TRANSFORMATION OF OXIDES OF NITROGEN
COMPOSITION WHILE SAMPLING COMBUSTION PRODUCTS

G.S. Sainuelsen*
John N. Harman, III†

UCI Combustion Laboratory
School of Engineering
University of California
Irvine, California 92717

Paper presented at First Chemical Congress of the North
American Continent, American Chemical Society, Mexico
City, December, 1975 (INEC #51)

†Present address, Beckman Instruments, Inc., Fullerton, CA 92634
*To whom correspondence should be addressed
Abstract

Combustion products are regularly sampled to determine the concentration of the major products of combustion as well as the concentration of the pollutant species. Nitrogen oxides are especially susceptible to changes in concentration that may occur during transport from the sampling point to an instrument for quantitative analysis. The present study reviews the range of conditions over which nitrogen oxides are sampled in practice, and the variety of chemical transformations that may occur within probes and sample lines. In addition, experimental data are presented for chemical transformations that occur for mixtures common to stationary source monitoring, namely combustion products mixtures containing oxygen at temperatures ranging from 25°C to 400°C. Transformations in silica and stainless steel (304, 316, 321) tubing are evaluated. 316 and 321 stainless steel are observed to reduce nitrogen dioxide to nitric oxide at temperatures in excess of 300°C, and 304 stainless steel is observed to reduce nitrogen dioxide at temperatures in excess of 100°C. Silica is observed to be passive to chemical transformation over the temperature range evaluated. Total nitrogen oxides (NOx) are conserved in all cases.
Title: Transformation of Oxides of Nitrogen Composition While Sampling Combustion Products

Authors: G.S. Samuelson, John N. Harman

Performing Organization:
UNIVERSITY OF CALIFORNIA, IRVINE
SCHOOL OF ENGINEERING
IRVINE, CALIFORNIA 92717

Controlling Office:
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH/NA
BOLLING AIR FORCE BASE, D.C. 20332

Monitoring Agency:
UNCLASSIFIED

Abstract:
Combustion products are regularly sampled to determine the concentration of the major products of combustion as well as the concentration of the pollutant species. Nitrogen oxides are especially susceptible to changes in concentration that may occur during transport from the sampling point to an instrument for quantitative analysis. The present study reviews the range of conditions over which nitrogen oxides are sampled in practice, and the variety of chemical transformations that may occur within probes and sample lines. In addition, experimental data are presented for chemical transformations that occur for mixtures.
common to stationary source monitoring, namely combustion products mixtures containing oxygen at temperatures ranging from 25°C to 400°C. Transformations in silica and stainless steel (304, 316, 321) tubing are evaluated. 316 and 321 stainless steel are observed to reduce nitrogen dioxide to nitric oxide at temperatures in excess of 300°C, and 304 stainless steel is observed to reduce nitrogen dioxide at temperatures in excess of 100°C. Silica is observed to be passive to chemical transformation over the temperature range evaluated. Total nitrogen oxides (NOₓ) are conserved in all cases.
Introduction

The exhaust gas composition from anthropogenic sources such as spark-ignited reciprocating automobile engines, compression ignited diesel engines, package and industrial boilers, steam generating power plants, and gas turbine engines is measured to characterize system efficiency and pollutant emission levels. Measurement of the gaseous product composition emitted from a combustion source generally proceeds by extracting a sample for subsequent quantitative analysis. A typical sampling train is illustrated schematically in Figure 1. In order to maintain sample integrity, the sampling system must be evaluated to ensure that the analytical instrumentation receives a sample that truly represents the concentrations existing at the sampling point. Potential sample transformations should be minimized by careful selection of materials contacting sample gases in the physical probe used for sample removal and in the line used to transport the sample to instrumentation.

Of all the significant products of combustion, nitrogen oxides (NO\textsubscript{x}) are especially susceptible to chemical transformation. The variety of combustion sources from which nitrogen oxides are emitted is presented in Table I. Shown are the broad ranges of effluent concentrations, sampling temperatures, and mixture ratios that may be encountered in operating systems.

Emission standards from combustion sources for nitrogen oxides are currently proposed or promulgated by the Environmental Protection Agency (EPA) in terms of total nitrogen oxides, NO\textsubscript{x}. 1–5.
As a result, emission factors are determined and compiled for mobile sources (e.g., the automobile) and stationary sources (e.g., power plants) in terms of total nitrogen oxide (NO\(_x\)). Current emissions inventories do not differentiate between the species of primary interest in the nitrogen oxides family, nitric oxide (NO) and nitrogen dioxide (NO\(_2\)). Yet the ratio of emissions of nitric oxide (NO) to nitrogen dioxide (NO\(_2\)) from combustion sources is of special interest for a number of applications. For example:

1. **The local air quality impact of nitrogen dioxide (NO\(_2\)) from major line sources** requires knowledge of the amount of nitrogen dioxide (NO\(_2\)) emitted as a primary pollutant.

