The chemistry of the 1,2-dioxetane ring system that has been reported during the past three years is reviewed. Special emphasis is placed on those aspects that deal with the thermal generation of electronically excited states and chemiluminescence.
Chemistry of the 1,2-Dioxetane Ring System.
Chemiluminescence, Fragmentations, and Catalyzed Rearrangements.

by

Keith A. Horn, Ja-young Koo, Steven P. Schmidt,
and Gary B. Schuster

Prepared for Publication
in
Journal of Molecular Photochemistry

School of Chemical Sciences
University of Illinois
Urbana, Illinois 61801

April 18, 1978

Reproduction in whole or in part is permitted for
any purpose of the United States Government

Approved for Public Release; Distribution Unlimited.
CHEMISTRY OF THE 1,2-DIOXETANE RING SYSTEM.
CHEMILUMINESCENCE, FRAGMENTATIONS, AND CATALYZED REARRANGEMENTS.

Keith A. Horn, Ja-young Koo, Steven P. Schmidt,
and Gary B. Schuster*

Department of Chemistry
Roger Adams Laboratory
University of Illinois
Urbana, Illinois 61801

Introduction and Scope

The chemistry of the cyclic four-membered ring peroxides known as dioxetanes has recently come under heavy scrutiny mainly because of the intriguing chemiluminescence that thermolysis elicits from these compounds. The mechanism for the thermal conversion of a ground state dioxetane to an excited state product has been probed experimentally with substituent, isotope, solvent, temperature, and pressure effects. Theoretical calculations have been carried out at several levels of sophistication to determine the reaction coordinate. Many dioxetanes have been prepared to test the various theories proposed. Recently, several dioxetanes have been prepared that exhibit very high quantum efficiencies for chemiluminescence. The generation of excited states from these dioxetanes proceeds by a mechanism different from that of simple alkyl dioxetanes. This article will concentrate in large part on these aspects of dioxetane chemistry. Also discussed will be the reactions of dioxetanes with several reagents. Finally, dioxetanes have been used as a tool to probe the pathway for various excited state processes. In these studies advantage was taken of the non-photochemical source of electronically excited states. We will briefly review the
recent results from these investigations.

In order to keep this article to a manageable length, we have restricted our coverage to the most significant reports published in the period from January 1975 to December 1977. Much of the chemistry of dioxetanes that appeared prior to this period has been critically reviewed by Wilson1 and by Adam2. The interested reader is referred to these earlier excellent reviews as well as the original literature for a description of experimental techniques and for an historical perspective on the chemistry of 1,2-dioxetanes.

Synthesis and Structure of 1,2-Dioxetanes

There are at present two general methods available for the preparation of 1,2-dioxetanes. Historically, the first well characterized dioxetane was synthesized by the dehydrohalogenation of 2-methyl-2-hydroperoxy-3-bromobutane with base.3 Eliminative cycloadditions based upon this example (equation 1) have been developed and used to prepare dioxetanes of diverse structure. The second general procedure for the preparation of 1,2-dioxetanes centers on the formal 2+2 cycloaddition of singlet oxygen to various olefins (equation 2).4 Practically, this approach is limited to cases in which the olefin is relatively electron rich and does not contain abstractable allylic hydrogen atoms. The advantage of the photooxidation, of course, is the extremely mild conditions under which it can be carried out. Recently Schaap and coworkers5 have reported the preparation of dioxetane 2 by the silica gel catalyzed rearrangement of endoperoxide 1. Similarly, Matsumoto and Kondo6 suggest that the unisolated dioxetane 4 is a result of the rear-
rangement of 3 in the presence of alcohols. While this synthetic approach probably will not have general utility, it does provide another avenue for the preparation of 1,2-dioxetanes.

![Chemical structures](image)

It is not our purpose in this article to provide a detailed analysis of the preparation of dioxetanes. The interested reader should, of course, consult the original articles. However, we have compiled in Table 1 those 1,2-dioxetanes that have been prepared during the period of this review and have indicated the method of their preparation and certain of their characteristics. The variety of substituted dioxetanes that have been prepared recently is quite impressive and testifies to the general utility of the procedures available for preparation of this ring system. Several chemiluminescent reactions have been postulated to proceed through unisolated 1,2-dioxetanes. In general, the major evidence for the intermediacy of a dioxetane includes finding the appropriate cleavage products and light emission. Though these suspected dioxetanes are not included among those in Table 1, they will be discussed in a subsequent section.

The ground state structure of 1,2-dioxetanes has been suggested to be important in determining the stability of the ring system and to some extent in defining their chemiluminescent behavior. The structure of the unusually stable dispiro(adamantane-2,3'-[1,2]dioxetane-4',2'- adamantane) (5) has been determined using X-ray
crystallography by Wynberg and coworkers.7 This study showed that the length of the O–O bond is 1.48 Å, about equal to that in hydrogen peroxide. The C–O bond is 1.475 Å, a relatively long bond, while the dioxetane ring C–C bond is approximately as expected with a length of 1.549 Å. Interestingly, the four-membered ring is non-planar, one oxygen atom being lifted ca. 20° from the plane defined by the two carbons and the remaining oxygen of the four-membered ring. The ground state structure of this molecule may offer some insight into the reasons for its extraordinary stability. Stretching of the O–O bond causes a compression of the adamantyl substituents. The alternative twisting motion does not appear to be sterically restricted.

![Diagram of tetramethyldioxetane molecule with bond lengths labeled: 1.48 Å, 1.475 Å, 1.55 Å.](image)

The electronic structure of tetramethyldioxetane was investigated using photoelectron spectroscopy by Brown.8 This study showed that the photoelectron spectrum of the dioxetane is similar to that of other cyclic peroxides. The first band in the spectrum shows a vertical ionization potential of 8.98 eV and is assigned to removal of an electron from an antisymmetric π^* orbital.

