NAVY PERSONNEL RESEARCH AND DEVELOPMENT CENTER
SAN D--ETC
F/0 5/9
FORECASTING THE NUMBERS AND TYPES OF ENLISTED PERSONNEL IN THE --ETC(U)
MARCH 78 K T MARSHALL
UNCLASSIFIED
NPRDC-TR-78-14

END
DATE FILMED
5-78
DEC
FORECASTING THE NUMBERS AND TYPES OF ENLISTED PERSONNEL IN THE UNITED STATES MARINE CORPS:
AN INTERACTIVE COHORT MODEL

Kneale T. Marshall
Naval Postgraduate School
Monterey, California 93940

Reviewed by
A. Whisman

Approved by
James J. Regan
Technical Director

Navy Personnel Research and Development Center
San Diego, California 92152

This document has been approved for public release and sales; its distribution is unlimited.
Abstract

This report describes the development of a model to forecast the total enlisted Marine Corps strength at the end of each quarter for 1 or 2 years into the future. The method involves the use of a simple cohort model, which has been implemented interactively and allows users to forecast the effects of changes in the recruit 2-3-4 year mix, education level, racial mix, or any combination. It also allows for gaming of the continuation rates, and provides long-range or steady-state results of particular recruitment policies.
FOREWORD

The effort described in this report supports the Enlisted Force Management Tools work unit under the Marine Corps Personnel Resources Management exploratory development task area (ZF55-521-101). The overall objective of this task area is to provide tools to assist the manager in moving the personnel flows in desired directions within strict budgetary constraints. The managerial environment in which these tools are used requires quick response methods to facilitate optional acquisition, assignment, and distribution of Marine Corps officer and enlisted personnel.

The model described herein is currently being used for manpower forecasting purposes at Code MPI-20, Headquarters Marine Corps. Special acknowledgments are due to MAJ M. J. Hester and CAPT W. W. Sevon of Code MPI-20 for their background consultations on this project.

J. J. CLARKIN
Commanding Officer
SUMMARY

Problem

The uncertainty under which large manpower systems such as the U.S. Marine Corps are forced to work creates many problems, such as budget overruns, suppressed promotion opportunities, insufficient quality and quantity of recruitment, and inadequate reenlistment rates. To combat these problems, modeling techniques are being developed to determine feasible promotion policies and flow structures which meet certain force structure and budget constraints.

Objective

The objectives were to develop: (1) a simple cohort model for forecasting the total enlisted Marine Corps strength at the end of each quarter for 1 or 2 years into the future, and (2) an interactive computer program to implement the model. Using this program, the user can introduce changes in retention policies and recruit population and observe the resulting projected future enlisted force end strengths immediately on his computer terminal, thus allowing gaming of the various retention and recruitment parameters.

Approach

It has been shown previously that retention behavior patterns of enlisted marines are reasonably consistent within certain subgroups of the total population. The important characteristics to be used in forming the subgroups appear to be race, educational level, and length of first-term enlistment (FTE) of new recruits. A simple cohort model was developed, placing all recruits and current marines into one of 12 cohorts uniquely determined by their race, educational level, and length of FTE. Since marines with a length of service (LOS) greater than 5 years showed retention behavior that was roughly the same for all cohorts, they were grouped into a single "career force" category. All other marines were characterized by their cohort type and their LOS. Forecasting equations were developed from the model, and the retention parameters were derived from historical data. The forecasting equations were then incorporated into an interactive APL program in such a way as to allow the user to game the various retention and recruitment parameters directly at his terminal.

Results

The model can be used for short-term forecasting (1 or 2 years) under a given recruitment policy. Further, the basic model can be used to show long-range or steady-state effects of a fixed recruitment policy. This can be useful in determining certain trends of a particular recruitment policy, such as the steady-state fraction of marines with less than a high school education. The model is currently being used by the staff of Manpower Management Information Systems (MPI-20), Marine Corps Headquarters as a personnel planning and management tool.

The interactive APL program to implement the model, which was implemented in close cooperation with the MPI-20 staff, uses three APL functions to input, display, and correct the stocks of marines in each cohort/LOS category for a
given time period. A fourth function interactively asks the user for data concerning the period over which the projection is to be done, the total number of recruits in each quarter of this period, and the breakdown of recruits by race, educational level, and length of FTE. The user is then given the opportunity to change the historically derived continuation rates. A report is then generated showing the recruit policy used and the quarterly end strengths obtained. The user can then rerun the model, changing some or all of the parameters used in the previous run.

Conclusions

1. Historical data are available to obtain continuation rate values for each cohort/LOS type needed in the forecasting equations of the model.

2. Retention behavior is relatively independent of cohort type for marines with a length of service greater than 5 years, allowing such marines to be grouped into a single "career force" category. This substantially reduces the data and computation requirements of the model.

Recommendations

Based on gaming experience with the model, optimization features should be implemented in order to evaluate strategies for attaining both short- and long-term manpower planning goals. These should include features to measure budgetary effects of various promotion and retention policies.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Problem</td>
<td>1</td>
</tr>
<tr>
<td>Objective</td>
<td>1</td>
</tr>
<tr>
<td>APPROACH</td>
<td>3</td>
</tr>
<tr>
<td>The Basic Model</td>
<td>3</td>
</tr>
<tr>
<td>Continuation Rate Estimation</td>
<td>8</td>
</tr>
<tr>
<td>RESULTS</td>
<td>11</td>
</tr>
<tr>
<td>Steady-State Results</td>
<td>11</td>
</tr>
<tr>
<td>Interactive Program Illustration</td>
<td>15</td>
</tr>
<tr>
<td>Data Input and Storage</td>
<td>15</td>
</tr>
<tr>
<td>End Strength Forecasts</td>
<td>19</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>23</td>
</tr>
<tr>
<td>RECOMMENDATIONS</td>
<td>23</td>
</tr>
<tr>
<td>APPENDIX—DETAILED LISTING OF APL FUNCTIONS</td>
<td>A–0</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF TABLES

1. The Twelve Cohorts of the Enlisted Marine Corps Personnel 3
2. Stocks of Enlisted Marines on 31 March 1976 5
3. Continuation Rates Using Method 2 10
4. Cumulative Tail Distributions of Length of Service 13
5. Quarterly Input of Recruits Into Each Cohort 14

LIST OF FIGURES

1. Illustration of flows in the forecasting model 7
2. Illustration of INPUTSTK ... 16
3. Illustration of DISPLAYSTK ... 17
4. Illustration of CORRECTSTK ... 18
5. Sample use of ENDSTR ... 20
INTRODUCTION

Problem

The uncertainty under which large manpower systems such as the U.S. Marine Corps are forced to work creates many problems, such as budget overruns, suppressed promotion opportunities, insufficient quality and quantity of recruitment, and inadequate reenlistment rates. To combat these problems, modeling techniques are being developed to determine feasible promotion policies and flow structures that meet certain force structure and budget objectives. The purpose of such models is to aid the manager in moving personnel flows in desired directions subject to strict budgetary constraints.

Objective

The objective of this effort was to develop a simple cohort model, similar to that described by Zacks and Haber,\(^1\) for use in forecasting the total enlisted Marine Corps strength at the end of each quarter for 1 or 2 years into the future. To implement the model for use in Marine Corps enlisted end strength forecasting, a secondary objective was to develop an APL program with a number of features that allows the user to interact in the forecasting procedure by (1) introducing changes in the mix of recruits by race, education, length of enlistment, or a combination of these factors, and (2) gaming projected changes in retention policies.

