Two methods are described for estimating the probability that a given semiconductor device will be damaged by an electrical transient. Both methods are based on existing device damage data which were obtained by step-stressing devices to failure, using rectangular pulses. Both methods require calculation of the time-dependent power waveform in the device, due to application of the transient. One method employs only the largest peak of this power waveform.
waveform, while the other includes the entire waveform in a convolution integral. Modifications to the DAMTRAC circuit-analysis program are presented.
CONTENTS

1. INTRODUCTION ... 5
2. DEVICE DAMAGE DATA DISTRIBUTION 5
3. THERMAL RESPONSE ... 6
4. DAMAGE ASSESSMENT .. 9
5. COMPARISON OF CONVOLUTIONAL AND RECTANGULAR PULSE ESTIMATES OF SURVIVAL PROBABILITY 10
 5.1 Convolutional Case ... 10
 5.2 Rectangular Pulse Case .. 10
 5.2.1 Adiabatic Model ... 10
 5.2.2 Wunsch-Bell Model .. 11
6. DAMTRAC MODIFICATIONS .. 11
7. CONCLUSIONS .. 12

APPENDICES
A.—SUBROUTINE TRAEQ LISTING .. 13
B.—A NOTE ON SEMICONDUCTOR DAMAGE DATA 15
DISTRIBUTION ... 17
1. INTRODUCTION

An important aspect of the electromagnetic pulse (EMP) vulnerability assessment of electronic equipment is the question of whether a particular semiconductor component will be damaged by the EMP-induced transient. The methods currently used to predict semiconductor damage are based on calculated power dissipation in the device junctions. Most such efforts involve replacing the highest peak of the power-versus-time curve by a rectangular pulse which is approximately equivalent to it in energy content. Then the damage data for that device are scanned to see if the calculated power-width coordinates for the pulse fall above or below the nominal damage curve. Vulnerability assessments in such a scheme are quite imprecise, usually reducing to such statements as the system is "vulnerable" or is "not vulnerable."

This procedure appears reasonable enough, because any such analysis must be based on the existing device damage data, and these were almost invariably obtained by step-stressing a device to failure, using rectangular pulses. It has, however, two serious faults: (1) the treatment of arbitrary power-versus-time waveshapes as rectangular pulses and (2) the lack of a probabilistic treatment.

This report describes two possible improvements on the above procedure. The first improvement addresses the statistical distribution of damage by assuming that the device damage power is lognormally distributed at constant pulse width. The nominal damage level is then used with an estimate of the standard deviation in power to damage, after review of a large amount of data, to calculate the probability of device failure, given power inputs in the form of rectangular pulses. The other improvement, which removes both of the above objections, uses the entire power-versus-time curve directly to calculate the probability of device failure.

2. DEVICE DAMAGE DATA DISTRIBUTION

Device damage data are generally obtained by step-stressing a number of devices to failure, using rectangular pulses of various widths. The results of this procedure, after proper curve fitting, provide the device damage curve—a log-log plot of nominal damage power, P_D, versus pulse width, τ. There is substantial disagreement about the form of P_D, mostly due to the lack of good experimental data, and it is likely that no single form can adequately describe all devices. Still, for very short pulses, the adiabatic approximation appears generally valid. That is

$$P_D(\tau) \propto \tau^{-1},$$

while for very long pulses thermal equilibrium can be reached, that is,

$$P_D(\tau) \propto \tau^0.$$

For the intermediate region, there is a general tendency to use the Wunsch-Bell model, with

$$P_D(\tau) \propto \tau^{-1/2}.$$

It is not at all clear where these regions should meet. The available data imply that the adiabatic approximation is excellent, at least up to 50 to 100 ns, while the equilibrium

approximation is usable down to perhaps a few seconds. Between these limits is a broad transition region wherein \(P_D \) varies smoothly from one limit to the other. On log-log paper, the slope of \(P_D \) varies monotonically from \(-1\) (adiabatic) to \(0\) (equilibrium). The Wunsch-Bell model represents the transition region by a line of slope \(-\frac{1}{2}\).

Most cases of interest to us involve total times less than about 500 ns. Thus, the equilibrium region, and most of the transition region, as well, can generally be ignored. For this reason, and because of the large amount of scatter in the damage data, it appears practical to approximate \(P_D \) by two straight lines which intersect at a certain point, namely,

\[
P_D = \begin{cases}
K'T^{-1}, & \tau < \tau_0 \\
K'\tau^{-\frac{1}{2}}, & \tau \geq \tau_0
\end{cases}
\]

where \(K \) is the Wunsch-Bell damage constant, and \(K' \) is determined by the requirement that the two lines intersect at \(\tau = \tau_0 \). That is,

\[
P_D(\tau_0) = K'\tau_0^{-1} = K\tau_0^{-\frac{1}{2}}
\]

or

\[
K' = K\tau_0^{1/2}.
\]

In a later section, we shall represent the probability of device damage, for a power input pulse of amplitude, \(W \), as a cumulative lognormal distribution:

\[
F_D(W) = \frac{1}{2} \left[1 + \text{erf} \left(\frac{\ln W - \mu}{\sigma\sqrt{2}} \right) \right],
\]

where \(\mu = \ln P_D \), and \(\sigma \) is the standard deviation in the natural log of the damage power distribution.

