNCTION A**

**NUMERATOR EQUATION**

<table>
<thead>
<tr>
<th>$s_6$</th>
<th>$s_5$</th>
<th>$s_4$</th>
<th>$s_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$s_2$</th>
<th>$s_1$</th>
<th>$s_0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.17609556E-03</td>
<td>.63778992E-01</td>
<td>.61142700E-01</td>
</tr>
</tbody>
</table>

**GAIN =**

<table>
<thead>
<tr>
<th>REAL</th>
<th>IMAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>-.9642166E+00</td>
<td>0.</td>
</tr>
<tr>
<td>-.9642166E+00</td>
<td>0.</td>
</tr>
</tbody>
</table>

**POLES AT**

<table>
<thead>
<tr>
<th>REAL</th>
<th>IMAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>-.4474255E-01</td>
<td>.1790666E-01</td>
</tr>
<tr>
<td>-.4474255E-01</td>
<td>-.1790666E-01</td>
</tr>
<tr>
<td>-.3511721E+01</td>
<td>.1099399E+00</td>
</tr>
<tr>
<td>-.3511721E+01</td>
<td>-.1099399E+00</td>
</tr>
</tbody>
</table>

---
The resulting system transfer functions are:

\[
\frac{\kappa}{\sigma_h} = \frac{(s + 0.963216) (s - 361.2223)}{0.007914974 + 0.056298662s^3 + 1.0590759s^2 + 0.094453828s + 0.0024482304} \tag{138}
\]

\[
\frac{\kappa}{\sigma_h} = \frac{-0.31487 (s + 0.048849 \pm 0.02300164j) (s + 269.4224)}{(s + 0.0474255 \pm 0.1790868j) (s + 3.51172 \pm 10.99289j)} \tag{139}
\]
\[
\frac{\theta}{\delta_h} =
\frac{-96.03606 (s + .08775803) (s + 3.745108)}{(s + .04474255 \pm .01790868j) (s + 3.511721 \pm 10.99289j)}
\] (140)

Phugoid Roots (Set B)

The phugoid factor of the characteristic equation is:

\[
s + .0447255 \pm .01790868j = 0
\] (141)

From this, \( \omega_n, \omega_d, S_{ph}, T_{ph} \) are found to be:

\[
\omega_n = \sqrt{\sigma^2 + \omega_d^2} = .0482
\]
\[
\omega_d = .0179
\]
\[
S_{ph} = \frac{\sigma}{\omega_n} = .9279
\]
\[
T_{ph} = \frac{2\pi}{\omega_n} = 130.357
\] (142)

Short Period Root (Set B)

The short period factor of the characteristic equation is:

\[
s + 3.511721 \pm 10.99289j = 0
\] (143)

From this \( \omega_n, \omega_d, S_{sp}, T_{sp} \) are determined to be:

\[
\omega_n = \sqrt{\sigma^2 + \omega_d^2} = 11.540
\]
\[
\omega_d = 10.99289
\]
\[
S_{sp} = \frac{\sigma}{\omega_n} = .3043
\]
\[
T_{sp} = \frac{2\pi}{\omega_n} = .544 \text{ sec}
\] (144)
Appendix C

Continuous State Variable Equation Development

This appendix details the development of a state variable representation of the longitudinal equations of motion. Such a development is needed in order to model the YF-16 as a linear system of the form \( \dot{x} = \mathbf{A} \mathbf{x} + \mathbf{B} \mathbf{u} \) for implementation of the controlled system model represented in Figure 19.

Returning to the original equations shown previously in Chapter II:

\[
\frac{2h}{S_f} \ddot{u} - c_u \dot{u} - \frac{c}{\kappa} c_v \dot{u} - c_x \dot{u} - \frac{c}{\Delta} \dot{\phi} - c_w \cos \Theta \Theta = c_s f_k 
\]  

\[
-c_x \ddot{\alpha} + \frac{2h}{S_f} \dot{\alpha} - \frac{c}{\kappa} c_v \dot{\alpha} - \frac{c}{\kappa} \dot{\alpha} - \frac{c}{\Delta} \dot{\phi} - c_w \cos \Theta \Theta = c_s f_k 
\]  

\[
-c_v \ddot{\alpha} - \frac{c}{\kappa} c_v \dot{\alpha} - c_v \dot{\alpha} + \frac{c_i}{S_f} \dot{\Theta} - \frac{c}{\Delta} c_v \dot{\phi} = c_m f_k
\]

and letting

\[
k_1 = \frac{2h}{S_f} \\
k_2 = \frac{c}{\kappa} c_v \\
k_3 = \frac{c}{\Delta} \\
k_4 = k_1 - k_3 c_z \\
k_5 = \frac{c_i}{S_f}
\]

while neglecting the following terms by setting them equal to zero for the reasons explained in Chapter II:
the equations of motion can now be written as:

\[
\begin{align*}
\dot{k}_1 \dot{u} - c_{x_w} \dot{u} - c_{x_d} \dot{u} - c_w \Theta &= 0 = f(u, \dot{u}, \dot{\Theta}) \tag{147} \\
-c_{z_w} \dot{u} + k_1 \dot{u} - k_3 c_{z_d} \dot{u} - c_{z_d} \dot{u} - k_2 \dot{\Theta} - k_3 c_{z_d} \dot{\Theta} &= c_{z_{sh}} s_h = f(u, \dot{u}, \dot{\Theta}) \tag{148} \\
-k_3 c_{m_d} \dot{\dot{u}} - c_{m_d} \dot{\dot{u}} + k_2 \dot{\Theta} - k_3 c_{m_d} \dot{\Theta} &= c_{m_{sh}} s_h = f(u, \dot{u}, \dot{\Theta}) \tag{149}
\end{align*}
\]

Dropping the primes and defining the following state variables:

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_3 \\
\dot{x}_4
\end{bmatrix}
= \begin{bmatrix}
u \\
\alpha \\
\Theta \\
q
\end{bmatrix}
\tag{150}
\]

The equations become:

\[
\begin{align*}
k_1 \dot{x}_1 - c_{x_w} x_1 - c_{x_d} x_2 - c_w x_3 &= 0 \tag{151} \\
-c_{z_w} x_1 + k_1 \dot{x}_1 - k_3 c_{z_d} \dot{x}_2 - c_{z_d} x_2 - k_1 x_1 - k_3 c_{z_d} x_3 &= c_{z_{sh}} s_h \tag{152} \\
-k_3 c_{m_d} \dot{x}_2 - c_{m_d} \dot{x}_2 + k_2 \dot{x}_4 - k_3 c_{m_d} \dot{x}_4 &= c_{m_{sh}} s_h \tag{153}
\end{align*}
\]

Dividing equation (151) by \(K\), yields:

\[
\frac{\dot{x}_1 - c_{x_w} x_1}{k_1} + \frac{c_{x_d}}{k_1} x_2 - \frac{c_w}{k_1} x_3 = 0 \tag{154}
\]
or,

\[ \dot{x}_1 = \frac{c_{x_u}}{k_1} x_1 + \frac{c_{x_v}}{k_1} x_2 + \frac{c_{x_z}}{k_1} x_3 \]  \hspace{1cm} (155)

Similarly, equation (152) can be rewritten as:

\[ -c_{z_u} x_1 + \left[ k_1 - k_3 C_{z_2} \right] \dot{x}_2 - c_{z_v} x_2 - k_1 x_4 - k_3 C_{z_3} x_4 = C_{z_{sh}} f_h \]  \hspace{1cm} (156)

or after expanding:

\[ -c_{z_u} x_1 + k_4 \dot{x}_2 - c_{z_v} x_2 - k_1 x_4 - k_3 C_{z_f} x_4 = C_{z_{sh}} f_h \]  \hspace{1cm} (157)

Solving for \( \dot{x}_2 \)

\[ k_4 \dot{x}_2 = c_{z_u} x_1 + c_{z_v} x_2 + k_1 x_4 + k_3 C_{z_f} x_4 + C_{z_{sh}} f_h \]  \hspace{1cm} (158)

\[ \dot{x}_2 = \frac{c_{z_u}}{k_4} x_1 + \frac{c_{z_v}}{k_4} x_2 + \frac{k_1}{k_4} x_4 + \frac{k_3}{k_4} C_{z_f} x_4 + \frac{C_{z_{sh}}}{k_4} f_h \]  \hspace{1cm} (159)

or finally as:

\[ \dot{x}_2 = \frac{c_{z_u}}{k_4} x_1 + \frac{c_{z_v}}{k_4} x_2 + \left[ \frac{k_1 + k_3 C_{z_f}}{k_4} \right] x_4 + \frac{C_{z_{sh}}}{k_4} f_h \]  \hspace{1cm} (160)

Since \( \dot{\theta} = q \), then:

\[ \dot{x}_3 = x_4 \]  \hspace{1cm} (161)
The final equation results by dividing equation (153) by \( K_2 \):

\[
- \frac{k_2}{k_a} C_m \dot{x}_2 - \frac{d_m}{K_a} x_2 + \frac{k_2}{k_a} \dot{x}_y - \frac{k_2}{k_a} C_m b \dot{x}_y = \frac{C_m S_h}{K_2} \ddot{s}_h \tag{162}
\]