APPRAOC

The Basic Model

It has been shown previously (e.g., by Zacks and Haber, Footnote 1) that retention behavior patterns of enlisted marines are reasonably consistent within certain subgroups of the total population. It has been found that the important characteristics to be used in forming the subgroups appear to be race, educational level, and length of first-term enlistment (FTE) of new recruits. In this study, race was represented by Caucasians (C) and non-Caucasians (NC); education by high school graduates (HS) and nonhigh school graduates (LHS); and FTE, by 2, 3, and 4 year enlistees. Thus, all recruits and current marines can be uniquely placed into one of the 12 cohorts (groups) shown in Table 1.

Table 1

The Twelve Cohorts of the Enlisted Marine Corps Personnel

<table>
<thead>
<tr>
<th>Cohort No.</th>
<th>FTE</th>
<th>Education</th>
<th>Race</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>LHS</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>LHS</td>
<td>NC</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>HS</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>HS</td>
<td>NC</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>LHS</td>
<td>C</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>LHS</td>
<td>NC</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>HS</td>
<td>C</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>HS</td>
<td>NC</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>LHS</td>
<td>C</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>LHS</td>
<td>NC</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>HS</td>
<td>C</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>HS</td>
<td>NC</td>
</tr>
</tbody>
</table>

The cohort model classifies the number of enlisted marines available during any given quarter not only by the cohort to which they belong, but also by the length of time each marine has served. Historical data are then used to estimate the fraction of marines in a given cohort and length of service (LOS) category who will continue their service into the next time period. These values, together with information on the number and cohort mix of new recruits, can be used to make short-term projections of force size. This procedure is illustrated in the following paragraphs.
Let $S_i(t;u)$ be the "stock" of enlisted Marine Corps personnel in cohort type i at time t with LOS equal to u. The time periods are taken to be quarters, and the phrase "at time t" means the last day of quarter t. For consistency, the LOS is also measured in quarters. If a person enters the Marine Corps in quarter t and is counted as being present at time t, then we say he has LOS equal to 1. Thus, if he enters in t and is counted at time $t + k$, $k > 0$, then he has LOS equal to $k + 1$. Table 2 gives the stocks at the end of March 1976 of marines who were listed as being still in their first-term enlistment.

Let $q_i(u)$ be the fraction of those in cohort type i with LOS equal to u at some time t who will continue in service to time $t + 1$ with LOS $u + 1$. The $q_i(u)$ are commonly called "continuation rates." By using this notation, we are assuming that they are independent of the actual time t. This assumption is modified later. Let $g_i(t)$ be the number of new recruits who enter in cohort type i in period t, and let m be the maximum number of periods a person can spend in the Marine Corps. The total stock $S(t + 1)$ of marines at $(t + 1)$ is given by

$$S(t + 1) = \sum_{i=1}^{12} \sum_{u=1}^{m} S_i(t + 1;u)$$

(1)

where

$$S_i(t + 1;1) = g_i(t + 1) q_i(0)$$

(1.1)

$$S_i(t + 1;u) = S_i(t;u-1) q_i(u-1), \quad u = 2, 3, \ldots, m.$$

(1.2)

In order to use equation (1) to forecast end strength, it is necessary to know (1) the cohort stocks $\{S_i(t;u)\}$ for all i and all u, (2) the continuation rates $\{q_i(u)\}$ for all i and all u, and (3) the future recruit inputs $\{g_i(t + 1)\}$ for all i. It is the determination of these three sets of data to which we now turn.

Table 2

Stocks of Enlisted Marines on 31 March 1976

<table>
<thead>
<tr>
<th>LOS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1706</td>
<td>301</td>
<td>1424</td>
<td>422</td>
<td>2419</td>
<td>410</td>
<td>2982</td>
<td>588</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>4</td>
<td>14</td>
<td>2</td>
<td>931</td>
<td>134</td>
<td>1256</td>
<td>299</td>
<td>2635</td>
<td>497</td>
<td>3418</td>
<td>797</td>
</tr>
<tr>
<td>3</td>
<td>48</td>
<td>12</td>
<td>221</td>
<td>33</td>
<td>907</td>
<td>132</td>
<td>1683</td>
<td>387</td>
<td>2441</td>
<td>462</td>
<td>5563</td>
<td>1166</td>
</tr>
<tr>
<td>4</td>
<td>165</td>
<td>29</td>
<td>879</td>
<td>117</td>
<td>495</td>
<td>81</td>
<td>1041</td>
<td>236</td>
<td>1749</td>
<td>336</td>
<td>4276</td>
<td>907</td>
</tr>
<tr>
<td>5</td>
<td>527</td>
<td>92</td>
<td>806</td>
<td>137</td>
<td>928</td>
<td>211</td>
<td>645</td>
<td>147</td>
<td>3143</td>
<td>897</td>
<td>2563</td>
<td>582</td>
</tr>
<tr>
<td>6</td>
<td>543</td>
<td>154</td>
<td>804</td>
<td>202</td>
<td>672</td>
<td>210</td>
<td>495</td>
<td>187</td>
<td>2372</td>
<td>793</td>
<td>2013</td>
<td>503</td>
</tr>
<tr>
<td>7</td>
<td>845</td>
<td>235</td>
<td>1926</td>
<td>541</td>
<td>736</td>
<td>247</td>
<td>936</td>
<td>299</td>
<td>2180</td>
<td>697</td>
<td>3841</td>
<td>816</td>
</tr>
<tr>
<td>8</td>
<td>380</td>
<td>128</td>
<td>899</td>
<td>387</td>
<td>301</td>
<td>108</td>
<td>560</td>
<td>196</td>
<td>1107</td>
<td>356</td>
<td>2685</td>
<td>700</td>
</tr>
<tr>
<td>9</td>
<td>197</td>
<td>80</td>
<td>248</td>
<td>85</td>
<td>794</td>
<td>200</td>
<td>545</td>
<td>143</td>
<td>1981</td>
<td>583</td>
<td>1433</td>
<td>340</td>
</tr>
<tr>
<td>10</td>
<td>83</td>
<td>39</td>
<td>140</td>
<td>51</td>
<td>547</td>
<td>124</td>
<td>436</td>
<td>108</td>
<td>1487</td>
<td>435</td>
<td>1179</td>
<td>334</td>
</tr>
<tr>
<td>11</td>
<td>43</td>
<td>27</td>
<td>174</td>
<td>34</td>
<td>508</td>
<td>122</td>
<td>876</td>
<td>185</td>
<td>1688</td>
<td>387</td>
<td>2846</td>
<td>624</td>
</tr>
<tr>
<td>12</td>
<td>23</td>
<td>31</td>
<td>50</td>
<td>21</td>
<td>414</td>
<td>96</td>
<td>460</td>
<td>124</td>
<td>1721</td>
<td>400</td>
<td>1892</td>
<td>407</td>
</tr>
<tr>
<td>13</td>
<td>26</td>
<td>13</td>
<td>52</td>
<td>22</td>
<td>126</td>
<td>39</td>
<td>123</td>
<td>50</td>
<td>1502</td>
<td>394</td>
<td>1147</td>
<td>350</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>12</td>
<td>25</td>
<td>11</td>
<td>61</td>
<td>18</td>
<td>70</td>
<td>28</td>
<td>1187</td>
<td>360</td>
<td>1176</td>
<td>404</td>
</tr>
<tr>
<td>15</td>
<td>30</td>
<td>19</td>
<td>74</td>
<td>24</td>
<td>52</td>
<td>24</td>
<td>123</td>
<td>41</td>
<td>1282</td>
<td>354</td>
<td>2409</td>
<td>530</td>
</tr>
<tr>
<td>16</td>
<td>31</td>
<td>20</td>
<td>24</td>
<td>18</td>
<td>40</td>
<td>11</td>
<td>62</td>
<td>28</td>
<td>932</td>
<td>206</td>
<td>1562</td>
<td>281</td>
</tr>
<tr>
<td>17</td>
<td>22</td>
<td>7</td>
<td>17</td>
<td>9</td>
<td>26</td>
<td>6</td>
<td>25</td>
<td>11</td>
<td>325</td>
<td>70</td>
<td>285</td>
<td>86</td>
</tr>
<tr>
<td>18</td>
<td>14</td>
<td>4</td>
<td>7</td>
<td>3</td>
<td>19</td>
<td>8</td>
<td>14</td>
<td>4</td>
<td>150</td>
<td>17</td>
<td>186</td>
<td>44</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>5</td>
<td>14</td>
<td>5</td>
<td>11</td>
<td>0</td>
<td>33</td>
<td>10</td>
<td>119</td>
<td>17</td>
<td>279</td>
<td>61</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>10</td>
<td>2</td>
<td>19</td>
<td>3</td>
<td>101</td>
<td>32</td>
<td>157</td>
<td>28</td>
</tr>
</tbody>
</table>
The new recruits input in future years will be given to the model by the user and thus we can dispose of (3). Table 2 shows the stocks of marines who are still in their first-term enlistment at some given t for each cohort i, but only for $u = 1, 2, \ldots, 20$. Marines can reenlist and remain in service 30 years; thus, m is $4 \times 30 = 120$. However, as the LOS of a marine increases beyond his FTE period, there is little distinction to be found among the 12 cohorts. These marines essentially form what is called the "career" force, and continuation in service of these people is governed by a different set of factors than those affecting first-term marines. Thus, we modify equation (1) in the following way to reduce both the size of the model and the number of parameters to be estimated.