Examination of many sets of damage data\(^1\) has shown that the distribution in power to damage, at fixed pulse width, is approximately lognormal and that the typical spread is about a factor of five in power. Thus, in the lognormal description, the standard deviation, \(\sigma \), is approximated by

\[
\sigma = \ln 5 \approx 1.61 \quad \text{(see app B)}.
\]

The median value of damage power is given by \(P_D \). Therefore, the mean, \(\mu \), of the damage distribution is

\[
\mu = \begin{cases}
\ln(K'T^{-1}), & \text{adiabatic} \\
\ln(K'\tau^{-\frac{1}{2}}), & \text{Wunsch-Bell}
\end{cases}
\]

These two moments completely describe the distribution. In practice, since damage data are seldom available for pulse widths less than 50 ns, we find \(K \) by finding the line of slope \(-\frac{1}{2}\) which best fits the data. The value of \(K' \) is then determined by the choice of \(\tau_0 \). In general, we used \(\tau_0 = 50 \) ns.

3. THERMAL RESPONSE

It is well known that, if one obtains the response of a system to a step excitation, the impulse response can be gotten by differentiation, and that the response to any other excitation can be calculated by convolving the impulse response with the arbitrary excitation. Thus,

\(^1\) Defense Nuclear Agency EMP Handbook, Component EMP Sensitivity and System Upset, Ch. 13 (22 September 1975).
consider an initially relaxed system described in terms of an impulse excitation, \(\delta(t - t') \), and a response, \(h(t - t') \):

\[
H^{-1}(t)h(t - t') = \delta(t - t').
\]

Here, \(H^{-1}(t) \) is a linear differential operator with constant coefficients. If we assume that no signals are applied before \(t = 0 \), this expression can be integrated once to give

\[
H^{-1}(t) \int_0^t h(t - t') \, dt' = \int_0^t \delta(t - t') \, dt'.
\]

Since no response is possible before an excitation is applied, the integration can be terminated at \(t' = t \). Thus,

\[
H^{-1}(t) \int_0^t h(t - t') \, dt' = \int_0^t \delta(t - t') \, dt' = U(t),
\]

where \(U(t) \) is the unit step function defined by

\[
U(t) = \begin{cases} 0, & t < 0 \\ +1, & t > 0. \end{cases}
\]

The integral on the left now gives the time-domain response to the unit step. Laplace transforming both sides gives

\[
L \left[\int_0^t h(t - t') \, dt' \right] = \frac{H(s)}{s}
\]

and

\[
L \left[\int_0^t h(t - t') \, dt' \right] = L[V_v(t)] = V_v(s).
\]

Then \(H(s) = sV_v(s) \), where \(H(s) \) is the transfer function and \(V_v(s) \) is the step-function response in the frequency domain.

The impulse response, which is the inverse transform of the transfer function, is then given by

\[
h(t) = L^{-1}[H(s)] = L^{-1}[sV_v(s)]
\]

\[
h(t) = \frac{d}{dt}[v_v(t)] + v_v(0+)\delta(t).
\]

The last equation follows from the two standard transforms:

\[
L \left[\frac{df}{dt} \right] = sF(s) - f(0+)
\]

\[
L[\delta(t)] = 1,
\]

where

\[
F(s) = L[f(t)].
\]
The response to a general excitation, $e(t)$, can now be written

$$v(t) = \int_0^t h(t - t') e(t') \, dt'$$

$$v(t) = \int_0^t \left\{ \frac{d}{d(t - t')} [v_u(t - t')] + v_u(0+) \delta(t - t') \right\} e(t') \, dt'$$

$$v(t) = v_u(0+) e(t) + \int_0^t e(t') \frac{d}{d(t - t')} [v_u(t - t')] \, dt'.$$

In the application to thermal damage to semiconductors, we make the following equivalences.

