MULTI-RIGID-BODY SYSTEM DYNAMICS WITH
APPLICATIONS TO HUMAN-BODY MODELS
AND FINITE-SEGMENT CABLE MODELS

Ronald L. Huston
and
Chris E. Passerello

Final Technical Report under ONR Contract
No. N00014-75-C-1164, NR 064-549 (474)

1 AUG. 1977

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited
ABSTRACT

A computer-oriented method for obtaining dynamical equations of motion for large mechanical systems or "chain systems" is presented. A chain system is defined as an arbitrarily assembled set of rigid bodies such that adjoining bodies have at least one common point and such that closed loops are not formed. The equations of motion are developed through the use of Lagrange's form of d'Alembert's principle.

The method is illustrated and applied with human-body models and finite-segment cable models. The human-body models are configured to simulate a crash-victim. Results with several applied deceleration profiles agree very well with available experimental data. The cable model is configured to simulate an off-shore oil rig or ship's crane with a partially submerged towing cable.
CONTENTS

I. INTRODUCTION 1

II. PRELIMINARY CONSIDERATIONS 5
 Body Connection Array 5
 Shifter Transformation Matrices 7
 Shifter Derivatives 9

III. KINEMATICS 11
 Degrees of Freedom and Generalized Coordinates 11
 Angular Velocities 11
 Angular Accelerations 14
 Mass Center Velocities 16
 Mass Center Accelerations 17

IV. EQUATIONS OF MOTION 18
 Kinetics 19
 Governing Equations 20

V. APPLICATION WITH HUMAN-BODY MODELS 22
 The UCIN Model 23
 The UCIN-CRASH Computer Code: Input/Output 29
 Validation of the Model and Examples 32

VI. APPLICATION WITH FINITE-SEGMENT CABLE MODELS 40
 Equations of Motion, Computer Code, and Numerical Solutions 41
 Example Application 46

VII. DISCUSSION AND CONCLUSIONS 51

REFERENCES 53
I. INTRODUCTION

Many mechanical systems and devices can be effectively modelled by systems of rigid bodies. If a rigid-body model of a mechanical system (called a "finite-segment" model) consists of a system of connected (that is, non-disjoint) linked rigid bodies which do not form closed loops or circuits, it is called a "general chain system" (or "open-chain") Figure 1. depicts such a system. The bodies are "linked" such that adjacent bodies share at least one common point, thus allowing for either hinge or ball-and-socket connections. Examples of general chain systems are: human-body models; chain and finite-segment cable models; manipulators; and finite-segment antenna and beam models.

Recently there have been a number of attempts to develop efficient methods for obtaining equations of motion for such systems [1-13]*. These efforts generally proceed by first modelling or replacing the given dynamical system by a discrete system or chain of interconnected rigid bodies. Dynamical equations of motion are then written for the chain system. In the derivation of these equations, some investigators use Lagrange's equations, some use Newton's laws, and some use other modified geometrical theories. But each has the objective of efficient derivation of computer-oriented equations. The relative advantages and disadvantages of these various methods depends upon:

*Numbers in brackets refer to references at the end of the Report.
Figure 1. A General Chain System
(i) the particular dynamical principle which is used, and (ii) the method of organizing the complex geometry. The difficulties encountered in these approaches usually include some, and sometimes all, of the following: (i) the introduction of non-working constraint forces between adjoining bodies (eq. Newton's laws); (ii) the tedious, often unwieldy, calculation of derivatives (eq. Lagrange's equations); (iii) the complex geometrical description of the system; and (iv) the solution of the developed equations.

In this report a method of obtaining equations of motion is presented which systematically avoids each of these difficulties. The method uses Lagrange's form of d'Alembert's principle [14-17] which provides for the automatic elimination of the non-working internal constraint forces without introducing tedious differentiation or other calculation. The method also uses a geometrical organization and accounting procedure as developed by Kane [16] and Huston and Passerello [8,10,12,18,19]. The method allows the system to be in any general force field and either the moments or the orientation between adjoining bodies may be specified or left unknown. Finally, the method leads to governing equations which may easily be applied with any general chain system such as human-body models, finite-segment cable models, manipulator models or flexible beam models. Furthermore, the form of the governing equations is ideally suited for developing computer algorithms for obtaining numerical solutions.

The report basically outlines the results of research under the support of the Office of Naval Research Contract N00014-75-C-1164. It contains results of the application of the above method with human-body
models in high-acceleration environments (crashes) and with partially submerged towing cables.

The balance of the report is divided into six parts with the following part presenting some geometrical background, notation, and other preliminary ideas useful in the analysis. The kinematics, dynamics, and governing equations are developed in the next two parts. The application with human-body models and cable models are presented in the subsequent two parts, and a brief discussion and set of conclusions are presented in the final part.
II. PRELIMINARY CONSIDERATIONS

Body Connection Array

Consider the chain system shown in Figure 1. To organize the geometrical accounting of this system, select one body of the system as the reference body and call it B_1. Next, number or label the other bodies of the system in ascending progression away from B_1 as shown in Figure 2. The configuration and kinematics of each body of the system may now be developed relative to B_1 which in turn has its configuration defined relative to an inertial reference frame R (Figure 2).*

Although this numbering scheme does not lead to a unique labelling of the bodies, it can nevertheless be used to describe the chain structure through the "body connection array" as follows:

Let $L(k)$, $k=1, ..., N$ be an array listing the indices of the adjoining lower-numbered body for each body B_k. For example for the system shown in Figure 2, $L(k)$ is

$$L(k) = (0,1,2,2,4,1,6,1,8)$$

where

$$(k) = (1,2,3,4,5,6,7,8,9)$$

and where 0 refers to the inertial reference frame R. It is not difficult to see that given $L(k)$ one could readily define the topology or arrangement of the system. That is, Figure 2 could be constructed by simply knowing $L(k)$. It is shown in Part III of the report that $L(k)$

*An alternative approach is to reference each body independently to R, but this is found to be very inconvenient in describing the configuration of actual systems.
Figure 2. A Numbering of the Chain System
can be useful in the development of expressions of kinematical quantities needed for an analysis of the system's dynamics.

Shifter Transformation Matrices

Next, consider a typical pair of adjoining bodies such as B_j and B_k as shown in Figure 3. The orientation of B_k relative to B_j may be defined in terms of the relative inclinations of the dextral orthogonal unit vector sets, n_{ji} and n_{ki} ($i=1,2,3$) fixed in B_j and B_k as shown in Figure 3. Specifically, let B_j and B_k be oriented such that the n_{ji} and the n_{ki} are respectively parallel. Then B_k may be brought into any orientation relative to B_j by three successive dextral rotations about axes parallel to n_{k1}, n_{k2}, and n_{k3} through the angles α_k, β_k, and γ_k. n_{ji} and n_{ki} are then related to each other as

$$n_{ji} = S_{JK} n_{km}$$

(2.3)

where S_{JK} is a 3×3 orthogonal transformation matrix called a "shifter" and defined as $[20,21,22]$:

$$S_{JK} = n_{ji} \cdot n_{km}$$

(2.4)

(Regarding notation, repeated indices, such as m in the right side of Equation (2.3) represent a sum over the range (eg. 1, ..., 3) of that index.)

