
Annex A.

A METHODOLOGY FOR DETERMINING THE POWER OF MANOVA WHEN THE OBSERVATIONS ARE SERIALLY CORRELATED.

Final rept.

A THESIS

Presented to

The Faculty of the Division of Graduate Studies

By

Norviel Robert Eyrich

In Partial Fulfillment of the Requirements for the Degree Master of Science in Operations Research

Georgia Institute of Technology

DAAG39-76-C-0085

Dec 1975

This document has been approved for public release and sale; its distribution is unlimited.
This report is a summary report of four studies in support of the application of statistical theory to design and evaluation of operational tests. The four topics are:

- Evaluation
- Operational testing
- Bayesian Theory
- Multivariate statistics
e. "A Methodology for Determining the Power of MANOVA when the Observations are Serially Correlated" by Norviel R. Pyrich, CPT, Artillery.

A METHODOLOGY FOR DETERMINING THE POWER OF MANOVA
WHEN THE OBSERVATIONS ARE SERIALLY CORRELATED

A THESIS
Presented to
The Faculty of the Division
of Graduate Studies
By
Norviel Robert Eyrich

In Partial Fulfillment
of the Requirements for the Degree
Master of Science in Operations Research

Georgia Institute of Technology
December, 1975
A METHODOLOGY FOR DETERMINING THE POWER OF MANOVA WHEN THE OBSERVATIONS ARE SERIALLY CORRELATED

Approved:

Douglas C. Montgomery, Chairman
Leslie G. Callahan, Jr.
Russell G. Heikes

Date approved by Chairman: 5 Dec 75
ACKNOWLEDGMENTS

I would like to express my appreciation to all those who assisted me in preparing this thesis. I am particularly grateful to the members of my reading committee for their guidance and patience which greatly aided me in accomplishing this research.
TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS ... ii
LIST OF TABLES ... v
LIST OF ILLUSTRATIONS vi
SUMMARY .. vii

Chapter

I. INTRODUCTION ... 1
 Background
 Objective, Procedure, and Scope

II. REVIEW OF STATISTICAL RESULTS AND TECHNIQUES 7
 Introduction
 Univariate Analysis of Variance
 Multivariate Analysis of Variance
 Correlation Analysis
 Analysis of Multivariate Time Series
 Generation of Multivariate Time Series

III. MANOVA POWER GENERATION 33
 Introduction
 MANOVA Power Criteria
 Monte Carlo Power Generation
 MANOVA Power Generation Procedure

IV. INVESTIGATION OF THE EFFECTS OF A MULTIVARIATE TIME SERIES ON THE MANOVA POWER FUNCTION 38
 Introduction
 Analysis of the Effects
 Conclusions
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Experimental Design #1</td>
<td>41</td>
</tr>
<tr>
<td>2.</td>
<td>Experimental Design #2</td>
<td>41</td>
</tr>
<tr>
<td>3.</td>
<td>Complete ANOVA for Experiment 1</td>
<td>42</td>
</tr>
<tr>
<td>4.</td>
<td>Complete ANOVA for Experiment 2</td>
<td>44</td>
</tr>
<tr>
<td>5.</td>
<td>MOE Maximum Sample Sizes and Departures</td>
<td>65</td>
</tr>
<tr>
<td>6.</td>
<td>MOE Sample Sizes for Required Power</td>
<td>66</td>
</tr>
<tr>
<td>7.</td>
<td>MOE Power 1</td>
<td>67</td>
</tr>
<tr>
<td>8.</td>
<td>MOE MANOVA Power 2</td>
<td>68</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Plot of the Effects of the First Factorial Experiment on Normal Probability Paper</td>
<td>46</td>
</tr>
<tr>
<td>2.</td>
<td>Plot of the Effects of the Second Factorial Experiment on Normal Probability Paper</td>
<td>47</td>
</tr>
<tr>
<td>3.</td>
<td>Graphical Results of Experiment 1</td>
<td>49</td>
</tr>
<tr>
<td>4.</td>
<td>Graphical Results of Experiment 2</td>
<td>50</td>
</tr>
</tbody>
</table>
SUMMARY

This research addresses two related problems of multivariate statistical analysis. First, the effects of a multivariate time series on the MANOVA power function are investigated through the use of an experimental design. Second, a generalized procedure is developed for incorporating the multivariate time series into the MANOVA power function so that the effectiveness of ANOVA and MANOVA models in evaluating command and control systems, on the basis of powers of the tests, may be made.

In order to make the analysis possible, a procedure to determine the power of MANOVA test was required. The MANOVA power function is not known in a closed or usable form; consequently, a Monte Carlo procedure was used to determine the power of the MANOVA test. The maximum likelihood form of the MANOVA test statistic was utilized due to its ease of computation.

Previous research has found the following general results to hold for the MANOVA power function:

1. Power is a decreasing function of the dimension of the multiresponse.
2. Power is an increasing function of the size departure from the null hypothesis.
3. Power is an increasing function of sample size.
4. Power is an increasing function of the probability of Type I error.

5. Power is an increasing function of \(-\log |P|\), where \(P\) is the correlation matrix of the multi-response.

An investigation of the effects of a multivariate time series on the MANOVA power function would have little meaning without simultaneously considering the other factors which influence the power function. Two full \(2^5\) factorial experiments, using the factors in 2-5 above and exponentially decaying autocorrelated response vectors as factors, were run and analyzed using ANOVA. The results verify statements 2-5 and indicate the MANOVA power is an increasing function of the autocorrelation coefficient. In addition, many two factor interactions were found to be significant indicating an extremely complex interrelationship between the various factors.

The power of the MANOVA appears to be a decreasing function of the dimension of the response, as in 1 above. It was found that the dimension of the response could not be separated from the other factors and thus the two experiments were run with the dimension of the response, \(p\), set at 2 and 3. There is a decrease in the power from \(p = 2\) to \(p = 3\), with other factors held constant, lending support to the hypothesis; however, there is no statistical evidence to support the statement.
To accomplish the second objective a procedure is proposed which uses the MANOVA Monte Carlo procedure, for comparing the effectiveness of the ANOVA with MANOVA for a multivariate time series. An example of the use of this procedure is given. A FORTRAN IV listing of the MANOVA Monte Carlo power program is also included.
CHAPTER I

INTRODUCTION

Background

Department of the Army Major Systems Acquisition Procedure

The acquisition of major defense systems by the Department of Defense is accomplished through the use of a well defined decision procedure with safeguards to prevent the acquisition of unsatisfactory or unnecessary systems. The procedure used by the Department of the Army closely parallels that of the Department of Defense and is an essential element of the Department of Defense acquisition procedure. Measures are taken to insure that only those systems for which a valid need exists are acquired by the Department of Defense. The measures are discussed at some length in various Department of Defense directives [7,22,23].

After the Army staff has determined a valid requirement exists for a proposed system, the system must pass through three phases prior to full production. The first phase is the conceptional development phase during which the system hardware is in an experimental prototype configuration. The second phase is the full scale development phase during which the systems hardware is in an engineering development prototype configuration. The third phase is the full scale
development phase during which the systems hardware is in a production prototype configuration [7].

At each phase transition point the Secretary of Defense may terminate the system, permit the system to proceed to the next phase, or retain the system in its present phase for remedial action [23]. To assist the Secretary of Defense in these decisions a permanent advisory body, the Defense Systems Acquisition Review Council (DSARC), is in being. The DSARC provides information and recommendations to the Secretary of Defense whenever program decisions become necessary. A scheduled meeting of the DSARC precedes the Secretary of Defense's decision concerning the disposition of a system at each phase transition point.

Within the Department of the Army there exists a permanent advisory body, the Army Systems Acquisition Review Council (ASARC), which provides the DSARC with the Army's recommendations at each phase in the acquisition process. The ASARC is chaired by the Vice Chief of Staff of the Army and has as its principal members the Commander U. S. Army Material Command, the Commander U. S. Army Training and Doctrine Command, the Chief of Research, Development, and Acquisition, and various assistant secretaries of the Army. Scheduled meetings of the ASARC precede those of the DSARC.

Requirement for Testing

Normally three distinct Developmental Tests (DT) and
Operational Tests (OT) are conducted for each major system. One DT and OT is conducted prior to the three meetings of the ASARC and DSARC. Results of the DT and OT at each phase are reported directly to the ASARC for inclusion in its recommendations to the DSARC. The DT and OT are required to be evaluated independently of each other [7].

DT is conducted to determine if the engineering design and development is complete, to determine if design risks have been minimized, and to determine if the system will meet its specifications. OT is conducted to estimate the system's military worth in comparison with competitor systems, to determine its operational effectiveness and suitability in its environment, and to determine if the system requires modification [7]. This research will be concerned with OT only.

Operational Testing

The U. S. Army Test and Evaluation Agency is designated as the agency responsible for OT on major defense systems [5,6]. OT will emphasize the comparative evaluation of the new system with existing systems and competitor developmental systems. The OT agency is independent of the developing/procuring and using organization. OT is accomplished using typical users/operators, crews, or units in as realistic an operational environment as possible. OT is conducted to provide the necessary data to estimate:

1. The military utility, operational effectiveness,
and operational suitability of the system.

2. The system's desirability, operational benefits, and burdens from the user's viewpoint.

3. The need for modification of the system.

4. The adequacy of doctrine, organization, operating techniques, tactics, and training for the system.

5. The adequacy of maintenance support for the system.

6. The system's performance in a countermeasures environment.

Command and Control Systems

In recent years the U. S. Army has expended a great deal of money and time to develop and deploy sophisticated tactical command and control systems. Tactical command and control systems currently under development include the Tactical Operations System (TOS), a division level command and control system; TSQ-73, an air defense command and control system; and TACFIRE, air artillery fire control and fire support command and control system.

Measures of effectiveness employed in the evaluation of command and control systems vary; however, the measures of effectiveness are rarely independent [58]. For instance, the fraction of available time passed to subordinate echelons and time required to prepare staff actions, two possible measures of effectiveness, are highly correlated [58].

Both analysis of variance (ANOVA) and multivariate analysis of variance (MANOVA) appear to be appropriate
statistical methods to be used for analysis of command and control experimental data. Recent research has developed a methodology for determining which statistical method, or combination of methods, is most appropriate for a particular system [16]. This research has not, however, considered that in addition to the various measures being correlated, that in the case of computer assisted systems they may also constitute a multivariate time series. A promising area of research appears to exist in developing a methodology for identifying, analyzing, and incorporating this additional information into the methodology developed by Burnette for determining the appropriateness and effectiveness of ANOVA and MANOVA in the analysis of command and control systems [16].