$v(t) \rightarrow \Delta T(t) =$ temperature rise

$e(t) \rightarrow P(t) =$ power dissipation

$v_u(t) \rightarrow R(t) =$ response to rectangular pulse power

$$\Delta T(t) = R(0+) P(t) + \int_0^t P(t') \frac{d}{d(t - t')} R(t - t') \, dt'.$$

The first term can be ignored on physical grounds. That is, the response at zero time to an excitation which began at zero time can be nonzero only for infinitely large power input. Hence,

$$\Delta T(t) = \int_0^t P(t') \frac{d}{d(t - t')} R(t - t') \, dt'.$$

Now, let us assume that the temperature rise at the semiconductor junction—due to application of a rectangular pulse of unit amplitude and width τ—is

$$\Delta T(\tau) = R(\tau).$$

For a linear system, the temperature rise due to any other rectangular pulse of the same width is proportional to $R(\tau)$. In particular, for a pulse equal to the nominal damage power for that width, we expect

$$\Delta T(\tau) = T_C = P_D(\tau) R(\tau),$$

where T_C is the temperature at which damage occurs. Thus, we can write

$$\Delta T(t) = T_C \int_0^t P(t') \frac{d}{d(t - t')} \left[\frac{1}{P_D(t - t')} \right] \, dt'.$$

Dividing by T_C gives

$$I(t) = \int_0^t P(t') \frac{d}{d(t - t')} \left[\frac{1}{P_D(t - t')} \right] \, dt'.$$

This is a very convenient relation between the instantaneous junction power dissipation and the normalized temperature rise in the junction. As long as $I \ll 1$, we expect no damage. When $I = 1$, we usually make the nominal prediction of damage. In the next section, we shall see how these predictions can be made more quantitative.
Substituting the two straight-line expressions for P_D, which we exhibited in section 2, gives

$$I(t) = \int_0^{t_1} P(t') \frac{d}{d(t-t')} \left[\frac{(t-t')^{1/2}}{K} \right] dt' \mid t - t_1 \geq \tau_0$$

$$+ \int_{t_1}^{t} P(t') \frac{d}{d(t-t')} \left[\frac{t-t'}{K\tau_0^{1/2}} \right] dt' \mid t - t_1 < \tau_0$$

or

$$I(t) = \int_0^{t_1} P(t') \frac{dt'}{2K(t-t')^{1/2}} \mid t - t_1 \geq \tau_0$$

$$+ \int_{t_1}^{t} P(t') \frac{dt'}{K\tau_0^{1/2}} \mid t - t_1 < \tau_0.$$

The function $h(t)$ described earlier in this section will be recognized as the Green’s function of the operator $H^{-1}(t)$.

4. DAMAGE ASSESSMENT

We now have in hand the necessary mathematical apparatus for damage assessment. Basically, all that remains is to exhibit the answers for the two methods mentioned in section 1.

In the first method, we assume power inputs in rectangular pulse form. Since we know that the device damage data are lognormally distributed, we can immediately write down the probability that a pulse of amplitude W and width τ will cause failure. It is given by the distribution function, F. Thus,

$$F_0(W) = \frac{1}{\sigma \sqrt{2\pi}} \int_0^W e^{-1/2\left(\frac{\ln W - \mu}{\sigma}\right)^2} dW' W',$$

where $\mu = \ln P_D$ and $\sigma = 1.61$.

A simple change of variable gives

$$F_0(W) = \frac{1}{\sqrt{2\pi}} \int_0^{\ln W - \mu} e^{-1/2y^2} dy$$

or

$$F_0(W) = \frac{1}{2} \left[1 + \text{erf} \left(\frac{\ln W - \mu}{\sigma \sqrt{2}} \right) \right].$$

The survival probability is then given by

$$P_s(W) = 1 - F_0(W) = \frac{1}{2} \left[1 - \text{erf} \left(\frac{\ln W - \mu}{\sigma \sqrt{2}} \right) \right].$$

In the second method we are concerned with the distribution in the maximum values of the convolution integral $I(t)$, in those cases where damage results. For rectangular pulses, it is obvious that the distribution in this I_{max} is lognormal with the same σ as the pulse power. If the thermal model is to be useful, this must also be true with arbitrary power waveforms, because the distribution is really in junction temperature. Thus, since the median value of I_{max} which
results in junction damage is unity, the damage probability in this case is

\[F_d(I) = \frac{1}{2} \left[1 + \text{erf} \left(\frac{\ln I - \ln 1}{\sigma \sqrt{2}} \right) \right], \]

and the survival probability is

\[F_s(I) = \frac{1}{2} \left[1 - \text{erf} \left(\frac{\ln I}{\sigma \sqrt{2}} \right) \right]. \]

5. COMPARISON OF CONVOLUTIONAL AND RECTANGULAR PULSE ESTIMATES OF SURVIVAL PROBABILITY

It is of some interest to compare the survival probabilities gotten by using the maximum value of the convolution integral and the rectangular pulse. Consider a particular example where the maximum free field is about 25 kV/m and the relevant DAMTRAC outputs are

\[L_{\text{max}} = 0.747 \]
\[W = 9840 \text{ W} \]

and

\[\tau = 13.6 \text{ ns}. \]