Which, when solving for \( \dot{x}_y \) becomes:

\[
\dot{x}_y = \frac{k_2}{k_a} C_m a \dot{x}_2 + \frac{C_m}{K_a} x_2 + \frac{k_2}{k_a} C_m b \dot{x}_y + \frac{C_m S_h}{K_2} \ddot{s}_h \tag{163}
\]

Substituting in the previous expression for \( \dot{x}_2 \):

\[
\dot{x}_y = \frac{k_2}{k_a} C_m \left[ \frac{C_{Z_m}}{k_4} \dot{x}_1 + \frac{C_{Z_m}}{k_4} x_2 + \left( \frac{k_1 + k_3 C_{Z_b}}{k_4} \right) \dot{x}_y + \frac{C_{Z_m} S_h}{k_4} \ddot{s}_h \right] +
\]

\[
\frac{C_{Z_m}}{k_2} x_2 + \frac{k_2}{k_a} C_m b \dot{x}_y + \frac{C_{Z_m} S_h}{k_2} \ddot{s}_h \tag{164}
\]

Multiplying through each term:

\[
\dot{x}_y = \left[ \frac{k_2}{k_4 k_k} C_{a_3} C_{Z_m} \right] \dot{x}_1 + \left[ \frac{k_2}{k_4 k_k} C_{a_3} C_{Z_m} \right] x_2 + \left[ \frac{k_2}{k_4 k_k} \frac{k_3}{k_2} \frac{C_{Z_m}}{k_4} C_{a_3} \right] \dot{x}_y +
\]

\[
\left[ \frac{k_2}{k_2 k_k} C_{a_3} C_{Z_m} S_h \right] \ddot{s}_h + \frac{C_{a_3}}{k_2} x_2 + \frac{k_2}{k_a} C_m b \dot{x}_y + \frac{C_{Z_m} S_h}{k_2} \ddot{s}_h \tag{165}
\]

or finally:

\[
\dot{x}_y = \left[ \frac{k_2}{k_4 k_k} C_{a_3} C_{Z_m} \right] \dot{x}_1 + \left[ \frac{k_2}{k_4 k_k} C_{a_3} C_{Z_m} + \frac{C_{a_3}}{k_2} \right] x_2 +
\]

\[
\left[ \frac{k_2}{k_2 k_k} \frac{k_3}{k_2} \frac{C_{Z_m}}{k_4} C_{a_3} \right] \dot{x}_y + \left[ \frac{k_2}{k_2 k_k} C_{a_3} C_{Z_m} + \frac{C_{Z_m} S_h}{k_2} \right] \ddot{s}_h \tag{166}
\]
Summarizing, the four state variable equations corresponding to $\dot{\alpha}$, $\dot{\delta}$, and $\ddot{\delta}$ are respectively:

\begin{align*}
    \dot{x}_1 &= \frac{c_{x_{\alpha}}}{k_1} x_1 + \frac{c_{x_{\alpha} \delta}}{k_1} x_2 + \frac{c_{w}}{k_1} x_3 \quad (155) \\
    \dot{x}_2 &= \frac{c_{z_{\delta}}}{k_4} x_1 + \frac{c_{z_{\delta} \delta}}{k_4} x_2 + \frac{k_5 + k_6 c_{z_{\delta}}}{k_4} x_4 + \frac{c_{z_{h \delta}}}{k_4} s_h \quad (160) \\
    \dot{x}_3 &= 1.0 x_4 \quad (161) \\
    \dot{x}_4 &= \left[ \frac{k_2}{k_4} c_{m_{\alpha \delta}} c_{z_{\alpha}} \right] x_1 + \left[ \frac{k_2}{k_4} c_{m_{\alpha \delta}} c_{z_{\delta}} + \frac{c_{m_{\delta}}}{k_2} \right] x_2 + \\
    &\quad \left[ \frac{k_2}{k_4} (k_2 + k_3 c_{z_{\delta}}) c_{m_{\alpha \delta}} + \frac{k_2}{k_4} c_{m_{\delta}} \right] x_4 + \frac{k_2}{k_4} c_{m_{\alpha \delta}} c_{z_{h \delta}} c_{m_{h \delta}} s_h \quad (166)
\end{align*}

Now, $s_h$ is introduced as the new state $x_5$, since:

\begin{equation}
    \frac{s_h}{s_{h_{c}}} = \frac{20}{s + 20} \quad (75)
\end{equation}

where $s_{h_{c}}$ is the commanded deflection in the horizontal stabilizer, then:

\begin{equation}
    20 s_{h_{c}} = \dot{s}_{h} + 20 s_{h} \quad (167)
\end{equation}

and solving for $s_{h}$:

\begin{equation}
    \dot{s}_{h} = -20 s_{h} + 20 s_{h_{c}} \quad (168)
\end{equation}
or finally that:

\[
\dot{x}_5 = -20x_5 + 20s_{he}
\]  \hspace{1cm} (169)

the new forcing function \( u(t) \) become \( s_{he}(t) \).

Now the system modeling equations of motion in the form of equation (77) become:
\[ \begin{bmatrix}
0 & 0 & 0 & 0 & -20.0 \\
-x_1 & x_2 & x_3 & x_4 & x_5 \\
0 & 0 & c_2 \frac{k_2}{k_4} & 0 & \frac{k_1}{k_2} \\
0 & 0 & 0 & 1.0 & 0 \\
-c_3 \frac{k_3}{k_4} & 0 & 0 & 0 & 0 \\
c_3 \frac{k_3}{k_4} & -c_4 \frac{k_4}{k_4} & 0 & 0 & 0 \\
c_4 \frac{k_4}{k_4} & 0 & c_3 \frac{k_3}{k_4} & 0 & 0 \\
c_5 \frac{k_5}{k_4} & 0 & 0 & c_4 \frac{k_4}{k_4} & 0 \\
\end{bmatrix} \]

(170)
When the appropriate terms are extracted from Table III, and substituted into this latest expression, the following equation results:

\[
\begin{bmatrix}
\dot{x}_1 & -0.03800914 & -0.9928970 & -0.03598122 & 0 & 0 \\
\dot{x}_2 & -1.0863579 & -2.5942135 & 0 & 0.985425739 & -0.25998704 \\
\dot{x}_3 & 0 & 0 & 0 & 1.0 & 0 \\
\dot{x}_4 & -0.07495323 & 15.0520989 & 0 & -2.6725778 & -47.677365 \\
\dot{x}_5 & 0 & 0 & 0 & 0 & -20.0 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
\end{bmatrix}
\]

which is positionally equivalent to the terms of \( \ddot{x} = \bar{A} \dot{x} + \bar{B} u \).

Equation (171) can be simplified in terms of the number of states by using a short period approximation. Such a simplification is justified since the interest here is in the transient response of the aircraft. Additionally, the coefficients of the velocity state \( u \) in the \( A \) matrix above, have only a minor contribution on the short period transient response. The velocity state \( u \) can therefore be eliminated without degrading the short period performance of the aircraft.

Again, referring to the short period approximation equations of motion from Chapter III:

\[
\begin{bmatrix}
\frac{2A}{\beta} s - \frac{C_z}{\alpha} \\
\frac{2A}{\beta} s - \frac{C_{\text{w}}}{\text{sin} \theta} \\
\end{bmatrix} \Theta(s) + \begin{bmatrix}
\frac{2A}{\beta} s - \frac{C_{\text{w}}}{\text{sin} \theta} \\
\end{bmatrix} \Theta(s) = C_{\text{z}} \Theta_{\text{h}}(s)
\]

(61)
and eliminating the primes and s's, equation (61) becomes:

\[
\frac{\lambda S}{S^2} \ddot{\alpha} - C_{z, \alpha} \dot{\alpha} - \frac{\lambda S}{S^2} \dot{\phi} = C_{\varepsilon f_{h}} s_h
\]  

(172)

solving for \( \dot{\alpha} : \)

\[
\dot{\alpha} = \frac{C_{z, \alpha}}{k_1} \dot{\alpha} + 1.0 \dot{\phi} + \frac{C_{\varepsilon f_{h}}}{k_1} s_h
\]  

(173)

or equivalently,

\[
\dot{\alpha} = \frac{C_{z, \alpha}}{k_1} \dot{\alpha} + 1.0 \dot{\phi} + \frac{C_{\varepsilon f_{h}}}{k_1} s_h
\]  

(174)

Likewise, equation (62) becomes:

\[
- \frac{\bar{C}}{2\pi} C_{m_a} \dddot{\alpha} - C_{m_a} \dot{\alpha} + \frac{\pi g}{\lambda \bar{S}} \ddot{\phi} - \frac{\bar{C}}{2\pi} C_{m_b} \dot{\phi} = C_{m f_{h}} s_h
\]  

(175)

or,

\[
-k_3 C_{m_a} \dddot{\alpha} - C_{m_a} \dot{\alpha} + k_2 \ddot{\phi} - k_3 C_{m_b} \dot{\phi} = C_{m f_{h}} s_h
\]  

(176)
and solving for $\ddot{\theta}$ becomes:

$$\ddot{\theta} = \frac{c_{m_d}}{k_2} \dot{\omega} + \frac{k_3}{k_2} c_{m_d} \dot{\omega} + \frac{k_2}{k_2} \dot{c}_{m_d} + \frac{c_{m_d}^{*} u}{k_2} f \tag{177}$$