An interesting structural modification of dioxetane 5 has permitted Wynberg and coworkers to prepare an optically active 1,2-dioxetane (6) by photooxidation of the corresponding resolved olefin. When this dioxetane was thermolyzed at 197° in dodecane, chemiluminescence was detected.9 These workers successfully detected circular polarization of the emitted light. This is the first example of this phenomenon, and the authors raise the interesting possibility that many bioluminescent reactions also generate circularly polarized light.
Mechanisms for Chemiluminescence of 1,2-Dioxetanes

The chemical transformations of 1,2-dioxetanes that result in excited state generation have been the center of active and increasing investigation over the past few years. Some clear patterns are now beginning to emerge and, as is often the case, the situation is somewhat more complicated than originally presumed.

Historically, the first dioxetanes prepared contained simple alkyl or alkoxy substituents. These dioxetanes have several features in common. The activation energy for their decomposition ranged from 20-30 kcal/mol depending upon steric and ring strain factors. The yield of electronically excited carbonyl-containing products centered in the range from 10-30% and, most interestingly, the yield of directly formed excited triplet carbonyl compound was typically more than fifty times the yield of directly formed excited singlet state. This reactivity pattern, in particular the large triplet to singlet ratio, gave rise to two postulated mechanisms for chemical light generation by these dioxetanes. The first, originally considered by McCapra and Kearns, postulates simultaneous cleavage of both the O-O and the C-C bonds of the dioxetane in a concerted manner to directly generate electronically excited products. Later Turro expanded this picture by suggesting that a spin multiplicity change occurred coincidentally with bond cleavage, thereby rationalizing the high triplet to singlet excited state ratio. The second general mechanistic scheme was advanced by Richardson. This approach favors a stepwise reaction passing through the intermediate 1,4-biradical formed by cleavage of the
strained O-O bond of the four-membered ring peroxide. The inter-
mediate thus formed is then postulated to partition between excited
state carbonyl products of both singlet and triplet multiplicity
and ground state carbonyl products. These paths are represented in
Scheme 1. During the period covered in this review, several criti-
cal experiments have been performed in an attempt to distinguish
between these two paths.

Scheme 1

Concerted

\[
\begin{align*}
\text{0} & \quad \rightarrow \\
\longrightarrow & \\
\text{0} + \text{0} & \\
\end{align*}
\]

Stepwise

\[
\begin{align*}
\text{0} & \quad \rightarrow \\
\text{0} & \\
\text{slow} & \\
\text{fast} & \\
\text{0} & \\
\end{align*}
\]

Koo and Schuster14 investigated the effect of deuterium sub-
stitution on the rate of reaction, the yield of excited states, and
the regiospecificity of excited state generation for \textit{trans}-3,4-
diphenyl-1,2-dioxetane (7). The key postulate in this work is that
a change in hybridization at the carbon atoms of a dioxetane during
the rate determining step should cause a measurable \(\alpha\)-secondary
deuterium isotope effect. In the biradical mechanism the hybridi-
zation at carbon of course does not change during the O-O bond
cleavage step; in the concerted mechanism the hybridization changes
from \(sp^3\) toward \(sp^2\) as the reaction approaches the transition state.
This hybridization change gives rise to the prediction of an in-
verse deuterium isotope effect. In fact, no isotope effect whatso-
ever was observed. These results were taken as consistent only
with the biradical mechanism.
In another study, Wilson15 and coworkers prepared and studied a series of alkoxy substituted dioxetanes. The activation parameters for dioxetanes 8 and 9 were nearly identical at ca. 24.5 kcal/mol. This observation was taken to indicate that the 3-4 kcal/mol of ring strain incorporated in bicyclic dioxetane 8 is not released until after the transition state is reached. The implication of this conclusion is that the C-C bond of the dioxetane is not significantly lengthened in the transition state and that the biradical path best describes the reaction coordinate.

Simo and Stauff16 investigated the influence of triplet quenchers and radical scavengers on the intensity and the decay kinetics of the chemiluminescence from thermolysis of trimethyldioxetane. These workers found that the Stern-Volmer constants for the quenching of chemiluminescence by tri-\textit{t}-butylphenol is about six times larger than that for 1,3-pentadiene under similar conditions. Since 1,3-pentadiene already quenches triplet acetone with a diffusion limited rate, they suggest that these findings mean that the phenol must be intercepting a relatively long-lived precursor to the electronically excited state. Another possible explanation, however, is that the phenol is acting as an acid causing the rapid dark path reaction of the dioxetane and hence giving rise to an apparent large Stern-Volmer slope. The interesting results reported
In this work certainly warrant further attention.

In an investigation employing picosecond spectroscopy Kaufmann, Schuster and coworkers17 probed the excited state surface for tetramethyldioxetane. They found that excited singlet acetone appeared within 10 psec of excitation by a 264 nm pulse generated from a mode-locked neodymium phosphate laser. This observation was coupled with the finding that the yield of singlet acetone from photolysis of tetramethyldioxetane is wavelength dependent (being higher at shorter wavelength) to suggest a consistent reaction path, shown in Figure 1. In this mechanism, excitation leads to an excited state of the dioxetane which has at least two exit channels. The first
channel generates singlet excited acetone by rapid simultaneous cleavage of both the O-O and C-C bonds. The second channel is a vibrational cascade in which excess energy is transferred to the medium or at least to non-reactive vibrational modes. Eventually this relaxation process leads to cleavage of the O-O bond and generation of the same biradical intermediate obtained from thermolysis of the dioxetane. The biradical, in a subsequent step, then partitions between triplet and singlet excited acetone and acetone ground state. This interpretation is consistent with the energy surfaces calculated by Goddard and Harding (see below). Also, this reaction path is consistent with simple spin conservation notions.