Objective, Procedure and Scope

The primary objective of this research is to investigate the effects of a multivariate time series on the MANOVA power function and develop a methodology for incorporating time series information into the MANOVA power generator previously developed by Burnette [16]. Using the methodology developed by Burnette for comparing the effectiveness of the ANOVA and MANOVA the methodology will be demonstrated.

The scope of this research will be limited by four assumptions. First, due to the standard scenarios used in OT, only the fixed effects model of the ANOVA and MANOVA will be considered appropriate. Second, equal cell sample sizes
only will be considered appropriate. Third, due to the high cost and time factor in training more than one command and staff group to operate each alternative command and control system, operators of the alternative system will not be considered a factor. Fourth, for practical reasons only stationary multivariate time series will be considered. To limit the computer programming involved only two factor completely crossed designs will be considered. In addition, only those elements of ANOVA necessary to demonstrate the methodology will be reviewed. Burnette has an excellent discussion of the ANOVA model if additional information is required.
CHAPTER II

REVIEW OF APPLICABLE STATISTICAL RESULTS AND TECHNIQUES

Introduction
This chapter is a brief review of statistical results and techniques necessary to develop a methodology for use in comparing the applicability of ANOVA with MANOVA. The essential elements of time series analysis necessary to incorporate this information into the MANOVA power function will also be reviewed.

Univariate Analysis of Variance
The appropriate univariate statistical model for comparing several systems is analysis of variance (ANOVA). The model and assumptions for the two-factor case will be reviewed. These results may be easily extended to the general case. Only completely crossed designs and fixed-effects models will be considered.

Model and Required Assumptions
The two-factor fixed-effects ANOVA model is
\[y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + e_{ijk} \quad (2.1) \]

\[i = 1, \ldots, a \]
\[j = 1, \ldots, b \]
\[k = 1, \ldots, n \]

\(\mu \) is the mean effect common to all observations, \(\alpha_i \) is the effect due to level \(i \) of factor A, \(\beta_j \) is the effect due to level \(j \) of factor B, \(\gamma_{ij} \) is the effect due to the interaction of level \(i \) of factor A and level \(j \) of factor B, \(e_{ijk} \) is the effect due to random error in the \(k \)th observation with factor A at level \(i \) and factor B at level \(j \) [34].

The following assumptions are necessary for estimation, inference and hypothesis testing.

\[
\sum_{i=1}^{a} \alpha_i = 0 = \sum_{j=1}^{b} \beta_j \quad (2.2)
\]

\[
\sum_{i=1}^{a} \alpha_{ij} = 0 \quad j = 1, \ldots, b \quad (2.3)
\]

\[
\sum_{j=1}^{b} \alpha_{ij} = 0 \quad i = 1, \ldots, a \quad (2.4)
\]

\(e_{ijk} \) are distributed independently \(N(0, \sigma^2) \) \quad (2.5)
Hypothesis Testing

Appropriate hypotheses we may want to test include:

\(H_{10} : \) No effect due to factor A or \(\alpha_i = 0, \ i = 1, \ldots, a \)
against

\(H_{11} : \) Not \(H_{10} \)

\(H_{20} : \) No effect due to factor B or \(\beta_j = 0, \ j = 1, \ldots, b \)
against

\(H_{21} : \) Not \(H_{20} \)

\(H_{30} : \) No effect due to interaction or \(\gamma_{ij} = 0, \)
\[\begin{align*}
 i &= 1, \ldots, a \\
 j &= 1, \ldots, b
\end{align*} \]
against

\(H_{31} = \) Not \(H_{30} \)

The ANOVA test procedure consists of partitioning the total variation in the observations into the contributions due to main effects, the interaction, and the error component. For the two factor model the partitioning is:

\[SS_T = SS_A + SS_B + SS_{AB} + SSE. \] \((2.6) \)

Methods for determining the sums of squares are well known and will not be elaborated on here [34].

The test statistic for use in the ANOVA model is based upon the F distribution. The null hypothesis, say \(H_{10} : \) no effect due to factor A, would be rejected if:
where $F_{a-1,ab(n-1)}$ is the upper $(1-\alpha)$ percentage point of the F distribution with $(a-1)$ numerator degrees of freedom and $ab(n-1)$ denominator degrees of freedom [34]. Similar test statistics can be constructed for the other hypotheses.

When the ANOVA model is used the test for interaction effect should be made first. If the interactions are not found to be significant then we may test the hypothesis on the main effects. However, if we reject the hypothesis of no interaction effect then tests on main effects may have little meaning. For a further discussion, see Press [43].

Power of the Analysis of Variance

When constructing hypotheses there are two probability measures we are concerned with. First, the probability of rejecting the hypothesis given it is true; or α. Second, the probability of rejecting the hypothesis given it is false, or the power of the test, $(1-\beta)$. It has been shown that the alternative hypothesis is distributed as a non-central F distribution. Pearson and Hartley [34] have constructed charts which plot the probability of type II error $(1$-power) for various $V1$, $V2$, α, and parameter ϕ, where for the case of H_{10}

\[
F_0 = \frac{SS_A/(a-1)}{SS_E/ab(n-1)} > F_{a-1,ab(n-1)}
\]
\[V_1 = a - 1 \]
\[V_2 = ab(n-1) \]

\[\phi^2 = \frac{2}{a} \lambda \]
\[\lambda = \frac{n}{\sum_{i=1}^{a} \alpha_i^2} \]

(2.8)

Since \(\sigma^2 \) is seldom known the ratio of \(\frac{\sum_{i=1}^{a} \alpha_i^2}{\sigma^2} \) which you desire to detect is normally used.

Multivariate Analysis of Variance

Model and Required Assumptions

The appropriate multivariate model for comparing several multiresponse systems is the multivariate analysis of variance (MANOVA). The model and assumptions for the two-factor case will be reviewed and may easily be extended to the general case. Only the fixed-effects model will be considered.

The two-factor fixed-effects model is

\[Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk} \]

(2.9)

\((PX1)(PX1)(PX1)(PX1)(PX1)\)

\(i = 1, \ldots, a, j = 1, \ldots, b, k = 1, \ldots, n\)
The vector η is the effect common to all observations. The vector a_i is the effect due to level i of factor A, the vector β_j is the effect due to level j of factor B, and the vector γ_{ij} is the interaction effect due to level i of factor A and level j of factor B. The vector e_{ijk} is the effect due to the random error with factor A at level i and factor B at level j on the kth observation [46,52].

Several assumptions are necessary for estimation, inference, and hypothesis testing. The following assumptions are made concerning the effects due to levels of factors and interactions:

\[
\sum_{i=1}^{a} a_i = \phi = \sum_{j=1}^{b} \beta_j \quad (2.10)
\]

\[
\sum_{i=1}^{a} \gamma_{ij} = \phi \quad j = 1, \ldots, b \quad (2.11)
\]

\[
\sum_{j=1}^{b} \gamma_{ij} = \phi \quad i = 1, \ldots, a \quad (2.12)
\]

e_{ijk} are independently distributed $N(\phi, \Sigma)$, $\Sigma > \phi$.

Hypothesis Testing

The hypotheses we might want to test include:

H_{10}: No effect due to factor A or $a_i = \phi \quad i = 1, \ldots, a$ against

H_{11}: Not H_{10}
\(H_{20} \): No effect due to factor B or \(\beta_j = \phi \) \(j = 1, \ldots, b \) against

\(H_{21} \): Not \(H_{20} \)

and

\(H_{30} \): No effect due to the interaction or \(\gamma_{ij} = \phi \)

\(i = 1, \ldots, a \)

\(j = 1, \ldots, b \)

against

\(H_{31} \): Not \(H_{30} \)

There are three widely used MANOVA hypothesis testing criteria. They are the likelihood ratio criterion, the trace criterion, and the largest characteristic root [44]. The likelihood ratio criterion will be used due to its ease of computation and attendant power considerations [54]. The likelihood ratio criterion requires, for the two-factor case, that the dimension of the response, \(p \leq ab(n-1) \) [46].

The MANOVA hypothesis testing procedure consists of partitioning the total variation of the observations in a manner similar to the ANOVA partitioning. Specific computational formulae will not be given; however, relevant matrices will be defined.

\[E \] --matrix of error sums of squares and cross products.

\[H^{1} \] --matrix of factor A sums of squares and cross products.

\[H^{2} \] --matrix of factor B sums of squares and cross products.
The likelihood ratio test for $H_{10}: \alpha_1 = \phi$ is to reject H_{10} if

$$\frac{|E|}{|\tilde{E} + H_1|} < \text{Constant} \quad (2.13)$$

under H_{10}.

$$\mathcal{L}\left\{\frac{|E|}{|\tilde{E} + H_1|}\right\} = \mathcal{L}\{U_p, q_1, n\}$$

where p is the dimension of the response, $q_1 = a - 1$, and $n = ab(n-1)$. Thus, we reject H_{10} if the test statistic is less than $U_{p, q_1, n}$. The values of U are determined using a second order χ^2 approximation developed by Box [10, 46].

The test statistics for H_{20} and H_{30} are found similarly.

The hypothesis of no interaction effect is conducted first. If we fail to reject this hypothesis, we would then test the hypotheses on the main effects. If we reject the hypothesis of no interaction effects, we must use other techniques to determine if the main effects are significant [46].

Power of the Multivariate Analysis of Variance

The power function of the MANOVA test criteria is not available in closed form. Recently, the noncentral
distributions of the largest characteristic root and likelihood ratio statistics have been studied; however, to date research has not yielded a useable power function for the MANOVA tests. Roy, Mikhail [53], and others have shown that the MANOVA power is a monotonically increasing function of the noncentrality parameters of the criteria distribution [53]. Gnanadisikan [54], using Monte Carlo methods, showed that the MANOVA test power is monotonically decreasing with increasing dimension of the response, p, and is monotonically increasing with increasing probability of type I error. The lack of a usable power function has resulted in most research being accomplished via Monte Carlo simulations.

