Title:

Authors:
Gary B. Schuster, Steven P. Schmidt

Performing Organization Name and Address:
Department of Chemistry, University of Illinois, Urbana, Illinois 61801

Controlling Office Name and Address:
Chemistry Program, Materials Science Division, Office of Naval Research, 800 N. Quincy Street, Arlington, VA 22217

Report Date:
March 24, 1978

Number of Pages:
16

Distribution Statement (of this Report):
Approved for Public Release, Distribution Unlimited

Key Words:
Chemiluminescence, Kinetics, Organic Peroxide, Dioxetanone

Abstract:
Activation parameters and absolute chemiluminescence yields for the thermal decomposition of dimethyldioxetanone (I) were determined. The composite activation energy for the formation of excited singlet acetone was found to be 3-4 kcal/mol greater than the activation energy for the thermal disappearance of I. These results are interpreted in terms of two parallel competitive pathways for dioxetanone decomposition, the more highly activated one of which leads to electronically excited acetone.

\[I \xrightarrow[\Delta]{} \text{Acetone} + \text{CO}_2 + \text{hv} \]
Kinetics of Unimolecular Dioxetanone Chemiluminescence.

Competitive Parallel Reaction Paths.

by

Gary B. Schuster and Steven P. Schmidt

Prepared for Publication

Journal of the American Chemical Society

School of Chemical Sciences
University of Illinois
Urbana, Illinois 61801

March 24, 1978

Reproduction in whole or in part is permitted for
any purpose of the United States Government

Approved for Public Release; Distribution Unlimited.
Kinetics of Unimolecular Dioxetanone Chemiluminescence: Competitive Parallel Reaction Paths.

Abstract: Activation parameters and absolute chemiluminescence yields for the thermolysis of dimethylidioxetanone (\(\ell\)) were determined. The composite activation energy for the formation of excited singlet acetone was found to be 3-4 kcal/mol greater than the activation energy for the thermal disappearance of \(\ell\). These results are interpreted in terms of two parallel competitive pathways for dioxetanone decomposition, the more highly activated one of which leads to electronically excited acetone.

\[
\begin{align*}
\text{\(\ell\)} & \xrightarrow{\Delta} \text{acetone} \quad + \quad \text{CO}_2 \quad + \quad \text{hv}
\end{align*}
\]
Sir:

The thermal unimolecular reaction of the 1,2-dioctane ring system to generate electronically excited state carbonyl containing compounds is by far the most carefully and extensively studied of all chemiluminescent reactions. The mechanism for this intriguing transformation has been hotly debated by proponents of stepwise and concerted decomposition paths. The ammunition in this controversy ranges from purely theoretical calculations to experimental substituent, solvent, and isotope effects. Of pivotal importance to the dissection of the reaction path have been studies of kinetics and of excited state yields for variously substituted dioxetanes. In a previous report we showed that the major chemiluminescent pathway for dimethyldioxetanone in the presence of an easily oxidized fluorescer is chemically initiated electron exchange luminescence. In this communication we describe our findings on the uncatalyzed unimolecular thermal fragmentation of dimethyldioxetanone (1) to acetone and CO₂. This reaction of this remarkable molecule proceeds through at least two distinct experimentally distinguishable transition states. The routing of the reactant through each path and, consequently, the ultimate yield of electronically excited acetone formed, depend critically upon the temperature at which the thermolysis is carried out. These results permit detailed analysis of the reaction coordinate for thermolysis of this system.
The activation energy for the thermal decomposition of 1 was determined by two different techniques in a series of four solvents. First, the total rate of reaction of 1 was measured at several temperatures by monitoring the chemiluminescence decay. Standard Arrhenius analysis of the decay rate constants gives the activation energies, E_a, shown in Table 1. Second, the activation energy for that fraction of the total reaction that leads to electronically excited singlet states, E_{Chl}, was determined by probing the effect of temperature on the instantaneous chemiluminescence intensity. Critically, and in contrast to the activation parameters of simply substituted dioxetanes studied thus far, E_{Chl} for 1 is 3-4 kcal/mol greater than E_a, and this difference is independent of the solvent.