S_{JK} may itself be written as the product of three orthogonal transformation matrices as $[19]$:

$$S_{JK} = \alpha_{JK} \beta_{JK} \gamma_{JK}$$

(2.5)

where α_{JK}, β_{JK}, and γ_{JK} are...
\[\alpha_{JK} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & C_\alpha_k & -S_\alpha_k \\ 0 & S_\alpha_k & C_\alpha_k \end{pmatrix} \]

\[\beta_{JK} = \begin{pmatrix} C_\beta_k & 0 & S_\beta_k \\ 0 & 1 & 0 \\ -S_\beta_k & 0 & C_\beta_k \end{pmatrix} \quad (2.6) \]

\[\gamma_{JK} = \begin{pmatrix} C_\gamma_k & -S_\gamma_k & 0 \\ S_\gamma_k & C_\gamma_k & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

where \(S \) and \(C \) are abbreviations for sine and cosine respectively.

From Equation (2.3) it can be seen that the shifter transformation matrix obeys the following identity rules:

\[SJJ = I = SJK SKJ = SJK SJK^{-1} \quad (2.7) \]

where \(I \) is the identity matrix. Also, with three bodies, say \(B_j, B_k, \) and \(B_\ell \), the shifter obeys the chain rule:

\[SJL = SJK SKL \quad (2.8) \]

These expressions may be used to transfer components of vectors referred unit vectors in one body of the system into components of vectors referred to unit vectors in any other body of the system and, in particular, to the inertial reference frame \(R \). For example, if a
typical vector \mathbf{v} is expressed as

$$
\mathbf{v} = v_i^{(k)} \mathbf{e}_i^{(k)} = v_i^{(o)} \mathbf{e}_i^{(o)}
$$

(2.9)

then

$$
v_i^{(o)} = \text{SO}_K^{ij} v_i^{(k)}
$$

(2.10)

where the index o refers to the inertial reference frame \mathbb{R}. (There is no sum over repeated indices in parentheses.)

Shifter Derivatives

Finally, since the shifter transformation matrices play a central role throughout the analysis, it is helpful to also have algorithms for their derivatives, especially the derivative of SO_K. Such an algorithm may be obtained through Equation (2.4). For SO_K, Equation (2.4) may be written in the form:

$$
\text{SO}_K^{ij} = \mathbf{e}_i^{(o)} \cdot \mathbf{e}_j^{(o)}
$$

(2.11)

where the $\mathbf{e}_i^{(o)}$ are fixed, and therefore constant, in \mathbb{R}. Hence, differentiating in Equation (2.11) leads to

$$
\frac{d(\text{SO}_K^{ij})}{dt} = \mathbf{e}_i^{(o)} \cdot \frac{\mathbf{R}^d}{dt} \mathbf{e}_j^{(o)}
$$

(2.12)

where the index R in $\frac{\mathbf{R}^d}{dt} \mathbf{e}_j^{(o)}$ indicates that the derivative of $\mathbf{e}_j^{(o)}$ is computed in \mathbb{R}. (See Reference [23].) However, since the $\mathbf{e}_j^{(o)}$ are fixed in \mathbb{R}_k, their derivatives may be written as $\mathbf{\omega}_k \times \mathbf{e}_j^{(o)}$ where $\mathbf{\omega}_k$ is the angular velocity of \mathbb{R}_k in \mathbb{R} [23]. Equation (2.12) may then be written as

$$
\frac{d(\text{SO}_K^{ij})}{dt} = \mathbf{e}_i^{(o)} \cdot \mathbf{\omega}_k \times \mathbf{e}_j^{(o)} = -\mathbf{\omega}_k \times \mathbf{\omega}_i^{(o)} \cdot \mathbf{e}_j^{(o)}
$$

(2.13)

$$
-\epsilon_{jlm} \mathbf{\omega}_k^{(o)} \mathbf{e}_m^{(o)} \cdot \mathbf{e}_j^{(o)}
$$
\[
\frac{d(SOK)}{dt} = WOK \cdot SOK
\]
(2.14)

where \(WOK \) is a matrix defined as

\[
SOK_{im} = - e_{imn} \omega_{kn}
\]
(2.15)

and where \(\omega_{kn} \) are the components of \(\omega_k \) referred to \(\eta_{on} \) and \(e_{imn} \) is the standard permutation symbol [20,22]. (\(WOK \) is simply the matrix whose dual vector [22] is \(\omega_k \).)

Equation (2.14) shows that the derivative of the shifter matrix may be computed by a matrix multiplication and thus is ideally suited for development into a numerical, computer algorithm.
III. KINEMATICS

Degrees of Freedom and Generalized Coordinates

The chain system shown in Figure 1. will, in general, have $3N + 3$ degrees of freedom. These may be defined in terms of $3N + 3$ generalized coordinates x_j $(j=1, \ldots, 3N+3)$. Let x_1, x_2, and x_3 represent the position coordinates of an arbitrarily selected reference point say O_1 of B_1 in R (See Figure 4.). Then let the remaining $3N$ coordinates be divided into N triplets of coordinates representing the relative orientation angles of the adjoining bodies as described above. For example, x_4, x_5, and x_6 define the orientation of B_1 in R and x_{3k+1}, x_{3k+2}, and x_{3k+3} define the orientation of B_k relative to B_j where B_j is the adjacent lower numbered body to a typical body B_k (See Figure 3.)

Angular Velocities

The angular velocity of a typical body of the system, say B_k, relative to R is readily obtained by the familiar addition formula [16, 23] as

$$\omega_k = \omega_1 + \cdots + \omega_k$$ (3.1)

where the terms on the right represent angular velocities of the subscripted body relative to its adjacent, lower-numbered body, and where the sum is taken over the bodies in the chain from B_1 outward through the branch containing B_k. For example, referring to Figure 2., ω_5 is

$$\omega_5 = \omega_1 + \omega_2 + \omega_4 + \omega_5$$ (3.2)
where \(\hat{\omega}_1 \) is the angular velocity of \(B_1 \) relative to \(R \), \(\hat{\omega}_2 \) is the angular velocity of \(B_2 \) relative to \(B_1 \), \(\hat{\omega}_4 \) is the angular velocity of \(B_4 \) relative to \(B_2 \), and \(\hat{\omega}_5 \) is the angular velocity of \(B_5 \) relative to \(B_4 \). (Regarding notation, the "hats" are used to designate relative angular velocities with respect to the adjacent, lower-numbered body, and the terms without the hats designate absolute angular velocities (that is, relative to \(R \)). Hence, \(\hat{\omega}_1 \) and \(\hat{\omega}_1 \) are the same.)