2. **Modeling the visibility of plumes from major power plants** requires knowledge of the amount of nitrogen dioxide (NO\(_2\)) and nitric oxide (NO) emitted as primary pollutants.

3. **The input to regional oxidant models** requires a spatial and temporal geocoded emissions inventory of nitric oxide (NO) and nitrogen dioxide (NO\(_2\)) emission from mobile and stationary source operation.

4. **Flame probing in combustion research** is conducted to identify mechanisms responsible for the formation of nitrogen oxides. Measurement of the ratio, NO/NO\(_2\), is important to the determination of the chemistry acting.
Sampling Conditions

The sampling of combustion products from practical devices (utility boilers, package boilers, diesel engines, gas turbine engines, internal combustion engines), experimental devices (gas turbine combustors, combustion tunnels, stirred reactors), and directly from flames is conducted for a variety of reasons including enforcement, combustion characterization, pollutant formation studies, and efficiency optimization. Sampling is conducted at various locations within a given combustion system and over a wide range of temperatures and gas composition. In addition, the mixture sampled can be either oxidizing or reducing depending on the relative amount of oxidizing species (e.g. O₂) to reducing species (e.g. HC, CO) present at the sampling point.

Table I presents a summary of the typical sampling conditions encountered when measuring NOₓ concentrations from combustion sources. In general, the sampling conditions may be classified into three major groups according to the temperature at which the sample is extracted:

<table>
<thead>
<tr>
<th>Classification</th>
<th>Temperature Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>moderate</td>
<td>25°C - 600°C</td>
</tr>
<tr>
<td>high</td>
<td>600°C - 1200°C</td>
</tr>
<tr>
<td>very high</td>
<td>1200°C - 2500°C</td>
</tr>
</tbody>
</table>

Moderate temperature probing (25-600°C) is the most frequently encountered. Flue and exhaust gas sampling from stationary and mobile sources occurs in the moderate temperature range. Examples include source sampling of effluents from utility boilers, package boilers, residential furnaces, diesel engines, gas turbine engines, and automobile engines.
High temperature probing is experienced in combustion research, especially in studies of secondary (post flame) combustion processes. Care is required to ensure that the reactions are terminated immediately upon extraction of the sample. Aerodynamic quenching (rapid cooling by immediate expansion of the hot gases through a choked orifice) is a common technique used to quench the reactions and freeze the species concentration.

Very high temperature probing is common in flame research. Although flame research has been historically conducted in laboratory systems (premixed flames, diffusion flames, shock tubes, stirred reactors and plug flow reactors), combustion zones in practical combustion systems are now being probed as well. Immediate and substantial cooling upon sample extraction is critical to ensure that the active reactions are quenched.

This paper addresses mechanical probing, namely sampling wherein a sample is extracted by a probe and conveyed to an instrument for analysis through a sample line. Excluded from consideration here are molecular beam and optical sampling methods. A review of the transformation reactions that may occur over the broad range of conditions represented by Table I is first presented. Second, experimental evidence of chemical transformation of nitrogen oxides is presented for the condition of oxygen containing atmospheres at moderate temperatures.

Chemical Transformation

Various sources of information are available to assist the practitioner in the design of sampling systems for the measurement of nitrogen oxides. The recognition that chemical
transformation of nitrogen oxides can occur while sampling combustion products has prompted (1) a number of investigations that have explored specialized sampling conditions, and (2) a few general reviews of the problems associated with sampling nitrogen oxides from combustion sources.

Additional information is available from studies conducted to evaluate converter materials for chemiluminescent oxides of nitrogen analyzers, and from studies conducted to explore catalysis for potential use in the oxidation of CO in automobile exhaust by O₂ and NO.