In another study of tetramethyldioxetane, Kelm and coworkers investigated the pressure dependence of the indirect chemiluminescence with 9,10-dibromoanthracene in a variety of solvents. In the pressure range from 1 atm to ca. 1000 atm, they found activation volumes of 9 and 11 cm³/mol in toluene and chlorobenzene respectively at 60°. By comparison with other homolytic cleavage reactions, the authors conclude that these observations favor a concerted rearrangement. However, they add that the biradical is not necessarily excluded by the findings.

In a recent study Horn and Schuster have investigated the properties of 3-acetyl-4,4-dimethyldioxetane. This compound represents the first example of a dioxetane substituted with a powerful electron withdrawing group and provides the opportunity to examine the partitioning of excitation energy among dissimilar carbonyl compounds. Interestingly, thermolysis of this dioxetane generates not only the excited singlet and triplet of methylglyoxal (11) (64 and 55 kcal/mol above ground state, respectively), but

![Chemical structures](attachment:image.png)
also produces an easily detected quantity of triplet acetone ($E_T = 78 \text{ kcal/mol}$). Moreover, the ratio of triplet to singlet excited methyglyoxal was determined to be 9 ± 3 for this compound. Significantly, the energies of both methyglyoxal excited states are well below the energy expected for the biradical intermediate. The relatively low triplet to singlet excitation ratio is best interpreted as a result of the nearly statistical partitioning of the suspected biradical intermediates among the available spin states of the low energy dicarbonyl compound. Another example of a nearly statistical triplet to singlet excited state ratio comes from thermolysis of the bis-adamantyl substituted dioxetane 5. Lechtker and coworkers21 have determined by differential scanning calorimetry that rearrangement of 5 to two adamantanes is exothermic by 75 kcal/mol. The activation energy for this reaction was determined by Schuster, Turro, and coworkers22 to be 34.6 kcal/mol. Simple addition23 puts the transition state for this reaction nearly 110 kcal/mol above ground state products and at least 25 kcal/mol above singlet excited adamantane. As in the case of acetyl dioxetane 10 the nearly equal exothermicity for formation of either triplet or singlet excited product leads to a nearly statistical yield. However, it should be pointed out that for a transoid biradical intermediate, the extra exothermicity of 5 caused by steric interactions of the adamantyl groups should be dissipated. And the relationship of the biradical to the excited products should be qualitatively similar to other alkyl substituted dioxetanes.

Zimmerman and coworkers24 have prepared a series of dioxetanes substituted with a 1,4-cyclohexadiene ring (12). Of particular interest is the observation that these compounds fragment to generate the cyclohexadienone and a second carbonyl fragment. The portion of the dienone fragment that is formed in the excited state, of course, may go on to undergo the "Type A" photochemical rearrangement. The efficiency of formation of this rearrangement product varied only slightly (12-17%) as the nature of the substituents R_1 and R_2 was changed. Importantly, the excitation energies of the second fragments bracket that of the dienone triplet. To explain
the constancy of the dienone excitation efficiency the authors suggested that there is a large kinetic factor favoring formation of \(\pi\pi^* \) triplet states during dioxetane decompositions. However, as we shall see in a moment, at least for dioxetanes substituted with relatively easily oxidized groups, this is certainly not the case.

A point of apparent confusion regarding the yield of excited triplet and singlet states from the thermolysis of di-\(n \)-butyl-dimethyldioxetane (15) has been cleared up. Foote and Darling\(^25\) reported that this compound fragmented thermally to yield 3.5\% excited triplet and 5\% excited singlet. This very low triplet to singlet ratio is most uncharacteristic of alkyl substituted dioxetanes. In a reinvestigation of this compound, Wilson and coworkers\(^26\) report that they observe a triplet to singlet excitation ratio of about 300, more in line with other similar compounds.

Richardson and his students\(^27\) have presented the kinetic data and activation parameters for the thermolysis of dioxetanes \(14a-d \) in methanol. This report again points out the powerful effect that impurities in methanol have on the rate of reaction of and the yield of light from dioxetanes. The authors report that increased phenyl
substitution has little effect on the rate of the lysis of the
dioxetanes in EDTA treated methanol solvent. These results are used
to support the stepwise decomposition mechanism in which the perox-
ide bond is cleaved in the rate determining step.

\[
\begin{align*}
\text{R}_1 \text{CH}_2 & \\
\text{R}_2
\end{align*}
\]

14 a, R\(_1\) = R\(_2\) = CH\(_3\)
b, R\(_1\) = CH\(_3\), R\(_2\) = C\(_6\)H\(_5\)
c, R\(_1\) = R\(_2\) = C\(_6\)H\(_5\)
d, R\(_1\) = R\(_2\) = C\(_6\)H\(_5\)CH\(_2\)

Lechtken\(^{28}\) reports that when the thermolysis of tetramethyldi-
oxetane, adamantyldioxetane 5, alkoxydioxetane 15, and spirocyclic
dioxetane 16 under conditions of a linear temperature rise was
studied, the quantum efficiency of chemiluminescence remained con-
stant. This finding indicates that for these compounds the effi-
ciency of excited singlet formation is temperature independent.