The \(L(k) \) array introduced above can be used to form a convenient expression for the sum in Equation (3.1). To see this, consider the example of Equation (3.2). The subscripts on the right side of Equation (3.2) (that is, 1, 2, 4, 5) may be obtained from \(L(k) \) as follows: Consider \(L(k) \) as a function mapping the \((k) \) array into the \(L(k) \) array (See Equations (2.1) and (2.2)). Then, using the notation that \(L^0(k) = (k) \), \(L^1(k) = L(k) \), \(L^2(k) = L(L(k)) \), \(L^3(k) = L(L^2(k)) \), etc., it is seen from Equation (2.1) that

\[
L^0(5) = 5, \quad L^1(5) = 4, \quad L^2(5) = 2, \quad L^3(5) = 1
\]

(3.3)

Therefore, \(\omega_5 \) may be written as

\[
\omega_5 = \sum_{p=0}^{3} \hat{\omega}_q \quad \text{where} \quad q = L^p(5)
\]

(3.4)

Hence, in general, the angular velocity of \(B_k \) may be written as

\[
\omega_k = \sum_{p=0}^{r} \hat{\omega}_q \quad \text{where} \quad q = L^p(k)
\]

(3.5)

and where \(r \) is the index such that \(L^r(k) = 1 \).
Now, in view of Figure 3., and the description of the relative orientation of B_k with respect to B_j, $\hat{\omega}_k$ may be written as [19,21]

$$\hat{\omega}_k = \dot{\alpha}_k N_{kl} + \dot{\beta}_k N_{k2} + \dot{\gamma}_k N_{k3} \quad \text{(no sum on k)} \quad (3.6)$$

where N_{kl}, N_{k2}, and N_{k3} are unit vectors parallel to n_{kl}, n_{k2}, and n_{k3} during the successive dextral rotations defining α_k, β_k, and γ_k as described in the foregoing part of the report. In terms of n_{ji} $(i=1,2,3)$, the unit vectors fixed in B_j, the adjacent lower numbered body, N_{ki} $(i=1,2,3)$ are

$$N_{kl} = n_{ji} = \delta_{mi} n_{jm}$$

$$N_{k2} = \alpha_K M_{2} n_{jm} \quad (3.7)$$

$$N_{k3} = \alpha_K M_{3} \beta_K P_{3} n_{jm}$$

Hence, $\hat{\omega}_k$ becomes

$$\hat{\omega}_k = (\dot{\alpha}_k \delta_{mi} + \dot{\beta}_k \alpha_K M_{2} + \dot{\gamma}_k \alpha_K M_{3} \beta_K P_{3}) n_{jm} \quad (3.8)$$

or in terms of n_{oi}, the unit vectors fixed in O

$$\hat{\omega}_k = \text{SOJ}_{im} (\dot{\alpha}_k \delta_{mi} + \dot{\beta}_k \alpha_K M_{2} + \dot{\gamma}_k \alpha_K M_{3} \beta_K P_{3}) n_{jm} \quad (3.9)$$

By substituting from Equation (3.9) into Equation (3.5), ω_k may be written in the form

$$\omega_k = \omega_{klm} \chi_{\ell} \mathcal{P}_{\ell m} \quad (3.10)$$

where there is a sum from 1 to $3N+3$ on ℓ and from 1 to 3 on m. From Equation (3.9), it is seen that the non-zero ω_{klm} take one of the
three forms

\[\omega_{klm} = \text{SQJ}_{ml} \]

\[\text{SOJ}_{mn} \alpha_{JK} n_2 + \text{SOJ}_{mn} \alpha_{JK} n_2 \] (3.11)

\[\text{SOJ}_{mn} \alpha_{JK} n_3 \beta_{JK} p_3 \]

depending on whether \(\chi \) is the first, second, or third dextral angle defining the orientation of \(B_k \) relative to \(B_j \). Also, from Equation (3.5) it is seen that for two bodies \(B_r \) and \(B_s \), in the same branch of the chain, \(\omega_{rlm} = \omega_{slm} \) for \(r \) greater than \(s \), if \(\omega_{slm} \neq 0 \).

Angular Accelerations

The angular acceleration of \(B_k \) relative to \(R \) may be obtained by differentiating the angular velocity expression of Equation (3.10). Noting that the \(n_{om} \) are fixed in \(R \), this leads to

\[\ddot{\omega}_k = (\omega_{klm} \dddot{x}_l + \dot{\omega}_{klm} x_{l} n_{om} \] (3.12)

From Equation (3.11), the non-zero \(\dot{\omega}_{klm} \) are found to take one of the three forms:

\[\dot{\omega}_{klm} = \text{SQJ}_{mn} \alpha_{JK} n_2 + \text{SOJ}_{mn} \alpha_{JK} n_2 \]

\[\text{SOJ}_{mn} \alpha_{JK} n_3 \beta_{JK} p_3 + \text{SOJ}_{mn} \alpha_{JK} n_3 \beta_{JK} p_3 \]

\[+ \text{SOJ}_{mn} \alpha_{JK} n_3 \beta_{JK} p_3 \] (3.13)

depending on whether \(\chi \) is the first, second, or third dextral angle defining the orientation of \(B_k \) relative to \(B_j \). The \(\text{SOJ} \) are given by
Figure 3. Two Typical Adjoining Bodies

Figure 4. Mass Centers, Reference Points and Locating Position Vectors
Equation (2.14) and the ω_{JK} and δ_{JK} are obtained by differentiating the expressions in Equation (2.6).

Mass Center Velocities

The velocity and acceleration, relative to R, of the mass centers of the bodies of the system may be obtained as follows: First, recall that 0_1 is an arbitrarily selected reference point of B_1 (See Figure 4., for example). Next, let 0_k be the connection point or common point of two typical bodies, say B_k and B_j where B_j is the adjacent lower-numbered body of B_k ($k=2, \ldots, N$), and let 0_k be called the "reference point" of B_k. Then let ξ_k be the position vector of 0_k relative to 0_j. Finally, let G_k be the mass center of B_k ($k=1, \ldots, N$), and let r_k be the position vector of G_k relative to 0_k. (ξ_k is thus fixed in B_j and r_k is fixed in B_k.) Hence, the position vector p_k of G_k relative to a fixed point 0, in R may be written as

$$p_k = (\xi_{0i} + \sum_{h} S_{0k}^{h} r_{kh} + \sum_{q=0}^{u-1} S_{0k}^{h} \xi_{0h}) n_{0i}$$

(3.14)

where $s=L(k)$, $S=L^{k+1}(k)$, and u is the index such that $L^{u}(k)=1$, and where ξ_{0i} is the position vector of 0_i relative to 0. Therefore, by differentiating p_k in R, the velocity of G_k in R is

$$v_k = (\xi_{0i} + \sum_{h} S_{0k}^{h} r_{kh} + \sum_{q=0}^{u-1} S_{0k}^{h} \xi_{0h}) n_{0i}$$

(3.15)