Types of Transformations

Chemical transformation of nitrogen oxides may be of three general types:

- **OXIDATION:** NO → NO₂ NOₓ conserved
- **REDUCTION:** NO₂ → NO NOₓ conserved
- **REMOVAL:** NO, NO₂ → N₂ NOₓ not conserved

NO oxidation and NO₂ reduction reactions change the ratio of NO₂/NO without changing the total concentration of NOₓ. (The oxidation of NO does produce a species, NO₂, that is more susceptible to removal by adsorption or absorption). The third transformation type, removal, acts to decrease the total NOₓ concentration. Summaries of the transformation reactions that may be active in the sampling of combustion products are presented in Tables II, III, and IV for homogeneous, heterogeneous, and catalytic reactions respectively. (Although catalytic reactions may be either homogeneous or heterogeneous they are purposefully distinguished here as a separate subset.)
Homogeneous Reactions

NO Oxidation. The dominant gas phase oxidation reaction of NO is the termolecular combination with molecular oxygen to form nitrogen dioxide NO$_2$:

$$2\text{NO} + \text{O}_2 \rightarrow 2\text{NO}_2 \quad (1)$$

The reaction is important in the moderate temperature range from 25°C to 600°C. The rate of oxidation depends upon the concentration of O$_2$, NO, and NO$_2$, and decreases with increasing temperature.

NO$_2$ Reduction. The reverse of reaction (1)

$$2\text{NO}_2 \rightarrow 2\text{NO} + \text{O}_2 \quad (2)$$

becomes important as temperature increases. The temperature, then, is important in determining which reaction (1 or 2) is dominant. Although a kinetic analysis is required to determine the relative importance of the two reactions as a function of temperature, an equilibrium analysis is effective in describing the potential competition that can occur. For example, results of an equilibrium calculation are presented in Figure 2 as a function of temperature for a range of oxygen containing atmospheres (balance nitrogen). The initial nitrogen oxides concentration (500 ppm NO, 75 ppm NO$_2$) used for the calculations represents concentrations typical of those emitted from operating systems. The equilibrium predictions indicate that substantial changes in NO and NO$_2$ concentrations can occur given sufficient time. At temperatures below 200°C no change occurs unless oxygen is present. When oxygen is present, the NO is oxidized to NO$_2$.

at low temperatures. At temperatures above 200°C, the equilibrium begins to shift to NO. The reduction of NO₂ to NO approaches completion at temperatures exceeding 600°C. The effect of oxygen on the percent transformed at 600°C is demonstrated by the detailed insert.

Whether chemical transformation, in fact, occurs via reactions (1) or (2) depends upon the rate of the two reactions at the temperatures of interest, the concentration of the reactant species, and the residence time. Uncatalyzed, reaction (1) does not advance sufficiently for typical sampling times (~ 10 sec) and representative reactant species concentration to significantly affect the NO₂/NO ratio. For example, at 500 ppm NO, 75 ppm NO₂, 5% O₂, balance nitrogen, the rate of NO₂ formation is 0.133 ppm/sec at 100°C. At 400°C, the rate falls to 0.014 ppm/sec. Even for levels of NO initially at 5000 ppm, less than 3% of the NO will be oxidized to NO₂ after 10 seconds. Unless catalyzed, reaction (2) is also too slow at moderate temperatures, relative to typical sampling times (~ 10 sec) to be important. For example, at 500 ppm NO, 75 ppm NO₂, 5% O₂, balance nitrogen, the rate of NO₂ reduction is 6.25 \times 10^{-9} \text{ ppm/sec} at 100°C and 6.33 \times 10^{-2} \text{ ppm/sec} at 400°C. At higher temperatures, however, the rate of reduction of the uncatalyzed reaction may be appreciable. For example, the rate of NO₂ reduction at 600°C via reaction (2) is 6.32 ppm/sec and at 800°C increases to 112 ppm/sec.

The third homogeneous reaction presented in Table II,
\[
\text{NO}_2 + O + \rightarrow \text{NO} + O_2
\]

has been identified as potentially active when sampling in the very high temperature range (1200°C to 2500°C). Relatively long residence times and high concentrations of O-atoms are required for the concentration of NO\(_2\) to be significantly reduced.\(^\text{12}\)

\text{NO}_x\text{ Removal.}\] Meyerson has demonstrated the homogeneous gas-phase removal of NO in the presence of hydrocarbons. Reduction of NO depends in part on maintenance of elevated temperatures (900°C to 1400°C) and careful control of oxygen to minimize the preferential oxidation of hydrocarbon species with oxygen.\(^\text{25}\)

\textbf{Heterogeneous Reactions}

\textbf{NO Oxidation.}\] Allen has suggested that reaction (5) may explain the high concentrations of NO\(_2\) observed by various investigators while sampling from flame zones (very high temperatures). The probe acts as a third body in promoting the radical relaxation of O-atoms with NO.\(^\text{12}\) Other radical recombination reactions may participate as well.\(^\text{26}\) If the radical species are not immediately quenched by the aerodynamic expansion, reaction (3) may dominate to yield a net reduction of NO\(_2\) to NO.\(^\text{12}\)