Correlation Analysis

Simple Correlation

If multivariate statistical analysis is to be appropriate it is necessary to have at least two measures which are significantly correlated. The most elementary expression of correlative structure involves the simple correlation coefficient, ρ. Let \(y_1, y_2, ..., y_n \) be \(n \) independent observations of a \(p \)-dimensional random vector \(Y \). The covariance between the \(i \)th and \(j \)th component of \(Y \), \(Y^i \) and \(Y^j \) is

\[
\sigma_{ij} = \text{COV}(Y^i, Y^j) = E[(Y^i - EY^i)(Y^j - EY^j)]
\] (2.14)
where \(\sigma_{ii} \) is the variance of \(Y^i \). The pxp matrix of population covariances is defined as

\[
\Sigma = (\sigma_{ij}) \tag{2.15}
\]

The correlation coefficient between \(Y^i \) and \(Y^j \) is defined as

\[
\rho_{ij} = \frac{\sigma_{ij}}{(\sigma_{ii} \sigma_{jj})^{1/2}} \quad -1 \leq \rho_{ij} \leq 1 \tag{2.16}
\]

The pxp matrix of population correlation coefficients is defined as

\[
\rho = (\rho_{ij}) \tag{2.17}
\]

The sample covariance matrix, \(S \), and the sample correlation matrix, \(R \), are found by replacing the population covariances and correlations with their maximum likelihood estimators. Thus, the sample correlation coefficient between \(Y^i \) and \(Y^j \) is

\[
r_{ij} = \frac{S_{ij}}{(S_{ii} S_{jj})^{1/2}} \quad -1 \leq r_{ij} \leq 1 \tag{2.18}
\]

where \(S_{ij} \) is the maximum likelihood estimator of \(\sigma_{ij} \).

Fisher has shown that under the assumption of joint normality the transformation
\[Z = \tanh^{-1} r_{ij} \quad (2.19) \]

produces an asymptotic normal variate with mean

\[q \approx \frac{1}{2} \log \left(\frac{1+\rho_{ij}}{1-\rho_{ij}} \right) \quad (2.20) \]

and variance

\[\text{Var} (Z) \approx \frac{1}{N-3} \quad (2.21) \]

when \(N \), the number of observations, becomes large.

Using the \(Z \)-transform it is possible to test

\[H_0 : \rho_{ij} = \rho_0 \]

against

\[H_1 : \rho_{ij} \neq \rho_0 . \]

The hypothesis is rejected if

\[|Z - q_0| \sqrt{N-3} > z_{\alpha/2} \quad (2.22) \]

where \(q_0 \) is the \(z \)-transform of \(r = \rho_0 \) and \(z_{\alpha/2} \) is the upper 100 \((1-\alpha/2)\) percentage point of the standard normal
Multiple Correlation

For a p-dimensional response vector the multiple correlation coefficient, P_i, of one response component, P_i, with a linear combination of the other $p-1$ response components is defined as

$$P_i = \max \text{corr} (y^i, \vec{a}^i \vec{X})$$

(2.23)

where \vec{a} is a $p-1$ dimensional contrast vector and \vec{X} is the vector of the other $p-1$ response variables. P_i is the largest possible correlation between Y_i and any linear combination of the remaining $p-1$ response variables. The sample multiple correlation coefficient may be determined from either the sample correlation matrix or the sample covariance matrix. To find the multiple correlation of Y_i, rearrange the appropriate matrix by replacing the 1st response with the ith response and partition the matrix. When using the sample covariance matrix the partitioning is as follows

$$
\begin{pmatrix}
S_{11} & S_{12} \\
S_{12} & S_{22}
\end{pmatrix}
$$

(2.24)

where S_{11} is now S_{ii}, S_{22} is the $p-1$ covariance matrix of the remaining response components, and S_{12} is the $p-1$ vector...
of sample correlations between response \(i \) and the other \(P-1 \) response components. With the matrix so partitioned the multiple correlation coefficient, \(R_i \), is defined as

\[
R_i^2 = \frac{R_i^2 = \frac{S_{12} S_{22}^{-1} S_{12}}{S_{11}}} {S_{11}} \tag{2.25}
\]

The appropriate hypothesis to determine if \(Y^i \) is independent of the remaining response components is to test

\[
H_0 : P_i = 0
\]

against

\[
H_1 : P_i > 0
\]

The hypothesis would be rejected if

\[
Q = \frac{R_i^2 (n-p)}{1-R_i^2 (p-1)} > F_{\alpha, p-1, n-p} \tag{2.26}
\]

where \(n \) is the number of observations, \(p \) is the dimension of the response, and \(F \) is the upper 100 \((1-\alpha)\) percentage point of the \(F \) distribution [46].

Independence of K Variates

To determine if a set of \(k \) multivariate normal
response variates are independent can be accomplished by testing

\[H_0 : P = I \]

against

\[H_1 : P \neq I \]

where \(P \) is the \(k \times k \) population correlation matrix and \(I \) is the \(k \times k \) identity matrix. The null hypothesis is rejected if

\[
\chi^2 = -(N-1 - \frac{2k+5}{6}) \log |R| > \chi^2_{\alpha,1/2, k(k-1)}
\]

where \(N \) is the number of independent observations, \(R \) is the \(k \times k \) sample correlation matrix, and \(\chi^2 \) is the upper-tail \(\chi^2 \) distribution \([44]\). This test is appropriate prior to any multivariate analysis.

Independence of k sets of Variates

In addition to determining if a set of \(k \) responses are independent, it will also be of interest to determine if \(k \) sets of multivariate normal variates are mutually independent. If the \(j \)th of the \(k \)th sets contains \(P_j \) variates, then the gross covariance matrix may be partitioned into submatrices \(\Sigma_{ij} \) of dimension \(P_i \times P_j \). The appropriate
hypothesis to test is

\[H_0 : \sum_{ij} = \phi \text{ for } i \neq j \]

against

\[H_1 : \sum_{ij} \neq \phi \quad i \neq j. \]

For \(N \) independent observations from a multivariate normal population, compute \(R \), the sample correlation matrix, and partition as above. To test \(H_0 \) use the test statistic

\[V = \frac{|R|}{|R_{11}| |R_{22}| \cdots |R_{kk}|}. \tag{2.28} \]

It has been shown the statistic

\[\chi^2_0 = -\frac{(N-1)}{C} \log V - \chi^2_{\alpha,f} \tag{2.29} \]

where

\[C^{-1} = 1 - \frac{(2S_1 + 3S_2)}{12f(N-1)} \tag{2.30} \]

\[f = S_2/2 \]

\[S_j = \sum_{i=1}^{k} \rho_i j - \sum_{k=1}^{j} \rho_j i \quad j = 1, 2. \tag{2.31} \]
H₀ would be rejected if \(x₀^2 > x_{α,f}^2 \) [10,44].

Stationary Multivariate Time Series

Multivariate Time Series

When more than one measure of a time-varying process is required to properly describe its behavior, then the process is called a multivariate (vector, multidimensional) time series. Thus, the position or state of the process at each instant of time can be represented by a vector of time dependent measurements

\[
X_t = \begin{pmatrix}
X_1(t) \\
X_2(t) \\
\vdots \\
X_p(t)
\end{pmatrix}
\]

only those multivariate time series for which the components are univariate time series will be considered. This restriction appears to have little effect on the current investigation since it is reasonable to expect each component, or subset of the components, to exhibit this characteristic.

Univariate Stationary Time Series

A stochastic process is said to be strictly stationary if
\[P(X(t_1+\tau)\in S_1, \ldots, X(t_n+\tau)\in S_n) = \]

\[P(X(t_1)\in S_1, \ldots, X(t_n)\in S_n) \quad (2.32) \]

for all \(t_1 < \ldots < t_n \), real events \(S_1, \ldots, S_n \), and \(\tau, -\infty < \tau < \infty \). Note that the distributions depend on the relative time separations of the random variables and not their absolute time locations.

When the mean and variance of the random variables exist, it is easily established that stationarity implies

\[\mathbb{E}(x(t)) = \mathbb{E}(x(0)) = m \quad -\infty < t < \infty \quad (2.33) \]

and

\[\mathbb{E}(x(t) x(t+\tau)) = \mathbb{E}(x(\tau) x(0)) = C(\tau) \quad -\infty < t < \infty \quad (2.34) \]

Thus, the mean values are constant in time and the covariances depend on the time displacement \(\tau \), but not on \(t \). The function \(C(\tau) \) is called the autocovariance function.

If condition (2.32) is discarded and we assume only that the random variables of the process have the property

\[\text{Var} \, x(t) = C(0) < \infty \quad (2.35) \]

and satisfy properties (2.33) and (2.34), then the process is
said to be weakly stationary. Since the joint multivariate normal distributions of a Gaussian process, sometimes called a normal process, depend only on the mean vector and covariance matrix of the random variables and these functions have properties (2.33) and (2.34), the joint distributions will have property (2.32). Thus, stationarity and weak stationarity are equivalent for normal processes [41].

Identification of Time Series

There are a number of statistical tests available to determine if a set of time indexed observations constitute a significant autoregressive process or are pure white noise [30]. Perhaps the simplest and most commonly used procedure is periodogram analysis. Let

\[X_t = \sum_{v=1}^{p} (a_v \cos \lambda_v t + b_v \sin \lambda_v t) + \epsilon_t \]
(2.36)

where \(a_v, b_v, \) and \(\lambda_v \) are real constants with \(0 < \lambda_v < \pi \) and \(\epsilon_t \) is pure white noise. We desire to detect the periods \(2\pi/\lambda_v \) that have been masked by the random disturbances \(\epsilon_t \). For this purpose the following statistic has been proposed.

\[I_n(\lambda) = \frac{1}{2\pi n} \left| \sum_{t=1}^{n} X_t e^{-i\lambda t} \right|^2 = \frac{1}{4\pi} A^2(\lambda) + \frac{1}{4\pi} B^2(\lambda) \]
(2.37)

where
\[A(\lambda) = \sqrt{\frac{2}{n}} \sum_{t=1}^{n} x_t \cos t\lambda \quad (2.38) \]
\[B(\lambda) = \sqrt{\frac{2}{n}} \sum_{t=1}^{n} x_t \sin t\lambda \quad (2.39) \]

\(I_n(\lambda) \) is called the periodogram and is suggested by Fourier analysis treating the time series as if it were just the undisturbed trigometric sum.

R. A. Fisher developed a test procedure to determine the significance of the periods of the periodogram. Fisher's null hypothesis is that the process has no period, that is \(x_t = \varepsilon_t \), and the \(\varepsilon \)'s are distributed normally with unknown mean \(m \) and variance \(\sigma^2 \).