Let $c(t)$ be the total number of enlisted marines in service time t with 21 or more quarters of service. Thus,

$$c(t) = \sum_{i=1}^{12} \sum_{u=21}^{m} S_i(t;u).$$

Now assume that $q_i(u) = q$ for all $u \geq 20$ and $i = 1, 2, \ldots, 12$. Using (1.2) it is easy to show that

$$c(t + 1) = [c(t) + \sum_{i=1}^{12} S_i(t;20)]q,$$

Equation (1) and (2) are now combined to give the forecasting equation

$$S(t + 1) = \sum_{i=1}^{12} \sum_{u=1}^{20} S_i(t+1;u) + c(t + 1)$$

where

$$S_i(t + 1;1) = g_i(t + 1) q_i(0)$$

$$S_i(t + 1;u) = S_i(t;u-1) q_i(u-1), \ u = 2, 3, \ldots, 20$$

$$c(t + 1) = [c(t) + \sum_{i=1}^{12} S_i(t;20)]q.$$

Equation (3) requires only 241 continuation rates compared to 1452 in (1). This gives a considerable saving in data, computation, and storage requirements. Figure 1 illustrates the flows assumed in (3).
Figure 1. Illustration of flows in the forecasting model.
Continuation Rate Estimation

Before (3) can be used for forecasting, we must obtain values of $q_\lambda(u)$, $u = 0, 1, \ldots, 19$, $\lambda = 1, 2, \ldots, 12$, and q. These values are determined from historical data on past stocks.

Assume that $t = 0$ is the most recent time for which stocks are available. By using these and the stocks at $t = -1$, let

$$q_\lambda(u) = \frac{S_\lambda(0; u + 1)}{S_\lambda(-1; u)}, \quad (4)$$

$u = 0, 1, \ldots, 19; \quad \lambda = 1, 2, \ldots, 12,$

and

$$q = \frac{c(0)}{\frac{12}{12} c(-1) + \sum_{\lambda=1}^{12} \sum_{i=-1}^{12} S_i(-1; 20)}. \quad (5)$$

Thus, all the parameters can be estimated from the data of two consecutive periods.

If data from more than two periods are available, we can use it to obtain smoother estimates; that is, those that are less susceptible to random fluctuations in the stocks. Assume that data are available for periods $0, -1, -2, \ldots, -k$. Then we modify (4) and (5) to be

$$q_\lambda(u) = \frac{-\sum_{j=0}^{-(k-1)} S_\lambda(j; u + 1)}{-\sum_{j=-1}^{-(k-1)} S_\lambda(j; u)}, \quad (6)$$

$u = 0, 1, \ldots, 19; \quad \lambda = 1, 2, \ldots, 12$

and

$$q = \frac{-\sum_{j=0}^{-(k-1)} c(j)}{-\sum_{j=-1}^{-(k-1)} \left\{c(j) + \sum_{\lambda=1}^{12} S_\lambda(j; 20)\right\}}. \quad (7)$$
The values obtained using (6) and (7) for any given \(k \) are said to be determined using rate method \(k \).

Recruit attrition in the first 6 months of service is measured by \((1-q_1(0)) \) and \((1-q_1(1)) \), and is considered controllable by the Marine Corps. Estimates from past data have little meaning. In the interactive APL model described later in detail, recruit attrition is entered directly by the user at the computer terminal. The 6-month attrition of LHS and HS recruits is normally about 20 and 10 percent respectively. The conversion of these into \(q_1(0) \) and \(q_1(1) \) is illustrated for some cohort \(i \) if a 6-month rate \(r \) is entered. They are calculated by

\[
q_i(0) = q_i(1) = \sqrt{1 - (r/100)},
\]

which spreads attrition evenly over the 6-month period. Table 3 gives the continuation rates \(q_i(u) \) obtained using rate method 2 with \(t = 0 \) equal to 3-31-1976, and recruit attrition for LHS and HS equal to 15 and 12 percent, respectively. The value obtained for \(q \) was 0.980.
Table 3