By using Equations (2.14), (2.15), and (3.10), v_k may be written in the form

$$v_k = v_{k\lambda} \hat{\epsilon} \ n_{\lambda m}$$

(3.16)
where the non-zero $v_{k\ell m}$ are

$$v_{k\ell m} = \delta_{\ell m} (k=1,\ldots,N; \ell,m=1,2,3) \tag{3.17}$$

and

$$v_{k\ell m} = W_{km}^l r_{kh} + \sum^{u-1}_{q=0} W_{m}^{\ell q} \xi_{sh} \tag{3.18}$$

$$(k=1,\ldots,N; \ell=1,\ldots,3N+3; m=1,2,3)$$

where W_{km}^l is defined as

$$W_{km}^l = \frac{3\omega_{mp} W_{km}^l S_{okp}}{3\chi^l_p} \tag{3.19}$$

Mass Center Accelerations

The acceleration of G_k in R is now obtained by differentiating v_k in Equation (3.16). This leads to

$$\ddot{a}_k = (v_{k\ell m} \dddot{x}_l + \dot{v}_{k\ell m} \ddot{x}_l) \eta_{\ell m} \tag{3.20}$$

where the non-zero $\dot{v}_{k\ell m}$ are

$$\dot{v}_{k\ell m} = W_{km}^l r_{kh} + \sum^{u-1}_{q=0} W_{m}^{\ell q} \xi_{sh} \tag{3.21}$$

where W_{km}^l is

$$W_{km}^l = -e_{mpq} (\omega_{k\ell q} S_{okp} + \omega_{k\ell q} S_{okp}) \tag{3.22}$$
IV. EQUATIONS OF MOTION

As mentioned earlier, the governing dynamical equations of motion of a general chain system such as is shown in Figure 1., can be obtained conveniently using Lagrange's Form of d'Alembert's principle [14,17]. Since the non-working internal constraint forces acting between the bodies of the system are automatically eliminated in using this principle, only the externally applied, or active forces, acting on the system, and the so-called inertia forces of the system need be considered in the analysis.

Kinetics

Imagine the system of Figure 1. to be subjected to an arbitrary external force field. Then let the ensuing forces acting on a typical body B_k of the system be replaced by an equivalent force system consisting of a single force F_k passing through G_k together with a couple with torque M_k. Then the so-called "generalized active force" F_λ, corresponding to the generalized coordinate x_λ, acting on B_k is [16]

$$F_\lambda = v_{k m} F_k + m_{k m} (\lambda = 1, \ldots , 3N+3; k=1, \ldots , N) \quad (4.1)$$

where there is no sum on k, but there is a sum from 1 to 3 on m. F_k and M_k are the n_{km} components of F_λ and M_λ respectively. Now, if the generalized active forces of each of the bodies of the system are added together, the result is the total generalized active force for the entire system. Hence, if there is a sum over k from 1 to N
in Equation (4.1), then F_z represents the total generalized active force on the system for the generalized coordinate x_ℓ ($\ell=1,\ldots,3N+3$).

In a similar manner, let the inertia forces on a typical body B_k of the system be replaced by a single force F_k^* passing through G_k together with a couple with torque M_k^*. Then F_k^* and M_k^* may be written as [16]:

$$F_k^* = -m_k a_k \quad \text{(no sum)} \quad (4.2)$$

and

$$M_k^* = -I_k \cdot a_k - \omega_k \times (I_k \cdot \omega_k) \quad (4.3)$$

where m_k is the mass of B_k and I_k is the inertia dyadic of B_k relative to G_k ($k=1,\ldots, N$). Through use of the shifter transformation matrices I_k may be written in the form

$$I_k = I_{kmn} \eta_{om} \eta_{on} \quad (4.4)$$

The so-called "generalized inertia force" F_ℓ^*, corresponding to the generalized coordinate x_ℓ, acting on B_k is then [16]

$$F_\ell^* = v_{k\ell m} F_{km}^* + \omega_{k\ell m} M_{km}^* \quad (\ell=1,\ldots,3N+3; \ k=1,\ldots,N) \quad (4.5)$$

where there is no sum on k, there is a sum from 1 to 3 on m, and F_{km}^* and M_{km}^* are the η_{om} components of F_k^* and M_k^* respectively. As above, if the generalized inertia forces of each of the bodies of the system are added together, the result is the total generalized inertia force for the entire system. Hence, if there is a sum over k from 1 to N in Equation (4.2), then F_ℓ^* represents the total generalized
inertia force on the system for the generalized coordinate \(x_\ell \)
\((\ell=1, \ldots, 3N+3) \).

Governing Equations

Lagrange's form of d'Alembert's principle states that the sum of the total generalized active force and the total generalized inertia force, for each generalized coordinate of the system, is zero. Hence, the governing dynamical equations of motion for the system are

\[
F_\ell + F_\ell^* = 0 \quad (\ell=1, \ldots, 3N+3) \tag{4.6}
\]

By substituting Equations (3.10), (3.12), and (3.20) into Equations (4.2) and (4.3) and ultimately into Equations (4.6), the governing equations of motion may be written in the form

\[
a_{zp} \ddot{x}_p = f_\ell \quad (\ell=1, \ldots, 3N+3) \tag{4.7}
\]

where there is a sum from 1 to 3N+3 on p and where \(a_{zp} \) and \(f_\ell \) are given by

\[
a_{zp} = m_k v_{kpm} v_{k\ell m} + I_{kmn} \omega_{kpm} \omega_{k\ell n} \tag{4.8}
\]

and

\[
f_\ell = -(F_\ell + m_k v_{k\ell m} v_{kqm} \dot{x}_q + I_{kmn} \omega_{k\ell m} \omega_{kqn} \dot{x}_q \\
+ e_{mnr} I_{kmr} \omega_{knq} \omega_{ksh} \dot{x}_q \dot{x}_s) \tag{4.9}
\]

where there is a sum from 1 to N on k, from 1 to 3N+3 on q and s, and from 1 to 3 on the other repeated indices.

Equations (4.7) form a set of 3N+3 simultaneous ordinary differential equations for the 3N+3 generalized coordinates \(x_\ell \) of the system. If some (or all) of the \(x_\ell \) are specified, the differential equations become algebraic equations for the unknown forces or moments.
associated with the specified x_2. Since the coefficients, a_k and f_k, of these equations are simple polynomial functions of the physical parameters and the four block matrices $\omega_{k\beta m}$, $\omega_{k\beta m}'$, $\nu_{k\beta m}$, and $\nu_{k\beta m}'$, computer algorithms may easily be written for the numerical development of the equations. Moreover, once they are developed they may also be solved numerically using one of the standard numerical integration routines.

In the following two parts of the report these equations are developed and solved for a human-body model in a variety of high-acceleration configurations, and for a finite-segment cable model.
V. APPLICATION WITH HUMAN-BODY MODELS

As mentioned earlier, a principal application of the foregoing analysis is studying the dynamics of a human-body model. Indeed, a desire to obtain insight into the dynamics of space-walking astronauts, athletes, and crash-victims has stimulated much of the development of the foregoing analysis.