Let the number of observed values be odd, say \(n = 2m+1 \), and consider the \(m \) values of the periodogram at points
\[L_r = \frac{2\pi r}{2m+1}, \quad r = 1, \ldots, m. \]
Due to the orthogonality of the trigometric coefficients (2.38) and (2.39), the stochastic variables
\[A(L_r), \quad r = 1, \ldots, m \]
\[B(L_r), \quad r = 1, \ldots, m \]
are \(2m \) independent normal variables with mean zero and variance \(\sigma^2 \). Hence
\[\frac{S_r}{\sigma^2} = \frac{A^2(L_r) + B^2(L_r)}{\sigma^2} \quad r = 1, \ldots, m \quad (2.40) \]
are independent χ^2-variables. Define

$$g = \frac{\max S_i, i = 1, 2, \ldots, m}{(S_1 + S_2 + \ldots + S_m)} \quad (2.41)$$

where the values of S_i are computed using (2.40). The distribution of g under the null hypotheses is

$$P(g > \chi) = m(1 - \chi)^{m-1} - \frac{m(m-1)}{2} (1 - 2\chi)^{m-1} +$$

$$+ \frac{m(m-1)(m-2)}{3.2} (1 - 3\chi)^{m-1} - \ldots \quad (2.42)$$

where the summation should be extended as long as the terms in the brackets are positive. The null hypothesis, no period present is rejected if $g > g_p$, where g_p is some appropriate percentile of the distribution given by (2.42) [30].

Parameterization and Estimation of Multivariate Time Series

Once it has been determined that a time series is not only noise, it is important to determine the parameters which fully describe the system. For a discrete time series the system is adequately described by the matrix

$$C(\tau) = \begin{pmatrix} C_{1,1}(\tau) & C_{1,2}(\tau) & \cdots & C_{1,p}(\tau) \\ C_{2,1}(\tau) & C_{2,2}(\tau) & \cdots & C_{2,p}(\tau) \\ \vdots & \vdots & \ddots & \vdots \\ C_{p,1}(\tau) & C_{p,2}(\tau) & \cdots & C_{p,p}(\tau) \end{pmatrix} \quad (2.43)$$
where \(C_{jj}(\tau) \) is the auto-covariance of the \(j \)th component and \(C_{jk}(\tau) \) is the cross-covariance of the \(j \)th and \(k \)th components. \(C(\tau) = [C_{j,k}(\tau)] \) is a positive definite matrix [51].

For the purpose of estimation usually at least 50 observations are necessary. In addition, for useful results only the first \(K \leq N/4 \) autocovariance and crosscovariance coefficients are useful [38]. The theoretical autocorrelation for a \(p \)-dimensional multivariate time series is

\[
C_{ii}(\tau) = E[(X_i(t) - \mu)(X_i(t+\tau) - \mu)] \quad \tau = 0, 1, 2, \ldots
\]

\(i = 1, \ldots, p \)

The theoretical autocorrelation function is never known with certainty and must be estimated. A satisfactory estimate of \(C_{ii}(\tau) \) is the sample autocorrelation function.

\[
\hat{C}_{ii}(\tau) = \frac{1}{N-\tau} \sum_{t=1}^{N-\tau} (X_i(t))(X_i(t+\tau))^\top \quad \tau = 0, 1, \ldots
\]

\(i = 1, \ldots, p \)

\[(2.44) \]

where \(N \) is the number of observations, \(i \) is the component of time series, and \(\tau \) is the lag. The crosscorrelation function may be estimated as follows

\[
\hat{C}_{ij}(\tau) = \frac{1}{N-\tau} \sum_{t=1}^{N-\tau} (X_i(t)(X_j(t+\tau)) \quad \tau = 0, 1, \ldots
\]

\(i \neq j \)

\(i, j \leq p \)
where N is the number of observations, i and j are the components, and τ is the lag.

Within the literature there are a number of statistical tests available for the analysis of multivariate time series. For example, test statistics similar to (2.19), simple correlation, and (2.26), multiple correlation, may be constructed. However, these tests are based on spectral distributions that are specified in the frequency domain and are not particularly relevant to the current development. If the reader is interested, an excellent discussion is contained in [41].

Generation of Multivariate Time Series

Generation of Univariate Normal Random Variates

To investigate the MANOVA power function in the presence of a multivariate time series it will be necessary to generate a multivariate time series. In order to generate these time series we require a procedure to generate independent univariate normal deviates. A number of procedures are available, however, the method proposed by Box and Muller appears to be the most efficient [45]. Let U_j and U_{j+1} be independent deviates from a uniform $(0,1)$ distribution; these deviates can be obtained from any valid uniform deviate generator. To generate the $N(\mu, \sigma^2)$ variates the uniform deviates are transformed as follows:
\[X_j = \mu + (-2\sigma^2 \log U_j)^{1/2} \cos(2\pi U_{j+1}) \] \hspace{1cm} (2.46)

\[X_{j+1} = \mu + (-2\sigma^2 \log U_j)^{1/2} \sin(2\pi U_{j+1}) \] \hspace{1cm} (2.47)

\(X_j \) and \(X_{j+1} \) will be independent variates from \(N(\mu, \sigma^2) \) [13].

Generation of Multivariate Time Series

There are two specific cases under which we may desire to generate multivariate time series. First, it may be desired to generate a multivariate time series based on a subjective estimate of the autoregression of \(X_t \) on \(X_{t-1} \). This may occur when insufficient observations are available to accurately determine the autocorrelation and cross-correlation structure of the response but it is felt the structure does exist. Second, sufficient observations are available and all parameters have been determined. Each procedure will be developed below.

When only a subjective estimate of the autoregressive structure of the time series is available a rather simple procedure may be developed for generating the time series. In order to generate \(p \)-dimensional random vectors from the multivariate normal population \(N(\mu, \Sigma) \) we use a fundamental theorem of multivariate analysis. If \((Z_1, Z_2, \ldots, Z_p)\) are \(p \) independent observations from \(N(0,1) \), then the \(p \)-dimensional vector, \(\tilde{X} \) from \(N(\mu, \Sigma) \) may be represented as
\[X = \tilde{C} Z + \mu \]
(2.48)

where \(\tilde{C} \) is a unique lower triangular matrix satisfying (2.49).

\[\Sigma = \tilde{C} \tilde{C}' \]
(2.49)

The matrix \(\tilde{C} \) may be computed by the routine reported by Scheuer and Stoller [50].

We may generate autocorrelated vectors, each with the same autoregressive structure and exponential decay, by a simple change to the above procedure. For the univariate case it is known that exponential smoothing is based on the recursive relationship

\[Z'_t = \lambda Z'_{t-1} + (1-\lambda)Z_t, \quad 0 < \lambda < 1 \]
(2.50)

where \(Z_t \) are mutually independent variables with mean zero and variance \(\sigma^2 \). We may apply (2.50) to each component of \(Z'_t \) to obtain an autocorrelated vector time series. Thus, the procedure is as follows:

1. Compute the \(\tilde{C} \) matrix.
2. Generate \(p \) independent variates from \(N(0,1) \) and designate \(Z_0 \).
3. Apply (2.48) to the above to get the 1st vector.
4. Generate P independent variates from $N(0,1)$ and designate Z_t, $t = 1, 2, \ldots$.

5. Apply (2.50) to each component of Z_t and Z_{t-1} to get the t^{th} observation, Z_t.

6. Repeat steps 2-5 until the desired number of observations have been generated.

When sufficient information is available to estimate all necessary information to fully describe the time series a different approach may be used. We have shown that a multivariate time series is adequately described by $C(\tau)$ (2.43). It is possible to construct a correlation matrix to fully describe the first k observations of a discrete multivariate time series as follows:

$$
\begin{bmatrix}
1 & 2 & \ldots & \rho & \ldots & 1 & 2 & \ldots & p \\
p & t & 0 & 0 & \ldots & 0 & k & k & \ldots & k \\
1 & 0 & 1 & \rho_{12}(0) & \ldots & \rho_{1p}(0) & \ldots & \rho_{11}(k) & \rho_{12}(k) & \ldots & \rho_{1p}(k) \\
2 & 0 & 1 & \ldots & \rho_{2p}(0) & \ldots & \rho_{21}(k) & \rho_{22}(k) & \ldots & \rho_{2p}(k) \\
\vdots & \vdots & \vdots & \ddots \\
p & 0 & 1 & \ldots & \rho_{p1}(k) & \rho_{p2}(k) & \ldots & \rho_{pp}(k) \\
\vdots & \vdots & \vdots & \ddots \\
1 & k & 1 & \rho_{12}(0) & \rho_{1p}(0) \\
2 & k & 1 & \rho_{2p}(0) \\
\vdots & \vdots & \vdots & \ddots \\
p & k & 1 & \rho_{pp}(0) \\
\end{bmatrix}
$$
where t is the time index, p is the component, and $\rho_{ij}(\tau)$ is the correlation of the i^{th} and j^{th} component at lag τ.

The k observations from the multivariate time series may then be generated as follows:

1. Compute the matrix Σ such that $\Sigma \Sigma^* = \Sigma$ where Σ is given by (2.51).
2. Generate kp independent variates from $N(0,1)$.
3. Apply (2.48) and separate the components to form the multivariate time series.

These two procedures will be of great utility in studying the effects of a multivariate time series on the MANOVA power function.
CHAPTER III
MANOVA POWER GENERATION

Introduction
To perform a meaningful analysis, we require a procedure which will enable us to obtain the power of the MANOVA test in a form useful to us in operational testing. Previous research has addressed this problem and only those points necessary for an adequate development will be reviewed. If further information is desired an excellent development is presented in [16].

MANOVA Power Criteria
Under the usual MANOVA assumptions we would be interested in determining the power of the test,

\[P \{\text{Reject } H_0 \mid H_0 \text{ is false} \} , \quad (3.1) \]

in terms of the hypothesis we are testing. As in the case of the ANOVA (2.8), the MANOVA power function appears to be directly related to the departures you desire to detect. Three useful forms of the departures have been proposed [16].

The departures may be specified in either euclidean norm, supremum norm, or individual component departures. Thus, the euclidean norm is
\[D_2 = \left\| \frac{a}{\sigma_{11}} \sum_{i=1}^{\alpha_i} (a_i^1)^2, \frac{a}{\sigma_{22}} \sum_{i=1}^{\alpha_i} (a_i^2)^2, \ldots, \frac{a}{\sigma_{pp}} \sum_{i=1}^{\alpha_i} (a_i^p)^2 \right\| \quad (3.2) \]

where \(\alpha_i^j \) is the departure of the \(i \)\(^{th} \) level of factor A on component \(j \). The Supremum norm is

\[D_s = \max_j \frac{a}{\sigma_{jj}} \sum_{i=1}^{\alpha_i} (a_i^j)^2 \quad j = 1, 2, \ldots, p \quad (3.3) \]

If individual component departures are to be specified we would desire to detect

\[D_j = \frac{a}{\sigma_{jj}} \sum_{i=1}^{\alpha_i} (a_i^j)^2 \quad (3.4) \]

where the other \(p-1 \) component departures are set at levels from the distribution uniform \((0, D_j/R)\) where \(R = 1, 2, \ldots \), to be selected.