\textbf{NO}_2\text{ Reduction.}\] NO\(_2\) reduction mechanisms have been the subject of numerous studies that address converter design for chemiluminescent NO-NO\(_x\) analyzers.\(^\text{13-15}\) The dominant heterogeneous reactions investigated involve the reduction of NO\(_2\) at the surface due to reactions with metals (e.g. vanadium,
tungsten, manganese, molybdenum, and stainless steel) and carbon. The reactions are temperature sensitive and require temperatures in excess of 300°C to significantly advance the reduction of NO₂. Carbon particulates formed in combustion processes can also participate in the chemical transformation of nitrogen oxides during sample transport. Heterogeneous reactions involving carbon particulates deposited on the walls of sample probes and sample lines can reduce NO₂ to NO in both overall reducing and overall oxidizing atmospheres.

NOₓ Removal. Nitrogen oxides may be removed by heterogeneous reactions at the wall of sampling materials. A dominant heterogeneous NOₓ removal reaction is wall absorption or adsorption of NO₂. This is common with stainless steel, mild steel, and many metals.

White and Beddows, among others, have found glass to be passive to the absorption of nitrogen dioxide (NO₂) at ambient temperatures. TFE Teflon has also been evaluated in various studies with conflicting results. White and Beddows found TFE Teflon to be passive at ambient temperature to NO₂ absorption whereas Trowell and Healy and Urone have observed strong absorption of NO₂ by TFE Teflon. The fact that conventional NO₂ permeation tubes are fabricated from FEP or TFE Teflon, and rely for function on the solubility of nitrogen oxides in the polymer lattice, indicate that these materials are not totally passive. The passivity of the TFE Teflon likely depends on the concentration of NO₂ and the total pressure of the sample.
Absorption in water condensate by reaction (9) is a principal removal mechanism for NO$_2$. Water is a major product of combustion and may condense on the walls of the probe and sampling lines if the probe and lines are not heated above the dew point. Nitrogen dioxide (NO$_2$) is water soluble and will be removed by absorption if caution is not exercised to maintain the sample above the dew point temperature in probes and sample lines leading to the analytical instrumentation.15,16,18 Water is purposefully removed in many situations to protect analytical instrumentation, remove a potentially interfering gas, and/or measure the composition of a dry sample. In such cases, special care is required to ensure that NO$_2$ is not also removed.15,17

Given sufficient time, other heterogeneous reactions may remove NO$_x$. A two-step mechanism is suggested by Brietenbach and Shelef that leads to the removal of NO via the oxidation of surface carbon by gaseous oxygen to carbon monoxide, and the subsequent oxidation of the carbon monoxide by nitric oxide to form N$_2$ and CO$_2$. The NO may be reduced directly by carbon as indicated by reaction (11). Both reactions (10) and (11) are of special concern in carbon converters used for chemiluminescent analyzers, and suggest that caution must be exercised in setting and maintaining carbon converter temperatures.

Catalytic Reactions

NO Oxidation. Catalysts can promote the oxidation of NO to NO$_2$. Halstead reports that oxidized or heat treated surfaces
can be especially active in oxidizing NO to NO\(_2\).\(^{13}\) Additional studies are required to determine the extent of catalytic oxidation of NO for sample times (\(\sim 10\) sec) and materials used in sampling nitrogen oxides from combustion effluents.

\(\text{NO}_2\) Reduction. In parallel with the NO-NO\(_x\) chemiluminescent converter studies in which various heterogeneous paths for the reduction of NO\(_2\) to NO have been evaluated, catalytic reduction reactions of NO\(_2\) have also been studied.\(^{18,19,20,27,31}\) Catalytic materials evaluated include stainless steel, gold wool, and quartz. The overall reaction generally regarded as operative in the catalytic reduction of NO\(_2\) is:

\[
\text{catalytic NO}_2 \rightarrow \text{NO} + \frac{1}{2}\text{O}_2 \quad (12)
\]

Reaction (12) may advance significantly in times typical of sampling (\(\sim 10\) sec). The effect of temperature on the dissociation of NO\(_2\) may be implied from Figure 2. Dissociation begins at temperatures exceeding 100°C and is effectively complete at temperatures in excess of 600°C. The oxygen content of the sample will determine the temperature required for complete (> 98%) conversion.