Now, if the expression just found for $\dot{\omega}$ is substituted into this newest expression, $\theta$ becomes:

$$\ddot{\theta} = \frac{1}{k_2} \left[ c_{m_d} + \frac{k_3}{k_1} c_{m_a} \dot{\omega} \right] \alpha + \frac{k_2}{k_2} \left[ c_{m_d}^{*} + c_{m_b} \right] + \frac{S_h}{k_2} \left[ \frac{k_2}{k_1} c_{m_a} c_{\xi} s_h + c_{m_b} s_h \right] \tag{178}$$

The remaining state equations remain the same. Specifically:

$$\dot{\theta} = q \tag{179}$$

and

$$\dot{S}_h = -20.0 S_h + 20.0 S_{he} \tag{168}$$

In state variable format, equations (168), (174), (178), and (179) can be expressed as:
As the highlighted area of this matrix equation indicates, a trivial state relationship exists, i.e., the derivative of a state equals its derivative and this state makes no contribution to the remaining state expressions. The $\theta$ state can therefore be eliminated, reducing the state matrix equation even further. The resulting reduced short period approximation state variable equation which models the YF-16 longitudinal dynamics is:

$$\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_3
\end{bmatrix} =
\begin{bmatrix}
\frac{c_{zd}}{k_1} & 0 & \frac{c_{zd}}{k_1} \\
\frac{c_{zd}}{k_1} & \frac{c_{zd}}{k_1} & \frac{c_{zd}}{k_1} \\
0 & 0 & -20.0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
+ \begin{bmatrix}
0 \\
0 \\
S_{\dot{h}}c
\end{bmatrix}
$$

(180)

$$\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_3
\end{bmatrix} =
\begin{bmatrix}
\frac{c_{zd}}{k_1} & 0 & \frac{c_{zd}}{k_1} \\
\frac{c_{zd}}{k_1} & \frac{c_{zd}}{k_1} & \frac{c_{zd}}{k_1} \\
0 & 0 & -20.0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
+ \begin{bmatrix}
0 \\
0 \\
S_{\dot{h}}c
\end{bmatrix}
$$

(181)
which, when the appropriate values from Table III for $M = .8$ at sea level are substituted, becomes:

\[
\begin{bmatrix}
\dot{x} \\
\dot{\phi} \\
\ddot{z}
\end{bmatrix} = \begin{bmatrix}
-2.603975 & 1.0 & -0.260965 \\
15.058542 & -2.682339 & -47.676367 \\
0 & 0 & -20.0
\end{bmatrix} \begin{bmatrix}
x \\
\phi \\
\ddot{z}
\end{bmatrix} + \begin{bmatrix}
0 \\
0 \\
20.0
\end{bmatrix} \ddot{z}_h
\]

(182)
Appendix D

Development of the Recursive Optimal Control

This appendix presents the development of the expression for the recursive discrete optimal control $u(KT)$ used to control the system. The development is a combination of the approaches presented in References 8, 12, and 15.

Development

Given the discrete system of equations:

$$\mathbf{x}(K+1) = A_d \mathbf{x}(KT) + B_d u(KT) \quad (96)$$

$$y(KT) = C_d x(KT) \quad (97)$$

it is necessary to find the sequence of controls that minimize the discrete equivalent of the continuous quadratic functional which follows:

$$J(u) = \int_0^\infty \left\{ [Z_o - y(t)]^T Q [Z_o - y(t)] + \dot{u}(t)^T R u(t) \right\} dt \quad (Ref. 12) \quad (83)$$

where $Z_o$ is an arbitrary step input ($Z_o = C^*_{com}$). This continuous cost functional can be replaced by the following equivalent discrete expression where $\sum$ and $\Delta T$ replace $\int$ and $dt$, respectively, and $\dot{u}(t)$ is replaced by its first difference equivalent. Note that an infinite time cost functional is used because it results in a constant gain control law. The discrete cost function becomes:
\[ J(u)_{d} = \sum_{k=0}^{\infty} \left\{ \left( \left[ z_{o} - y(kT) \right] \Delta T + \frac{Q_{d}}{\Delta T} \left[ z_{o} - y(kT) \right] \right) \Delta T + \left( \frac{u(k+1)T - u(kT)}{\Delta T} \right) R_{d} \Delta T \left[ \frac{u(k+1)T - u(kT)}{\Delta T} \right] \right\} \] (184)

or equivalently for this particular problem:

\[ J(u)_{d} = \sum_{k=0}^{\infty} \left\{ \left( C_{com}^{*} - C_{act}^{*} \right)^{T} Q_{d} \left( C_{com}^{*} - C_{act}^{*} \right) + \left[ u(k+1)T - u(kT) \right]^{T} R_{d} \left[ u(k+1)T - u(kT) \right] \right\} \] (185)

Let \( x_{o} \) be the solution of equation (96), that is, \( x(KT) = x(K+1)T \) in the steady state. Then, equation (96) becomes:

\[ \bar{x}(K+1)T = \bar{x}(KT) = A_{d} \bar{x}(KT) + E_{d} u(KT) \] (186)

or,

\[ \bar{x}(KT)(I - A_{d}) = E_{d} u(KT) \] (187)

Now, if \( \bar{x}_{o} \triangleq \lim_{K \to \infty} \bar{x}(KT) \) and \( u_{o} \triangleq \lim_{K \to \infty} u(KT) \), equation (187) becomes:

\[ \bar{x}_{o} \left[ I - A_{d} \right] = E_{d} u_{o} \] (188)

or,

\[ \bar{x}_{o} = -\left[ A_{d} - I \right]^{-1} E_{d} u_{o} \] (189)
which is the unique solution of:

\[ \bar{x}_0 = \bar{A}_d \bar{x}_0 + \bar{B}_d u_0 \]  
(190)

This implies that:

\[ \bar{x}_0 - \bar{A}_d \bar{x}_0 = \bar{B}_d u_0 \]  
(191)

Additionally, using equation (97), if \( z_o = y(KT) \), then by equation (189):

\[ z_o = \bar{c}_d \left\{ \left[ \bar{A}_d - I \right]^{-1} \bar{B}_d u_o \right\} \]  
= \bar{c}_d \bar{x}_0 \]  
(192)

Solving for \( u_o \):

\[ u_o = - \left[ \bar{c}_d \left( \bar{A}_d - I \right)^{-1} \bar{B}_d \right]^{-1} z_o \]  
(193)

The development continues by defining the following error variables.

Letting the transient in the control be defined as:

\[ \bar{v}(KT) \triangleq u(K+1)T - u(KT) \]  
(194)

then the transient is \( u(KT) \) is defined as:

\[ \bar{u}(KT) \triangleq u(KT) - u_o \]  
(195)

which implies that:

\[ u_o = u(KT) - \bar{u}(KT) \]  
(196)
Finally, the transient part of $\overline{x}(K^T)$ is defined as:

$$\overline{x}(K^T) = \overline{x}(K^T) - x_0$$

(197)

This allows the definition of $\overline{x}(K+1)^T$ as follows:

$$\overline{x}(K+1)^T = \overline{x}(K+1)^T - x_0$$

(198)

and, $\overline{u}(K+1)^T$ as:

$$\overline{u}(K+1)^T = u(K+1)^T - u_0$$

(199)

which, from equation (196), becomes:

$$\overline{u}(K+1)^T = u(K+1)^T - \left[ u(K^T) - \overline{u}(K^T) \right]$$

(200)

Regrouping the terms:

$$\overline{u}(K+1)^T = \overline{u}(K^T) + \left[ u(K+1)^T - u(K^T) \right]$$

(201)

and using equation (194), this becomes:

$$\overline{u}(K+1)^T = \overline{u}(K^T) + \overline{u}(K^T)$$

(202)

Finally, let $\overline{v}(K+1)^T$ be defined as:

$$\overline{v}(K+1)^T = u(K+1)^T - u(K^T)$$

(203)

Subtracting $x_0$ from both sides of the identity $\overline{x}(K+1)^T = \overline{x}(K+1)^T$, equation (196) can be written as:

$$\overline{x}(K+1)^T - x_0 = \overline{x}(K+1)^T - x_0$$

$$= \overline{a}_d \overline{x}(K^T) + \overline{b}_d u(K^T) - x_0$$

(204)
Substituting equation (190) for the $\bar{x}_o$ on the right side of equation (204):

$$\bar{x}(K+1)T - \bar{x}_o = \bar{A}_d \bar{x}(KT) + \bar{B}_d u(KT) - \left[ \bar{A}_d \bar{x}_o + \bar{B}_d u_o \right]$$

$$= \bar{A}_d \left[ \bar{x}(KT) - \bar{x}_o \right] + \bar{B}_d \left[ u(KT) - u_o \right]$$  \hspace{1cm} (205)

but, $\bar{x}(K+1)T - \bar{x}_o = \bar{x}(K+1)T$ by equation (198), or

$$\bar{x}(K+1)T = \bar{A}_d \bar{x}(KT) + \bar{B}_d u(KT)$$ \hspace{1cm} (206)

Now substituting in equations (195) and (197), the result becomes:

$$\bar{x}(K+1)T = \bar{A}_d \bar{x}(KT) + \bar{B}_d \bar{u}(KT)$$ \hspace{1cm} (207)