Monte Carlo Power Generation

A Monte Carlo approach to determining the power of the MANOVA appears appropriate and necessary since the MANOVA power function is not available in a usable form. Our general approach will be to generate random observations which satisfy the MANOVA model, the multivariate time series, and the size and type component departures we desire to detect. Once we generate the observations, we compute the MANOVA test to determine whether to reject the null hypothesis.
and record the results. We repeat this procedure a large number of times and the power of the test is the ratio of the number of times we rejected the null hypothesis to the total number of tests conducted.

In addition to the usual MANOVA calculations, with sample size \(n \), and component departures we desire to detect, we must be able to accomplish the following:

1. Randomly assign the \(p \) component departures in such a manner that they satisfy the MANOVA power criteria we desire to use.

2. For each \(j = 1, \ldots, p \) randomly assign the \(a_j \) components, \(a_j^j \), for each \(D_j \) such that
 \[
 \frac{1}{\sigma_{jj}} \sum_{i=1}^{a} \frac{(a_i^j)^2}{\sigma_{ij}} = D_j \quad \text{and} \quad \sum_{i=1}^{a} a_i^j = 0.
 \]

3. Obtain an estimate of the response correlation structure in the form of a \(p \times p \) correlation matrix.

4. Generate a \(p \)-dimensional multivariate time series of error vectors.

Procedures to accomplish items 1 through 3 are covered in detail by Burnette [16]. Item 4 has been previously discussed in Chapter II.

MANOVA Power Generation Procedure

In order to simplify our computations, we will use a standardization transformation on all responses. This transformation is:
For original γ distributed $N(\mu, \Sigma)$, the transformed γ^* will be distributed $N(\phi, \Sigma)$, where Σ is the population correlation matrix. It should be noted at this point that the MANOVA test procedure requires the population correlation matrix and must be estimated from the transformed observations. The observations will be generated such that they compose a multivariate time series. This transformation will greatly simplify the MANOVA power calculations and permit us to express the component departures in standardized units of component variances of 1.

The procedure we will use to determine the power of the MANOVA test for a given probability of type I error, α, sample size, n, is as follows:

1. Select the MANOVA model, for example, a completely crossed, two factor, p-dimensional MANOVA model.
2. Estimate the multivariate time series parameters.
3. Select the hypothesis to be tested, for example, no effect due to factor A.
4. Select the size and type component departures we desire to detect.
5. Select the number of Monte Carlo iterations, NR, we desire to run.
6. For each Monte Carlo iteration, randomly assign...
the component departures and component departure levels, as appropriate.

7. For each model index combination, for example, the two-factor MANOVA model above, generate an error vector e_{ijk} from the multivariate time series and apply the model with all effects levels zero except the effect being tested.

8. Compute the MANOVA test statistic, compare it with the critical value of the test, and record the results.

9. Repeat steps 5-8 NR-1 times.

10. Compute the power of the MANOVA test:

$$\text{power} = \frac{\text{number of hypothesis rejected}}{\text{NR}}$$

Previous experience has shown that NR 500 is adequate and will be used unless otherwise specified.

A complete FORTRAN IV program with necessary subroutines for use on the CDC CYBER 74 appears in Appendix A. The program is a conversion of the program developed and validated by Burnette for use on the UNIVAC 1108 [16]. The program has been modified to generate autocorrelated error vectors based on a subjective estimate of the autocorrelation structure. The program may be easily modified to generate error vectors when there is sufficient information to totally describe the multivariate time series.
CHAPTER IV

INVESTIGATION OF THE EFFECTS OF A MULTIVARIATE TIME SERIES ON THE MANOVA POWER FUNCTION

Introduction

We turn our attention now to a primary objective of this research; that is, investigating the effects of a multivariate time series on the MANOVA power function. In Chapters II and III we developed the procedures necessary to determine the power of the MANOVA test criteria for a given set of parameters. We have previously noted that the MANOVA power function is also dependent upon a number of other factors and any investigation would not be complete without simultaneously considering all parameters which affect the MANOVA power function.

Those factors which have been found are listed below for easy reference. They are:

1. Power is a decreasing function of the dimension of the multiresponse.
2. Power is an increasing function of the size departure from the null hypothesis.
3. Power is an increasing function of sample size.
4. Power is an increasing function of the probability of Type I error.
5. Power is an increasing function of $-\log |P|$, where P is the correlation matrix of the multiresponse.

We desire to construct an experiment which will enable us to simultaneously consider all factors which affect the MANOVA power function.

Analysis of Effects

It was decided that an appropriate method to simultaneously investigate the effects would be to use a factorial design and analyze the results by ANOVA. Prior to selecting the design, either a 2^k or a 3^k, it was necessary to determine if the main effects were linear or of some higher order. Thus, six individual experiments were conducted to determine the nature of the main effects. In each experiment the effect under investigation was varied over the range of interest while the other effects were held constant. In each case there appears to be a linear trend in the main effect, with the exception of the response dimension, and thus, it was felt that a 2^k experimental design would be appropriate.

The effect of the dimension of the response was investigated by the procedure described above. We found that the dimension of the response could not be separated from the other factors and thus could not be included as a factor. It was then decided to run two full 2^5 factorial experiments with the dimension of the response, p, set at 2 in the first and 3 in the second. By this procedure we hoped to be able
to determine visually if the power of the MANOVA did decrease with the dimension of the response.

The experimental design is shown in Tables 1 and 2 with the high and low levels of each factor in each experiment. The euclidean norm was specified in the MANOVA power generator and was adjusted so that the norm for \(p = 2 \) and \(p = 3 \) were of the same relative magnitude.

The experiments were run on the CDC Cyber 74 and the complete ANOVA for each are in Tables 3 and 4. The experiment was not replicated since the number of replications of the MANOVA power generator, \(NR = 500 \), results in little or no variation in the responses. The effects in each experiment were plotted on normal probability paper, Figures 1 and 2, in accordance with the procedure outlined by Montgomery in [43]. If the fourth and fifth order interactions fall along that portion of the plot where the effects may be represented by a straight line then ANOVA is appropriate. In both experiments this requirement is met and the error sums of squares is estimated using the fourth and fifth order interactions. The results of the ANOVA are given in Tables 3 and 4.

The analysis of both experimental designs verify that all main effects are highly significant. We also note that the results also indicate a number of second-order interactions are significant while no third-order interactions are significant. However, if we examine the percentage of total
Table 1. Experimental Design #1

| Factor Level | Response Dimension | Sample Size | Departure to Detect | Probability of Type I Error | Auto-Correlation Coefficient | Value of $|P|$ |
|--------------|--------------------|-------------|---------------------|-----------------------------|-------------------------------|---------|
| Low | 2 | 4 | .5 | .05 | .2 | .4 |
| High | 2 | 6 | 1.0 | .10 | .5 | .8 |

Table 2. Experimental Design #2

| Factor Level | Response Dimension | Sample Size | Departure to Detect | Probability of Type I Error | Auto-Correlation Coefficient | Value of $|P|$ |
|--------------|--------------------|-------------|---------------------|-----------------------------|-------------------------------|---------|
| Low | 3 | 4 | .61 | .05 | .2 | .4 |
| High | 3 | 6 | 1.225 | .10 | .5 | .8 |
Table 3. Complete ANOVA for Experiment 1

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F_o</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability of Type I error, α</td>
<td>1</td>
<td>202.5</td>
<td>202.5</td>
<td>14.25*</td>
</tr>
<tr>
<td>Autocorrelation Coefficient, λ</td>
<td>1</td>
<td>1,430.4</td>
<td>1,430.4</td>
<td>100.63*</td>
</tr>
<tr>
<td>α x λ</td>
<td>1</td>
<td>4.1</td>
<td>4.1</td>
<td>0.29</td>
</tr>
<tr>
<td>Norm to Detect, D_2</td>
<td>1</td>
<td>1,926.5</td>
<td>1,926.5</td>
<td>135.54*</td>
</tr>
<tr>
<td>α x D_2</td>
<td>1</td>
<td>45.8</td>
<td>45.8</td>
<td>3.22</td>
</tr>
<tr>
<td>λ x D_2</td>
<td>1</td>
<td>234.3</td>
<td>234.3</td>
<td>16.48*</td>
</tr>
<tr>
<td>α x λ x D_2</td>
<td>1</td>
<td>3.1</td>
<td>3.1</td>
<td>0.22</td>
</tr>
<tr>
<td>Sample Size, n</td>
<td>1</td>
<td>746.5</td>
<td>746.5</td>
<td>52.52*</td>
</tr>
<tr>
<td>α x n</td>
<td>1</td>
<td>6.1</td>
<td>6.1</td>
<td>0.43</td>
</tr>
<tr>
<td>λ x n</td>
<td>1</td>
<td>153.7</td>
<td>153.7</td>
<td>10.81**</td>
</tr>
<tr>
<td>α x λ x n</td>
<td>1</td>
<td>5.8</td>
<td>5.8</td>
<td>0.41</td>
</tr>
<tr>
<td>D_2 x n</td>
<td>1</td>
<td>118.3</td>
<td>118.3</td>
<td>8.33**</td>
</tr>
<tr>
<td>α x D_2 x n</td>
<td>1</td>
<td>.2</td>
<td>.2</td>
<td>0.01</td>
</tr>
<tr>
<td>λ x D_2 x n</td>
<td>1</td>
<td>31.0</td>
<td>31.0</td>
<td>2.18</td>
</tr>
<tr>
<td>The value of the Determinant,</td>
<td>1</td>
<td>2,268.0</td>
<td>2,268.0</td>
<td>159.56*</td>
</tr>
<tr>
<td></td>
<td>α x</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>52.9</td>
<td>52.9</td>
<td>3.72</td>
</tr>
<tr>
<td></td>
<td>λ x</td>
<td></td>
<td>P</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>287.2</td>
<td>287.2</td>
<td>20.21*</td>
</tr>
<tr>
<td></td>
<td>α x λ x</td>
<td></td>
<td>P</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>20.7</td>
<td>20.7</td>
<td>1.46</td>
</tr>
<tr>
<td>Source</td>
<td>df</td>
<td>SS</td>
<td>MS</td>
<td>F_0</td>
</tr>
<tr>
<td>--------</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>$D_2 \times</td>
<td>P</td>
<td>$</td>
<td>1</td>
<td>246.0</td>
</tr>
<tr>
<td>$\alpha \times D_2 \times</td>
<td>P</td>
<td>$</td>
<td>1</td>
<td>5.5</td>
</tr>
<tr>
<td>$\lambda \times D_2 \times</td>
<td>P</td>
<td>$</td>
<td>1</td>
<td>18.0</td>
</tr>
<tr>
<td>$n \times</td>
<td>P</td>
<td>$</td>
<td>1</td>
<td>92.4</td>
</tr>
<tr>
<td>$\alpha \times N \times</td>
<td>P</td>
<td>$</td>
<td>1</td>
<td>3.8</td>
</tr>
<tr>
<td>$\lambda \times n \times</td>
<td>P</td>
<td>$</td>
<td>1</td>
<td>52.0</td>
</tr>
<tr>
<td>$D_2 \times n \times</td>
<td>P</td>
<td>$</td>
<td>1</td>
<td>3.6</td>
</tr>
<tr>
<td>Error</td>
<td>6</td>
<td>85.3</td>
<td>14.2</td>
<td></td>
</tr>
</tbody>
</table>

*Indicates significance at the 1-percent level.