\(\text{NO}_x\) Removal. The catalytic reduction of NO by CO has been explored by various investigators for possible application to automobile exhaust control.\(^{21-23}\) Reduction reactions involving hydrogen and hydrocarbons can occur in parallel with the CO attack on NO, and have also been the subject of recent inquiries.\(^{32,34}\)

With respect to sampling combustion products, the work
of Halstead is the most definitive statement with respect to the chemical transformation of nitrogen oxides to expect when sampling combustion products containing carbon monoxide. Halstead sampled combustion products from a "Tunnel Mixing Burner" operating on natural gas and air. Two probe materials (stainless steel 210 cm long by 6 mm i.d., and silica tubing, 210 cm long x 4 mm i.d.) were evaluated for lean and rich burn conditions. The temperature at the probe inlet, measured with suction pyrometry, varied between 800 and 1700°C. The temperature of the sample at the outlet was near ambient. The residence time was estimated to be 4 seconds. Under the lean fire conditions, Halstead found no change in NOx concentration for either the stainless steel or silica tubing. Changes were observed for rich fire with the stainless steel probe. In particular, the nitrogen oxides (NOx) concentration decreased in excess of 90 percent. No effect was observed for the silica. Although the results suggest that important chemical transformation occurs when sampling fuel rich combustion products with stainless-steel, important questions remain unanswered. For example, the data are not sufficient to establish the active reactions. Halstead suggests that reaction 14 may be the key to the reduction. However, the extent to which the various reducing species (e.g. carbon monoxide, hydrogen, and hydrocarbons) participate in the reduction reactions cannot be assessed. In addition, the varying temperature along the probe length does not allow determination of the temperature at which the reduction reactions are active.
A variety of reactions may participate in the chemical transformation of nitrogen oxides while sampling combustion products. The assessment of transformations that may occur under conditions experienced when sampling combustion products requires experiments that are specifically designed to identify (1) the chemical transformations, if any, that occur, (2) the extent to which they occur during typical sampling times, and (3) the conditions (e.g. sample temperature, sample composition, sample line material) for which they occur.

The present study includes an experiment designed to assess transformation reactions for a specific class of practical combustion devices that operate air-rich—namely boilers, diesel engines, and gas turbine engines. Results are presented for the moderate temperature range typical of exhaust or flue gas sampling. A schematic of the experimental system is shown in Figure 3. The overall design reflects the need to simulate the actual conditions experienced in sampling gaseous combustion products from the variety of sources shown in Table I. Test parameters include carrier gas composition, concentration, and composition of the dopant gases, pre-probe carrier gas temperature, post-probe carrier gas temperature, and probe material.

For the present study, carrier gas is selected from one of three prepared sources of 0, 1, and 5% O₂, 12% CO₂, balance N₂. The carrier gas flow, 4 liters/minutes, is doped with NO
and NO₂ metered from high concentration source cylinders by means of porous sintered metal flow restrictors. The carrier gas enters a silica preheat oven to raise the gas temperature to the probe test temperature. From this point, the doped carrier gas enters the sample probe test section.

The NO and NO₂ input levels are chosen to be 500 ppm NO and 75 ppm NO₂ respectively. These levels simulate NO levels which are typically encountered and NO₂ levels which are representative of those generally thought to exist in combustion source effluents. Sample probe materials evaluated include 304, 316, and 321 stainless steel and silica glass. The length of each sample probe is arbitrarily chosen to be 2 meters. The residence time of the doped carrier gas in the sample probe test section is approximately 1 second for the 4 liters/minute flow rate and 2 meter sample probe length.

The gas temperature within the sample probe is incrementally increased from 25°C to 400°C. Temperatures of the gas stream (T₂ and T₃) are measured with insulated platinum resistance thermometers centered in the probe bore at the inlet and outlet of the sample probe. The oven temperature is also recorded by a thermocouple located adjacent to the outer diameter of the sample probe.

Gas composition is determined before and after the probe to assess the extent of NO and NO₂ transformation within the 2 meter sample probe segment. Sample lines leading from points 2 and 3 (Figure 3) are short, equal-distances, and made of 1/4 inch diameter
TFE Teflon. Screening tests using varying lengths of TFE Teflon were conducted for the current study to assure that NO\textsubscript{2} absorption was not a significant factor in the present experiment. However, a systematic evaluation was not conducted and is needed to explain the reported differences in NO\textsubscript{2} absorption on TFE Teflon.27-29

Analysis of NO and NO\textsubscript{x} is conducted with a Beckman Model 951H chemiluminescent oxides of nitrogen analyzer. NO\textsubscript{2} is determined by difference. The (carbon) converter efficiency is monitored by periodic tests using the methods outlined in the Federal Register.3

Results

The results are presented in Figures 4 and 5 for the silica and the three stainless steel sample probes respectively. The percent change of NO and NO\textsubscript{2} represent the percent change in concentration between sample points 2 and 3. The temperature shown is the gas temperature at sample points 2 and 3.