Equations (202) and (207) can be expressed in state space notation as:

$$\begin{bmatrix} \bar{x}(K+1)T \\ \bar{u}(K+1)T \end{bmatrix} = \begin{bmatrix} \bar{A}_d & \bar{B}_d \\ 0 & I \end{bmatrix} \begin{bmatrix} \bar{x}(KT) \\ \bar{u}(KT) \end{bmatrix} + \begin{bmatrix} 0 \\ I \end{bmatrix} \cdot \bar{v}(KT)$$ \hspace{1cm} (208)

Let the matrix $\begin{bmatrix} \bar{A}_d & \bar{B}_d \\ 0 & I \end{bmatrix} \triangleq \Phi$ and the matrix $\begin{bmatrix} 0 \\ I \end{bmatrix} \triangleq \Gamma$

then,

$$\begin{bmatrix} \bar{x}(K+1)T \\ \bar{u}(K+1)T \end{bmatrix} = \Phi \begin{bmatrix} \bar{x}(KT) \\ \bar{u}(KT) \end{bmatrix} + \Gamma \cdot \bar{v}(KT)$$ \hspace{1cm} (209)

Realizing that equation (184) can be expressed as:

$$J(u)_d = \sum_{k=0}^{\infty} \left\{ \begin{bmatrix} Z_o - y(KT) \end{bmatrix}^T Q_d \begin{bmatrix} Z_o - y(KT) \end{bmatrix} + \begin{bmatrix} u(K+1)T - u(KT) \end{bmatrix}^T R_d \begin{bmatrix} u(K+1)T - u(KT) \end{bmatrix} \right\}$$ \hspace{1cm} (210)
and recalling from equation (97) that:

$$y(KT) = \overline{c}_d \overline{x}(KT)$$  \hspace{1cm} (97)

and from equation (192) that:

$$z_0 = \overline{c}_d x_0$$  \hspace{1cm} (192)

then,

$$z_0 - y(KT) = \overline{c}_d \left[ \overline{x}_0 - \overline{x}(KT) \right] = \overline{c}_d \left[ -\overline{x}(KT) \right]$$  \hspace{1cm} (211)

and the cost functional, equation (184), can be rewritten as:

$$J(u) = \sum_{k=0}^{\infty} \left\{ \left( \overline{c}_d \left[ -\overline{x}(KT) \right] \right)^T Q_d \left( \overline{c}_d \left[ -\overline{x}(KT) \right] \right) + \right.$$

$$\left[ u(K+1)T - u(KT) \right]^T R_d \left[ u(K+1)T - u(KT) \right] \left\} \right.$$  \hspace{1cm} (212)

Equation (194) can then be substituted into equation (212) with the result:

$$J(u) = \sum_{k=0}^{\infty} \left\{ \left( \overline{c}_d \overline{x}(KT) \right)^T Q_d \left( \overline{c}_d \overline{x}(KT) \right) + \right.$$

$$\overline{v}(KT)^T \overline{v}(KT) \left\} \right.$$  \hspace{1cm} (213)

$$= \sum_{k=0}^{\infty} \overline{x}^T(KT) \overline{c}_d^T Q_d \overline{c}_d \overline{x}(KT) + \overline{v}^T(KT) R_d \overline{v}(KT)$$  \hspace{1cm} (214)

or,

$$J(u) = \sum_{k=0}^{\infty} \left[ \overline{x}^T(KT) \overline{v}^T(KT) \right] \left[ \overline{c}_d^T Q_d \overline{c}_d \right] \left[ \overline{v}(KT) \right] + \right.$$

$$\overline{v}^T(KT) R_d \overline{v}(KT)$$  \hspace{1cm} (215)
where,
\[
\begin{bmatrix}
\bar{c}_d & 0 \\
0 & 0
\end{bmatrix}
\Rightarrow Q_{\text{Ricatti}}
\]  

The control \( \hat{v}(K_T) \) which minimizes this cost functional is of the form:
\[
\hat{v}_K = \bar{K}_1 \hat{x}(K_T) + \bar{K}_2 \hat{u}(K_T)
\]

\[
\begin{bmatrix}
\bar{K}_1 \\
\bar{K}_2
\end{bmatrix}
\begin{bmatrix}
\hat{x}(K_T) \\
\hat{u}(K_T)
\end{bmatrix}
\]  

where \( \bar{K}_1 \) and \( \bar{K}_2 \) are the gains obtained using the positive definite steady state solution (P) of the discrete Ricatti equation in the expression:
\[
\begin{bmatrix}
\bar{K}_1 \\
\bar{K}_2
\end{bmatrix} = -\left[\Gamma^T P \Gamma + R_d\right]^{-1} \cdot \Gamma^T P \Phi
\]  

The discrete Ricatti equation used is of the form:
\[
P = Q_{\text{Ricatti}} + \Phi^T P \Phi - \Phi^T P \Gamma \left[\Gamma^T P \Gamma + R_d\right]^{-1} \Gamma^T P \Phi
\]  

The final expression for the control law is obtained by manipulating equation (217). Assume that there exists a matrix \( W \) such that:
\[
\overline{\Omega}_d = I
\]  

Using equation (207), repeated here:
\[
\hat{x}(K+1) = \bar{A}_d \hat{x}(K_T) + \bar{B}_d \hat{u}(K_T)
\]
it follows that:

\[ \overline{\dd}_{d} u(KT) = x(K+1)T - \overline{a}_{d} x(KT) \]  \hspace{1cm} (221)

multiplied through by \( \overline{w} \) and thereby employing equation (220):

\[ \overline{w} \overline{\dd}_{d} u(KT) = \overline{w} x(K+1)T - \overline{w} \overline{a}_{d} x(KT) \]  \hspace{1cm} (222)

or,

\[ u(KT) = \overline{w} x(K+1)T - \overline{w} \overline{a}_{d} x(KT) \]  \hspace{1cm} (223)

When equation (223) is substituted into equation (217), the result is:

\[ \overline{\gamma}(KT) = \overline{k}_{1d} x(KT) + \overline{k}_{2d} \left[ \overline{w} x(K+1)T - \overline{w} \overline{a}_{d} x(KT) \right] \]  \hspace{1cm} (224)

\[ = \left[ \overline{k}_{1d} - \overline{k}_{2d} \overline{w} \overline{a}_{d} \right] x(KT) + \overline{k}_{2d} \overline{w} x(K+1)T \]  \hspace{1cm} (225)

Adding and subtracting \( \overline{k}_{2d} \overline{w} x(KT) \) to the right side of equation (225), results in:

\[ \overline{\gamma}(KT) = \left[ \overline{k}_{1d} - \overline{k}_{2d} \overline{w} \overline{a}_{d} \right] x(KT) + \overline{k}_{2d} \overline{w} x(K+1)T - \overline{k}_{2d} \overline{w} x(KT) \]  \hspace{1cm} (226)

or,

\[ \overline{\gamma}(KT) = \left[ \overline{k}_{1d} - \overline{k}_{2d} \overline{w}(\overline{a}_{d} - I) \right] x(KT) + \overline{k}_{2d} \overline{w} \left[ x(K+1)T - x(KT) \right] \]  \hspace{1cm} (227)

Equation (227) can be simplified by defining \( \overline{\ell}_{d} \) such that:

\[ -\overline{\ell}_{d} \overline{c}_{d} = \overline{k}_{1d} - \overline{k}_{2d} \overline{w} (\overline{a}_{d} - I) \]  \hspace{1cm} (228)
Now equation (227) becomes:

\[
\tilde{v}(KT) = -L_d \tilde{c}_d \tilde{x}(KT) + \tilde{K}_2 \tilde{w} \left[ \tilde{x}(K+1)T - \tilde{x}(KT) \right]
\]

\[
= -L_d \left\{ \tilde{c}_d \left[ \tilde{x}(KT) - \tilde{x}_0 \right] \right\} + \tilde{K}_2 \tilde{w} \left[ \tilde{x}(K+1)T - \tilde{x}(KT) \right]
\]

(229)

but from equations (97) and (192):

\[
\tilde{c}_d \tilde{x}(KT) - \tilde{c}_d \tilde{x}_0 = y(KT) - z_0
\]

(230)

then,

\[
\tilde{v}(KT) = -L_d \left[ y(KT) - z_0 \right] + \tilde{K}_2 \tilde{w} \left[ \tilde{x}(K+1)T - \tilde{x}(KT) \right]
\]

\[
= L_d \left[ z_0 - y(KT) \right] + \tilde{K}_2 \tilde{w} \left[ \tilde{x}(K+1)T - \tilde{x}(KT) \right]
\]

(231)

but,

\[
\tilde{x}(K+1)T - \tilde{x}(KT) = \left[ \tilde{x}(K+1)T - \tilde{x}_0 \right] - \left[ \tilde{x}(KT) - \tilde{x}_0 \right]
\]

\[
= \tilde{x}(K+1)T - \tilde{x}(KT)
\]

(232)

therefore,

\[
\tilde{v}(KT) = L_d \left[ z_0 - y(KT) \right] + \tilde{K}_2 \tilde{w} \left[ \tilde{x}(K+1)T - \tilde{x}(KT) \right]
\]

(233)

Using equation (194), this can be rewritten as:

\[
u(K+1)T - u(KT) = L_d \left[ z_0 - y(KT) \right] + \tilde{K}_2 \tilde{w} \left[ \tilde{x}(K+1)T - \tilde{x}(KT) \right]
\]