**Indicates significance at the 5-percent level.
<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>(F_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>1</td>
<td>948.7</td>
<td>948.7</td>
<td>209.20*</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>1</td>
<td>4,554.0</td>
<td>4,554.0</td>
<td>1,004.25*</td>
</tr>
<tr>
<td>(\alpha \times \lambda)</td>
<td>1</td>
<td>147.5</td>
<td>147.5</td>
<td>32.52*</td>
</tr>
<tr>
<td>(D_2)</td>
<td>1</td>
<td>2,842.6</td>
<td>2,842.6</td>
<td>626.85*</td>
</tr>
<tr>
<td>(\alpha \times D_2)</td>
<td>1</td>
<td>114.2</td>
<td>114.2</td>
<td>25.19*</td>
</tr>
<tr>
<td>(\lambda \times D_2)</td>
<td>1</td>
<td>544.6</td>
<td>544.6</td>
<td>120.11*</td>
</tr>
<tr>
<td>(\alpha \times \lambda \times D_2)</td>
<td>1</td>
<td>23.1</td>
<td>23.1</td>
<td>5.10</td>
</tr>
<tr>
<td>(n)</td>
<td>1</td>
<td>1,331.7</td>
<td>1,331.7</td>
<td>293.67*</td>
</tr>
<tr>
<td>(\alpha \times n)</td>
<td>1</td>
<td>72.9</td>
<td>72.9</td>
<td>16.08*</td>
</tr>
<tr>
<td>(\lambda \times n)</td>
<td>1</td>
<td>427.7</td>
<td>427.7</td>
<td>94.30*</td>
</tr>
<tr>
<td>(\alpha \times \lambda \times n)</td>
<td>1</td>
<td>10.0</td>
<td>10.0</td>
<td>2.21</td>
</tr>
<tr>
<td>(D_2 \times n)</td>
<td>1</td>
<td>91.2</td>
<td>91.2</td>
<td>20.11*</td>
</tr>
<tr>
<td>(\alpha \times D_2 \times n)</td>
<td>1</td>
<td>16.9</td>
<td>16.9</td>
<td>3.73</td>
</tr>
<tr>
<td>(\lambda \times D_2 \times n)</td>
<td>1</td>
<td>14.9</td>
<td>14.9</td>
<td>3.28</td>
</tr>
<tr>
<td>(\lvert P \rvert)</td>
<td>1</td>
<td>1,811.7</td>
<td>1,811.7</td>
<td>399.52*</td>
</tr>
<tr>
<td>(\alpha \times \lvert P \rvert)</td>
<td>1</td>
<td>13.9</td>
<td>13.9</td>
<td>3.07</td>
</tr>
<tr>
<td>(\lambda \times \lvert P \rvert)</td>
<td>1</td>
<td>348.1</td>
<td>348.1</td>
<td>78.76*</td>
</tr>
<tr>
<td>(\alpha \times \lambda \times \lvert P \rvert)</td>
<td>1</td>
<td>2.7</td>
<td>2.7</td>
<td>0.60</td>
</tr>
<tr>
<td>(D_2 \times \lvert P \rvert)</td>
<td>1</td>
<td>128.2</td>
<td>128.2</td>
<td>28.26*</td>
</tr>
</tbody>
</table>
Table 4 (concluded)

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha \times D_2 \times</td>
<td>P</td>
<td>$</td>
<td>1</td>
<td>6.7</td>
</tr>
<tr>
<td>$\lambda \times D_2 \times</td>
<td>P</td>
<td>$</td>
<td>1</td>
<td>2.5</td>
</tr>
<tr>
<td>$n \times</td>
<td>P</td>
<td>$</td>
<td>1</td>
<td>40.8</td>
</tr>
<tr>
<td>$\alpha \times n \times</td>
<td>P</td>
<td>$</td>
<td>1</td>
<td>0.7</td>
</tr>
<tr>
<td>$\lambda \times n \times</td>
<td>P</td>
<td>$</td>
<td>1</td>
<td>18.0</td>
</tr>
<tr>
<td>$D_2 \times n \times</td>
<td>P</td>
<td>$</td>
<td>1</td>
<td>4.4</td>
</tr>
<tr>
<td>Error</td>
<td>6</td>
<td>27.2</td>
<td>4.5</td>
<td></td>
</tr>
</tbody>
</table>

* Indicates significance at the 1-percent level.

** Indicates significance at the 5-percent level.
Figure 1. Plot of the Effects for the First Experimental Design on Normal Probability Paper
Figure 2. Plot of the Effects for the Second Experimental Design on Normal Probability Paper
variation explained by the main effects, their mean square, and the amount of total variation explained by the second order interactions we may infer that some of the second order interactions are not significant. The $\lambda \times |\mathcal{P}|$, $D_2 \times |\mathcal{P}|$, $\lambda \times D_2$ and the $\lambda \times n$ interactions appear significant in this perspective.

Additional information on the second-order interactions can be acquired through their graphical representation. The interaction of the autocorrelation coefficient with the other factors is graphically displayed in Figures 3 and 4 for Experiments 1 and 2, respectively. The graphical results again confirm the interaction of the autocorrelation coefficient with the other factors and also indicates that the autocorrelation coefficient has its greatest effect on the other factors when they are at their low levels. This result is not surprising since we would expect the greatest increase in the MANOVA power to occur when the MANOVA power is low; that is, when the other factors are at their low levels.

We may now make several general statements concerning the factors which influence the MANOVA power function. They are:

1. All five factors considered in the experimental design significantly affect the MANOVA power function.

2. The numerous second-order interactions make an interpretation of the effects of the factors on the MANOVA
Figure 3. Graphical Results of Experiment 1
Figure 4. Graphical Results of Experiment 2
power function extremely difficult.

3. The autocorrelation coefficient, \(\lambda \), the determinant of the correlation matrix, \(|\mathbf{P}| \), and the departure, \(D_2 \), appear to have a very significant effect on the MANOVA power function through second-order interactions.

4. The power of the MANOVA test statistic decreases with the dimension of the response.

5. The autocorrelation coefficient, \(\lambda \), has a greater effect on the MANOVA power function when the other factors are at their low levels.

Conclusions

The above analysis of the experimental data leads us to the conclusion that all five factors do in fact influence the MANOVA power function. That is:

1. Power is a decreasing function of the dimension of the response.

2. Power is an increasing function of the size departure from the null hypothesis.

3. Power is an increasing function of sample size.

4. Power is an increasing function of the probability of Type I error.

5. Power is an increasing function of \(-\log |\mathbf{P}|\).

We also note that power is an increasing function of the autocorrelation structure of the response vector. That is, power increases as the significance of the multivariate time series increases.
It is also noted that the large number of significant second-order interactions make an interpretation of the response difficult; however, we may note that 1, 2, 4, and the autocorrelation account for a significant portion of the interaction sum of squares. Thus, if subjective estimates are to be made for either λ or p great care must be exercised due to their impact on the MANOVA power function.
CHAPTER V

A METHODOLOGY FOR COMPARING ANOVA WITH MANOVA

Introduction

We now return to a primary objective of this research: to develop a methodology for comparing the effectiveness of ANOVA with MANOVA for use in the operational test and evaluation of command and control systems. Clearly, MANOVA is the preferred procedure for evaluating systems with correlated measures of effectiveness since it provides a joint comparison of the measures.

Burnette has developed a methodology for comparing the ANOVA with MANOVA on a basis of power of the tests. It was noted by Burnette that the powers of the tests appears to be the only method for comparing the ANOVA and the MANOVA. Our research has not indicated a more appropriate approach; therefore, the essential elements of Burnette's research will be reviewed.

Segregating the Measures of Effectiveness

Separation of Independent Measures

A comparison of the effectiveness of ANOVA with MANOVA is not applicable for independent measures of effectiveness. Our first task should be to separate all independent measures from the rest. We may separate the measures of effectiveness
by an application of (2.25) and (2.26). For a system with p measures of effectiveness we would compute the sample multiple correlation coefficients, \(R_i, i = 1, \ldots, p \), and test the p hypothesis of the form

\[
H_0 : P_i = 0
\]

against

\[
H_1 : P_i > 0.
\]

For those hypothesis which we fail to reject we assign the measure to the set of mutually independent measures, I.

Grouping of Independent Sets of Measures

After separating the independent measures we would like to group the remaining measures into k sets which are correlated within sets, but independent between sets. Let us designate the sets \(C_i, i = 1, \ldots, k \). This grouping may be accomplished using the procedure of (2.28) and (2.29).

In addition, we may test to insure that each set is correlated using the procedure of (2.27).

For those k independent sets of correlated measures, \(C_i, i = 1, \ldots, k \), MANOVA is the appropriate procedure to utilize. For those measures which have been assigned to the set of independent measures, I, only ANOVA is appropriate.
Determining the Powers of the Tests

ANOVA Power

To determine the ANOVA power the following must be specified:

1. \(\alpha \), the probability of Type I error.
2. \(n_{\text{max}} \), the maximum sample size permitted.
3. \(\sum_{i=1}^{\ell} \frac{\alpha_i^2}{\sigma_i^2} = D \) the component departure to detect.
4. \((1-\beta) \), the power of the test desired.

Based on the above information the sample size required to achieve the desired ANOVA power, \(n_{\text{anova}} \) is determined. If the desired power cannot be achieved by a sample size \(n_{\text{max}} \) then either the maximum sample size or the departure, or both, must be reconciled. The above procedure is performed for each measure of effectiveness.