The results for silica are presented in Figure 4. No significant transformation occurs over the temperature range and the residence time studied. Evidence of NO oxidation, proportional to oxygen content, is discernible, however.

The results for 304 stainless steel are presented in Figure 5a. A significant transformation (reduction of NO\textsubscript{2} to NO) occurs at temperatures in excess of 100°C. Conversion of NO\textsubscript{2} to NO at elevated temperature by stainless steel is consistent with the results of a variety of studies (Table IV) in which stainless steel has been evaluated for use as the converter material in chemiluminescent nitrogen oxides analyzers. At
temperatures below the catalytically active temperature of 200°C, no significant change is observed. The oxygen content of the mixture has an important impact on the conversion efficiency at the peak temperature evaluated (400°C).

The results for the 316 stainless steel, presented in Figure 5b, indicate a higher temperature for catalytic reduction of NO\textsubscript{2} in comparison to 304 stainless steel. Chemical transformation of nitrogen oxides is negligible for temperatures of 300°C or lower. At 400°C, however, dissociation is nearly 100% complete. The oxygen content of the mixture has a modest impact on the conversion efficiency at the peak temperature evaluated (400°C).

The results for the 321 stainless steel, presented in Figure 5c, show behavior similar to the 316 stainless steel.

The three stainless steels evaluated are similar in the composition of carbon, chromium, and nickel. As shown in Table V, however, 316 stainless steel has molybdenum added to improve corrosion resistance, and 321 stainless steel has titanium added to reduce carbide precipitation. In general, stainless steels have strong resistance to corrosion due to an oxidized layer on the surface. Reducing atmospheres can remove the film and change the passivity. It is likely then that probe history can impact the chemical transformation of nitrogen oxides. Some evidence of this effect has been reported in the literature,15 but a full assessment has yet to be made.
Conclusions

Nitrogen oxides may undergo various chemical transformations between the sampling point and the instrument used for detection. The present study has reviewed reactions that may contribute to chemical transformation of nitrogen oxides for the three temperature ranges encountered in practice — moderate, high, very high — and has addressed experimentally chemical transformation, that can occur during moderate temperature combustion source sampling and analysis. In particular, chemical transformation of nitrogen oxides has been explored for those practical combustion devices that operate air-rich, namely boilers, diesel engines, and gas turbine engines.

The conclusions drawn are presented below under two categories: Specific (with respect to the present experiment) and General (with respect to actual source monitoring application).

For the conditions explored,

Specific

- NO\textsubscript{x} is conserved in silica and 304, 316, and 321 stainless steel sample probes for the temperature range 25 to 400°C and a residence time of 1 second.

- Reduction of NO\textsubscript{2} is observed in 316 and 321 stainless steel sample probes at temperatures exceeding 300°C. In 304 stainless steel sample probes, reduction is observed at temperatures exceeding 100°C.
In silica probes, no significant chemical transformation of nitrogen oxides is observed.

General

- Chemical transformation in nitrogen oxides concentration while sampling combustion products should be expected under all conditions.

- Chemical transformation in nitrogen oxides concentrations are likely to occur when sampling combustion products in excess of 300°C using 316 and 321 stainless steel, and in excess of 100°C using 304 stainless steel sample probes.

- Chemical transformation in oxides of nitrogen concentration may be effectively prevented by (1) using only silica materials, and (2) exercising appropriate precaution in handling water in the sample.

- Previous NO\textsubscript{x}, NO, and NO\textsubscript{2} data collected at moderate temperatures (25 to 600°C) with stainless steel must be used with caution.

- Additional information is needed to guide the selection of probe and sample line materials in order to minimize the occurrence of chemical transformation and to determine the extent of chemical transformation under the variety of sampling conditions experienced in practice.
Acknowledgments

This study has been sponsored in part by a grant from the General Motors Corporation and by the Air Force Office of Scientific Research, USAF, under Grant No. AFOSR-74-2710. The United States Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon.