The numerous investigations of simple alkyl substituted dioxet-
anes during the past ten years have failed to turn up any evidence
that demands a concerted fragmentation pathway. Similarly, the
evidence for a biradical intermediate, or an intermediate of any
kind, on the reaction path is totally circumstantial. Nevertheless,
in the light of the large amount of data consistent with the step-
wise path, it appears that this pathway is the best description of
the thermal reactions available for simple alkyl and alkoxy substi-
tuted dioxetanes.
Over the years there have been a number of theoretical calculations on the thermolysis of dioxetanes. These have been performed on unsubstituted dioxetane which probably models simple alkyl substituted dioxetanes rather well. The earliest theoretical considerations were published by McCapra and Kearns. They concluded that a thermal retro 2+2 cycloaddition reaction, if it is concerted, should generate an electronically excited state of the product carbonyl compound. Several semiempirical calculations have been carried out. The results have depended on the details of the procedure used. Recently, Harding and Goddard have published the results of their ab initio GVB calculation for the ring opening of dioxetane. They conclude that the lowest energy path for this reaction passes through a biradical intermediate located about 14 kcal/mol above the ground state energy of dioxetane. Furthermore, they suggest that the eight states (singlet and triplet 4π, 2α; 3π, 3α; 2π, 4α) are separated by only ca. 3 kcal/mol. Thus the spin multiplicity of the product carbonyl compounds is predicted to depend upon the location of the excited states relative to the biradical intermediate. This prediction was experimentally demonstrated by the study of the acetyl dioxetane in which the multiplicity of the methylglyoxal excited states produced approached the statistical limit of three (see above). Combination of the theoretical results of Goddard with experimentally derived parameters permits a fairly detailed sketch of the reaction coordinate for thermolysis of tetramethyldioxetane by the biradical path. This is shown in Scheme 2.

The chemistry of dioxetanes substituted with easily oxidized groups is remarkably different from that of simple alkyl substituted dioxetanes. Originally this difference was attributed to some feature of the excited state of the carbonyl compounds produced. However, the recent discovery of chemically initiated electron exchange luminescence (CIEEL) by Koo and Schuster has clarified the interpretation of the data for these compounds.

The key feature of the CIEEL mechanism as it applies to dioxetanes is an electron transfer from a non-conjugated substituent to
the LUMO of the dioxetane ring. The LUMO of this system is anti-
bonding between the oxygen atoms. Thus, the 0-0 bond cleaves rap-
idly after the electron is transferred. Cleavage of this charge polarized intermediate to form carbonyl compounds results in the direct generation of a charge transfer resonance structural form of the excited state. The process is outlined in Scheme 3. The experi-
mental evidence demonstrating the existence of this path for dioxe-
tanes is presently circumstantial. Nevertheless, the weight of the evidence is quite convincing in light of the analogy to more well established systems.
In a recent note McCapra32 described the chemiluminescence from the N-methylhydroacridan substituted dioxetanes $17a, b, c$. Several observations are of critical importance for the understanding of this system. First, these dioxetanes are somewhat less stable than their alkyl substituted counterparts. For example, $17a$ has a measured E_a of 19.7 kcal/mol. This observation indicates the introduction of a second path for the fragmentation reaction, one of lower energy. Second, the yield of singlet excited state products from thermolysis of these dioxetanes is unusually high. For example, the yield of excited singlet N-methylacridone from thermolysis of $17a$ in toluene is reported to be 25\%, more than one hundred times greater than the singlet excited acetone yield from tetramethyldioxetane. These findings are consistent with the suggested intramolecular CIEEL process outlined in Scheme 3. In contrast to the results of Zimmerman and coworkers24 on related systems, study of dioxetane $17b$
demonstrated that there is no preferential formation of \(\text{n}\pi^* \) excited states from dioxetanes with easily oxidized substituents, since there was no diminution in the yield of N-methylacridone excited singlet with this substituent.

Schaap and coworkers\(^{33} \) have discovered that silica gel not only is a powerful catalyst for the decomposition of the dianthryl-substituted 1,2-dioxetane \(18 \), but also increases the yield of excited singlet product to 12% from 0.2% for the uncatalyzed reaction. Critically, Schaap points out that only other surfaces with acidic sites are effective in catalyzing chemiluminescent cleavage of dioxetane \(18 \). These findings can be neatly rationalized with the realization that the protonated peroxide is much more easily reduced than the unprotonated form. Thus, once the dioxetane is adsorbed at an acidic site on the silica gel, the anthryl substituent may be capable of donating an electron and initiating the intramolecular CIEEL process. This is analogous to the pathway outlined in Scheme 3.

Finally, Schmidt and Schuster\(^{34} \) and Adam and coworkers\(^{35} \) have found that alkyl substituted dioxetanones generate light in the presence of aromatic hydrocarbons mainly as a result of an intermolecular CIEEL path. It was found that the efficiency of light generation from dimethyldioxetanone is dependent on the one electron oxidation potential of an added fluorescent electron donor. This finding provides direct experimental verification of the CIEEL process for this system.

The rate and hence the efficiency for CIEEL depends upon the ease of reduction of the peroxide. Thus for diacyl peroxides which
are flanked by two electron withdrawing carbonyl groups, the rate of
the CIEEL reaction is faster than for dioxetanones which have only
one neighboring carbonyl group. Dioxetanes are relatively difficult
to reduce. As a result only intramolecular CIEEL has thus far been
observed and this only when the electron donor is very easily oxi-
dized or when the dioxetane is activated by protonation.

The realization that CIEEL can generate high singlet yields and
speed up the reaction of dioxetanes explains the interesting results
of Singer and coworkers.36 They observed that dioxetane \textit{19}, pre-
pared by photooxygenation of 10,10'-dimethyl-9,9'-biacridylidene,
decomposed to the acridone with an activation energy of only 17.2
kcal/mol and a relatively high yield of excited singlet states.