The yield of excited state acetone from thermolysis of 1 also demonstrates the unusual effect of temperature. Thermolysis of 1 in $C_2Cl_3F_3$ at 30.0°C generates electronically excited singlet and triplet acetone with efficiencies of 0.1% and 1.5%, respectively. The singlet excited acetone yield, ϕ_S, depends significantly upon the reaction temperature, as is shown in Table 2. These data afford a temperature coefficient for ϕ_S of $+4.2 \pm 0.2$ kcal/mol, which represents the difference in activation energies between a higher energy path leading to light generation and the dark decomposition of 1.

This is the first reported example of a temperature dependent singlet excited state yield from the thermal unimolecular reaction of the 1,2-dioxetane ring system.
While trace amounts of catalytic impurities10 might be expected to
induce a parallel dark path of dioxetanone decomposition, and hence result
in a lowering of the apparent activation energy, E_a, several experimental
observations make such an explanation of our results exceedingly unlikely.
Significantly, identical results were obtained for the four solvents,
purified by different techniques,11 of Table 1. Thus solvent impurity
catalysis would fortuitously have to be equally efficient in all four
solvents. Also, the decomposition rate was independent ($\pm 1\%$) of the initial
concentration of J, thereby excluding a possible catalytic impurity in the
dioxetanone sample. Furthermore, addition of the chelating agent Na\textsubscript{4}EDTA
to the reaction mixture had no effect on the observed rate constant. In
fact, the powerful catalytic effect of added cupric ion,12 the metal ion
most effective in catalyzing dioxetane decomposition,10 was completely
suppressed by added Na\textsubscript{4}EDTA. Finally, the entropy of activation for the
thermolysis of J is -1 ± 3 eu for the four solvents in Table 1. This value
is inconsistent with a bimolecular catalysis path, for which a large
negative activation entropy would be expected.

The effect of temperature on the efficiency of chemiluminescence from
dioxetanone J is composed of the temperature dependence of the efficiencies
of all steps leading to photon generation. The temperature dependence of
the fluorescence efficiency of acetone is negligible under these conditions.13
Thus, E_{Chl} measures the composite activation energy for the formation of
excited singlet acetone. The standard Arrhenius activation energy, E_a, on the other hand, provides a measure of the barrier to the lowest energy
transition state available to the system (see below). Our finding that E_{Chl}
is 3-4 kcal/mol higher than E_a requires that there be two or more competitive
pathways with discrete transition states for dioxetanone decomposition. The position of these transition states along the reaction coordinate cannot be revealed by this kinetic analysis. Two limiting situations exist, as depicted in Figure 1. In Figure 1a two competitive concerted reactions are represented. In this case the measured difference in activation energy between the light generating and dark paths is equated to the difference in energies between the two transition states. In the mechanism shown in Figure 1b, a common rate determining step leads to generation of an intermediate biradical. This biradical proceeds along a lower energy path to generate ground state acetone and by a more highly activated route to produce singlet excited acetone. The temperature dependence of the instantaneous chemiluminescence intensity for this case is given by eq 2,

$$I = A \exp \left(-\frac{(E_a + (E_L - E_D))/RT}{RT}\right)$$ \hspace{1cm} (2)

where A is a constant composed of the preexponential factors and instrument parameters, E_a is the previously defined activation energy for formation of the intermediate biradical, and E_L and E_D are the activation energies for fragmentation of the intermediate to excited and ground state acetone, respectively. Thus, this analysis indicates that the difference in the activation energies between the light generating and non-light generating paths is the difference in transition state energies for the two paths leading from the intermediate biradical.

While our data do not provide a distinction between operation of the two limiting mechanisms depicted in Figure 1, several points warrant discussion. Simple qualitative arguments based upon current theories of pericyclic reactions put forth by Turro and Devaquet predict that for
the concerted path shown in Figure 1a the lower activation energy route should be the one that leads to excited state generation. This prediction is inconsistent with our experimental findings and indicates that either the qualitative model is unreliable or, more likely, that the concerted path is inoperative. On the other hand, the experimentally observed ordering of transition states for both limiting mechanisms depicted in Figure 1 is easily understood in terms of the Hammond postulate in which the most exothermic reaction (formulation of ground state products) has the lowest activation barrier. However, neither this line of reasoning, nor any mechanism yet postulated to explain chemical formation of excited states, is capable of explaining why the total yield of acetone excited states from the thermolysis of \(\frac{1}{2} \) is nearly twenty times lower than the excited acetone yield from the less exothermic thermolysis of tetramethyl-dioxetane.\(^{16} \) This observation remains a mystery in need of further investigation.