Gross motion simulation of the human body naturally leads to finite-segment or chain-system modelling if one thinks of the human body in terms of its skeletal structure. That is, by considering the hands, feet, arms, legs, head, and torso as rigid bodies and the muscles and ligaments as springs and dampers acting at the joints, the ensuing model is precisely a general chain system as studied in the foregoing parts of the report. In this part of the report a summary of research results obtained by using the analysis in the development and application of a crash-victim computer simulation code [24-29], commonly known as "UCIN", is presented.

There have, of course, been numerous earlier attempts to model the dynamics of the human body and in particular, the dynamics of a crash victim. The number of these efforts significantly increased during the past decade with the availability of high-speed digital computers. Indeed, there even exists a number of recent survey papers [30-33] outlining this work. From these papers it appears that much of the significant work in general human body dynamics and modelling may be found in References [18,19,34-38] and in gross-motion.
The specific approaches discussed in References [18, 19, 24, 29] have led to the development of the foregoing general analysis and ultimately to the development of the UCIN model as described in the following section.

The UCIN Model

The model consists of 12 rigid bodies representing the human limbs together with a vehicle cockpit as shown in Figure 5. The twelve bodies of the model are connected together with ball-and-socket joints which allow for the inclusion of springs and dampers to simulate the human connective soft tissue such as discs, muscles, and ligaments.

Forty-five variables are required to describe the position and orientation of the model. These are:

- \(X_1, X_2, X_3 \) position of the vehicle relative to an inertial frame
- \(X_4, X_5, X_6 \) orientation of the vehicle relative to an inertial frame
- \(X_7, X_8, X_9 \) position of a reference point in \(B_2 \), the lower torso relative to the origin of the vehicle frame
- \(X_{10}, X_{11}, X_{12} \) orientation of \(B_2 \), the lower torso, relative to the Vehicle frame
- \(X_{13}, X_{14}, X_{15} \) orientation of \(B_3 \), the middle torso, relative to \(B_2 \), the lower torso
- \(X_{16}, X_{17}, X_{18} \) orientation of \(B_4 \), the upper torso, relative to \(B_3 \), the middle torso
- \(X_{19}, X_{20}, X_{21} \) orientation of \(B_5 \), the upper left arm, relative to \(B_4 \), the upper torso
- \(X_{22}, X_{23}, X_{24} \) orientation of \(B_6 \), the lower left arm relative to \(B_5 \), the upper left arm
Figure 5. The ICRM Model and Vehicle Coefﬁcit
x_{25}, x_{26}, x_{27} orientation of B_7, the upper right arm, relative to B_4, the upper torso

x_{28}, x_{29}, x_{30} orientation of B_9, the lower right arm, relative to B_7, the upper right arm

x_{31}, x_{32}, x_{33} orientation of B_9, the head relative to B_4, the upper torso

x_{34}, x_{35}, x_{36} orientation of B_{10}, the upper left leg, relative to B_2, the lower torso

x_{37}, x_{38}, x_{39} orientation of B_{11}, the lower left leg, relative to B_{10}, the upper left leg

x_{40}, x_{41}, x_{42} orientation of B_{12}, the upper right leg, relative to B_2, the lower torso

x_{43}, x_{44}, x_{45} orientation of B_{13}, the lower right leg, relative to B_{12}, the upper right leg

All of these variables, except for the position variables x_1, x_2, x_3, x_7, x_8, and x_9 are orientation angles generated by successive rotation of adjacent bodies relative to each other as described in Part II of the Report. The first six variables define the motion of the cockpit or vehicle frame, B_1, relative to the inertial frame, R. These variables must be specified or given. Also, variables $x_{22}, x_{24}, x_{28}, x_{30}, x_{37}, x_{39}, x_{43}, x_{45}$ are usually specified as zero to simulate hinge joints at the elbows and knees. The remaining 31 variables may be either specified or left as unknowns. If the variables are specified (e.g. $x_{16}=0$), the required moment needed to maintain that specification (e.g. M_{16}) is determined.

The model accepts arbitrary specification of external forces and moments on each of its bodies. These forces and moments are represented on each body by an equivalent force system consisting of a single force passing through the mass center of the body, together
with a couple.

The model's initial position is generally in an erect sitting position as shown in Figures 6. and 7. In this configuration, all the body coordinate axes and the vehicle frame are aligned. Thus in this configuration, all the orientation angles are zero.

The model has a seat which is modelled by springs as shown in Figure 9. There are seven "one-way" springs which may exert forces on the model with the points of contact being the mass centers of bodies 2, 3, 4, 9, 10, and 12. ("One-way" springs exert forces only while in compression.) One-way viscous damper stops are used to limit the seat deflection. The force F generated by a damper stop is of the form

$$F = \begin{cases} \frac{1}{k} x & \text{if } x > x_0 \\ 0 & \text{if } x \leq x_0 \end{cases}$$

where k is an arbitrary constant, x is the spring deformation (compression), and x_0 is an arbitrary spring compression limit.

The model has a floor or foot rest which is modelled as a linear spring.

The model provides for the use of up to ten restraining belts modelled as springs attached at arbitrary points between the cockpit and the bodies of the model.

The ball-and-socket connection joints of the model are provided with angle stops, modelled by one-way dampers, to simulate motion constraints of the human limbs. An angle stop generates a moment τ between the bodies of the form
Figure 6. Side View of the Model is a Sitting Configuration
Figure 7. The Model and Seat in Initial Configuration
\[M = \begin{cases}
C_0 & \text{if } -\alpha_2 < \alpha < \alpha_1 \\
C_0 - C_1 (\alpha - \alpha_1) & \text{if } \alpha > \alpha_1 \\
C_0 + C_1 (\alpha - \alpha_2) & \text{if } \alpha < \alpha_2
\end{cases} \]

(5.2)

where \(\alpha \) is a rotation angle, \(\alpha_1 \) and \(\alpha_2 \) are arbitrarily specified maximum and minimum values of \(\alpha \), and \(C_0 \) and \(C_1 \) are arbitrarily specified constants.

Finally, the model provides for the use of twelve intrusion surfaces or planes to simulate the cockpit or vehicle interior.

These intrusion surfaces are as follows:

1) Left windshield 5) Lower left door 9) Firewall
2) Front windshield 6) Upper right door 10) Top dash
3) Right windshield 7) Lower right door 11) Front dash
4) Upper left door 8) Roof 12) Bottom dash

The location and inclination of these intrusion surfaces are determined by the specification of the position of a point in the surface together with the components of a vector normal to the surface.

The UCIN-CRASH Computer Code: Input/Output

The following brief paragraphs provide a general description of the input data required and the output data provided by the computer code. Additional details may be obtained from References [27] and [28].
The input consists of the following:

Physical parameters: These are the masses, inertia dyadics, mass center positions, connection point positions, and orientation angle limits, for each of the 12 bodies of the model.

Cockpit geometry: This consists of a normal vector and a location point for each of the 12 intrusion surface planes listed above. Also, the floor position and a spring constant of the floor model are part of the cockpit specifications.