Continuation Rates Using Method 2

<table>
<thead>
<tr>
<th>LOS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.922</td>
<td>0.922</td>
<td>0.938</td>
<td>0.938</td>
<td>0.922</td>
<td>0.938</td>
<td>0.922</td>
<td>0.938</td>
<td>0.922</td>
<td>0.922</td>
<td>0.938</td>
<td>0.938</td>
</tr>
<tr>
<td>1</td>
<td>0.922</td>
<td>0.922</td>
<td>0.938</td>
<td>0.938</td>
<td>0.922</td>
<td>0.938</td>
<td>0.922</td>
<td>0.938</td>
<td>0.922</td>
<td>0.922</td>
<td>0.938</td>
<td>0.938</td>
</tr>
<tr>
<td>2</td>
<td>1.251</td>
<td>1.583</td>
<td>0.997</td>
<td>1.070</td>
<td>1.011</td>
<td>1.098</td>
<td>0.986</td>
<td>1.038</td>
<td>0.995</td>
<td>1.032</td>
<td>0.983</td>
<td>1.012</td>
</tr>
<tr>
<td>3</td>
<td>0.948</td>
<td>1.032</td>
<td>0.996</td>
<td>0.985</td>
<td>0.973</td>
<td>0.990</td>
<td>0.976</td>
<td>0.985</td>
<td>0.956</td>
<td>0.984</td>
<td>0.986</td>
<td>0.991</td>
</tr>
<tr>
<td>4</td>
<td>0.943</td>
<td>0.945</td>
<td>0.996</td>
<td>1.003</td>
<td>0.932</td>
<td>0.915</td>
<td>0.977</td>
<td>0.955</td>
<td>0.927</td>
<td>0.938</td>
<td>0.979</td>
<td>0.965</td>
</tr>
<tr>
<td>5</td>
<td>0.927</td>
<td>0.906</td>
<td>0.992</td>
<td>0.977</td>
<td>0.913</td>
<td>0.893</td>
<td>0.994</td>
<td>0.962</td>
<td>0.925</td>
<td>0.908</td>
<td>0.985</td>
<td>0.996</td>
</tr>
<tr>
<td>6</td>
<td>0.952</td>
<td>0.946</td>
<td>0.984</td>
<td>0.968</td>
<td>0.914</td>
<td>0.940</td>
<td>0.986</td>
<td>0.951</td>
<td>0.932</td>
<td>0.886</td>
<td>0.981</td>
<td>0.967</td>
</tr>
<tr>
<td>7</td>
<td>0.841</td>
<td>0.815</td>
<td>0.912</td>
<td>0.912</td>
<td>0.936</td>
<td>0.855</td>
<td>0.971</td>
<td>0.963</td>
<td>0.926</td>
<td>0.916</td>
<td>0.981</td>
<td>0.971</td>
</tr>
<tr>
<td>8</td>
<td>0.260</td>
<td>0.321</td>
<td>0.354</td>
<td>0.356</td>
<td>0.914</td>
<td>0.865</td>
<td>0.981</td>
<td>0.992</td>
<td>0.911</td>
<td>0.883</td>
<td>0.988</td>
<td>0.978</td>
</tr>
<tr>
<td>9</td>
<td>0.563</td>
<td>0.516</td>
<td>0.715</td>
<td>0.610</td>
<td>0.906</td>
<td>0.908</td>
<td>0.963</td>
<td>0.978</td>
<td>0.909</td>
<td>0.921</td>
<td>0.968</td>
<td>0.948</td>
</tr>
<tr>
<td>10</td>
<td>0.464</td>
<td>0.652</td>
<td>0.800</td>
<td>0.634</td>
<td>0.930</td>
<td>0.883</td>
<td>0.954</td>
<td>0.957</td>
<td>0.903</td>
<td>0.855</td>
<td>0.976</td>
<td>0.942</td>
</tr>
<tr>
<td>11</td>
<td>0.626</td>
<td>0.937</td>
<td>0.783</td>
<td>0.821</td>
<td>0.867</td>
<td>0.860</td>
<td>0.875</td>
<td>0.873</td>
<td>0.900</td>
<td>0.886</td>
<td>0.979</td>
<td>0.955</td>
</tr>
<tr>
<td>12</td>
<td>0.674</td>
<td>0.639</td>
<td>0.494</td>
<td>0.667</td>
<td>0.250</td>
<td>0.312</td>
<td>0.253</td>
<td>0.342</td>
<td>0.918</td>
<td>0.875</td>
<td>0.985</td>
<td>0.956</td>
</tr>
<tr>
<td>13</td>
<td>0.712</td>
<td>0.649</td>
<td>0.876</td>
<td>0.846</td>
<td>0.517</td>
<td>0.576</td>
<td>0.626</td>
<td>0.687</td>
<td>0.926</td>
<td>0.909</td>
<td>0.971</td>
<td>0.970</td>
</tr>
<tr>
<td>14</td>
<td>0.892</td>
<td>0.703</td>
<td>0.840</td>
<td>0.758</td>
<td>0.636</td>
<td>0.697</td>
<td>0.786</td>
<td>0.763</td>
<td>0.935</td>
<td>0.918</td>
<td>0.971</td>
<td>0.940</td>
</tr>
<tr>
<td>15</td>
<td>0.800</td>
<td>0.775</td>
<td>0.810</td>
<td>0.805</td>
<td>0.745</td>
<td>0.611</td>
<td>0.835</td>
<td>0.800</td>
<td>0.877</td>
<td>0.869</td>
<td>0.906</td>
<td>0.930</td>
</tr>
<tr>
<td>16</td>
<td>0.923</td>
<td>0.722</td>
<td>0.659</td>
<td>0.714</td>
<td>0.763</td>
<td>0.714</td>
<td>0.867</td>
<td>0.727</td>
<td>0.286</td>
<td>0.323</td>
<td>0.283</td>
<td>0.464</td>
</tr>
<tr>
<td>17</td>
<td>0.667</td>
<td>0.643</td>
<td>0.875</td>
<td>0.438</td>
<td>0.914</td>
<td>0.909</td>
<td>1.000</td>
<td>0.824</td>
<td>0.607</td>
<td>0.621</td>
<td>0.645</td>
<td>0.742</td>
</tr>
<tr>
<td>18</td>
<td>0.700</td>
<td>1.000</td>
<td>0.885</td>
<td>0.889</td>
<td>0.929</td>
<td>0.600</td>
<td>1.000</td>
<td>1.000</td>
<td>0.762</td>
<td>0.762</td>
<td>0.815</td>
<td>0.773</td>
</tr>
<tr>
<td>19</td>
<td>0.600</td>
<td>0.833</td>
<td>0.688</td>
<td>0.909</td>
<td>0.914</td>
<td>1.000</td>
<td>1.032</td>
<td>0.733</td>
<td>0.840</td>
<td>0.927</td>
<td>0.917</td>
<td>0.908</td>
</tr>
</tbody>
</table>
RESULTS

Steady-State Results

The model summarized mathematically in equation (3) is currently being used by the staff of Manpower Management Information Systems (Code MPI-20), Marine Corps Headquarters, for short-term forecasting (1 or 2 years) under a given recruitment policy. The basic model can also be used to show the long-range, or steady-state, effects of a fixed recruitment policy. Although it is unlikely that the system parameters will remain constant over many periods or that recruitment policies will remain unchanged, the long-range behavior of the system under a given policy is often useful in showing trends. These trends can act as warning signals of future problems.