Schuster and coworkers37 have applied the CIEEL mechanism to
the bioluminescence of the firefly luciferin dioxetanone \textit{20}. This
proposal may explain the remarkably high singlet yield from this
system and the effects of structural variation on this substrate.
In summary, it is probably safe to point out that the last word on the mechanism of chemiluminescence from dioxetanes has not been written. The implication that the CIEEL process is operating opens up many new avenues for the preparation of highly effective and interesting light producing systems.

Light Generation Reactions Thought to Proceed Through 1,2-Dioxetanes

Before dioxetanes were isolated they were postulated to exist in a number of the reactions of hydroperoxides and in the reactions of oxygen with various organic compounds. The thermal instability of the 1,2-dioxetane ring continues to render unisolable many presumed dioxetanes. In this section we will review the recent literature of this group of compounds.

Sawaki and Ogata have reported on the chemiluminescence and kinetics for the base catalyzed reactions of α-hydroperoxy esters, ketones, and nitriles Scheme 5. In all cases chemiluminescence was observed when the reaction was carried out in the presence of a suitable fluorescer. The chemiluminescence efficiency, however, is generally quite low, with quantum yields in the range from 10^{-6} to 10^{-4} depending on the particular case. The kinetic studies indicate that the reaction path is complicated. For example, in the case of the hydroperoxy ketones there is a non-chemiluminescent acyclic path leading to the formation of esters in competition with cyclization to the presumed dioxetane intermediate. These competitive reactions presumably account in large part for
the inefficiency of light generation. Interestingly, the reactions of the \(\alpha \)-hydroperoxy esters showed a dependence on the light yield on the nature of the fluorescer similar to that demonstrated for dimethyldioxetaneone. This observation may confirm the involvement of a dioxetane intermediate in this system.

In a related study Kamiya and Sugimoto\(^1\) report that many simple ketones with abstractable \(\alpha \)-hydrogens exhibit chemiluminescence when combined with base and oxygen in a polar aprotic solvent in the presence of dibromo- or diphenylanthracene. The authors suggest that the reaction proceeds through the \(\alpha \)-hydroperoxy ketone to the dioxetane and thence the excited triplet carbonyl compound. The yield of excited states from these reactions ranges from \(10^{-3} \) to \(10^{-1} \) per cent, indicating perhaps the operation of competing reaction paths.

A report\(^2\) that reaction of 9-aminoanthracene with isobutyraldehyde in the presence of atmospheric oxygen gives amino dioxetane \(21 \) has been shown to be incorrect. The compound obtained by this reaction was shown by Goto and Nakamura\(^3\) to be the \(\alpha \)-trioxane \(22 \). Interestingly, this trioxane reacts with base to generate the suspected dioxetane by the route shown in Scheme 6 to generate light. This process was verified by McCapra\(^4\) using an isotope labeling technique. Significantly, the yield of singlet excited state product from the base catalyzed reaction of \(22 \) is reported to be 13%. This high singlet state yield and the instability of the dioxetane suggests that the major excitation process may be an intramolecular CIEEL path.
A finding of potential importance was reported by Cilento and coworkers. They found that the oxidation of isobutyraldehyde in the horseradish peroxidase–O₂ system produces detectable quantities of acetone triplet. The mechanism for this enzyme initiated chemi-luminescent reaction is outlined in Scheme 7. The intermediacy of a dioxetane in this process may foreshadow the involvement of electronically excited state products in many enzymatic oxidation reactions. Along these same lines, Cilento and coworkers report that certain oxidizable auxin derivatives are chemiluminescent under conditions that mimic the in vivo chemiluminescence of known luciferins.

Scheme 7

Rio and Serkiz report that photooxidation of the dimer of 2,4,5-triphenylimidazoyl radical in polar solvent leads to the gen-
eration of the heterobicyclic dioxetane 23. However, the isolated peroxide exhibits stability unexpected for a compound of this structure (mp 117°). Further consideration of this interesting compound must await further proof of its structure.

Griffin, Turro and coworkers have probed the photooxidation of tri- and tetraphenylcyclopropanes. Interestingly, these authors report a remarkable sensitivity of the reaction to the substituents. Comparison of the photooxidation of cyclopropanes 24 and 25 revealed different reaction paths, Scheme 8. The dioxetanes were implicated in this process on the basis of observed chemiluminescence. The authors point out that the rearrangement of the initially formed dioxetane 26 to dioxetane 27 may not in fact occur. Dioxetane 27 could be a result of rearrangement of the intermediate peroxide resulting from polar addition of oxygen to cyclopropene 25.

Scheme 8
Formation and Reaction of Dioxetanes in the Gas Phase

Most of the chemistry of dioxetanes that has been investigated has been carried out in solution. Reaction in the gas phase provides the opportunity to study chemical activation phenomena and to obtain high resolution emission spectra. In this section we will briefly review the recent work in this area of dioxetane chemistry.

The reaction of 1O_2 with ethyl vinyl ether in a discharge flow system at 620°C was investigated by Bogan and coworkers. They observed chemiluminescence which was attributed to emission from electronically excited formaldehyde. The activation energy for production of the chemiluminescence was found to be 9.8 kcal/mol. The rate limiting step in the reaction sequence leading to chemiluminescence was assigned to the addition of 1O_2 to the olefin and thus the activation energy refers to this process. Experiments showed that the lifetime of the dioxetane under these conditions was less than 10^{-7} sec. These results, in combination with thermochemical calculations, were interpreted to indicate that the dioxetane was formed at an energy more than 45 kcal/mol above ground state dioxetane and that this highly excited intermediate rapidly cleaved to produce vibrationally and electronically excited carbonyl group fragments. A study employing ethylene as a reactant gave similar results.