In summary, our investigation of the kinetics of the thermal unimolecular reaction of dioxetanone \(\frac{1}{2} \) has revealed that dual paths are operative. Further experimental resolution of the reaction coordinate is difficult. This reaction may be ideally suited for investigation by \textit{ab initio} theoretical methods. Such an analysis is planned.

\textbf{Acknowledgment.} This work was supported in part by the Office of Naval Research and in part by the donors of the Petroleum Research Fund, administered by the American Chemical Society.
References and Notes

(6) Light was detected by the photon counting technique. The disappearance of 4, was strictly first order for at least five half lives over the entire temperature range studied.

(8) (a) The yield of light was determined by direct comparison with the total integrated acetone fluorescence and phosphorescence intensities from the thermolysis of tetramethyldioxetane (TMD) in C2Cl3F3. The yields of singlet and triplet excited acetone from TMD were taken to be 0.2%8b,c and 30%,8b respectively. Adam8d has previously reported a singlet excited acetone yield of 0.05% from the thermolysis of 4, at 23°C. His triplet yield, however, is unreliable due to the unexpected involvement, in the presence of rubrene, of an additional
efficient chemiluminescence mechanism. A triplet to singlet excitation efficiency ratio of 20 has also been reported previously for λ_{8e} and is consistent with our results; (b) T. Wilson, D. E. Golan, M. S. Harris, and A. L. Baumstark, J. Am. Chem. Soc., 98, 1086 (1976); (c) N. J. Turro and P. Lechtken, ibid., 94, 2886 (1972); (d) W. Adam, G. A. Simpson, and F. Yany, J. Phys. Chem., 78, 2559 (1974); (e) N. J. Turro, P. Lechtken, G. Schuster, J. Orell, H.-C. Steinmetzer, J. Am. Chem. Soc., 96, 1627 (1974).

(11) Benzene (Burdick and Jackson) and C$_2$Cl$_3$F$_3$ (Freon 113, Matheson) were shaken with H$_2$SO$_4$, passed through basic alumina, and distilled. Dichloromethane (Mallinckrodt spectrograde) was distilled from P$_2$O$_5$. Carbon tetrachloride (Mallinckrodt spectrograde) was irradiated (Pyrex) in the presence of benzophenone, passed through basic alumina, and distilled.

(12) Addition of $\approx 10^{-7}$ M CuCl$_2$ (with 1% MeOH for solubility) increased the rate of decomposition of λ in CH$_2$Cl$_2$ by a factor of ≈ 10.

(14) Invoking the steady state approximation for [Acetone*] leads to eq 3, where, under the experimental conditions, $[\lambda]$ is constant. For the case where $k_L \ll k_D$, eq 3 reduces to eq 2 above.

\[I \propto k_L [\lambda] \frac{k_L}{k_L + k_D} \] (3)

(16) (a) Calculated values of ΔH^0 are: dioxetanone λ_1, \sim 88 kcal/mol16b
tetramethyldioxetane, -68.8 kcal/mol16c
(b) W. H. Richardson and
H. E. O'Neal, J. Am. Chem. Soc., 94, 8665 (1972);
(c) W. H. Richardson

Steven P. Schmidt and Gary B. Schuster*17

Department of Chemistry, Roger Adams Laboratory

University of Illinois, Urbana, Illinois 61801
Table 1. Activation Parameters for the Thermolysis of Dioxetanone λ_a

<table>
<thead>
<tr>
<th>Solvent</th>
<th>E_a, kcal/mol</th>
<th>E_{Chl}, kcal/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{C}_2\text{Cl}_3\text{F}_3$</td>
<td>22.3 ± .3b</td>
<td>25.6 ± .1</td>
</tr>
<tr>
<td>CCl_4</td>
<td>21.3 ± .3c</td>
<td>24.5 ± .5</td>
</tr>
<tr>
<td>PhH</td>
<td>21.8 ± .1c</td>
<td>24.9 ± .4</td>
</tr>
<tr>
<td>CH_2Cl_2</td>
<td>20.8 ± .1c</td>
<td>24.8 ± .4</td>
</tr>
</tbody>
</table>

aAir saturated solutions, $\sim 5 \times 10^{-4}$ M in λ_a. bEyring activation enthalpy: $\Delta H^\ddagger = 21.7$ kcal/mol; activation entropy, $\Delta S^\ddagger = 0 \pm 1$ eu. cSolutions contained 5% Na$_4$EDTA.