(234)
Now letting \( \overrightarrow{K}_d \cdot \overrightarrow{W} = \overrightarrow{N}_d \), this becomes:

\[
u(K+1)T - u(KT) = L_d \left[ Z_0 - y(KT) \right] + \overrightarrow{N}_d \left[ \overrightarrow{x}(K+1)T - \overrightarrow{x}(KT) \right]
\]

where \( Z_0 \) is the system input \( C^* \text{com} \), and \( y(KT) \) by equation (97) is \( \overrightarrow{C} \overrightarrow{x}(KT) \). Since from equation (228):

\[
\overrightarrow{W} = \overrightarrow{K}_d^{-1} (\overrightarrow{K}_d + L_d \overrightarrow{C}_d) (\overrightarrow{A}_d - \overrightarrow{I})^{-1}
\]

equation (220) can be expressed as:

\[
\overrightarrow{I} = \left[ \overrightarrow{K}_d^{-1} \left( \overrightarrow{K}_d + L_d \overrightarrow{C}_d \right) (\overrightarrow{A}_d - \overrightarrow{I})^{-1} \right] \overrightarrow{B}_d
\]

Using this information, \( L_d \) can be expressed as:

\[
L_d = \left[ \overrightarrow{K}_d^{-1} - \overrightarrow{K}_d (\overrightarrow{A}_d - \overrightarrow{I})^{-1} \overrightarrow{B}_d \right] \left[ \overrightarrow{C}_d (\overrightarrow{A}_d - \overrightarrow{I})^{-1} \overrightarrow{B}_d \right]^{-1}
\]

while,

\[
\overrightarrow{N}_d = \overrightarrow{K}_d \left[ \overrightarrow{K}_d^{-1} (\overrightarrow{K}_d + L_d \overrightarrow{C}_d) (\overrightarrow{A}_d - \overrightarrow{I})^{-1} \right]
\]

or,

\[
\overrightarrow{N}_d = (\overrightarrow{K}_d + L_d \overrightarrow{C}_d) (\overrightarrow{A}_d - \overrightarrow{I})^{-1}
\]

Equation (235) is the resulting recursive control expression which, when incorporated with equations (238) and (240), produces the sequence of optimal controls for the system of equations:

\[
\overrightarrow{x}(K+1)T = \overrightarrow{A}_d \overrightarrow{x}(KT) + \overrightarrow{B}_d u(KT)
\]

\[
y(KT) = \overrightarrow{C}_d \overrightarrow{x}(KT)
\]
Appendix E

Simulation Computer Program

The following program (SIM3) was developed and used for this investigation to solve the C enumeration discrete, optimal control problem discussed in the text. The reader is referred to Figures 22, 24, and 25 of the text for a detailed representation of the flow of logic in this algorithm. Explanatory comments are included in the program to clarify key areas/options. The program is easily adaptable to other aircraft or other flight conditions. As presented, the continuous aircraft plant (3 x 3) dynamics matrix \( \mathbf{A} \) and (3 x 1) control matrix \( \mathbf{B} \), as well as the (1 x 3) observer matrix \( \mathbf{CD} \) are for a YF-16 flying at Mach .8 at sea level. Additionally, the Q and R weightings are set to unity.

The program was run on the Intercom-Scope time sharing access system at AFIT. For execution, the program requires library access to the "AFITSUBROUTINES" package of computer programs and the Aero-medical Research Laboratory "CONTROL, CY=4" computer subroutine package both of which are available at AFIT.
THIS PROGRAM SOLVES THE DISCRETE 2-STATE CONTROL
PROBLEM IN AN OPTIMAL MANNER, BASED ON A SPECIFIED
SAMPLE RATE (TOFL), A TRAJECTORY ERROR WEIGHTING
(Q), AND A CONTROL PENALTY (R), THE OPTIMAL GAIN
L0 AND THE FEEDBACK GAIN MATRIX N0 ARE DETERMINED.

ADDITIONALLY, A SIMULATION OF THE SYSTEM IS CON-
DUCTED FOR EITHER A 70H OR F0H APPROACH TO THE
CONTROL PROBLEM.

SET THE SAMPLE RATE BY SPECIFYING TOFL.

TO PRODUCE SIMULATION RESULTS SET FLAG
TO 1 (0ER ORDER HOLD) OR FLAG TO 2
(FIRST ORDER HOLD) AND LONG TO THE
DESIGNATED DURATION OF THE SIMULATION IN
SECONDS (X.X)

PROGRAM SIMP(INPUT,OUTPUT,TAPE6=OUTPUT,TAPE7,TAPE8,TAPE9)
DIMENSION A(3,3),E(3,3),F(3,3),FAINT(3,3),ROOTR(4),
FCD(1:3),H0(3,1),XX(4,4),GAIN(1,1),FF(3,3),GG(3,3),
SN(1,1),K1(1,3),NSH(3,1),EX(3,1),R0(3,1),RX(3,1),ROOTR(4)
 INTEGER MT,N,FLAG,POINT
 REAL OFL,NO,LO,KP,K1,PELL,LONG
 COMMON/MAIN1/NDIM,NDIM1,NDIM1(4,4)
 NOFL=3
 NDIM1=4

* THE DISCRETIZATION TIME (TOFL) *
* SIMULATION FLAG FOLLOW *
THE FOLLOWING SUBROUTINE TAKES THE CONTINUOUS PLANT
A & B MATRICES AND CALCULATES EXP(A.T) CALLED THE
"CONTROL AD MATRIZ" AND B TIMES THE INTEGRAL OF
Fxp(A.T) CALLED THE "CONTROL BD MATRIX". T IS THE
SAMPLE RATE. THIS IS DONE TO PROVIDE THE NECESSARY
DATA TO CONTINUE THE CALCULATIONS TOWARD THE LD AND
NO CONTROL GAINS.
                        CALL OSCPT(N,A,DEL,EA,FAINT,NT)
                        PRINT 10,DEL
10  FORMAT(1HM THE VALUE OF T= ,F12.9,14 SECONDS,/)      
                  "THIS IS THE RATE AT WHICH THE CONTROL IS UPDATED"
                        PRINT*"THE CONTROL AD MATRIX IS 1"
                        DO 55 I=1,N
                        WRITE(6,200)(EA(I,J),J=1,N)
200  FORMAT(3X,E20.10)
                        55  CONTINUE
                        PRINT *, " "
                        CALL MPPY(FAINT,B,BO,3,3,1)
                        PRINT*,"THE CONTROL BD MATRIX IS 1"
                        DO 56 K=1,3
                        WRITE(6,300)(BD(K),K=1,3)
300  FORMAT(E30.10)
**SUBROUTINE NLOD CALCULATES THE VJ (1X3) AND VJ (1X3) CONTROL LAW VALUES**

CALL NLOD(EA, RD, K1, K2, C0, NO, LD)

PRINT 21, LD

**FORMAT (18H THE VALUE OF LD = ,E20.10)**

PRINT *, **THE NO MATRIX IS 1**

WRITE (1, 503) (NO(1, J), J = 1, 3)

**FORMAT (3X, E20.10)**

PRINT *, **THE AJ MATRIX OF THE PLANT IS 1**

DO 59 J = 1, 3

WRITE (1, 200) (FF(I, J), J = 1, 3)

CONTINUE

PRINT *, **
PRINT* "THE 9D MATRIX OF THE PLANT IS I"
DO 65 I=1,3
WRITE(*,300)(RR(I,1))
CONTINUE
PRINT* "."

* AT THIS POINT, ALL THE INFORMATION IS
* AVAILABLE FOR A CLOSED LOOP SIMULATION.
* FLAG=1 OR 2 WILL PRODUCE SIMULATION RE-
* SULTS IN LIST FORM ALONG WITH TAPE8/TAPE9
* FOR LATER PLOTTING

TF(FLAT.E0.1) GO TO 39
IF(FLAT.E0.2) GO TO 43
GO TO 13

** ZOH SIMULATION REGIONS **

COUNT=1:
EX(1,1)=EX(2,1)=EX(3,1)=0.0
MO=400T+1
N=6.0
CS=0.0
CSOLO=FS
CSC=1.0
KK=0
TK=0.0
T=TK/606.
WRITE(*,576)
PRINT*,"THE SIMULATION RESULTS FOLLOW"
PRINT* ,""
PRINT 100
100 FORMAT(1X,14H1 TIME (SECONDS),3X,5H3LPHA,6X,3HTHETA DOT,3X,7HOMEGA 4,5X,2HCO*,5X,1OHC*,10HCOMV),5X,14J,
PRINT 4C,T,EX(1,1),EX(2,1),FX(3,1),CS,CSC,U
500 FORMAT(2X,E10.4,4X,E10.4,1X,E10.4,1X,E10.4,4X,E10.4,
WRITE(1,600) T,EX(1,1),EX(2,1),EX(3,1),CS,CSC,U
KK=KK+1
TK=TK+1.6
T=TK/ECO.
TSMP=0.6
IPASS=1

* 7TH CALCULATION OF THE STATES X(K) *

IF(MOD(KK,20))33,33,33
33 CALL MPY(FF,EX,ADX,3,3,1)
CALL MPY(PR,U,SDU,3,3,1)
GO TO 23
J=1,3
FX(J,1)=ADX(J,1)+SDU(J,1)
23 CONTINUE
CALL MPY(CO,EX,CS,1,3,1)
PRINT *,T,EX(1,1),EX(2,1),FX(3,1),CS,CSC,U
WRITE(*,600) T,EX(1,1),EX(2,1),EX(3,1),CS,CSC,U
COUNT=COUNT+1
IF(T.GE.LONG) GO TO 73
KK=KK+1
TK=TK+1.6
T= TK/ECO.
GO TO 26