The authors wish to extend their appreciation to D.E. Bleeker (collection of the experimental data), Dewey D. Baker (operation and design of the experimental system), and John T. Taylor (maintenance of the equipment and instrumentation).
Figure 2 Predicted (Equilibrium) Change of NO and NO₂ Concentration as a function of Temperature at 0, 1, 5% O₂
Figure 5a 304 Stainless Steel Test Probe

INLET CONCENTRATIONS
NO: 500 ppm
NO₂: 75 ppm
CO₂: 12 %
O₂: 0 % △ 1 % □ 5 %
N₂: Balance

% REDUCTION

TEMPERATURE, °C

% INCREASE

304 Stainless, 2m
Figure 5b Stainless Steel Test Probe

INLET CONCENTRATIONS

NO\textsubscript{2}: 500 ppm
NO\textsubscript{2}: 75 ppm
CO\textsubscript{2}: 12% △ 1%
O\textsubscript{2}: 0% △ 1%
N\textsubscript{2}: Balance

% REDUCTION

TEMPERATURE, °C

ADP, % INCREASE
REFERENCES

36. Certified Test Report: 304 Stainless Steel, TubeSales (HT 646060), Los Angeles, CA.

37. Certified Test Reports: 316 Stainless Steel, Kilsby Tubesupply Company (HT 220360); 321 Stainless Steel, Kilsby Tubesupply (HT 8040729), Los Angeles, CA.

52. Fenimore, C.P., "The Ratio NO\textsubscript{2}/NO in Fuel-Lean Flames,"

53. Pompei, F., and J.B Heywood, "The Role of Mixing in Burner-
Generated Carbon Monoxide and Nitric Oxide," Combust. Flame

54. Malte, P.C., and D.T. Pratt, "Oxides of Nitrogen Formation
WSS/CI Paper No. 73-37, 1973 Fall Meeting of the Western
States Section/The Combustion Institute, El Segundo, California
October (1973).

of Ozone and Nitric Oxide by Chemiluminescent Method in
Laboratory and Atmospheric Studies of Photochemical Smog," J.

57. Stevens, R.K, T. Clark, R. Baumgardner, and J. Hodgeson,
"Instrumentation for the Measurement of Nitrogen Dioxide,"
in Instrumentation for Monitoring Air Quality, ASTM Pub. 04-
Table I Sampling conditions for nitrogen oxides.

<table>
<thead>
<tr>
<th>Source</th>
<th>Typical NO<sub>x</sub> ppm</th>
<th>Sampling Point</th>
<th>Typical Sampling Environment</th>
<th>Examples of NO<sub>x</sub> probed</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Combustion Engine</td>
<td>500-4000</td>
<td>Combustion Zone</td>
<td>1300-2400, Reducing</td>
<td>38, 39</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>500-1000</td>
<td>Engine Exhaust</td>
<td>200-500, Reducing</td>
<td>3, 5</td>
<td>9</td>
</tr>
<tr>
<td>Diesel Engine</td>
<td>1000-7000</td>
<td>Combustion Zone</td>
<td>700-2500, Reducing and Oxidizing</td>
<td>40</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>700-2500</td>
<td>Engine Exhaust</td>
<td>200-500, Oxidizing</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Residential Oil Burners</td>
<td>20-100</td>
<td>Flue Gas</td>
<td>100-300, Oxidizing</td>
<td>41</td>
<td>9</td>
</tr>
<tr>
<td>Boilers</td>
<td>200-1000</td>
<td>Combustion Zone</td>
<td>100-1600, Reducing and Oxidizing</td>
<td>7, 8</td>
<td>10, 11, 12</td>
</tr>
<tr>
<td></td>
<td>25-800</td>
<td>Flue Gas</td>
<td>100-300, Oxidizing</td>
<td>1, 42, 43</td>
<td>9</td>
</tr>
<tr>
<td>Gas Turbine</td>
<td>1000-8000</td>
<td>Combustion Zone</td>
<td>1300-2700, Reducing and Oxidizing</td>
<td>*15</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>25-200</td>
<td>Engine Exhaust</td>
<td>400-1500, Oxidizing</td>
<td>44, 45, 46, 47, 48</td>
<td>9, 15</td>
</tr>
<tr>
<td>Flame Research</td>
<td>10-8000</td>
<td>Within Flame</td>
<td>700-2500, Reducing and Oxidizing</td>
<td>49, 50, 51, 52, 53, 54</td>
<td>10, 11, 16</td>
</tr>
</tbody>
</table>
Table II Homogeneous reactions.