Cockpit motion: The cockpit displacement and rotation relative to an inertia frame \((x_1, \ldots, x_6)\) are required as input. Typically, it is useful to express this in terms of the linear and angular acceleration of the cockpit. The computer program is written so that the cockpit acceleration components may be "read in" by simply specifying the acceleration profile. (This is, in effect, a piecewise-linear approximation to an acceleration curve.) Six (three translation and three rotation) acceleration profiles or curves may be employed.

Spring and damping constants: These include seat constants, restraining belt constants, orientation angle constants, and neck parameters. Also, the attach points of the restraining belts are included as part of this data.
Initial conditions: This includes the initial values of the unknown variables and their derivatives. Also, the external forces and moments (if any) which are applied to the bodies of the models must be specified.

Integration parameters: This consists of constants required by the fourth-order, Runge-Kutta integration technique (RK4S) and it includes the starting time, the ending time, the step size, and the error permitted.

The output consists of two parts: The first is simply a copy or "echo" of the input data. The second contains at each output step the following:

1) The value of all variables and their first and second derivatives.

2) The joint and mass center positions in both inertia space and relative to the cockpit.

3) The mass center velocities and accelerations.

4) The moments and forces associated with variables which are specified.

5) Restraining belt forces.

6) Collisions or "hits" with intrusion surfaces.
Validation of the Model and Examples

There is little experimental data available to date which can be used to check or verify the above computer code and others like it. However, King, Padgaonkar, and Mital [79] have recently conducted a series of experiments with a cadaver in an impact seat for the purpose of validating the computer model. The results show remarkable agreement between the model and the experiment as shown in Reference [79].

In earlier tests, Begeman, King, and Prasad [80] placed a cadaver in an impact sled and they measured shoulder belt, vertical lap belt and seat pan forces. This same test was simulated with the UCIN computer model. For the deceleration profile shown in Figure 8., the experimental and computed shoulder belt, vertical lap belt, and seat pan forces are shown in Figures 9., 10., and 11.

In another configuration, experimental data from a vehicle striking a guard rail or roadside barrier [81] was used as input for the computer code. For the specific deceleration profile shown in Figure 12., the resultant relative displacement of the head and chest using both lap belts and a combination of both lap and shoulder belts, is shown in Figure 13.

Finally, in an attempt to measure the relative effectiveness of lap and shoulder belts, a run was made simulating a front end collision of a vehicle. The head pitch (forward rotation) of the model was calculated using a lap belt and a combination lap and shoulder belt. The results shown in Figure 14. illustrate the "whiplash" effect when only lap belts are used.
Figure 8. Impact Sled Deceleration
Figure 1a. Comparison of Vertical Lap Belt Forces

Force: (L3)

Time (Milliseconds): 0.0, 20.0, 40.0, 60.0, 80.0, 100, 120, 140, 160, 180, 200

Vertical Lap Belt Forces

Wayne State Data

Uncin Model
Figure 12. Vehicle Deceleration

DECELERATION (IN/sec²)

TIME (MILLI SEC)

X DECELERATION

Y DECELERATION

VEHICLE DECELERATION UPON STRIKING BARRIER
Figure 13. Comparison of Relative Head Rotation for Lap Belts and for a Combination of Lap and Shoulder Belts.
VI. APPLICATION WITH FINITE-SEGMENT CABLE MODELS

A second application area of the foregoing general analysis is the study of the dynamics of long, heavy cables. As with human body models, a finite-segment cable model is readily identified as a general chain system. Indeed, modelling a cable by a finite-segment model simply involves the substituting of a linked chain for the cable as shown in Figure 15. This model has the obvious advantage of being "linear", that is, not possessing any "branches". This in turn, provides a simplification in the governing equations.

Cable dynamics has been of interest to researchers for some time. But recently, with the advent of high-speed digital computers and finite-element methods and finite-segment modelling, there has been increasing interest and research effort in cable phenomena. Five years ago Choo and Casarella [82] published an excellent survey of the literature and analytical methods for cable dynamics. They indicate that of four methods for studying cable dynamics (the method of characteristics, the finite-element method, the linearization method, and the equivalent lumped mass method), the finite-element method is the most versatile. Indeed, they indicate that the finite-element or finite-segment method offers the best hope for a simple method that can solve nonlinear, unsteady state problems with good accuracy and yet require only a moderate amount of computation time.
References [83-92] provide a summary of recent finite-element and finite-segment approaches to cable dynamics. The approach in this report is to make a finite-segment model of the cable as in Figure 15, and to then follow the analysis as reported in Reference [93]. The basic dynamics of this model is then a specialization of the foregoing general theory.

Equations of Motion, Computer Code, and Numerical Solutions

The governing dynamical equations of motion are of the exact same form as those presented in Part IV of the Report. Indeed, the only modification required in the foregoing analysis is a simplification in the form of the mass center position and velocity expressions (due to the "linearity" of the cable model), and a specialization of the generalized active forces to account for the fluid drag forces.

Specifically, the expression for the position of the mass center of link B_k in Equation (3.14) is replaced with

$$p_k = \left(\xi_{oi} + \frac{S_{OK} \cdot h \cdot k \cdot h^+}{\sum_{M=1}^{\infty} \xi_{M} \cdot h^+} \right) \cdot \frac{\sum_{M=1}^{\infty} \xi_{M} \cdot n_{oi}}{\sum_{M=1}^{\infty} \xi_{M} \cdot n_{oi}}$$ \hspace{1cm} (6.1)

Then the velocity of the mass center in R (Equation 3.15) becomes

$$v_k = \left(\xi_{oi} + \frac{S_{OK} \cdot h \cdot k \cdot h^+}{\sum_{M=1}^{\infty} \xi_{M} \cdot h^+} \right) \cdot \frac{\sum_{M=1}^{\infty} \xi_{M} \cdot n_{oi}}{\sum_{M=1}^{\infty} \xi_{M} \cdot n_{oi}}$$ \hspace{1cm} (6.2)

This leads to the following expressions for the non-zero v_{klm} (replacing Equations (3.17), (3.18) and (3.21))

$$v_{klm} = \delta_{lm} (k=1, \ldots, N; \ell, m=1, 2, 3)$$ \hspace{1cm} (6.3)
Figure 15. Finite-Segment Modelling of a Cable
\[v_{klm} = W_{nm}^k r_{nm}^{kh} + \sum_{m=1}^{k-1} W_{nm}^k \xi_m \]
\[(k=1, \ldots, N; \ l=1, \ldots, 3N+3; \ m=1, 2, 3) \]

and

\[\dot{v}_{klm} = W_{nm}^k \dot{r}_{nm}^{kh} + \sum_{m=1}^{k-1} W_{nm}^k \dot{\xi}_m \]
\[(k=1, \ldots, N; \ l=1, \ldots, 3N+3; \ m=1, 2, 3) \]

where \(N \) is the number of links or segments in the model.