In a study of a wide variety of olefins capable of forming formaldehyde upon reaction with 1O_2 in the gas phase, Bogan and coworkers uncovered the interesting result that the intensities of vibronic hot bands in the formaldehyde emission spectrum was dependent on the nature of the olefin used. It was found that the hot band intensity is directly related to the available energy and inversely related to the number of vibrational modes of the dioxetane.

In a different type of gas phase study Haas and Yahav irradiated tetramethyldioxetane with a TEA CO$_2$ laser. They obtained time-resolved spectra of the chemiluminescence following absorption of the ir pulse. Their studies showed that the excited dioxetane decomposed by at least two pathways, a unimolecular collision-free route and a collision-induced mechanism. These authors suggest that
the chemiluminescence observed may be due to direct formation of an acetone excimer. Such an excimer does not exist in solution.

In a similar study Flynn and coworkers irradiated tetramethylidioxetane in a methylfluoride bath. In this case the energy is absorbed initially by methyl fluoride and subsequently transferred to the dioxetane. The experiments showed that the reaction is initiated by ir light absorption by CH₃F which leads to generation of acetone fluorescence. The mechanism for the energy transfer was assigned to thermal heating of the reaction vessel by the laser pulse (temperature-jump).

Non-Chemiluminescent Reactions of Dioxetanes

Investigations of 1,2-dioxetanes have mainly centered on the reactions that lead to excited state generation. However, there has developed a body of knowledge concerning the strictly ground state chemistry of this ring system. In this section we will review the recent advances in this area.

Wasserman and Saito report that thermolysis of dimethoxydiphényldioxetane (28) results as expected in a quantitative yield of methylbenzoate. However, reaction of this dioxetane with diphenyl sulfide in ether-methanol gave benzil dimethylketal (29) and diphenyl sulfoxide. These authors suggest that this reaction proceeds

![Chemical structure](image)

through a zwitterionic intermediate. Denny and coworkers investigated the related reaction of dioxetanes with alkyl sulfoxylates. In this case, reaction of trimethylidioxetane with dimethylsulfoxylate in methylene chloride at −78° led to the formation of sulfurane 30. The sulfuranes, however, could not be isolated. This transformation is reminiscent of the formation of isolable phosphoranes from dioxetanes and trialkylphosphites reported by Bartlett and
coworkers.57

The rearrangement of tetramethyldioxetane (31) catalyzed by boron trifluoride in aprotic solvents was studied by Bartlett and coworkers.58 They report that treatment of the dioxetane with BF\textsubscript{3} in methylene chloride at -78° for 30 min followed by a methanol quench led to formation of pinacolone (32), cyclic pinacolane di-peroxide (33), acetone, and hydrogen peroxide (Scheme 9). This reaction represents the only example of the catalysis of a dioxetane reaction that is not dominated by a retro 2+2 cycloaddition.

Scheme 9

\[\text{BF}_3 \rightarrow \text{CH}_3 \text{C} \rightarrow \text{CH}_3 \]

\[\text{H}_2\text{O} \rightarrow \text{BF}_3 \]

The rapid reaction of dioxetanes with transition metals has plagued the study of the chemiluminescence of these compounds. Bartlett and McKennis59 have studied the reaction of tetramethyldioxetane with a number of iridium and rhodium complexes that are known to undergo oxidative additions. This study complements their earlier work in which it was found that for a series of divalent
metals the catalytic rate paralleled the Lewis acidity.60 In this case, it was found that the rhodium catalysts act by oxidative addition to cause a net dark decomposition of tetramethyldioxetane. Attempts to fit the result to a Hammett linear free energy relationship were only partially successful.

There are a number of unimolecular rearrangements of appropriately substituted dioxetanes that do not involve cleavage of the central carbon-carbon bond of the ring. Anè and coworkers61 have studied the thermal cleavage of some unisolated amino substituted dioxetanes and report that in certain circumstances the chemistry is dominated by carbon-nitrogen bond cleavage. Thus, dioxetane 34 prepared by photooxidation of the corresponding enamine spontaneously decomposes at room temperature to form diketone 35 and hydroxyketone 36 as well as morpholine and substituted morpholine.

\[\text{H} \text{N} \text{O} \text{O} \text{Ph} \text{C} \text{N} \text{O} \text{Ph} \text{H} \text{C} \text{C} \text{Me} \]

34

The mechanism suggested for this intriguing reaction is shown in Scheme 10. Unfortunately, there is no indication in the report about the occurrence of chemiluminescence as a result of this reaction.

Scheme 10
Wasserman and Terao62 have prepared and isolated at low temperature amino substituted dioxetanes 37 and 38 from the photooxygenation of the corresponding olefins. Thermolysis of these dioxetanes leads primarily to diketones, evidently by a β-elimination pathway, Scheme 11.

Scheme 11

Dioxetanes as a Tool

Apart from the interest in the chemiluminescence of dioxetanes \textit{per se}, there has been considerable success in the application of dioxetane generated excited states to the study of other chemical phenomena. These systems can be considered extensions of the concept advanced by Emil White as photochemistry without light.63 The major advantage of dioxetane generated over photochemically generated excited states is specificity. The chemical generation overcomes the problems of competitive absorption and insures the initial location of the excitation energy.

These techniques were employed by Adam and coworkers64 to determine the rate constant for singlet–singlet energy transfer from dioxetane generated singlet acetone to ergostatetraenone. At 51° in acidified acetonitrile this rate constant is reported to be ca.
In a related study Schmidt, Kelm, and Braun used external pressure to probe the mechanism for the net triplet to singlet energy transfer from triplet acetone to 9,10-dibromoanthracene. The triplet acetone was generated by thermolysis of tetramethyldioxetane. This study showed that the mechanism of this energy transfer probably proceeds by an initial exchange triplet-triplet interaction to generate an upper triplet of the anthracene. Exothermic triplet to singlet intersystem crossing aided by the heavy atoms then generates the observed emitting singlet.