MANOVA Power

In addition to the parameters provided for each individual measure of effectiveness, for each independent set of correlated measures, \(C_i, i = 1, \ldots, k \), the following must be specified.

1. \(\alpha \), the joint probability of Type I error.
2. \((1-\beta) \), the joint power desired.
3. \(R \), the ratio of the primary component departure to the maximum departure of the other components.

The maximum sample sizes as well as the departures to detect would have previously been specified.
We will use the third form of the norm proposed in Chapter III since it enables us to determine the power of the MANOVA test for each component in the correlated set, \(C_i \), for a specified departure, \(D_j \), probability of Type I error, \(\alpha \), norm ratio, \(R \), and sample size, \(n_{\text{manova}} \). Here, \(n_{\text{manova}} \), is the minimum sample size required by MANOVA to achieve the desired power.

After completing the above procedure we would have for each measure in the correlated set:

1. \(\alpha \), the probability of Type I error.
2. \(1-\beta \), the power desired.
3. \(D_j \), the departure to detect.
4. \(n_{\text{max}} \), the maximum sample size permitted.
5. \(n_{\text{anova}} \), the ANOVA sample size required to achieve the desired ANOVA Power.
6. \(n_{\text{manova}} \), the MANOVA sample size to achieve the desired MANOVA power.

Trading Joint Inference for Power

For a correlated set of measures, \(C_i, i = 1, \ldots, k \), we are constrained by the minimum sample size in the set, \(n_{\text{min}} = \min(n_{\text{anova}} j) \), so far as MANOVA sample size is concerned with the system as a whole. If we are unable to achieve the desired MANOVA power for each of the \(p_i \) measures in the set using \(n_{\text{min}} \), then to increase the power, measures may be deleted from the set \(p_i \) to increase the power. These measures will be deleted as follows:
1. The measure corresponding to n_{min} will be deleted first.

2. If two measures correspond to n_{min} then the measure with the smallest power will be deleted.

3. If there are only two measures in the set both will be deleted.

Those measures deleted will be assigned to the set I for which ANOVA is more effective than MANOVA.

Summary of the Methodology

A summary of the methodology for comparing the effectiveness of the ANOVA with MANOVA is as follows:

1. Determine the correlation matrix for the measures of effectiveness.

2. Separate the measures into mutually independent measures, I, and correlated measures, C_i, $i = 1, \ldots, k$.

3. Determine the probability of Type I error, α, and the power of the test, $(1-\beta)$, to be utilized.

4. For each measure determine the maximum sample size permitted, n_{max}, and the univariate departure to detect.

5. For each measure of effectiveness determine the sample size, n_{anova}, to achieve the required power.

6. For each set of correlated measures of effectiveness, C_i, $i = 1, \ldots, k$, perform the following.
(a) For each measure of effectiveness, Y^j, $j = 1$, ..., p, determine the sample size, n_{manova}, required to achieve the desired MANOVA power.

(b) If the n_{manova} are less than or equal to $n_{\text{min}} = \min_j (n_{\text{anova} j})$ for the desired power, stop; MANOVA is more effective than ANOVA for the measures in the set.

(c) If the n_{manova} are greater than n_{min} for one or more measures in the set, remove from the set the measure corresponding to n_{min}. If more than one measure corresponds to n_{min}, remove from the set the measure with the lowest power which corresponds to n_{min}. Renumber the measures in the set which remain; set $p_i = p_{i-1}$. If $p_i = 1$, stop; ANOVA is more effective than MANOVA for all original measures in the set C_i. If $p_i > 1$, repeat steps a through c.

The methodology will be demonstrated in Chapter VI.
CHAPTER VI

AN APPLICATION TO OPERATIONAL TESTING

Introduction

In this chapter we shall apply the methodology developed in Chapter V to an operational testing problem. We will use the hypothetical command and control system used by Burnette so that the results may be compared. The hypothetical command and control system will be known as the Brigade Antiarmor Command and Control System (BACCS). Two competing forms of BACCS are under consideration for acquisition and are designated BACCS-I and BACCS-II.

For OT-II, the commander, U. S. Army Operational Test and Evaluation Agency (OTEA), has approved a comparative operational test of the two systems consisting of three scenarios. The commander has also approved seven measures of effectiveness designated MOE-1 through MOE-7. In addition, the commander has approved a completely crossed two-factor experiment with equal numbers of observations per cell. He desires to determine for which MOE MANOVA will be most effective, powerwise, than ANOVA.

Correlation Structure of the MOE

An objective estimate of the correlation structure of the MOE correlation matrix is:
OT-1 test results indicated that each response vector was related to the previous response vector. However, insufficient information was available to obtain an objective estimate; therefore, a subjective estimate of the autocorrelation coefficient, $\lambda = 0.3$, was made by the BACCS project manager and the U. S. Army Training and Doctrine Command.

Based upon a knowledge of BACCS, we feel that MOE-1 is independent of all other MOE. We test the hypothesis

$$H_0 : P_1 = 0$$

against

$$H_1 : P_1 \neq 0$$

Using a computer program (Appendix B) we compute the sample multiple correlation coefficient.
\[R_1 = 0.293452 \]

and

\[R_1^2 = 0.86114 \]

applying (2.26) we obtain the test statistic

\[Q = \frac{R_1^2 (n-p)}{1-R_1^2 (p-1)} \]

\[\frac{(0.086114)(42-7)}{(1-0.086114)(7-1)} = 0.5515 \]

We desire to test the hypothesis at \(\alpha = 0.05 \) and determine the critical value of the test is \(F_{0.05, 6, 35} = 2.36 \). The test statistic is less than the critical value of the test; hence, we fail to reject the hypothesis that MOE-1 is independent of the other MOE. MOE-1 is assigned to the set of mutually independent measures, I.

Our knowledge of BACCS indicates that MOE-2 and MOE-7 are correlated, but independent of the other MOE. We also feel that MOE-3, MOE-4, MOE-5, and MOE-6 are correlated but independent of the other MOE. We assign MOE-2 and MOE-7 to correlated set \(C_1 \). We assign MOE-3, MOE-4, MOE-5, and MOE-6 to correlated set \(C_2 \). The correlation matrix for the set \(C_1 \) is now the 2 x 2 matrix

\[
\begin{bmatrix}
2 & 1.0 & .76 \\
7 & .76 & 1.0
\end{bmatrix}
\]
and the correlation matrix for set C_2 is now the 4 x 4 matrix

$$
\begin{pmatrix}
3 & 1.0 & .68 & -.49 & .56 \\
4 & .68 & 1.0 & -.21 & .72 \\
5 & -.49 & -.21 & 1.0 & -.26 \\
6 & .56 & .72 & -.26 & 1.0 \\
\end{pmatrix}
$$

We desire to test the hypothesis that set C_1 and set C_2 are mutually independent using the procedures of (2.28) and (2.29) with $\alpha = 0.05$. Using a computer program (Appendix C), we determine the test statistic

$$
X_0^2 = 4.1630
$$

and the critical value of the test

$$
X^2_{.05,8} = 15.5072
$$

The test statistic is less than the critical value of the test; hence, we fail to reject the hypothesis of independence and conclude that C_1 and C_2 are independent. We must now check to determine if the MOE within the mutually independent sets C_1 and C_2 are independent.

We observe that set C_1 has only two MOE and thus has a bivariate normal distribution. We may then make use of the
Fisher Z-transformation and test the hypothesis

$$H_{10} : \rho_{27} = 0$$

against

$$H_{11} : \rho_{27} \neq 0.$$

Using (2.19) through (2.22) we find

$$z = \tanh^{-1}(.76) = 0.638$$

and the test statistic is

$$|Z| \sqrt{N-3} = 0.638 \sqrt{42-3} = 3.984.$$

The critical value of the test with $\alpha = .05$ is $Z_{.05} = 1.96$. The test statistic exceeds the critical value of the test; hence, we reject H_{10} and conclude MOE-2 and MOE-7 are correlated.

We test the following hypothesis

$$H_{20} : \mu_{c2} = 1$$

against
to determine if MOE-3, MOE-4, MOE-5, and MOE-6 are correlated. Using the results of (2.27) and a computer program (Appendix D) we determine the test statistic

\[
X_0^2 = - (N-1 - \frac{2k+5}{6}) \log |R| = - (42-1 - \frac{2\cdot4+5}{6}) \log |R|
\]

\[
X_0^2 = 65.81137.
\]

With \(\alpha = .05 \) the critical value of the test is

\[
X^{2}_{.05,6} = 12.59120.
\]

The test statistic exceeds the critical value of the test; hence, we conclude the members of \(C_2 \) are correlated.

The above tests have enabled us to separate the MOE into three mutually independent sets:

\[
I = \text{MOE-1}
\]

\[
C_1 = \text{MOE-2, MOE-7}
\]

\[
C_2 = \text{MOE-3, MOE-4, MOE-5, MOE-6}.
\]

ANOVA is appropriate for MOE-1, the sole member offset \(I \); therefore, MOE-1 will not be used for a comparison of the effectiveness of MANOVA with ANOVA.
ANOVA Power/Sample Size for the MOE

The Commander of OTEA has specified the following probability levels be used for BACCS OT-II:

- Probability of Type I error, \(\alpha \), = 0.05
- Power of the test \(1 - \beta \) = 0.75.

These parameters will apply to both ANOVA and MANOVA. In addition, the maximum sample size, \(n_{\text{max}} \), and the departure to be detected, \(D \), have been specified for each MOE. These parameters are shown in Table 5.

Table 5. MOE Maximum Sample Sizes and Departures

<table>
<thead>
<tr>
<th>MOE</th>
<th>Maximum Sample Size</th>
<th>Departure to Detect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n_{\text{max}})</td>
<td>(D)</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1.5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2.0</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>1.5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1.5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>1.0</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Using the information in Table 5 we compute for each MOE the minimum sample size, \(n_{\text{anova}} \), required to achieve the desired power. We accomplish this by using the results reviewed in Chapter II. The results are shown in Table 6.

Table 6. MOE Sample Sizes for Required Power

<table>
<thead>
<tr>
<th>MOE</th>
<th>Maximum Sample Size (n_{\text{max}})</th>
<th>Departure to Detect (D)</th>
<th>Minimum Sample Size (n_{\text{anova}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>1.5</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1.5</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2.0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>1.5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1.5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>1.0</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>1.5</td>
<td>5</td>
</tr>
</tbody>
</table>

Comparing the Effectiveness of MANOVA with ANOVA

For the two sets of correlated measures, \(C_1 \) and \(C_2 \), we are now interested in determining for which members of these sets MANOVA is more effective than ANOVA from the standpoint of power. The Commander of OTEA has approved a ratio \(R = 2 \) for use in setting the random levels of the MOE in the sets other than those under consideration.