Let \(L_i \) be the random lifetime of an individual of cohort type \(i \). Let
\[
Q_i(\ell) = P[L_i > \ell];
\]
then
\[
Q_i(\ell) = \prod_{u=0}^{\ell} q_i(u), \quad \ell = 0,1,2,\ldots, m. \tag{9}
\]

Now let \(\lambda_i \) be the average time spent in the Marine Corps of an individual in cohort type \(i \), and let \(g_i \) be the fixed quarterly recruit input into this cohort. The stocks \(S(t) \) converge to a constant stock level \(S \), where
\[
S = \sum_{i=1}^{12} \lambda_i g_i \tag{10}
\]
and
\[
\lambda_i = \sum_{\ell=0}^{m} Q_i(\ell). \tag{11}
\]

Recall that we assumed that for \(u > 20 \) and all \(i = 1,2,\ldots,12 \), \(q_i(u) = q \), a constant. Recall also that \(m \) is 120 so that \(q^{m-19} = q^9 \) is negligible for values of \(q \) of interest. From (9) we have
\[
Q_i(\ell) = \prod_{u=0}^{\ell} q_i(u), \quad \ell = 0,1,\ldots,19
\]
\[
= Q_i(19) q^{\ell-19}, \quad \ell \geq 19.
\]

Using these with (11) and (10) gives for the steady-state stock level
\[
S = \sum_{i=1}^{12} \left[\sum_{\ell=0}^{18} Q_i(\ell) + \frac{Q_i(19)}{1-q} \right] g_i. \tag{12}
\]
To illustrate the use of (12), Table 4 gives the life distributions $Q_i(u)$ for the continuation rates in Table 3 for $t \leq 19$. Using the constant recruitment policy shown in Table 5 and $q = 0.980$, the steady-state stocks will become 163,149.

In addition to calculating S, many more steady-state calculations of interest can be made. For example, the steady-state fraction with less than high school education is given by

$$\frac{\lambda_1g_1 + \lambda_2g_2 + \lambda_5g_5 + \lambda_6g_6 + \lambda_9g_9 + \lambda_{10}g_{10}}{S}. \tag{13}$$

Similarly, the steady-state fraction of non-Caucasians in the force is given by

$$\frac{\lambda_2g_2 + \lambda_4g_4 + \lambda_6g_6 + \lambda_8g_8 + \lambda_{10}g_{10} + \lambda_{12}g_{12}}{S}. \tag{14}$$
Table 4
Cumulative Tail Distributions of Length of Service

<table>
<thead>
<tr>
<th>LOS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.922</td>
<td>0.922</td>
<td>0.938</td>
<td>0.938</td>
<td>0.922</td>
<td>0.922</td>
<td>0.938</td>
<td>0.938</td>
<td>0.922</td>
<td>0.922</td>
<td>0.938</td>
<td>0.938</td>
</tr>
<tr>
<td>1</td>
<td>0.850</td>
<td>0.850</td>
<td>0.880</td>
<td>0.880</td>
<td>0.850</td>
<td>0.850</td>
<td>0.880</td>
<td>0.880</td>
<td>0.850</td>
<td>0.850</td>
<td>0.880</td>
<td>0.880</td>
</tr>
<tr>
<td>2</td>
<td>1.064</td>
<td>1.346</td>
<td>0.878</td>
<td>0.942</td>
<td>0.859</td>
<td>0.933</td>
<td>0.868</td>
<td>0.914</td>
<td>0.846</td>
<td>0.878</td>
<td>0.865</td>
<td>0.890</td>
</tr>
<tr>
<td>3</td>
<td>1.008</td>
<td>1.389</td>
<td>0.874</td>
<td>0.927</td>
<td>0.836</td>
<td>0.924</td>
<td>0.847</td>
<td>0.900</td>
<td>0.808</td>
<td>0.864</td>
<td>0.853</td>
<td>0.883</td>
</tr>
<tr>
<td>4</td>
<td>0.951</td>
<td>1.312</td>
<td>0.870</td>
<td>0.930</td>
<td>0.779</td>
<td>0.846</td>
<td>0.828</td>
<td>0.859</td>
<td>0.749</td>
<td>0.810</td>
<td>0.835</td>
<td>0.851</td>
</tr>
<tr>
<td>5</td>
<td>0.881</td>
<td>1.189</td>
<td>0.864</td>
<td>0.908</td>
<td>0.711</td>
<td>0.756</td>
<td>0.823</td>
<td>0.827</td>
<td>0.693</td>
<td>0.736</td>
<td>0.822</td>
<td>0.848</td>
</tr>
<tr>
<td>6</td>
<td>0.839</td>
<td>1.125</td>
<td>0.850</td>
<td>0.880</td>
<td>0.649</td>
<td>0.710</td>
<td>0.811</td>
<td>0.786</td>
<td>0.646</td>
<td>0.653</td>
<td>0.807</td>
<td>0.820</td>
</tr>
<tr>
<td>7</td>
<td>0.705</td>
<td>0.916</td>
<td>0.775</td>
<td>0.802</td>
<td>0.608</td>
<td>0.607</td>
<td>0.787</td>
<td>0.757</td>
<td>0.598</td>
<td>0.598</td>
<td>0.792</td>
<td>0.796</td>
</tr>
<tr>
<td>8</td>
<td>0.183</td>
<td>0.294</td>
<td>0.274</td>
<td>0.285</td>
<td>0.556</td>
<td>0.526</td>
<td>0.773</td>
<td>0.751</td>
<td>0.545</td>
<td>0.528</td>
<td>0.782</td>
<td>0.779</td>
</tr>
<tr>
<td>9</td>
<td>0.103</td>
<td>0.152</td>
<td>0.196</td>
<td>0.174</td>
<td>0.503</td>
<td>0.477</td>
<td>0.744</td>
<td>0.734</td>
<td>0.495</td>
<td>0.486</td>
<td>0.757</td>
<td>0.738</td>
</tr>
<tr>
<td>10</td>
<td>0.048</td>
<td>0.099</td>
<td>0.157</td>
<td>0.110</td>
<td>0.468</td>
<td>0.421</td>
<td>0.710</td>
<td>0.703</td>
<td>0.447</td>
<td>0.416</td>
<td>0.739</td>
<td>0.695</td>
</tr>
<tr>
<td>11</td>
<td>0.030</td>
<td>0.093</td>
<td>0.123</td>
<td>0.091</td>
<td>0.406</td>
<td>0.362</td>
<td>0.621</td>
<td>0.614</td>
<td>0.402</td>
<td>0.368</td>
<td>0.723</td>
<td>0.664</td>
</tr>
<tr>
<td>12</td>
<td>0.020</td>
<td>0.059</td>
<td>0.061</td>
<td>0.060</td>
<td>0.102</td>
<td>0.113</td>
<td>0.157</td>
<td>0.210</td>
<td>0.369</td>
<td>0.322</td>
<td>0.713</td>
<td>0.635</td>
</tr>
<tr>
<td>13</td>
<td>0.014</td>
<td>0.038</td>
<td>0.053</td>
<td>0.051</td>
<td>0.053</td>
<td>0.065</td>
<td>0.098</td>
<td>0.144</td>
<td>0.342</td>
<td>0.293</td>
<td>0.692</td>
<td>0.616</td>
</tr>
<tr>
<td>14</td>
<td>0.013</td>
<td>0.027</td>
<td>0.045</td>
<td>0.039</td>
<td>0.033</td>
<td>0.045</td>
<td>0.077</td>
<td>0.110</td>
<td>0.320</td>
<td>0.269</td>
<td>0.672</td>
<td>0.579</td>
</tr>
<tr>
<td>15</td>
<td>0.010</td>
<td>0.021</td>
<td>0.036</td>
<td>0.031</td>
<td>0.025</td>
<td>0.028</td>
<td>0.065</td>
<td>0.088</td>
<td>0.280</td>
<td>0.234</td>
<td>0.609</td>
<td>0.538</td>
</tr>
<tr>
<td>16</td>
<td>0.009</td>
<td>0.015</td>
<td>0.024</td>
<td>0.022</td>
<td>0.019</td>
<td>0.020</td>
<td>0.056</td>
<td>0.064</td>
<td>0.080</td>
<td>0.075</td>
<td>0.172</td>
<td>0.250</td>
</tr>
<tr>
<td>17</td>
<td>0.006</td>
<td>0.010</td>
<td>0.021</td>
<td>0.010</td>
<td>0.017</td>
<td>0.018</td>
<td>0.056</td>
<td>0.053</td>
<td>0.049</td>
<td>0.047</td>
<td>0.111</td>
<td>0.185</td>
</tr>
<tr>
<td>18</td>
<td>0.004</td>
<td>0.010</td>
<td>0.018</td>
<td>0.009</td>
<td>0.016</td>
<td>0.011</td>
<td>0.056</td>
<td>0.053</td>
<td>0.037</td>
<td>0.036</td>
<td>0.091</td>
<td>0.143</td>
</tr>
<tr>
<td>19</td>
<td>0.003</td>
<td>0.008</td>
<td>0.013</td>
<td>0.008</td>
<td>0.015</td>
<td>0.011</td>
<td>0.058</td>
<td>0.039</td>
<td>0.031</td>
<td>0.033</td>
<td>0.083</td>
<td>0.130</td>
</tr>
<tr>
<td>Cohort Number</td>
<td>Number of Recruits</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1428</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>252</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2142</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>378</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2652</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>468</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3978</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>702</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>12,000</td>
<td></td>
</tr>
</tbody>
</table>
Interactive Program Illustration