Regarding the generalized active forces due to the fluid drag, the fluid forces on the cable links are modelled as follows: If \(B_k \) is a typical link, the fluid forces on \(B_k \) are taken to be equivalent to a single force \(F_{k\perp} \) passing through \(G_k \) (the mass center of \(B_k \)) and perpendicular to the axis of \(B_k \). (The axis is the line joining the connection points of \(B_{k-1}, B_k, B_k, B_{k+1} \).) A sketch of \(F_{k\perp} \) is given in Figure 16. Analytically \(F_{k\perp} \) is expressed as

\[F_{k\perp} = -\rho A_k C_D |v_{k\perp}| v_{k\perp} \]
\[(6.6) \]

where \(\rho \) is the fluid mass density, \(A_k \) is the projected link area on a plane containing the axis of \(B_k \), \(C_D \) is the drag coefficient, and

\[v_{k\perp} = \lambda_k X \left[(v_k - v_w) X_{\perp k} \right] \]
\[(6.7) \]

where \(\lambda_k \) is a unit vector parallel to the axis of \(B_k \), \(v_k \) is the velocity of \(G_k \), and \(v_w \) is the velocity of the fluid (See Figure 16.)
Figure 16. Fluid Force Model
To obtain the generalized active forces associated with the fluid drag (as well as the gravitational forces) F_{kw} is substituted into Equation (4.1). This, in turn, leads to governing dynamical equation of motion of the form of Equations (4.7).

As with human-body crash-victim models, a computer code has been written to evaluate the coefficients of the governing equations. As input, the code requires: the number of links; the masses; the centroidal principal inertia matrices; the mass center positions; the connection point positions; the motion profile for those links with specified motion; the initial configuration; the ambient fluid velocity; the fluid surface height relative to R; the fluid mass density; the fluid kinematic viscosity; the projected link areas; the link diameters; and the mass densities of the links. The code provides for the evaluation of C_D, the drag coefficient of Equation (6.6) from an algorithm which models Hoerner's [94] drag coefficient curve.

The governing equations of motion are numerically integrated using a fourth order Runge-Kutta technique. The output of the computer code then includes: the values of all variables and their first derivatives; the connection point positions; the mass center positions; the mass center velocities and accelerations; and the moments and forces associated with the specified variables. All of the output is given at arbitrarily spaced time intervals.
Example Application

Consider a rotating surface crane with a 25 ft. boom dragging a 50 ft. cable attached to a submerged 1 ft. diameter sphere, as depicted in Figure 17.* The cable is modelled by 10 cylindrical links, each 5 ft. long. The cable diameter is 1 in. and each link has a mass of 0.4025 slug. The sphere mass is 7.727 slug. The water is calm and its surface is 10 ft. below the boom.

The boom makes a 90° turn in 5 sec. The angular acceleration is given by the graph in Figure 18. The resultant motion of the sphere is shown in Figures 19 and 20. To determine the effect of the water drag force, the same run without the water. It is seen (as one would expect) that the drag forces tend to counteract the inertia forces.

* Although this simulates an off-shore oil rig or a ship's crane, it does not represent any specific physical situation. Indeed, the intention is simply to demonstrate the kinds of problems which can be studied with the above described analysis and computer code.
Figure 17. Boom, Cable and Submerged Sphere
Angular Acceleration (rad/sec2)

Figure 18. Angular Acceleration of the Boom
Figure 19. Radial Position of the Sphere
Figure 20. Angular Positions of the Sphere
VII. DISCUSSION AND CONCLUSIONS

A new, efficient, computer-oriented method for obtaining equations of motion for large mechanical systems (chain systems) has been developed. These equations may be succinctly written in the form of Equations (4.7) with the coefficients determined by the four kinematical matrices \(\omega_{k\ell m} \), \(\pi_{k\ell m} \), \(\nu_{k\ell m} \), and \(\dot{\nu}_{k\ell m} \). These matrices, in turn are determined by simple multiplication algorithms which enable the entire procedure to be reduced to a systematic routine.

The development of this method was made possible through the use of Lagrange's form of d'Alembert's principle which provides for the automatic elimination of non-working constraint forces. Specifically, it is this feature, combined with the use of vector-matrix notational schemes, which make possible the explicit writing of the equations of motion. Also, the analysis makes use of "local" as opposed to "global" coordinates. That is, the generalized coordinates of the system are (except for the translation of the first body (or segment) relative orientation angles measured between the respective bodies as opposed to absolute orientation angles of the bodies (or segments) in space. This allows for a more convenient specification of initial conditions and constraints, and for a more convenient interpretation of the results.

The range of application of the analysis and procedures is very broad. The two example areas of human-body models and cable models are simply two areas where there is current interest. Information regarding other possible areas of application, the use
of program tapes, and user manuals may be obtained from the authors.

Future work will involve extending the procedures to allow for translation between the bodies and for closed loops in the system models.
REFERENCES

71. Fleck, J. T., "CALSPAN Three-Dimensional Crash Victim Simulation Program", Aircraft Crashworthiness, University Press of Virginia.

ONR DISTRIBUTION LIST

Part I - Government

Chief of Naval Research
Department of the Navy
Arlington, Virginia 22217
Attn: Code #7a (2) 4th Floor

Director
ONR Branch Office
495 Summer Street
Boston, Massachusetts 02210

Director
ONR Branch Office
536 S. Clark Street
Chicago, Illinois 60604

Director
Naval Research Laboratory
Atttn: Code 2627 (ONRL)
Washington, D.C. 20390

U.S. Naval Research Laboratory
Atttn: Code 2627
Washington, D.C. 20390

Commanding Officer
ONR Branch Office
207 West 24th Street
New York, N.Y. 10011

Director
ONR Branch Office
1030 E. Green Street
Pasadena, California 91101

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

Army

Commanding Officer
U.S. Army Research Office
Durham, North Carolina 27706

Commanding Officer
AMRDEC-ATL
Attn: Mr. R. Shea
U.S. Army Materials Res. Agency
Watertown, Massachusetts 02172

Water-Velt Arsenal
MACOGS Research Center
Attn: Director of Research

Redstone Scientific Info. Center
Chief, Document Section
U.S. Army Missile Command
Redstone Arsenal, Alabama 35809

Army R & D Center
Fort Belvoir, Virginia 22060

Navy

Commanding Officer & Director
Naval Ship Res. & Dev. Center
Bethesda, Maryland 20034
Attn: Code 042 (Tech. Lib. Br.)
17 (Struc. Mech. Lab.)
172
172
174
177
1800 (Appl. Math. Lab.)
54125 (Dr. V. S. Settelf)
19 (Dr. M. M. Sevik)
1901 (Dr. M. Strasser)
1945
196 (Dr. D. E. Sait)
1962

Naval Weapons Laboratory
 Dahlgren, Virginia 22448

Naval Research Laboratory
Washington, D.C. 203
Attn: Code 3400
3410
3430
3440
6300
6390
6380

Undersea Explosion Res. Div.
Naval Ship R&D Center
Norfolk Naval Shipyard
Portsmouth, Virginia 23709
Attn: Dr. L. Palmer
Code 780