* 7GH CALCULATION OF THE CONTROL U(K) *

GO TO 100
THIS CONTROL UPDATE COMPUTATION IS
ASSUMED TO TAKE << 1/500 SEC. TO
ACCOPLISH.
THIS ALLOWS US TO SAY THAT PRACTICALLY
LY NO TIME HAS TRANSPRIED FROM THE
TIME THE STATES WERE LAST CALCULATED
TO THE MILDING OF THIS NEW CONTROL
I.E. THE STATES AT EX(KT+)=EX(KT)

```
SUM=1.0 - CSOLO
SLD=LN*SUM
TSUM=TSUM+SLD
CALL H'PY(HD,EX,XHD,1,3,1)
I=TSUM*XHD
CALL H'PY(JF,EX,ADX,3,3,1)
CALL H'PY(KR,U,90U,3,3,1)
GO TO 20 J=1,3
EX(J,1)=ADX(J,1)*ADU(J,1)
CONTINUE
CALL H'PY(CD,EX,CS,1,3,1)
CSOLO=CS
IF(IPASS.EQ.1) GO TO 53
IF(IPASS.NE.2) GO TO 2
40=1001
KK=KK+2
IPASS=IPASS+1
GO TO ?
20
KK=KK+4
IPASS=IPASS+1
GO TO 2
53
WRITE(6,900) COUNT
900 FORMAT(1X,I4)
PRINT *," "
PRINT 66,COUNT
66 FORMAT(39H THE NUMREP OF LINES OF DATA ON TAPE8 =,I4)
```
CALL ROOT(EA,BD,ND,LD,CD,ROOTR,ROOTT)
PRINT*,"""
PRINT*,"""
PRINT*,"THE Z-PLANE ROOTS ARE (ZERO ORDER HOLD) 1"
N=9
J=1:4
WRITE(F,502) ROOTR(I),ROOTT(I)
FORMAT(2(I4,E24.14))
CONTINUE
GO TO 13

**************************************************************************
* FOR SIMULATION REGINS *
**************************************************************************
COUNT=1
EX(2,1)=EX(1,1)=EX(3,1)=2.0
90=E01T+1
UN=0.0
H5AVE=1.0
UO=2.0
OLDF=(UN - UO)/DEL
U=0.0
CS=0.0
CSALD=FS
CSD=1.0
KK=3
TK=3.0
T=TK/50.0
WRITE(I,176)
PRINT*,"THE SIMULATION RESULTS FOLLOW 1"
PRINT*,"""
PRINT 100
PRINT 900,T,EX(1,1),EX(2,1),EX(3,1),CS,CSC,J
WRITE(I,900) T,EX(1,1),EX(2,1),EX(3,1),CS,CSC,J
KK=KK+1
TK=TK+1.0
T=TK/500.
TSM=6.0
TPASS=1

************
* FOR CALCULATION OF THE STATES X(K) *
************

35 IF (MOD(KK,40)) 95,97,95
36 U=SLP+DELL+UN
37 CALL M*PY(F,F,EX,ADX,3,3,1)
38 CALL M*PY(RU,UN,30U,3,1,1)
39 DO 34 J=1,3
40 FX(J,1)=ADX(J,1)+BNU(J,1)
41 CONTINUE
42 CALL M*PY(CD,EX,CS,1,3,1)
43 PRINT CCG,T,FX(1,1),FX(2,1),FX(3,1),CS,CSU,U
44 WRITE (*,503) T,FX(1,1),FX(2,1),FX(3,1),CS,CSU,U
45 COUNT=COUNT+1
46 IF (T.GE.LONG) GO TO 69
47 KK=KK+1
48 TK=TK+.1
49 T=TK/500.
50 UN=U
51 GO TO 49

************
* FOR CALCULATION OF THE CONTROL J(K). *
************

52 UQ=USAVE
53 SUM=1.(T-CSOLO)
54 SLO=LO*SUM
55 TSUM=TSUM+SLO
56 CALL M*PY(ND,EX,XND,1,3,1)
U=TSUM+XNM
USAVE=U
SLOPE=(U-M0)/DEL
CALL M=PY(FP,EX,ADX,3,7,1)
CALL M=PY(FR,U,D0U,3,1,1)
NO 25 J=1,3
EX(J,1)=ADX(J,1)+AMU(J,1)
25 CONTINUE
CALL M=PY(CS,EX,CS,1,3,1)
CSOLD=CS
IF(IPASS.EQ.1) GO TO 46
IF(IPASS.NE.2) GO TO 49
40 M0=M0:
KK=K-1
IPASS=IPASS+1
GO TO 49
46 KK=KK+1
IPASS=IPASS+1
GO TO 49
49 WRITE(C,144) COUNT
144 FORMAT(I4,I4)
PRINT"",":"
PRINT 77, COUNT
77 FORMAT(3 Widgets, THE NUMBER OF LINES OF DATA ON TAPEB =,I4)
13 STOP
END
SUBROUTINE RIC(FA, NO, DO, RO, CO, XX)
DIMENSION AA(4,4), MT(4,1), N(4,4), X(4,4), XX(4,4),
NODP(1,7), COT(3,1), NO(3,3), CD(1,3), S(4,1),
$7(4,4), DQ(3,1), EA(3,3),
COMMON/MAIN)/DIM, NODM1, COM1(4,4)/INQ/KIN, KOUT

NODM=4
NODM1=5
KIN=7
KOUT=7

AA(1,1)=FA(1,1)
AA(1,2)=FA(2,1)
AA(1,3)=FA(3,1)
AA(1,4)=0.0
AA(2,1)=EA(1,1)
AA(2,2)=EA(2,2)
AA(2,3)=FA(3,2)
AA(2,4)=0.0
AA(3,1)=EA(1,3)
AA(3,2)=EA(2,3)
AA(3,3)=FA(3,3)
AA(3,4)=0.0

AA(4,2)=DO(2,1)
AA(4,3)=DO(1,1)
AA(4,4)=DO(3,1)
AA(4,4)=1.0
MT(1,1)=MT(2,1)=MT(3,1)=0.0
MT(4,1)=1.0
CALL M*PY(NO, CD, QCD, 1, 1, 3)
COT(1,1)=CD(1,1)
COT(2,1)=CD(1,2)
COT(3,1)=CD(1,3)
CALL M*PY(CD, QCD, NO, 3, 1, 3)
NO(1,1)=DO(1,1)
\[
\begin{align*}
Q(1, 2) &= 0Q(1, 2) \\
Q(1, 3) &= 0Q(1, 3) \\
Q(2, 1) &= 0Q(2, 1) \\
Q(2, 2) &= 0Q(2, 2) \\
Q(2, 3) &= 0Q(2, 3) \\
Q(3, 1) &= 0Q(3, 1) \\
Q(3, 2) &= 0Q(3, 2) \\
Q(3, 3) &= 0Q(3, 3) \\
Q(1, 4) &= 0(2, 4) = Q(3, 4) = Q(4, 1) = 0(4, 2) = 2(4, 3) = 1(4, 4) = 0.0
\end{align*}
\]