5.1 Convolutional Case

From the results of section 4 we see that the survival probability is*

\[P_s^* = 1 - F \left(\frac{\ln 0.747}{1.61} \right) = 1 - F(-0.181) \]

or

\[P_s = F(0.181) = 0.572. \]

5.2 Rectangular Pulse Case

5.2.1 Adiabatic Model

First, we compute the most probable value of damage power for pulse width \(\tau \), using the formula appropriate for the adiabatic model.

\[\mu = \ln(K' \tau^{-1}) = \ln(K \tau_0^{1/2} \tau^{-1}) \]
\[\mu = \ln K + \frac{1}{2} \ln \tau_0 - \ln \tau \]
\[\mu = \ln 0.91 + \frac{1}{2} \ln 5 + 41 \ln 10 - \ln 1.36 \]
\[\mu = -0.09 + 0.80 - 0.31 + 9.21 \]
\[\mu = 9.61. \]

In addition, we have

\[\ln W = \ln 9840 = 9.19. \]

* There is a slight change in notation here. What we previously called \(F_d(I) \) is really \(F \left(\frac{\ln I}{\sigma} \right) \). This distinction is necessary for use of probability tables.
Putting these into the formula for survival probability gives
\[P_s = 1 - F\left(\frac{9.19 - 9.61}{1.61}\right) = F(0.26) \]
or
\[P_s = 0.60. \]

5.2.2 Wunsch-Bell Model

This calculation is entirely analogous to the adiabatic calculation. Thus,
\[\mu = \ln(K \tau^{-1/2}) = \ln K - \frac{1}{2} \ln \tau \]
\[\mu = \ln 0.91 - \frac{1}{2} \ln 1.36 + 41 \ln 10 \]
\[\mu = 8.81, \]
and the survival probability is
\[P_s = 1 - F\left(\frac{9.194 - 8.81}{1.61}\right) = 1 - F(0.24) \]
or
\[P_s = 0.41. \]

For this particular problem, the convolutional approach gives a survival probability which is about 5 percent lower than that given by the adiabatic model, but about 39 percent higher than that given by the Wunsch-Bell model. This is not necessarily true in other cases. It is easy to construct waveforms having multiple peaks close together, for which the convolution integral—since it takes account of all peaks—would give a significantly lower probability of survival than would either of the other two models.

6. DAMTRAC MODIFICATIONS

One major component of the machinery necessary for damage assessment is a computer program which calculates the response of a circuit to input transients. We used an extended version of a program called DAMTRAC, a version of the TRAC code, which calculates power dissipation in given circuit components as a function of time.

Almost all of DAMTRAC is kept in object form on a permanent file. Subroutine TRAEQ is available, however, and this is where the necessary changes were inserted. Subroutine TRAEQ is called several times for each solution of the circuit equations, and the current values of elapsed time and power dissipation are then available. Each time an acceptable solution of the circuit equations is reached, the current values of the convolution integrals are calculated. At the end of a predetermined interval, the maximum values of these integrals are found and the probabilities of component failure are calculated. At the end of the job, the integrals are plotted as functions of time by specifying appropriate node numbers in the input data deck. Up to 10 semiconductor components can be analyzed for each DAMTRAC run. If necessary, the program can easily be modified to accommodate a larger number of devices. A listing of this subroutine is given in appendix A.

7. CONCLUSIONS

Two improvements in EMP circuit damage-analysis techniques have been described: (1) use of a convolution integral to account for arbitrary power pulse shapes, and (2) use of a routine to give probability of damage rather than purely qualitative results. These changes result in a convenient calculational tool for damage assessment. The increase in running time over the present DAMTRAC, with the rectangular pulse approach, is small. This method is substantially more satisfying because of the quantitative damage probability results and because the entire waveform is taken into account. This method will be used as Harry Diamond Laboratories primary circuit-analysis technique for the INCA program.

ACKNOWLEDGMENT

It is a pleasure to thank W. E. Sweeney, Jr., and K. T. LePoer for helpful comments.
APPENDIX A.

SUBROUTINE TRAEQ LISTING

A listing of the subroutine TRAEQ follows. TRAEQ is called several times for each solution of the circuit equations, and the current values of elapsed time and power dissipation are then available.