In this section, we describe the use of a set of interactive APL functions for both data input and enlisted end strength forecasting. These functions are available in Scientific Time Sharing's APL+ system in a workspace called ENLISTED. Listings and documentation of the functions are given in the Appendix.

The APL program has been implemented in close cooperation with the staff of Manpower Management Information Systems (Code MPI-20) at Marine Corps Headquarters. As indicated previously, the cohort model is currently being used by MPI-20 as a personnel planning and management tool.

Data Input and Storage

The three functions used to input, display, and correct the stocks \(\{S_i(t;u)\} \) for any given time period \(t \) are as follows:

1. INPUTSTK.
2. DISPLAYSTK.
3. CORRECTSTK.

INPUTSTK is a function that requires no arguments. It asks the user for the time period \(t \), and for each cohort \(i = 1,2,\ldots,12 \), it asks for 20 numbers \(\{S_i(t;u), u = 1,2,\ldots,20\} \). After these are entered, it asks for the remainder of the force, \(c(t) \). A sample use of INPUTSTK is shown in Figure 2. The data is stored in a file called "4894733 STOCKS"; details of the file format can be found in the Appendix.

DISPLAYSTK is a monadic function that takes, as its right-hand argument, a 2-element vector of month and year, and displays the stocks for that time period with suitable headings. Figure 3 demonstrates the use of DISPLAYSTK for data on 31 March 1976.

CORRECTSTK is a monadic function that takes, as its right-hand argument, a 2-element vector of month and year. After using DISPLAYSTK to observe the stocks on file, CORRECTSTK can be used to make any necessary corrections. A sample use of CORRECTSTK is shown in Figure 4.
<table>
<thead>
<tr>
<th>INPUTSTK</th>
<th>TIME PERIOD? EG. 9 75 FOR END OF MONTH 9 OF 1975</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□: 3 76</td>
</tr>
<tr>
<td></td>
<td>2 LHS W</td>
</tr>
<tr>
<td>LOS</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20</td>
</tr>
<tr>
<td>□: 3 5 48 165 527 543 845 380 197 83 43 23 26 20 30 31 22 14 6 4</td>
<td></td>
</tr>
<tr>
<td>2 LHS NW</td>
<td>LOS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20</td>
</tr>
<tr>
<td>□: 0 4 12 29 92 154 235 128 80 39 27 31 13 12 19 20 7 4 5 1</td>
<td></td>
</tr>
<tr>
<td>2 HS W</td>
<td>LOS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20</td>
</tr>
<tr>
<td>□:</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Illustration of INPUTSTK.
DISPLAYSTK 3 76

| NO. | TYPE | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|-----|------|
| 1 | 2 HS W | 3 | 48 | 165 | 527 | 543 | 845 | 380 | 197 | 83 | 43 | 23 | 25 | 20 | 30 | 31 | 22 | 14 | 6 | 4 |
| 2 | 2 HS NW | 4 | 12 | 29 | 92 | 154 | 235 | 128 | 80 | 33 | 27 | 31 | 13 | 12 | 13 | 20 | 7 | 4 | 5 | 1 |
| 3 | 2 HS W | 3 | 14 | 221 | 879 | 806 | 804 | 1926 | 899 | 248 | 140 | 174 | 50 | 52 | 25 | 74 | 24 | 17 | 7 | 14 | 6 |
| 4 | 2 HS NW | 2 | 2 | 33 | 117 | 137 | 202 | 541 | 387 | 85 | 51 | 34 | 21 | 22 | 11 | 24 | 18 | 9 | 3 | 5 | 4 |
| 5 | 3 HS W | 1706 | 991 | 907 | 495 | 928 | 672 | 736 | 301 | 794 | 547 | 508 | 414 | 126 | 61 | 52 | 40 | 26 | 19 | 11 | 10 |
| 6 | 3 HS NW | 301 | 134 | 132 | 81 | 211 | 210 | 247 | 108 | 200 | 124 | 122 | 96 | 39 | 13 | 24 | 11 | 6 | 8 | 2 |
| 7 | 3 HS W | 1424 | 1258 | 1683 | 1041 | 645 | 495 | 936 | 560 | 545 | 436 | 876 | 460 | 123 | 70 | 123 | 52 | 25 | 14 | 33 | 13 |
| 8 | 3 HS NW | 422 | 299 | 387 | 236 | 147 | 187 | 293 | 196 | 143 | 108 | 185 | 124 | 50 | 28 | 41 | 28 | 11 | 4 | 10 | 3 |
| 9 | 4 HS W | 2419 | 2635 | 2441 | 1749 | 3143 | 2372 | 2180 | 1107 | 1981 | 1487 | 1688 | 1721 | 1502 | 1187 | 1262 | 932 | 325 | 150 | 113 | 101 |
| 10 | 4 HS NW | 410 | 497 | 462 | 336 | 897 | 793 | 697 | 566 | 583 | 435 | 387 | 400 | 394 | 360 | 354 | 206 | 70 | 17 | 17 | 32 |
| 11 | 4 HS W | 2982 | 3418 | 5563 | 4276 | 2563 | 2013 | 3841 | 2685 | 1433 | 1179 | 2846 | 1892 | 1147 | 1176 | 2409 | 1562 | 285 | 136 | 273 | 157 |
| 12 | 4 HS NW | 588 | 7971 | 1166 | 907 | 582 | 503 | 816 | 700 | 340 | 334 | 624 | 407 | 350 | 404 | 530 | 281 | 96 | 44 | 61 | 28 |

NO. WITH LOS>70: 48049

TOTAL END STR: 174823

Figure 3. Illustration of DISPLAYSTK.
Figure 4. Illustration of CORRECTSTK.
End Strength Forecasts

The function ENDSTR is used to calculate end strengths for given recruitment policies using equation (3). It requires no arguments, but interactively asks the user for the following data:

1. Number of periods to project (call this n).
2. Base period.

After these, it asks for the following data for recruits for each of the next n periods:

3. Percent Caucasian.
4. Percent 3-year enlistments (it is currently assumed that there are no 2-year enlistments).
5. Percent of high school graduates in Caucasian recruits.
6. Percent of high school graduates in non-Caucasian recruits.
7. Total recruits in each period.
8. First 6-month attrition percent for high school graduates.
9. First 6-month attrition percent for nonhigh school graduates.