Conclusion

In this review we have summarized the results of many recent investigations of the chemistry of the 1,2-dioxetane ring system. The multifaceted reactions of these compounds have provided much information about the reactivity of strained peroxides and high energy content molecules in general. The investigations of the past three years have served to both clarify and enlarge the entire spectrum of known chemical reactions. Our prejudice causes us to focus attention on the chemiluminescent aspects of these molecules. Many experiments have been done to elucidate the detailed chemical steps responsible for excited state generation. Mechanisms have been proposed that cleanly account for much of the known experimental evidence. The future holds critical chemical and spectroscopic tests of these reaction schemes.

Acknowledgment

This work was supported in part by the Office of Naval Research, the Petroleum Research Fund administered by the American Chemical Society, and the Research Corporation. C.B.S. is a fellow of the Alfred P. Sloan Foundation.
<table>
<thead>
<tr>
<th>Structure(^a)</th>
<th>Method of Prep. (^b)</th>
<th>(E_a) (\pm)</th>
<th>(\phi_x)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Et———Et—Et</td>
<td>Elim</td>
<td>31.0 ± 1</td>
<td>0.5</td>
<td>26</td>
</tr>
<tr>
<td>Me———Me—Ph</td>
<td>Elim</td>
<td>25 ± 1</td>
<td>0.30</td>
<td>66</td>
</tr>
<tr>
<td>H———Ph—H(D)</td>
<td>Elim</td>
<td>22.3 ± 1.9</td>
<td>0.10</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Elim</td>
<td>--</td>
<td>--</td>
<td>3b</td>
</tr>
<tr>
<td></td>
<td>Elim</td>
<td>25.7 ± 0.7</td>
<td>--</td>
<td>3b</td>
</tr>
<tr>
<td>Me</td>
<td>Elim</td>
<td>25.2 ± 0.5</td>
<td>0.1</td>
<td>67</td>
</tr>
<tr>
<td>Me</td>
<td>Elim</td>
<td>23.7 ± 0.5</td>
<td>0.8</td>
<td>67</td>
</tr>
<tr>
<td>Structure a</td>
<td>Method b of Prep.</td>
<td>E_a</td>
<td>ϕ_x c</td>
<td>Ref</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
<td>---------</td>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td><image></td>
<td>Elim</td>
<td>25.9 ± 0.5</td>
<td>0.3</td>
<td>67</td>
</tr>
<tr>
<td><image></td>
<td>Elim</td>
<td>22.7 ± 0.9</td>
<td>--</td>
<td>3b</td>
</tr>
<tr>
<td><image></td>
<td>Elim</td>
<td>25.3 ± 0.5</td>
<td>0.48</td>
<td>67</td>
</tr>
<tr>
<td><image></td>
<td>Elim</td>
<td>25.5 ± 0.5</td>
<td>0.45</td>
<td>67</td>
</tr>
<tr>
<td><image></td>
<td>Elim</td>
<td>25.7 ± 0.5</td>
<td>0.46</td>
<td>67</td>
</tr>
<tr>
<td><image></td>
<td>$^{1}O_2$</td>
<td>30.3 ± 1.3</td>
<td>--</td>
<td>68</td>
</tr>
<tr>
<td>Structure(^a)</td>
<td>Method of Prep.(^b)</td>
<td>(E_a)</td>
<td>(\phi_x)</td>
<td>Ref</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------------</td>
<td>--------</td>
<td>...............</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>(1\text{O}_2)</td>
<td>--</td>
<td>--</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>(1\text{O}_2)</td>
<td>28.6 ± 1</td>
<td>0.1</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>(1\text{O}_2)</td>
<td>24.6 ± 1</td>
<td>0.3</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Elim</td>
<td>21.0 ± 1</td>
<td>--</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Elim</td>
<td>26.1 ± 1</td>
<td>--</td>
<td>70</td>
</tr>
</tbody>
</table>
Table 1 (continued)

<table>
<thead>
<tr>
<th>Structure<sup>a</sup></th>
<th>Method of Prep.</th>
<th>Ea</th>
<th>φ<sub>x</sub><sup>c</sup></th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1<sub>02</sub></td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>1<sub>02</sub></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1<sub>02</sub></td>
<td></td>
<td>0.12<sup>e</sup></td>
<td>33</td>
</tr>
<tr>
<td>An = 2-Anthryl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a α, R₁ = Me, R₂ = Ph
^b b, R₁ = Me, R₂ = 2-MeOPh
^c c, R₁ = Me, R₂ = 2-Naph
^d d, R₁ = Bu, R₂ = Ph
^e e, R₁ = R₂ = Me

| ![Structure](image7) | Elim | 26 | 0.17 | 20 |
Table 1 (continued)

<table>
<thead>
<tr>
<th>Structure<sup>a</sup></th>
<th>Method of Prep.<sup>b</sup></th>
<th>E_a</th>
<th>ϕ_x</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$^{10}_2$</td>
<td>f</td>
<td>--</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>$^{10}_2$</td>
<td>f</td>
<td>--</td>
<td>62</td>
</tr>
<tr>
<td>$n = 1, 2, 3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$^{10}_2$</td>
<td>19.7</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>$^{10}_2$</td>
<td>26.3</td>
<td>0.12</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>$?$</td>
<td>--</td>
<td>0.059</td>
<td>32</td>
</tr>
</tbody>
</table>
Table 1 (continued)