C SUBROUTINE TRAEQ
SUBROUTINE TRAEQ(KK4)
IMPLICIT REAL*8 (A-H,O-Z), INTEGER*2 (I-N)
REAL*8 ST,VP,XP,ABC,EU++,TF
INTEGER*2 ERR
INTEGER*4 KK4
INTEGER*4 CONP,CONO,CONT,LIMIT,MSTRT
DIMENSION DAMP(1000,10),PW(1000,10),TIME(1000)
DIMENSION CD(10),UAMAX(10),PDAM(10)
COMM/ALPHA/A(1000),E(19,40,2),H(100,100),D(100,100),V(240),AL(50),
LBV, CT(11,2), DI(30), OM, OR(30), RV(30), EI(20), E2(19),
2T, T0, VS(20), VI(240), V2(240), VCI(30),
3BC(30), BCV(30), BEI(30), v(E(30), BEV(30), D(30), E(30), E(30),
4Q(30), T, S(30), TUI(30), TUI(30), VEL(30), E(30), E(30),
9BCP(30), BCP(30), BCP(30), BEP(30), JTIM, GMSH,
7PPIC(30), PPI(30), PPI(30), PPI(30), PPI(30), PPI(30), PPI(30),
BBMAG, TE1, TOL1, TOL2, TOT2, TOT1, VAL1(200), VAL2(200),
9VAL3(200), BCU1, BCU(20), PPI(30), PPI(30), PPI(30), PPI(30),
ASYMB1, ASYMB2, TITLE(9), TOLPL, TOMAX(ST(19)), ABC,
*EQ, CONP(30,5), CONP(30,5), CONP(30,5), ETHAMAS, IAM, JSJ, IDC, NCT,
UKT0, IBC, NAM, IT0, KT0, NV, NO, JU, NHB, NBRANG, NBRANG,
CIT0, JUJ, N2B, ISTRK, LSYM4, N2, N2, N2, N2, N2, N2,
CIP, IPRINT, NTPLO, NPP(60), NPP(4), NA, N2, N2, ND1, JJU, KE, NTH,
EINFDC, JV, IPX, NA1, NT, NB, NIB, JCAT, NCOR, JVJ, NP, IPLCON,
F1SYM3, NPI(10), JJ(19)
COMMON/ALPHA/A(5000), XP(700), TF(350),
COMMON/GAMMA/PWCFD(30), PWCRV(30), BHKVOL(30), DAMN(30),
COMMON/DELTA/PWTEFD(30), PWTEV(30), PWTERV(30),
DATA H/1, NPH/0
C FOR SUPPRESSION OF M*N MATH MATRIX PRINT, SET ERR=2
ERR=2
GO TO (9000,9003,9002,9001), KK4
9000 CONTINUE
C PART 1 - MATH AND TIME FUNCTION EQNS. AFTER THIS CARD.
EI(3)=V(21)*.42
OMEGA=2.*3.1416*30.000*06
EI(2)=9.*DSIN(OMEGA*TE)+1.E-5
C RETURN
9003 CONTINUE
C PART 2
RETURN
9002 CONTINUE
RETURN
9001 CONTINUE
C PART 4 - AUXILIARY EQUATIONS AFTER THIS CARD.
V(24)=PWMCFD(1)
V(25)=PWMCRV(1)
V(26)=PWMV(1)
V(27)=PWMCHV(1)
V(28)=PWMF(1)
V(29)=PWMTF(1)
V(30)=PWMCFD(2)
V(31)=PWCRV(2)
THE FOLLOWING CARDS ARE FOR DAMAGE CALCULATIONS

CD - WUNSCH DAMAGE CONSTANT
TD - CROSSOVER WIDTH; WUNSCH TO ADIABATIC MODEL
NDEV - NUMBER OF VULNERABLE DEVICES

TO = 5.0E-8
NDEV = 2
CD(1) = 0.91
CD(2) = 0.20
IF (TLE . LE. 0.0 . OR. M . GE. 1000) GO TO 200
PWR (M+1) = PWTCRV (1)
PWR (M+2) = PWTERV (1)
TIME (M) = TE
IF (M . EQ. 1) GO TO 190
IF (TIME(M) . LE. TIME(M-1)) GO TO 200

DO 10 I = 1, NDEV
DAMP (M+I) = 0.91
DO 10 J = 2, M
IF (TIME (M) - TIME (J) . LE. 5.0) GO TO 9
5 DAMP (M+1) = DAMP (M+1) + (TIME (J) - TIME(J-1)) * (PWR(J,1) * PWR(J-1,1)) / 20.
1 DSQRT (TO) / CD(I)
GO TO 9
6 DAMP (M+1) = DAMP (M+1) + (TIME (J) - TIME (J-1)) * (PWR(J,1) / DSQRT (TIME(M) - TIME(J)) + (PWR(J-1,1) / DSQRT (TIME(M) - TIME(J-1)))) / 40. / CD(I)
9 V (100+1) = DAMP (M+1)
10 CONTINUE