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Reaction</th>
<th>Reference<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>NO Oxidation</td>
<td>(1) (2 \text{NO} + \text{O}_2 \rightarrow 2 \text{NO}_2)</td>
<td>9, 13, 55</td>
</tr>
<tr>
<td>NO<sub>2</sub> Reduction</td>
<td>(2) (2 \text{NO}_2 \rightarrow 2 \text{NO} + \text{O}_2)</td>
<td>19, 56</td>
</tr>
<tr>
<td></td>
<td>(3) (\text{NO}_2 + \text{O} \rightarrow \text{NO} + \text{O}_2)</td>
<td>12</td>
</tr>
<tr>
<td>NO<sub>x</sub> Removal</td>
<td>(4)<sup>b</sup> (\text{NO} + \text{CH} \rightarrow \text{HCO} + \text{N})</td>
<td>25</td>
</tr>
</tbody>
</table>

^aCOMB: Combustion Related Study
CONV: Converter Related Study
^bCH: Hydrocarbon
Table III Heterogeneous reaction.

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Reaction</th>
<th>Reference a</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO Oxidation</td>
<td>NO + O \rightarrow NO$_2$ \uparrow wall</td>
<td>12</td>
</tr>
<tr>
<td>NO$_2$ Reduction</td>
<td>NO$_2$ + metal \rightarrow metal oxide + NO \uparrow wall</td>
<td>20</td>
</tr>
<tr>
<td>NO$_2$ Reduction</td>
<td>NO$_2$ + C \rightarrow CO + NO \uparrow wall</td>
<td>26, 20, 57</td>
</tr>
<tr>
<td>NO$_2$ Reduction</td>
<td>NO$_2$ \rightarrow absorbed adsorbed</td>
<td>27</td>
</tr>
<tr>
<td>NO$_2$ Reduction</td>
<td>NO$_2$ condensate \rightarrow absorbed</td>
<td>28, 29</td>
</tr>
<tr>
<td>NO$_2$ Reduction</td>
<td>C + $\frac{1}{2}$ O$_2$ \rightarrow CO \uparrow wall</td>
<td>20</td>
</tr>
<tr>
<td>NO$_2$ Reduction</td>
<td>NO + CO \rightarrow $\frac{1}{2}$ N$_2$ + CO$_2$ catalytic</td>
<td>20</td>
</tr>
<tr>
<td>NO$_2$ Reduction</td>
<td>NO + C \rightarrow CO + $\frac{1}{2}$ N$_2$ \uparrow wall</td>
<td>20</td>
</tr>
</tbody>
</table>

aCOMB: Combustion Related Study
CONV: Converter Related Study
<table>
<thead>
<tr>
<th>Transformations</th>
<th>Reactions</th>
<th>References^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO Oxidation</td>
<td>(\text{NO} + \frac{1}{2} \text{O}_2 \rightarrow \text{NO}_2)</td>
<td>13</td>
</tr>
<tr>
<td>NO(_2) Reduction</td>
<td>(\text{NO}_2 \rightarrow \text{NO} + \frac{1}{2} \text{O}_2)</td>
<td>14, 18, 19, 20, 27, 31</td>
</tr>
<tr>
<td>NO(_x) Removal</td>
<td>(\text{NO} + \text{CO} \rightarrow \text{CO}_2 + \frac{1}{2} \text{N}_2)</td>
<td>9, 13, 21, 22, 23</td>
</tr>
<tr>
<td></td>
<td>(5 \text{H}_2 + 2 \text{NO} \rightarrow 2\text{NH}_3 + 2 \text{H}_2\text{O})</td>
<td>32, 33, 34</td>
</tr>
</tbody>
</table>

^aCOMB: Combustion Related Study
CONV: Converter Related Study
CAT: Catalyst Study
Table V Stainless steel composition.

<table>
<thead>
<tr>
<th>Specification</th>
<th>S.S. Type</th>
<th>Carbon</th>
<th>Chromium</th>
<th>Nickel</th>
<th>Molybdenum</th>
<th>Titanium</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>304</td>
<td>0.08</td>
<td>18-20</td>
<td>8-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>316</td>
<td>0.08</td>
<td>16-18</td>
<td>10-14</td>
<td>2-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>321</td>
<td>0.08</td>
<td>17-19</td>
<td>9-12</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>Present Study</td>
<td>304</td>
<td>0.05</td>
<td>18.12</td>
<td>8.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>316</td>
<td>0.004</td>
<td>17.60</td>
<td>12.48</td>
<td>2.72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>321</td>
<td>0.065</td>
<td>17.75</td>
<td>10.78</td>
<td>0.30</td>
<td>0.47</td>
</tr>
</tbody>
</table>

*Other elements present include manganese, phosphorus, sulfur, silicon, copper