<table>
<thead>
<tr>
<th>Structure a</th>
<th>Method of Prep. b</th>
<th>E_a</th>
<th>ϕ_x</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$^{10}_2$</td>
<td>17.2 ± 0.3</td>
<td>0.076</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$^{10}_2$</td>
<td>---(mp 117$^\circ$)</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$^{10}_2$</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

aOnly those dioxetanes which have been isolated and characterized during the period covered in this review are included in this table.

bElim indicates that the dioxetane was prepared by the eliminative cyclization of the appropriate 5-substituted hydroperoxide, $^{10}_2$ indicates that the dioxetane was prepared by reaction of the corresponding olefin with singlet oxygen.

cQuantum yield of electronically excited states that are formed during thermolysis of the dioxetane.

dPrepared by silica gel catalyzed rearrangement of the endoperoxide.

eCatalyzed by silica gel, the singlet yield is 0.002 for the uncatalyzed reaction.

fUnstable at room temperature and only partially characterized.
References

35. W. Adam, private communication.

<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>Arlington, Virginia 22217</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 472</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td>Arlington, Virginia 22217</td>
<td>No. Copies</td>
</tr>
<tr>
<td>Attn: Code 102IP</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>ONR Branch Office</td>
<td></td>
<td></td>
</tr>
<tr>
<td>536 S. Clark Street</td>
<td>Chicago, Illinois 60605</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. Jerry Smith</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ONR Branch Office</td>
<td>713 Broadway</td>
<td></td>
</tr>
<tr>
<td>New York, New York 10003</td>
<td>Attn: Scientific Dept.</td>
<td>1</td>
</tr>
<tr>
<td>ONR Branch Office</td>
<td>1030 East Green Street</td>
<td></td>
</tr>
<tr>
<td>Pasadena, California 91106</td>
<td>Attn: Dr. R. J. Marcus</td>
<td>1</td>
</tr>
<tr>
<td>ONR Branch Office</td>
<td>760 Market Street, Rm. 447</td>
<td></td>
</tr>
<tr>
<td>San Francisco, California 94102</td>
<td>Attn: Dr. P. A. Miller</td>
<td>1</td>
</tr>
<tr>
<td>ONR Branch Office</td>
<td>495 Summer Street</td>
<td></td>
</tr>
<tr>
<td>Boston, Massachusetts 02210</td>
<td>Attn: Dr. L. H. Peebles</td>
<td>1</td>
</tr>
<tr>
<td>Director, Naval Research Laboratory</td>
<td>Washington, D.C. 20390</td>
<td></td>
</tr>
<tr>
<td>Attn: Code 6100</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>The Asst. Secretary of the Navy (R&D)</td>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>Room 4E736, Pentagon</td>
<td>Washington, D.C. 20350</td>
<td>1</td>
</tr>
<tr>
<td>Commander, Naval Air Systems Command</td>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td>Attn: Code 310C (H. Rosenwasser)</td>
<td>1</td>
</tr>
</tbody>
</table>

Defense Documentation Center
Building 5, Cameron Station
Alexandria, Virginia 22314

U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, N.C. 27709
Attn: CRD-AA-IP

Naval Ocean Systems Center
San Diego, California 92152
Attn: Mr. Joe McCartney

Naval Weapons Center
China Lake, California 93555
Attn: Head, Chemistry Division

Naval Civil Engineering Laboratory
Port Hueneme, California 93041
Attn: Mr. W. S. Haynes

Professor O. Heinz
Department of Physics & Chemistry
Naval Postgraduate School
Monterey, California 93940

Dr. A. L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps (Code RD-1)
Washington, D.C. 20380

Office of Naval Research
Arlington, Virginia 22217
Attn: Dr. Richard S. Miller
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Location</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. M. A. El-Sayed</td>
<td>University of California</td>
<td>Los Angeles, California</td>
<td>1</td>
</tr>
<tr>
<td>Dr. M. W. Windsor</td>
<td>Washington State University</td>
<td>Pullman, Washington</td>
<td>1</td>
</tr>
<tr>
<td>Dr. E. R. Bernstein</td>
<td>Colorado State University</td>
<td>Fort Collins, Colorado</td>
<td>1</td>
</tr>
<tr>
<td>Dr. C. A. Heller</td>
<td>Naval Weapons Center</td>
<td>China Lake, California</td>
<td>1</td>
</tr>
<tr>
<td>Dr. M. H. Chisholm</td>
<td>Princeton University</td>
<td>Princeton, New Jersey</td>
<td>1</td>
</tr>
<tr>
<td>Dr. J. R. MacDonald</td>
<td>Naval Research Laboratory</td>
<td>Washington, D.C.</td>
<td>1</td>
</tr>
<tr>
<td>Dr. G. B. Schuster</td>
<td>University of Illinois</td>
<td>Urbana, Illinois</td>
<td>1</td>
</tr>
<tr>
<td>Dr. E. M. Eyring</td>
<td>University of Utah</td>
<td>Salt Lake City, Utah</td>
<td>1</td>
</tr>
<tr>
<td>Dr. A. Adamson</td>
<td>University of Southern California</td>
<td>Los Angeles, California</td>
<td>1</td>
</tr>
<tr>
<td>Dr. M. S. Wrighton</td>
<td>Massachusetts Institute of Technology</td>
<td>Cambridge, Massachusetts</td>
<td>1</td>
</tr>
<tr>
<td>Dr. M. Rauhut</td>
<td>American Cyanamid Company</td>
<td>Bound Brook, New Jersey</td>
<td>1</td>
</tr>
</tbody>
</table>