Table 2. Temperature Dependence of the Singlet Excited Acetone Yield from Thermolysis of λ_a

<table>
<thead>
<tr>
<th>Temp., °C</th>
<th>$\phi_S^* \times 10^4$</th>
<th>Temp., °C</th>
<th>$\phi_S^* \times 10^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.0</td>
<td>10</td>
<td>9.8</td>
<td>5.7</td>
</tr>
<tr>
<td>25.1</td>
<td>8.4</td>
<td>4.8</td>
<td>4.8</td>
</tr>
<tr>
<td>20.5</td>
<td>7.4</td>
<td>0.3</td>
<td>4.5</td>
</tr>
<tr>
<td>15.4</td>
<td>6.3</td>
<td>-5.0</td>
<td>3.9</td>
</tr>
</tbody>
</table>

aIn $\text{C}_2\text{Cl}_3\text{F}_3$ solutions. Yields were determined relative to the yield at 30.0°C. See ref 8a.
Figure Caption

Limiting reaction mechanisms for thermal unimolecular fragmentation of dimethyldioxetanone to acetone and CO$_2$. Part A represents the concerted process with two transition states, Part B shows a path proceeding through an intermediate biradical with at least two exit channels.
<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>Arlington, Virginia 22217</th>
<th>Attn: Code 472</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>Arlington, Virginia 22217</td>
<td>Attn: Code 102IP</td>
<td>6</td>
</tr>
<tr>
<td>OMR Branch Office</td>
<td>536 S. Clark Street</td>
<td>Chicago, Illinois 60605</td>
<td>Attn: Dr. Jerry Smith</td>
</tr>
<tr>
<td>OMR Branch Office</td>
<td>715 Broadway</td>
<td>New York, New York 10003</td>
<td>Attn: Scientific Dept.</td>
</tr>
<tr>
<td>OMR Branch Office</td>
<td>1030 East Green Street</td>
<td>Pasadena, California 91106</td>
<td>Attn: Dr. R. J. Marcus</td>
</tr>
<tr>
<td>OMR Branch Office</td>
<td>760 Market Street, Rm. 447</td>
<td>San Francisco, California 94102</td>
<td>Attn: Dr. P. A. Miller</td>
</tr>
<tr>
<td>OMR Branch Office</td>
<td>495 Summer Street</td>
<td>Boston, Massachusetts 02210</td>
<td>Attn: Dr. L. H. Peebles</td>
</tr>
<tr>
<td>Director, Naval Research Laboratory</td>
<td>Washington, D.C. 20390</td>
<td>Attn: Code 6100</td>
<td>1</td>
</tr>
<tr>
<td>The Asst. Secretary of the Navy (R&D)</td>
<td>Department of the Navy</td>
<td>Room 1F736, Pentagon</td>
<td>Washington, D.C. 20350</td>
</tr>
<tr>
<td>Commander, Naval Air Systems Command</td>
<td>Department of the Navy</td>
<td>Washington, D.C. 20360</td>
<td>Attn: Code 310C (H. Rosenwasser)</td>
</tr>
</tbody>
</table>
TECHNICAL REPORT DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>No. Copies</th>
</tr>
</thead>
</table>
| Dr. M. A. El-Sayed
University of California
Department of Chemistry
Los Angeles, California 90024 | Dr. G. B. Schuster
University of Illinois
Chemistry Department
Urbana, Illinois 61801 |
| 1 | 1 |
| Dr. M. W. Windsor
Washington State University
Department of Chemistry
Pullman, Washington 99163 | Dr. E. M. Eyring
University of Utah
Department of Chemistry
Salt Lake City, Utah |
| 1 | 1 |
| Dr. E. R. Bernstein
Colorado State University
Department of Chemistry
Fort Collins, Colorado 80521 | Dr. A. Adamson
University of Southern California
Department of Chemistry
Los Angeles, California 90007 |
| 1 | 1 |
| Dr. C. A. Heller
Naval Weapons Center
Code 6059
China Lake, California 93555 | Dr. M. S. Wrighton
Massachusetts Institute of Technology
Department of Chemistry
Cambridge, Massachusetts 02139 |
| 1 | 1 |
| Dr. M. H. Chisholm
Princeton University
Department of Chemistry
Princeton, New Jersey 08540 | Dr. M. Rauhut
American Cyanamid Company
Chemical Research Division
Bound Brook, New Jersey 08805 |
| 1 | 1 |