The answers to 3 through 9 above are used to spread the recruits in each period over the 12 cohorts. The next input required is:

10. Continuation rate method.
11. Information on whether the user wishes to change the continuation rates. If the answer is yes, the user is asked for (a) high school graduate factor, and (b) nonhigh school graduate factor. These factors are used to multiply all the continuation rates for the given cohort type. This approach is used rather than asking the user for changes in each of the 241 rates.

After answers have been given to questions 1 through 11, the end strengths are calculated using equation (3) and stored on a temporary file. When the calculations are completed, a report is printed showing the recruit policies used and the end strengths obtained. Following this printed report, the user is asked if he wishes to continue. If the answer is yes, the user can then pick a subset or all of the questions 1 through 11 to enter different data and rerun the model. An example run follows (Figure 5).
ENDSTR

1. **NO. PERIODS TO PROJECT?**
 - 4

2. **BASE PERIOD? EG 12 75**
 - 3 76

3. **RECRUIT PERCENT WHITE?**
 - 1 2 3 4
 - 85 83 84 85

4. **3 YR SPLIT?**
 - 1 2 3 4
 - 35 37 33 34

5. **W HS GRAD PERCENT?**
 - 1 2 3 4
 - 58 55 62 60

6. **NW HS GRAD PERCENT?**
 - 1 2 3 4
 - 60 60 58 58

7. **TOTAL RECRUITS EACH OF NEXT 4 QUARTERS?**
 - 1 2 3 4
 - 12000 11200 11500 11500

8. **HS 6 MONTH PERCENT ATTR?**
 - 1 2 3 4
 - 12 12 10 10

9. **LHS 6 MONTH PERCENT ATTRITION?**
 - 1 2 3 4
 - 20 18 17 15

Figure 5. Sample use of ENDSTR.
<table>
<thead>
<tr>
<th>PERIOD</th>
<th>PERC W</th>
<th>PERC 3YR</th>
<th>W-NS</th>
<th>NW-NS</th>
<th>HS-RA</th>
<th>LHS-RA</th>
<th>RECRUITS</th>
<th>END STR</th>
<th>TOTAL ATTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85</td>
<td>35</td>
<td>58</td>
<td>60</td>
<td>12</td>
<td>20</td>
<td>12000</td>
<td>174623</td>
<td>13154</td>
</tr>
<tr>
<td>2</td>
<td>83</td>
<td>37</td>
<td>55</td>
<td>60</td>
<td>12</td>
<td>18</td>
<td>11200</td>
<td>173669</td>
<td>14508</td>
</tr>
<tr>
<td>3</td>
<td>84</td>
<td>33</td>
<td>62</td>
<td>58</td>
<td>10</td>
<td>17</td>
<td>11500</td>
<td>169806</td>
<td>12055</td>
</tr>
<tr>
<td>4</td>
<td>85</td>
<td>34</td>
<td>60</td>
<td>58</td>
<td>10</td>
<td>15</td>
<td>11500</td>
<td>169490</td>
<td>11816</td>
</tr>
</tbody>
</table>

BASE PERIOD: 376
RATE METHOD: 2
HS FACTOR: 1
LHS FACTOR: 1

STUDY STATE CONTINUOUS YES
QUEST NO?

10. **RATE METHOD**: 1-3

7. **TOTAL RECRUITS EACH OF NEXT 4 QUARTERS?**
 1 2 3 4

> Figure 3 (Continued).
CHANGE RATES? YES
HS GRAD FACTOR?
☐: 1.01
LHS FACTOR?
☐: 1.02

USMC FORECASTED ENDSTRENGTHS 9 MARCH 1977

BASE PERIOD: 3 76
RATES METHOD: 1
HS FACTOR: 1.01
LHS FACTOR: 1.02

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>PERC W</th>
<th>PERC 3IR</th>
<th>W-HS</th>
<th>NW-HS</th>
<th>HS-RA</th>
<th>LNS-RA</th>
<th>RECRUITS</th>
<th>END. SE. TOTAL ACTN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85</td>
<td>35</td>
<td>58</td>
<td>60</td>
<td>12</td>
<td>20</td>
<td>12000</td>
<td>174,823</td>
</tr>
<tr>
<td>2</td>
<td>83</td>
<td>37</td>
<td>55</td>
<td>60</td>
<td>12</td>
<td>18</td>
<td>12000</td>
<td>175,245</td>
</tr>
<tr>
<td>3</td>
<td>84</td>
<td>33</td>
<td>62</td>
<td>58</td>
<td>10</td>
<td>17</td>
<td>12000</td>
<td>174,976</td>
</tr>
<tr>
<td>4</td>
<td>85</td>
<td>34</td>
<td>60</td>
<td>58</td>
<td>10</td>
<td>15</td>
<td>12000</td>
<td>176,154</td>
</tr>
</tbody>
</table>

Figure 5 (Continued).
CONCLUSIONS

Analysis of Marine Corps data allows us to conclude that the historical data are available to obtain continuation rate values for each cohort and LOS type needed in the forecasting equations of the model. The rates of recruit attrition for the first 6 months of enlistment are considered a control variable by the Marine Corps; hence, the interactive program allows the user to enter his own recruit attrition rates directly at the terminal.

Since members of each of the 12 cohorts can remain in the Navy for 30 years (120 quarters), the complete cohort model would require 1452 continuation rates to accommodate all cohort/LOS categories. Since retention behavior is relatively independent of cohort type for marines with an LOS greater than 5 years, all marines in this category were combined into one class. This reduced model size to only 241 continuation rates, a considerable savings in data requirements and computation time.

RECOMMENDATIONS

Based on gaming experience with the model, optimization features should be implemented in order to evaluate strategies for attaining both short- and long-term manpower planning goals, such as minimizing discounted costs or maintaining a stable force under uncertain future manpower requirements. These should include features to measure budgetary effects of various promotion and retention policies.
APPENDIX

DETAILED LISTING OF APL FUNCTIONS
DETAILED LISTING OF APL FUNCTIONS

Files

The forecast model requires two files for execution. The file "4894733 STOCKS" contains historical data on enlisted Marines (for details of file creation, manipulation, and security, see the booklet on the APL+ file sub-system from Scientific Share Corporation). Component 1 of this file contains data for 30 June 1975; component 2, the data for 30 September 1975; etc. The format of the data is shown in Figure 3 of the main report.

The file, "4794733 FORECAST," is used to store the forecasted force whenever the function ENDSTR is used. After completion of the use of ENDSTR, these files are erased. They are used only to facilitate the printing of various statistics on the forecasted force.