\text{N=4}

\text{M=1}

\text{CALL YKLTR(N, M, AA, HT, T, R, X, G, Z)}

\text{DO 5 I=1, N}

\text{DO 5 J=1, N}

\text{XX(I, J) = X(I, J)}

5 \text{ CONTINUE}

5 \text{ CONTINUE}

\text{RETURN}

\text{END}
SUBROUTINE GAINK(XX, R, FA, RD, GAIN)
DIMENSION H(1,4), HT(4,1), XX(4,4), AT(4,4),
FA(2,3), RD(3,1), S(1,4)
REAL XHUM
H(1,1)=H(1,2)=H(1,3)=0.0
H(1,4)=1.0
HT(1,1)=HT(2,1)=HT(3,1)=0.0
HT(4,1)=1.0
DO 15 I=1,3
DO 15 J=1,3
AT(I,J)=FA(I,J)
CONTINUE
CONTINUE
AT(1,4)=RD(1,1)
AT(2,4)=RD(2,1)
AT(3,4)=RD(3,1)
AT(4,1)=AT(4,2)=AT(4,3)=0.0
AT(4,4)=1.0
CALL M"PY(H, XX, S, 1, 4, 4)
CALL M"PY(S, HT, HT, 1, 4, 4)
SUM=SUM+2
CALL M"HV(SUM, SUM, 1)
CALL M"PY(S, AT, 1, 4, 4)
SUM=SUM+1
CALL M"PY(MSUM, F, GAIN, 1, 1, 4)
RETURN
END
SUBROUTINE NOLD(FA, R0, K1, K2, C0, NO, LD)
DIMENSION EA(3, 3), AN(3, 1), K1(1, 3), 20(1, 3), NO(1, 3),
ST(3, 2), DI(3, 3), OI(3, 3), G(3, 1), CL(1, 3), AA(1, 3)
REAL I, K1, K2, NO, LD, H, V
NO J = 1, 3
I(L, J) = 0
I(L, L) = 1.0
CONTINUE
CALL HCVF(EA, I, 0, 3, 3)
CALL HCVI(M, N, I, 3)
CALL HCVY(OI, NO, G, 3, 3, 1)
CALL HCVY(V, 8, 4, 1, 3, 1)
CALL HCVR(K2, M, N, I, 1, 1)
CALL HCVY(G, T, 1, 3, 1)
CALL HCVV(T, L, 1)
CALL HCVY(N, TL, LD, 1, 1, 1)
CALL HCVY(L, CO, CL, 1, 1, 3)
DO 11 J = 1, 3
II (I, J) = K1(I, J) + CL(1, J)
CONTINUE
CALL HCVY(AA, DI, NO, 1, 3, 3)
RETURN
END
SUBROUTINE ROOT(EA,AD,NO,LD,CO,ROOT,ROOTI)
DIMENSION EA(3,3),NO(1,1),NO(1,3),CD(1,3),AA(4,4),
ROOT(4),ROOTI(4),LCD(1,3),AND(3,3)
REAL LD,NO,CD
COMMON/MAIN/NOI,NOI1,CONI(4,4)/IV0J/KIN,KOUT
NOI=4.
NOI1=4.
KIN=7.
KOUT=7.
CALL M*aY(AD,NO,END,3,1,3)
DO 36 I=1,3
DO 36 J=1,3
AA(I,J)=EA(I,J)+3ND(I,J)
35 CONTINUE
AA(I,4)=NO(I,1)
36 CONTINUE
AA(4,4)=1,6
CALL M*aY(LD,CO,CD,1,1,3)
DO 37 I=1,3
AA(I,1)=LCD(1,1)
37 CONTINUE
PRINT*,","= PRINT*,"THE CLOSED LOOP SYSTEM MATRIX IS 1"
PRINT*,","= PRINT*,"THE EIGENVALUES OF THIS MATRIX FOLLOW 1"
CALL EIGEN(4,AA,ROOT,ROOTI,NUE,2)
RETURN
END
Appendix F

Zero Order Hold Simulation Output

The abbreviated computer product which follows is the output of the program found in Appendix E with the ZOH option selected (FLAG = 1). This particular run is for a specified sample rate of $T = 1/40$th second with $R = 150.0$ and $Q = 1.0$.

The first page of the output indicates that the sample rate has been adjusted, as per Table VI, from the specified value (.025) to the adjusted value (.026) used in the actual simulation. This is evident on page 170 where it is apparent that the first sample occurs after .026 seconds have elapsed. The control applied ($u = -.1819E-02$) is retained until the next sample occurs at .052 seconds at which time a new control is calculated and applied on the next iteration.

The three system states $\alpha$, $\hat{\theta}$, and $\delta_0$ are listed for each time increment. Additionally, the system output ($C^*$) is listed along with the pilot commanded $C^*$ response. By comparing the actual $C^*$ response to the $C^*$ commanded value, the tracking capability of the particular system configuration can be determined. Successful system "lock-on" to the commanded 1-G climb is evident on page 171. At an elapsed time of 1.606 seconds from the time the climb command ($C^*$ command) is initiated, zero error is achieved and maintained by the system.

The abbreviated example of the simulation output is concluded on page 172 where the Z-plane system roots are listed.
THE SAMPLE RATE SPECIFIED = 0.025
TO SIMPLIFY THE CALCULATIONS, THE COMPUTER WILL USE 0.025
THE VALUE OF T = 0.025555555555555557 = 0.025555555555555557

THIS IS THE RATE AT WHICH THE CONTROL IS UPDATED

<p>| THE CONTROL AD MATRIX IS | 0.23906177E+00 | 0.24314447E+00 | 0.13172928E+00 | 0.37368172E+00 |
| THE CONTROL BD MATRIX IS | 0.36734572E+00 | 0.40579452E+00 | 0.59429476E+00 |
| THE 'X' (DIAGONAL) MATRIX IS | 0.15046054E+00 | 0.72436043E+00 | 0.57911546E+00 | 0.12537440E+00 |
| THE GAIN VALUES FOLLOW | 0.13569114E+00 | 0.13569114E+00 | 0.13569114E+00 | 0.13569114E+00 |
| THE K1 MATRIX IS | 0.15945937E+00 | 0.77329714E+00 | 0.93031369E+00 |
| THE K2 (1X1) GAIN IS | 0.30753346E+00 | 0.30753346E+00 |
| THE VALUE OF LD = | 0.18190665E-01 |
| THE H0 MATRIX IS | 0.14129356E+01 | 0.28464963E+00 | 0.55437906E+00 |
| PLANT WILL CHANGE STATE EVERY 0.002 SECONDS |
| THIS IS THE PLANT DISCRETIZATION TIME |
| THE AD MATRIX OF THE PLANT IS | 0.96385364E+00 | 0.19694754E+02 | 0.13579499E+03 |
| THE AD MATRIX OF THE PLANT IS | 0.74545964E+00 | 0.19407963E+02 | 0.13275671E+03 |
| THE AD MATRIX OF THE PLANT IS | 0.96385364E+00 | 0.19694754E+02 | 0.13579499E+03 |
| THE AD MATRIX OF THE PLANT IS | 0.74545964E+00 | 0.19407963E+02 | 0.13275671E+03 |
| THE AD MATRIX OF THE PLANT IS | 0.96385364E+00 | 0.19694754E+02 | 0.13579499E+03 |
| THE AD MATRIX OF THE PLANT IS | 0.74545964E+00 | 0.19407963E+02 | 0.13275671E+03 |</p>
<table>
<thead>
<tr>
<th>Time (Seconds)</th>
<th>Alpha</th>
<th>Theta Dot</th>
<th>Delta H</th>
<th>C*</th>
<th>C* Com</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000 E+01</td>
</tr>
<tr>
<td>0.100 E+01</td>
</tr>
<tr>
<td>0.200 E+01</td>
</tr>
<tr>
<td>0.300 E+01</td>
</tr>
<tr>
<td>0.400 E+01</td>
</tr>
<tr>
<td>0.500 E+01</td>
</tr>
<tr>
<td>0.600 E+01</td>
</tr>
<tr>
<td>0.700 E+01</td>
</tr>
<tr>
<td>0.800 E+01</td>
</tr>
<tr>
<td>0.900 E+01</td>
</tr>
</tbody>
</table>

The matrix of L/R data on tape is .001

The closed loop system matrix is:

[-.9793E+01  .2322E+00  -.1992E-01  -.4927E-02  -.1192E-03  -.1192E-03  .57E-04  .10E-04  .10E-04]
[-.1992E+01  .3641E+00  -.7484E+01  -.1613E+02  .57E-04  .10E-04  .10E+01  .10E+01  .10E+01]
[-.4927E-02  .7484E+01  -.1613E+02  .10E+01  .10E+01  .10E+01  .10E+01  .10E+01  .10E+01]
[-.1192E-03  .1613E+02  .10E+01  .10E+01  .10E+01  .10E+01  .10E+01  .10E+01  .10E+01]
[-.1192E-03  .10E+01  .10E+01  .10E+01  .10E+01  .10E+01  .10E+01  .10E+01  .10E+01]
[-.57E-04  .10E+01  .10E+01  .10E+01  .10E+01  .10E+01  .10E+01  .10E+01  .10E+01]
[-.10E+01  .10E+01  .10E+01  .10E+01  .10E+01  .10E+01  .10E+01  .10E+01  .10E+01]
[-.10E+01  .10E+01  .10E+01  .10E+01  .10E+01  .10E+01  .10E+01  .10E+01  .10E+01]
[-.10E+01  .10E+01  .10E+01  .10E+01  .10E+01  .10E+01  .10E+01  .10E+01  .10E+01]

The eigenvalues of this matrix follow:

The 7-plane roots are (zero order hold):
[-.933079695E+30  -.474527096E+30  -.129649771E+30  .1773357096E+30  .1456971725E+30]

**********  4015012161 /// END OF LIST ///
Appendix G

Plotting Algorithm

The following program (GRAPH) was developed and used to produce the plotted information found in this investigation. All plotted information was produced on a ZETA Research Inc. 230 series Zeta plotter using ZETA PLOT subroutines (Ref. 19). The information is supplied by the main program found in Appendix E. The main program, in addition to listing the information, places all the generated data onto magnetic tapes. Tape8 is used to store the values of the three states, $C^{*}$Act, $C^{*}$Com, and the particular control, for each 1/500th second time increment of the simulation. Tape9 is used to store an integer which equals the total number of lines of information to be found on Tape8. For example, for a one second simulation run, Tape8 would contain 501 lines of output information (includes zero-time initial condition values) and Tape9 would store the number 501. As presented, the routine is limited to a maximum of 1,001 lines of data corresponding to a maximum simulation run time of 2.0 seconds. This limit is a result of array and field length restrictions on the Intercom-Scope time sharing access system on which the program was run.