IF (NPR . EQ. 1) GO TO 190
IF (TE . LE. CT (1, 21) - CT (1, 1)) GO TO 150
GO TO 190
150 NPR = 1
170 DO 180 I = 1, NDEV
DAMMAX (I) = DAMP (2, I)
DO 175 J = 3, M
175 IF (DAMP (J, I) . GT. DAMMAX (I)) DAMMAX (I) = DAMP (J, I)
Y = LOG (DAMMAX (I)) / 1.61 / SQRT (2.00)
180 PDAM (I) = 0.50 (1.00*DERF (Y))
WRITE (6, 185)
185 FORMAT (1H1, 50X, 13H SUMMARY OF DAMAGE CALCULATIONS/) WRITE (6, 186) (1, DAMMAX (I)) . EQ. 1, NDEV
186 FORMAT (13H41MAXIMUM VALUE OF CONVOLUTION INTEGRAL NO., 13.2M =, 1 IPEL1.3) WRITE (6, 187) (1, PDAM (I, I) . EQ. 1, NDEV)
187 FORMAT (13H43MAXIMUM VALUE OF CONVOLUTION INTEGRAL NO., 13.2M =, 1 IPEL1.3) WRITE (6, 188) 188 FORMAT (1H1)
190 M = M + 1
200 RETURN
END
APPENDIX B

A NOTE ON SEMICONDUCTOR DAMAGE DATA

The value assumed for \(\sigma \) in section 2, body of report, may be excessively large in most cases. If so, the reader is free to substitute any value he prefers. It should be pointed out, however, that semiconductor damage tests, in general, were not statistically designed. That is, the experimenter made no effort to plan his tests so that the results would be statistically meaningful. Sample estimates of \(\sigma \) and, to a lesser extent, \(\mu \), based on such tests may be misleading to an engineer and downright useless to a statistician.
DISTRIBUTION (Cont'd)

DEFENSE COMMUNICATION ENGINEER CENTER
1860 WIEHLE AVENUE
RESTON, VA 22090
ATTN CODE R720, C. STANSBERRY
ATTN CODE R400
ATTN CODE R124C, TECH LIB

DIRECTOR
DEFENSE COMMUNICATIONS AGENCY
WASHINGTON, DC 20305
ATTN CODE 540.5
ATTN CODE 962
ATTN CODE 101B
ATTN WMCCS SYS ENGR

DIRECTOR
DEFENSE INTELLIGENCE AGENCY
WASHINGTON, DC 20301
ATTN DT-4B
ATTN DTICI, ROBERT I. RUBENSTEIN
ATTN DS-4C

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, DC 20305
ATTN RAAF
ATTN STSL, ARCHIVES
ATTN STTL, TECH LIBRARY
ATTN DDST
ATTN STVL
ATTN RAEV
ATTN RATN
ATTN SPSS

DIR OF DEFENSE RSCH & ENGINEERING
DEPARTMENT OF DEFENSE
WASHINGTON, DC 20301
ATTN DD/S&S
ATTN AD/S&S

DIRECTOR OF PLANNING & EVALUATION
OFFICE OF THE SECRETARY OF DEFENSE
WASHINGTON, DC 20301
ATTN BERNARD J. BUC,
DEF DIR GEN PUR PRGMS

COMMANDER
FIELD COMMAND
DEFENSE NUCLEAR AGENCY
KIRTLAND AFB, NM 87115
ATTN FCPR

DIRECTOR
INTERSERVICE NUCLEAR WEAPONS SCHOOL
KIRTLAND AFB, NM 87115
ATTN TECH LIB

DIRECTOR
JOINT STRAT TGT PLANNING STAFF JCS
OFFUTT AFB
OMAHA, NE 68113
ATTN JLTW-2
ATTN STINFO LIBRARY
ATTN JSAS
ATTN JPST

DIRECTOR
JOINT TACTICAL COMMUNICATIONS OFC
FORT MONMOUTH, NJ 07703
ATTN TT-PSS

CHIEF
LIVERMORE DIVISION FED COMMAND DNA
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
ATTN DR. GUSTAVSON
ATTN FCPR

NATIONAL COMMUNICATIONS SYSTEM
OFFICE OF THE MANAGER
WASHINGTON, DC 20305
ATTN NSG-TS, CHARLES D. BODSON

DIRECTOR
NATIONAL SECURITY AGENCY
FT. GEORGE G. MEADE, MD 20755
ATTN TDL
ATTN ORLAND O. VAN GUNTEN, R-425
ATTN TECHNICAL LIBRARY