Functions

The use of the main functions is discussed in the main report. This appendix contains detailed listings of the functions.
VENUSTE[⑦] V
VENDSTRBPI:Q;QI;QPI:T;VNW;PRMT;Y4;Y3;VG;VVG;HSA;LHSA;CV;AV;HSF;LHSF;T
1] TIE FILES AND SET UP
[2] if FISTRY "4894"33 STOCKS' WEEK 1 ∩ '4894"33 FORECAST' FISTORY 2 ∩ FISTRY 2,ST-2,FSIZE 2
[3] SET QUESTION VECTOR
[4] NQ+QI=QN+L9,L1,L2,L3,L4,L10,L5,L6,L11,PT+0 LPT+PT
[5] *RECRUIT DATA INPUT
[6] L9:(LIT QN:L9),'. ' NO. PERIODS TO PROJECT?' O NE-+O LPT
[7] L1:(LIT QN:L1),'. BASE PERIOD 1G 12 '5' O +(2=PE+0)10LEP O 2Y O L4
[9] L2:(LIT QN:L2),'. RECRUIT PERCENT WHITE?' O +PRMT+, 'I' FPRMT:UP O +(NP=OH+L+60,0,1,0)×LLE O LPT
[11] L3:(LIT QN:L3),'. 3 YR SPLIT?' O PRM T O +(NE=OH+4+Y+3+6.01×10)×PLS E O LPT
[12] L3E:EM EQUAL O L3
[13] L4:(LIT QN:L4),'. W HS GRAD PERCENT?' O PRMT O +(NE=OH+4+G+0.01×10)×PL4E O LPT
[15] L10:(LIT QN:L10),'. NW HS GRAD PERCENT?' O PRMT O +(NP=OH+G+0.01×10)×PL10E O LPT
[16] L10E:EN EQUAL O L10
[17] L5:(LIT QN:L5),'. TOTAL RECRUITS EACH OF NEXT ',(LIT NE), ' QUARTERS?' O PRMT
[18] +(NP=EP,+)×LPT EK EQUAL O L5
[19] ' RECRUIT ATTENTION'
[20] L6:(LIT QN:L6),'. HS 6 MONTH PERCENT ATT.' O PRMT O +(NP=OH+6A+1+O.01×10)×L6E O LPT
[21] L6E:EN EQUAL O L6
[22] L11:(LIT QN:L11),'. LHS 6 MONTH PERCENT ATTENTION?' O PRMT O +(NP=PLHSA+0.01×10)×PL11E O LPT
[23] L11E:EN EQUAL O L11
[24] L7:(LIT QN:L7),'. RATE METHOD? 1 'S BPI+1 O N=O LPT
[25] *CALCULATE CONT. RATES
[26] LCALC=EB-(12,NE)×LHSA,LHSA,SHA,SHA O CH RATE N O HSF=LHSF-1
[27] +(-AYN "CHANGE RATES?")×PLC O 'HS GRAD FACTOR?' O HSF=O O 'LHS FACTOR?' O LHSF=O
[28] STR[RV;CV]+HSF×CAR[AV;CV]+7.3 4 8 11 12 ;CV;C18] O CAR[2+RV;CV]+LHSA×CAR[2+RV;CV]
[29] *SPREAD RECRUITS
[30] LC:REC RECRUITS T
[31] *AGE FORCE NE PERIODS AND STORE IN FILE FORECAST
[32] FDROP 2,-1/2+FSIZE 2 (11) 12 21 0 FAPPEND 2 O AGE NE
[33] *PRINT OUTPUT REPORT
[34] PRINTREPORT
[35] +(AYN 'CONTINUE?')×LCONT O O
[36] LCONT: QUEST NO.'
[37] NQ=QI=QN[0] O PT+1 O PT[PT]
[38] LPT:=(NQ<PT+PT)+1×LCALC O PT[PT]

Detailed Listing of APL Functions
Detailed Listing of APL Functions
"INPUTSTK[0]" V
"INPUTSTK;I;T;CN;V;J;CV;V;X"
[1] "FUNTIE IF RUMS " '4894733 STOCKS' IFSTIE 1
[3] +(O=0+7,A)fl60 'NEED 2 NOS.' +L1
[5] L2:CN+'1+X+4+T[2]-75 0 W=12 20 p0 +I+1
[6] L3:TTFM[I+]I+1
[7] L4: 'LOS', 'IS' IFMT:20 +(20=IV+,A)pl5 'NEED 20 NOS.' +L1
[9] +(120+I+1)pl3 'REMAINIER OF FORCIC'
[10] L7:+(1=IV+,A)pl8 'ONE NUMBER ONLY' +L7
[11] L8:(N+W,12+Y) IFREPLACE 1, CN
[12] 'TOTAL END STRENGTH:-';+/+/N
"DISPLAYSTK[0]" V
"DISPLAYSTK MY;M"
[1] "TO DISPLAY STKS FOR PERIOD MY (MNTH,YR)
[2] "FUNTIE IF RUMS " '4894733 STOCKS' IFSTIE 1
[3] (50p) ', 'LOS'
[5] ((120+I+1)pl3)pl6 'M=IFREAD 1,-1+(MN[1]+3)+4×MN[2]-75
[6] LF 'NO. WITH LOS>20:- ';M[1,21] LF 'TOTAL END STR:- ';+/+/N
"CORRECTSTK[0]" V
"CORRECTSTK MY;CN;I;J;M"
[1] "TO CORRECT DATA IN STOCKS FOR TIME MY
[2] "FUNTIE IF RUMS " '4894733 STOCKS' IFSTIE 1
[4] 'TO END, ENTER COHORT NO. 0. TO CHANGE >20, USE COHORT NO. 1, LOS 21'
[5] L1: 'COHORT NO.? ' +(O=I+1)pl2
[6] 'LOS?' J+J
[8] L2:M IFREPLACE 1, CN
DISTRIBUTION LIST

Chief of Naval Operations (OP—987H), (OP—964D)
Chief of Naval Personnel (Pers—10c), (Pers—2B)
Chief of Naval Material (NMAT 08T244)
Chief of Naval Research (Code 450) (4)
Chief of Information (01—2252)
Director of Navy Laboratories
Commandant of the Marine Corps (Code XPI—20)
Chief of Naval Education and Training (N—5)
Commander Training Command, U. S. Atlantic Fleet (Code N3A)
Commander, Naval Data Automation Command
Commanding Officer, Fleet Combat Training Center, Pacific (Code OOE)
Commanding Officer, Naval Education and Training Program Development Center (2)
Commanding Officer, Naval Development and Training Center (Code 0120)
Director, Training Analysis and Evaluation Group (TAEG)
Personnel Research Division, Air Force Human Resources Laboratory (AFSC),
 Brooks Air Force Base
Occupational and Manpower Research Division, Air Force Human Resources
 Laboratory (AFSC), Brooks Air Force Base
Technical Library, Air Force Human Resources Laboratory (AFSC),
 Brooks Air Force Base
Technical Training Division, Air Force Human Resources Laboratory,
 Lowry Air Force Base
Flying Training Division, Air Force Human Resources Laboratory,
 Williams Air Force Base
Advanced Systems Division, Air Force Human Resources Laboratory,
 Wright-Patterson Air Force Base
Program Manager, Life Sciences Directorate, Air Force Office of Scientific
Research (AFSC)
Army Research Institute for the Behavioral and Social Sciences
Coast Guard Headquarters (G—P—1/62)
Military Assistant for Training and Personnel Technology, ODDR&E, OAD(E&LS)
Director for Acquisition Planning, OASD (I&L)
Defense Documentation Center (12)