The program uses the subroutines ZTPLOT and CCAUX, both available at AFIT, which must be attached before the program can be executed. On the intercom system, these subroutines are attached as follows:

```
ATTACH, CCAUX, ID = 654321, SN = AFIT
ATTACH, ZTPLOT, ID = AFIT.
LIBRARY, ZTPLOT, CCAUX
```
Additionally, the program includes a flag which determines which plots are produced. This is accomplished by setting the IFLAG variable in the program to 1, 2, or 3. These options have the following effects:

<table>
<thead>
<tr>
<th>Option</th>
<th>Plots Produced</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFLAG = 3</td>
<td>States vs Time</td>
</tr>
<tr>
<td></td>
<td>Output vs Time</td>
</tr>
<tr>
<td></td>
<td>Control vs Time</td>
</tr>
<tr>
<td>IFLAG = 2</td>
<td>Output vs Time</td>
</tr>
<tr>
<td></td>
<td>Control vs Time</td>
</tr>
<tr>
<td>IFLAG = 1</td>
<td>Control vs Time</td>
</tr>
</tbody>
</table>

Numerous explanatory comments are included throughout the complete listing of the program which follows:
* THIS IS AN AUXILIARY PROGRAM WHICH PRODUCES THREE PLOTS *
* FROM THE DATA FurnISHED BY THE SIMULATION PROGRAM. 

PROGRAM GRAPH (INPUT, OUTPUT, TAPE3, TAPE3, PLOT) 

COMMON TT (1:004), CT (1:004), T2 (1:004), T3 (1:004) 

INTEGER CT 

* IFLAG DETERMINES WHICH PLOTS ARE PRODUCED 
  IFLAG=3  PLOT OF CONTROL VS TIME 
  IFLAG=2  PLOT OF OUTPUT VS TIME 
  IFLAG=1  PLOT OF STATES VS TIME 

IFLAG=1 
REMIND 8 
REMIND 9 
300 FORMAT (I8, I8) 

* READ FROM TAPE9 THE NUMBER OF LINES OF DATA = CT (COUNT) 
READ (9, 360) CT 
PRINT L6, CT 

555 FORMAT (21H THE VALUE OF COUNT = , I8) 
560 FORMAT (2X, E16.4, 2X, E10.4, 1X, E10.4)
WCY=1
CALL PLOTS(30)

***********************************************
POSITION PEN
***********************************************
CALL PLOT(X,0,-11,C,-3)
CALL PLOT(X,0,2.3,-3)
IF(IIFL/6.EQ.1) GO TO 17
IF(IIFL/6.EQ.2) GO TO 18
IF(IIFL/6.EQ.3) GO TO 19

***********************************************
PLOT OF T VS STATE VARIABLES
***********************************************

* READ IN DATA FOR PLOTTING, THE NUMBER OF LINES OF DATA
* EQUALS THE VALUE OF COUNT,
* DATA IS TAKEN FROM TAPF3.

DO 5 K=1,CT
READ(8,630) TT(K),O1(K),O2(K),O3(K),A,B,C
CONTINUE

* THE TIME AXIS IS MANUALLY SCALLED

TT(CT+1)=0.0
TT(CT+2)=.2

* SCALE THE STATE VARIABLES* O1 = ALPHA
* O2 = THETA DOT
* O3 = DELTA H
CALL SCALE(01, 02, CT, KCY)
CALL SCALE(02, 03, CT, KCY)
CALL SCALE(03, 01, CT, KCY)
CALL FACTOR(1, 7)
O1(CT+2) = 01(CT+2)
O2(CT+2) = 02(CT+2)
O3(CT+2) = 03(CT+2)

* PLOT THE THREE SETS OF DATA

CALL LINE(01, TT, CT, KCY, I00, 1)
CALL LINE(02, TT, CT, KCY, I00, 4)
CALL LINE(03, TT, CT, KCY, 100, 5)
O1(CT+2) = 01(CT+2)
O2(CT+2) = 02(CT+2)
O3(CT+2) = 03(CT+2)

* LABE AND LABEL AXES

CALL AYIS(10.0, 0.0, 0.0, 10.0, 0.0, 8.2)
CALL AYIS(0.0, 0.0, 0.0, 11.5, 180.0, 01(CT+1), $51(CT+2))
CALL AYIS(11.5, 19.0, 19.0, 11.5, 180.0, 01(CT+1), $51(CT+2))
CALL AYIS(19.0, 19.0, 19.0, 11.5, 180.0, 01(CT+1), $51(CT+2))

* LABEL THE PLTS BY DEFINING THE SYMBOLS USED

CALL SYMBOL(-7.0, -5.0, 0.14, 1, 90.0, 1)
CALL SYMBOL(999, 999, 0.14, 8M -EMPLA, 90.0, 8)
CALL SYMBOL(-6.75, -5.0, 0.14, 4, 90.0, 1)
CALL SYMBOL(999, 999, 0.14, 12H - THE ETA 00T, 90.0, 12)
CALL SYMBOL(-6.5, -5.0, 0.14, 5, 90.0, 1)
CALL SYMRL(999.,999.,0.,14,10H - DELTA H,90.,0,10)
CALL FACTOR(1,0)

* BOX IN AND LABEL THE PLOT
CALL PLOT(+.7,-1.5,-3)
CALL PLOT(0.,9.3,+2)
CALL PLOT(-5.,9.3,+2)
CALL PLOT(-6.,6.,+2)
CALL PLOT(3.,0.,+2)
CALL SYMBOL(+.3,2.5,2,14,STATES VS TIME,90.,14)
CALL SYMBOL(-.3,0.,9.,14,5HFIG =,90.,5)

* THE FOLLOWING TWO PLOTS ARE GENERATED IN A MANNER SIMILAR
* TO THE PROCESS ABOVE.

*********:
* PLOT OF TIME VS CSTAP *
*********

18 REMO K=1,CT
DO 7 K=1,CT
READ(G,66U) TT(K),A,9,C,D1(K),D2(K),F
CONTINUE
TT(CT+1)=6.0
TT(CT+2)=6.2
IF(IFL/6.0,2) GO TO 28
CALL PLOT(7,7,1.5,-3)
CALL SCALE(D1,6.,CT,KCY)
CALL FACTOR(1,7)
CALL AXIST(0.,0.,0.,10HTIME (SEC),-10,10.,96.,6.0,2)
CALL AXIST(0.,0.,10H-STAR (G),10.,6.,100.,D1(CT+1),D1(CT+2))
D2(CT+1)=D1(CT+1)
D2(CT+2)=D1(CT+2)
CALL AXIS(-65,20HC-STAR-COMMANDED(0),20.6,
S180,C1(C1+1),02(C1+2))
O1(C1+2)=01(C1+2)
O2(C1+2)=02(C1+2)
CALL LINE(O1,TT,CT,KCY,O,2)
CALL G'IO(-0.0.0.0.5.5.13.21)
CALL SYMBOL(7.5.4.11.50.9-1)
CALL SYMBOL(999,999,0.14,18M=STAR-COMMANDED,90,18)
CALL SYMBOL(-6.7.4.14,24,99,99)
CALL SYMBOL(999,999,14,8M=STAR,90,8)
CALL FACTOR(1,0)
CALL PLOT(+7,-1,5,-3)
CALL PLOT(+9,9,9,9)
CALL PLOT(+6,0,0,9)
CALL PLOT(+5,5,5,5)
CALL SYMBOL(+3,2.2,2.14MOUTPUTVS-7IME,90,9.14)
CALL SYMBOL(+1,1.1,1.1.1,1,1.1,1,1,1,1)

***************
PLOT OF TIME VS CONTROL
***************

19 REWIND &
TT(C1+1)=0.0
TT(C1+2)=.2
DO 4 K=1,CT
**F9I5.601 DT(X),A,0,C,0,E,01(X)
4 CONTINUE
IF(IF(LG.E0.3))GO TO 21
CALL PLOT(7.7.1,5,-3)
21 CALL SCALE(31,6,CT,KCY)
CALL FACTOR(.7)
O1(C1+2)=01(C1+2)
VITA

Paul D. Monico was born 31 May 1946 in Bristol, Connecticut. He was graduated from Bristol Central High School, Bristol, Connecticut in 1965. In 1969 he received a Bachelor of Science degree in Engineering Sciences from the United States Air Force Academy and concurrently was commissioned in the United States Air Force. He earned pilot wings in 1970 after completion of Undergraduate Pilot Training at Vance AFB, Oklahoma. He performed duties as a B-52G Aircraft Commander at Loring AFB, Maine prior to June 1976 when Captain Monico entered the Air Force Institute of Technology as a candidate for a Master of Science in Electrical Engineering, Guidance and Control.

Permanent address: 20 George Street
Bristol, Connecticut 06010
The feasibility of a discrete digital flight controller for the YF-16 Lightweight Fighter Prototype aircraft at Mach 0.8 at sea level is investigated. The investigation is limited to the longitudinal pitch axis. A reduced state, short period mathematical model of the YF-16 is developed from available data. The open loop stability and response characteristics of the model are shown to be unacceptable, necessitating the use of closed loop compensation. The minimization of a discrete cost function is used to develop a recursive discrete
control formula. The thesis discusses and incorporates the concept of a proposed C-Star handling qualities criterion in the determination of acceptable response. Digital computer simulation on a CDC 6600 computer for various sample rates using a zero order hold or first order hold control scheme, results in a stabilized system model whose output falls within the bounds of a defined C-Star envelope, and capable of performing the tracking task of following a 1-G climb pilot input command. Typical results in the form of plotted time history information are discussed. Also discussed are the effects on the system of variations in sample rate, and cost functional penalty parameters. Control weighting is shown to be inversely proportional to the natural frequency while the trajectory weighting determines the damping ratio. Also discussed are servo saturation effects.