COMMANDANT
NATIONAL WAR COLLEGE
FORT LESLEY J. MCNAIR
WASHINGTON, DC 20315
ATTN NWCLB-CR

OFFICE OF THE SECY OF DEF
DIR NET ASSESSMENT
DEPT OF DEFENSE
WASHINGTON, DC 20301
ATTN MAJ RANKSON

OJCS/J-3
THE PENTAGON
WASHINGTON, DC 20301
ATTN CMD & CONTROL/TELECOM BR
ATTN J-3 NUC WPNS BRANCH
ATTN J-3 NUC CON BRANCH
ATTN J-3 RDTA BR WMCCS, PLANS DIV
ATTN NWMC
ATTN J-32 WMCCS, SUPPORT OFC

OJCS/J-5
THE PENTAGON
WASHINGTON, DC 20301
ATTN J-5 SAGA, PLANS & POLICY
DISTRIBUTION (Cont'd)

DIRECTOR
TELECOMMUNICATIONS & COMD
& CON SYS
WASHINGTON, DC 20301
ATTN ASST DIR (SYS)

COMMANDER
US FORCES KOREA
APO SAN FRANCISCO, 96301
ATTN DJ-AM-SM
ATTN CJ-P-G

USNMR/SHAPE
APO NEW YORK 09055
ATTN US DOCUMENTS OFFICER

PROJECT MANAGER
ARMY TACTICAL DATA SYS
US ARMY ELECTRONICS COMMAND
FORT MONMOUTH, NJ 07703
ATTN DRCPN-TDS-SD
ATTN DMAINE, R. HUEWE

COMMANDER/DIRECTOR
ATMOSPHERIC SCIENCES LABORATORY
US ARMY ELECTRONICS COMMAND
WHITE SANDS MISSILE RANGE, NM 88002
ATTN DSRM-BL-D

CHIEF, C-E SERVICES DIVISION
US ARMY COMMUNICATIONS CMD
PENTAGON RM 1B269
WASHINGTON, DC 20310
ATTN CEED-7

DEP CHIEF OF STAFF FOR RSCH DEV & ACQ
DEPARTMENT OF THE ARMY
WASHINGTON, DC 20310
ATTN DAMA-CSM-N
ATTN ADVISOR FOR RDA ANALYSIS

CHIEF OF ENGINEERS
DEPARTMENT OF THE ARMY
FORRESTAL BUILDING
WASHINGTON, DC 20314
ATTN DAEN-MCE-D, HAROLD H. MCCAULEY

DEPUTY CHIEF OF STAFF FOR OPS & PLANS
DEPARTMENT OF THE ARMY
WASHINGTON, DC 20310
ATTN DAMO-TCW

DIRECTOR
TRASANA
WHITE SANDS MISSILE RANGE, NM 88002
ATTN ATAA-TAC
ATTN ATAA-EAC

DIRECTOR
US ARMY BALLISTIC RESEARCH LABS
ABERDEEN PROVING GROUND, MD 21005
ATTN CAL
ATTN TNL
ATTN RL

COMMANDER
US ARMY COMB ARMS COMBAT DEV ACTY
FT LEAVENWORTH, KS 66027
ATTN ATCA-CFT
ATTN ATCA-CO
ATTN ATCA-CA

COMMANDANT
US ARMY COMM & GENERAL STAFF COLLEGE
FORT LEAVENWORTH, KS 66027
ATTN ATSM-SC-D
ATTN LIBRARY
ATTN NUCORE STUDY GP

COMMANDER
US ARMY COMM-ELEC ENGNG INSTAL AGY
FORT HUACHUCA, AZ 85613
ATTN ACCC-CED-STS

COMMANDER
US ARMY COMMUNICATIONS CMD
FORT HUACHUCA, AZ 85613
ATTN ACC-OPS-SM/COL KING
ATTN ACC-FD-C

CHIEF
US ARMY COMMUNICATIONS SYS AGENCY
FORT MONMOUTH, NJ 07703
ATTN SCCM-AD-SV, LIBRARY

COMMANDER
US ARMY COMPUTER SYSTEMS COMMAND
FORT BELVOIR, VA 22060
ATTN TECHNICAL LIBRARY

COMMANDER
US ARMY CONCEPTS ANALYSIS AGENCY
8120 WOODMONT AVENUE
BETHESDA, MD 20014
ATTN JOINT & STRAT FORCES DIR

DIRECTOR
US ARMY MATERIEL SYS ANALYSIS ACTY
ABERDEEN PROVING GROUND, MD 21005
ATTN DRKS-S
ATTN-DRKS-S

COMMANDER
US ARMY MISSILE MATERIEL READINESS COMMAND
REDSTONE ARSENAL, AL 35809
ATTN DRSMI-YDR
DISTRIBUTION (Cont'd)