Naval Ship Res. & Dev. Center
Annapolis Division
Annapolis, Maryland 21402
Attn: Code 2740 - Dr. Y. F. Wang
28 - Mr. R. J. Weisb
d 281 - Mr. W. L. Warden
2814 - Dr. H. Vandervelst

Technical Library
Naval Underwater Weapons Center
Pasadena Annex
3202 E. Foothill Blvd.
Pasadena, California 91107

U.S. Naval Weapons Center
China Lake, California 93557
Attn: Code 4062 - Mr. W. Weibach
4520 - Mr. K. Bisel

Commanding Officer
U.S. Naval Civil Eng'r. Lab.
Code L31
Port Hueneme, California 93041

Technical Director
U.S. Naval Ordnance Lab.
White Oak
Silver Spring, Maryland 20910

Technical Director
Naval Undersea R&D Center
San Diego, California 92102

Supervisor of Shipbuilding
U.S. Navy
Newport News, Virginia 23607

Technological Director
U.S. Navy Undersea Sound Res.
Lab.
Office of Naval Research
P.O. Box 2337
Orlando, Florida 32806

Chief of Naval Operations
Dept. of the Navy
Washington, D.C. 20350

Engineering Dept.
U.S. Naval Academy
Annapolis, Maryland 21402

Naval Air Systems Command
Dept. of the Navy
Washington, D.C. 20360

Director, Aero Mechanics
Naval Air Development Center
Johnsville
Warminster, Pennsylvania 18974

Technical Director
U.S. Navy Undersea R&D Center
San Diego, California 92132

Engineering Department
U.S. Navy Naval Academy
Annapolis, Maryland 21402

Naval Facilities Engineering Command
Dept. of the Navy
Washington, D.C. 20360

Attn: NAVFAC 03 Res. & Dev.
30 Res. & Dev.
1411S Tech. Lib.

Naval Sea Systems Command
Dept. of the Navy
Washington, D.C. 20360
Attn: NAVSHIP 03 Res. & Tech.
331 CIV Scientist R&D
03412 Hydromekhanics
037 Ship Silencing Div.
335 Weapons Dynamics
<table>
<thead>
<tr>
<th>University/Affiliation</th>
<th>Contact Person</th>
<th>Location/Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>• University of Washington</td>
<td>Prof. J. Klemper</td>
<td>333 Jay Street, Brooklyn, N.Y. 11201</td>
</tr>
<tr>
<td>• Polytechnic Institute of Brooklyn</td>
<td>Prof. J. Klosner</td>
<td>333 Jay Street, Brooklyn, N.Y. 11201</td>
</tr>
<tr>
<td>• Dept. of Aerospace & Appl. Mech.</td>
<td>Prof. R.A. Schapery</td>
<td>Texas A&M University, College Station, Texas 77340</td>
</tr>
<tr>
<td>• Dept. of Civil Engineering</td>
<td>Prof. W.O. Plienr</td>
<td>University of Virginia, Dept. of Aerospace Engineering, Charlottesville, Virginia 22903</td>
</tr>
<tr>
<td>• Dept. of Aerospace & Mech. Sciences</td>
<td>Prof. Daniel Frederick</td>
<td>Virginia Polytechnic Institute, Blacksburg, Virginia 24061</td>
</tr>
<tr>
<td>• Dept. of Engineering Mechanics</td>
<td>Prof. A.C. Eringen</td>
<td>Princeton University, Princeton, New Jersey 08540</td>
</tr>
<tr>
<td>• Dept. of Aerospace & Mech. Sciences</td>
<td>Dr. S.L. Koh</td>
<td>School of Aero., Astro., Eng. Sc., Purdue University, Lafayette, Indiana 47907</td>
</tr>
<tr>
<td>• Dept. of Civil Engineering</td>
<td>Prof. P.G. Hodge, Jr.</td>
<td>University of Minnesota, Dept. of Civil Engineering, Minneapolis, Minnesota 55455</td>
</tr>
<tr>
<td>• Dept. of Aerospace Engineering</td>
<td>Dr. D.C. Drucker</td>
<td>University of Illinois, Dept. of Engineering, Urbana, Illinois 61801</td>
</tr>
<tr>
<td>• Dept. of Mechanical Engineering</td>
<td>Prof. N.M. Newmark</td>
<td>Polytechnic Institute of Brooklyn, NY 11201</td>
</tr>
<tr>
<td>• Dept. of Applied Mechanics</td>
<td>Prof. E. Reissner</td>
<td>University of California, San Diego, Dept. of Applied Mechanics, La Jolla, California 92037</td>
</tr>
<tr>
<td>• Library</td>
<td>Prof. William A. Nash</td>
<td>University of Massachusetts, Dept. of Mechanical & Aerospace Engineering, Amherst, Massachusetts 01002</td>
</tr>
<tr>
<td>• U.S. Naval Postgraduate School</td>
<td>Prof. Arnold Allentuch</td>
<td>New York University, Dept. of Civil Engineering, 335 High Street, New York, New Jersey 07102</td>
</tr>
<tr>
<td>• Stanford University</td>
<td>Dr. George Hartmann</td>
<td>Stanford University, Dept. of Applied Mechanics, Stanford, California 94305</td>
</tr>
<tr>
<td>• Applied Research Lab.</td>
<td>Prof. J.D. Achamback</td>
<td>Northwestern University, Dept. of Civil Engineering, Evanston, Illinois 60201</td>
</tr>
<tr>
<td>• Pennsylvania State University</td>
<td>Director, Applied Research Lab.</td>
<td>P.O. Box 30, State College, Pennsylvania 16801</td>
</tr>
<tr>
<td>• Applied Research Laboratory</td>
<td>Prof. Eugene J. Skudzyny</td>
<td>Pennsylvania State University, Dept. of Physics - P.O. Box 30, State College, Pennsylvania 16801</td>
</tr>
<tr>
<td>• Applied Research Laboratory</td>
<td>Prof. J. Kemper</td>
<td>Polytechnic Institute of Brooklyn, Dept. of Aero. Engng & Applied Mech. 333 Jay Street, Brooklyn, N.Y. 11201</td>
</tr>
<tr>
<td>• Library</td>
<td>Librarian</td>
<td>Webb Institute of Naval Architecture, Crescent Beach Road, Glen Cove, Long Island, New York 11542</td>
</tr>
</tbody>
</table>

-3-
Multi-Rigid-Body System Dynamics with Applications to Human-Body Models and Finite-Segment Cable Models.

A computer-oriented method for obtaining dynamical equations of motion for large mechanical systems or "chain systems" is presented. A chain system is defined as an arbitrarily assembled set of rigid bodies such that adjoining bodies have at least one common point and such that closed loops are not formed. The equations of motion are developed through the use of Lagrange's form of d'Alembert's principle.
The method is illustrated and applied with human-body models and finite-segment cable models. The human-body models are configured to simulate a crash-victim. Results with several applied deceleration profiles agree very well with available experimental data. The cable model is configured to simulate an off-shore oil rig or ship's crane with a partially submerged towing cable.