COMMANDER
US ARMY MOBILITY EQIP R&D CTR
FORT BELVOIR, VA 22060
ATTN TECHNICAL LIBRARY

COMMANDER
US ARMY NUCLEAR AGENCY
7500 BACKLICK ROAD
BLDG 2073
SPRINGFIELD, VA 22150
ATTN ATCN-W, LTC LEONARD A. SLUGA
ATTN TECH LIB
ATTN COL DEVERILL

COMMANDER
US ARMY TEST AND EVALUATION CMD
ABERDEEN PROVING GROUND, MD 21005
ATTN TECHNICAL LIBRARY
ATTN DRSTE-EL, RICHARD I. HOLCHIN
ATTN DRSTE-NR, RUSSELL R. GALASSO

COMMANDER
US ARMY TRAINING AND DOCTRINE COMMD
FORT MONROE, VA 23651
ATTN ATORI-OP-SD
ATTN TECH LIBRARY

COMMANDANT
US ARMY WAR COLLEGE
CARLISLE BARRACKS, PA 17013
ATTN LIBRARY

PROJECT OFFICER
US ARMY TAC COMM SYSTEMS
US ARMY ELECTRONICS COMMAND
FT. MONMOUTH, NJ 07703
ATTN DRCPM-ATC/COL DOBBINS

COMMANDER
V CORPS
APO NEW YORK 09079
ATTN AETVGB
ATTN AETVCE
ATTN AETVSC

COMMANDER
VII CORPS
APO NEW YORK 09107
ATTN AETSCC
ATTN AETSGB-O

COMMANDER
NAVAL ELECTRONICS LABORATORY CENTER
SAN DIEGO, CA 92152
ATTN RESEARCH LIBRARY

COMMANDER
NAVAL SURFACE WEAPONS CENTER
WHITE OAK, SILVER SPRING, MD 20910
ATTN CODE 730, TECH LIB
ATTN CODE WA50

COMMANDER
NAVAL ELECTRONICS COMMUNICATIONS COMMAND
NAVTEL COM HEADQUARTERS
4401 MASSACHUSETTS AVE., N.W.
WASHINGTON, DC 20390
ATTN DEPUTY DIRECTOR PLANS

COMMANDER-IN-CHIEF
US NAVAL FORCES, EUROPE
FPO NEW YORK, 09510
ATTN N326

AF WEAPONS LABORATORY, AFSC
KIRTLAND AFB, NM 87117
ATTN EL
ATTN ELC
ATTN SUL

COMMANDER
AIR UNIVERSITY
MAXWELL AFB, AL 36112
ATTN AUL/LEE-70-250

ASSISTANT CHIEF OF STAFF
INTELLIGENCE
HEADQUARTERS, U.S. AIR FORCE
WASHINGTON, DC 20330
ATTN AF/INA

ASSISTANT CHIEF OF STAFF
STUDIES AND ANALYSIS
HEADQUARTERS, U.S. AIR FORCE
WASHINGTON, DC 20330
ATTN SAGF

ASSISTANT CHIEF OF STAFF
COMMUNICATIONS & COMPUTER RESOURCES
HEADQUARTERS, U.S. AIR FORCE
WASHINGTON, DC 20330
ATTN AF/KRC

ASSISTANT DEPUTY CHIEF OF STAFF
RESEARCH AND DEVELOPMENT
HEADQUARTERS, U.S. AIR FORCE
WASHINGTON, DC 20330
ATTN RDQ/SM
ATTN RDQ/SN

DEPUTY CHIEF OF STAFF
PLANS AND OPERATIONS
HEADQUARTERS, U.S. AIR FORCE
WASHINGTON, DC 20330
ATTN AFOSR/OPD
ATTN AFOSR

HEADQUARTERS
ELECTRONIC SYSTEMS DIVISION, (AFSC)
HANSCOM AFB, MA 01731
ATTN TECHNICAL LIBRARY
DISTRIBUTION (Cont'd)

HARRY DIAMOND LABORATORIES (Cont'd)
ATTN CHIEF, DIV 700
ATTN CHIEF, DIV 800
ATTN CHIEF, LAB 900
ATTN CHIEF, LAB 1000
ATTN RECORD COPY, BR 041
ATTN HDL LIBRARY (5 COPIES)
ATTN CHAIRMAN, EDITORIAL COMMITTEE
ATTN CHIEF, 047
ATTN TECH REPORTS, 013
ATTN PATENT LAW BRANCH, 071
ATTN GIDEF OFFICE, 741
ATTN LASHAM, C., 0021
ATTN CHIEF, 210
ATTN ROSADO, J. A., 230
ATTN VAULT, W., 210
ATTN WILLIAMS, R., (20 COPIES)