For set \(C_1 = \{\text{MOE-2, MOE-7} \} \) we find that \(n_{\text{min}} = \)
\(\min \{n_{\text{anova} \, 2}, n_{\text{anova} \, 7}\} = 5 \) (Table 5). Using the two-factor MANOVA program (Appendix A), we set levels of factor \(A = 2 \), levels of factor \(B = 3 \), \(D = 1.5 \), sample size \(n_{\text{min}} = 5 \), \(\lambda = .3 \), \(R = 2 \), Monte Carlo iterations \(= 500 \), and correlation matrix \(P_{c_1} \). The results are tabulated in Table 7 with the results of Burnette's research for ease of comparison.

<table>
<thead>
<tr>
<th>MOE</th>
<th>MANOVA Sample Size</th>
<th>Departure to Detect</th>
<th>Power Achieved by Burnette</th>
<th>Power Achieved by this Research</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n_{\text{manova}})</td>
<td>(D)</td>
<td>(.762)</td>
<td>(.866)</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>1.5</td>
<td>(.824)</td>
<td>(1.000)</td>
</tr>
</tbody>
</table>

The MANOVA power is greater than the ANOVA power with sample size \(n_{\text{min}} \); thus, MANOVA is more effective than ANOVA for members of set \(C_1 \).

For set \(C_2 = \{\text{MOE-3, MOE-4, MOE-5, MOE-6}\} \) we use the same two factor MANOVA power program. We set \(\alpha = .05 \), levels of factor \(A = 2 \), levels of factor \(B = 3 \), Monte Carlo iterations \(= 500 \), \(\lambda = .3 \), and \(R = 2 \). For the four MOE \(n_{\text{min}} = 4 = n_{\text{anova} \, 3} \). We run the power program for each MOE with sample size \(n_{\text{min}} = 4 \) and departures to detect, \(D = D_j \).
j = 3, 4, 5, 6. The results are shown in Table 8 for this research and Burnette's for ease of comparison of results.

Table 8. MOE MANOVA Power 2

<table>
<thead>
<tr>
<th>MOE</th>
<th>Sample Size</th>
<th>Departure to Detect D</th>
<th>Power Achieved by Burnette</th>
<th>Power Achieved by this Research</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n_{manova}</td>
<td>2.0</td>
<td>.614</td>
<td>.850</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1.5</td>
<td>.482</td>
<td>.824</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1.5</td>
<td>.496</td>
<td>.776</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>1.0</td>
<td>.452</td>
<td>.994</td>
</tr>
</tbody>
</table>

We note that again the MANOVA power exceeds the power of the ANOVA for all components, therefore, we conclude that MANOVA is more effective than ANOVA for all members of the set \(C_2 \). In summary we have found that MANOVA is superior to ANOVA for both sets \(C_1 = \{\text{MOE-2, MOE-7}\} \) and set \(C_2 = \{\text{MOE-3, MOE-4, MOE-5, MOE-6}\} \). This information would be used in to aid in the design of BRACCS OT-II.

Although the example presented in this chapter is hypothetical the methodology as demonstrated here may be applied to any system so long as an estimate of the structure of the response is available. We also note that the introduction of autocorrelated vectors greatly influence the MANOVA power function. Burnette was able to achieve joint
inference on only two MOE in set C_2 [16] at the specified power. Our analysis, using the systems information, has enabled us to achieve joint inference on all four MOE of set C_2 at the specified power level greatly enhancing the analysis of the test results.
CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

Limitations of the Research

This research has been limited by the initial assumptions of two-factor, fixed-effects, crossed models, equal sample sizes per cell, and no effects due to operators. In addition, it was assumed that an estimate of the correlation structure of the measure of effectiveness and the autocorrelation coefficient or all the parameters of a multivariate time series are available.

Conclusions

This research has accomplished two objectives: first, through the use of two experimental designs analyzed by ANOVA it has been shown that:

1. The MANOVA power is a decreasing function of the dimension of the response.

2. The MANOVA power is an increasing function of the size of departure from the null hypothesis.

3. The MANOVA power is an increasing function of sample size.

4. The MANOVA power is an increasing function of the probability of Type I error.

5. The MANOVA power is an increasing function of
-Log |P|, where P is the correlation matrix of the multi-
response.

6. The MANOVA power is an increasing function of
the significance of the time dependence of the response
vectors.

7. An extremely complex relationship exists between
statements 2-5 since most second order interactions were
found to be significant.

Second, it was found that the incorporation of the
time series into the MANOVA power function significantly
increased the MANOVA power for a given sample size. It was
also noted that a reduction in sample size, for a given
power, can be achieved when the time series information is
incorporated in the MANOVA power function.

Recommendations

Several recommendations for further research arose
during the course of this research. One recommendation is
to develop an exact statistical test for a multiresponse
system when the responses are time dependent. An experiment
could then be designed using the exact test and the current
procedure to determine if MANOVA is robust to independence
of observations. Another recommendation is to extend the
MANOVA power program so that it may handle nested, multi-
factor designs.
APPENDICES
APPENDIX A

This appendix contains a complete FORTRAN IV listing of the two-factor MANOVA power program along with its use. The program is entirely interactive and all input is made in free-field format. This listing is a modification and conversion of previous work [16].
** MANOVA POWER PROGRAM **

ENTER THE NR OF STARTUP RUNS FOR UNIF 789

ENTER THE NR OF LEVELS OF FACTOR A 2

ENTER THE NR OF LEVELS OF FACTOR B 3

ENTER THE DIMENSION OF THE RESPONSE 4

ENTER THE SAMPLE SIZE 4

ENTER ALPHA .05

DO YOU DESIRE TO SPECIFY ALL NORM COMPONENTS? YES

ENTER THE NORM INDEX TO BE SPECIFIED 1

WHAT NORM RATIO DO YOU WANT TO USE? 2.

ENTER THE SIZE NORM YOU DESIRE TO DETECT 2.

ENTER THE ITERATIONS SAMPLE SIZE 500

ENTER THE SIGMA MATRIX
1.68, -.49, .56
.68, .1, -.21, .72
-.49, -.21, .1, -.26
.56, .72, -.26, .1

ENTER THE MEAN VECTOR
0., 0., 0., 0.

ENTER LAMBDA, THE AUTOCORRELATION COEFFICIENT .3

** STARTUP RUNS FOR UNIF= 789
** LEVELS OF FACTOR A = 2
** LEVELS OF FACTOR B = 3
** SAMPLE SIZE = 4
** VECTOR DIMENSION IS 4
** ITERATIONS SAMPLE SIZE = 500
** ALPHA = .05
** THE VALUE OF LAMBDA IS .30
** SIZE NORM TO DETECT IS 2.00
** NORM 1 IS SPECIFIED
** NORM RATIO IS 2.00
** SIGMA MATRIX **

\[
\begin{pmatrix}
1.0000 & .6800 & -.4900 & .5600 \\
.6800 & 1.0000 & -.2100 & .7200 \\
-.4900 & -.2100 & 1.0000 & -.2600 \\
.5600 & .7200 & -.2600 & 1.0000 \\
\end{pmatrix}
\]
** C MATRIX **

\[
\begin{pmatrix}
1.0000 & 0.0000 & 0.0000 & 0.0000 \\
.6800 & .73321 & 0.0000 & 0.0000 \\
-.4900 & .16803 & .85538 & 0.0000 \\
.5600 & .46262 & -.07404 & .68330 \\
\end{pmatrix}
\]
** MEAN VECTOR **

0.00000 0.00000 0.00000 0.00000

IS YOUR INPUT CORRECT?
? YES

** POWERS OF THE TESTS **

<table>
<thead>
<tr>
<th>SAMPLE SIZE</th>
<th>POWER OF TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>.81400</td>
</tr>
</tbody>
</table>

DO YOU DESIRE TO MAKE ANOTHER RUN?
? NO
40.234 CP SECONDS EXECUTION TIME
PROGRAM MANOVA (INPUT,OUTPUT,TAPES=INPUT,TAPE6=OUTPUT)
REAL LAMBDA
INTEGER ERROR
COMMON /ONE/ E(20,20),H1(20,20),H2(20,20)
COMMON /TWO/ NL
COMMON /THREE/ KORD(20)
COMMON /FOUR/ MJSED(20)
COMMON /FIVE/ SIGMA(20,20)
COMMON /SIX/ ZVEC(20),U(20),XVEC(20),BUF(20)
COMMON /SEVEN/ FAC(20)
COMMON /EIGHT/ NI
COMMON /NINE/ LAMBD(20)
COMMON /TEN/ DIMENSION DCOM(20)
DIMENSION A(3,5),C(3,5,20),T(5,20),R(3,20)
DIMENSION Y1A(5,100,20),Y2A(5,100,20),Y3A(5,100,20)
DIMENSION G(20),JP(20),H2(20,20),H3(0,20),Z(20,20),IPR(20)
DIMENSION IEUC(2),ISUP(2)
EXTERNAL UNIT,RNORM1,CMAT1,PICH1,VIPDA,CHIPRB
DATA XNORM/6HUCE/ DATA ISUP/6HSUPR/6HEAN/
DATA IEUC/6HEUCLID/6HEAN/
0101 FORMAT(H1,2X,"ERROR**READ PAST END OF FILE**")
0102 FORMAT(H1,2X,"ERROR**PROBLEM IN CHI SQUARED ROUTINE**")
0103 FORMAT(H1,2X,"ERROR**PROBLEM IN GUR ROUTINE**")
0104 FORMAT(H1,10X,"** MANOVA POWER PROGRAM **")
0105 FORMAT(H1,10X,"** ALPHAR**F5.2")
0106 FORMAT(H1,10X,"** VECOR DIMENSION IS ",I2)
0107 FORMAT(H1,10X,"** POWERS OF THE TESTS")
0108 FORMAT(H1,10X,"** SIZE NORM TO DETECT IS ",F5.2)
0109 FORMAT(H1,10X,"** LEVELS OF FACTOR A = ",I3)
0110 FORMAT(H1,10X,"** SAMPLE SIZE",9X,"POWER 0 TEST")
0111 FORMAT(H1,10X,"** LEVELS OF FACTOR B = ",I3)
0112 FORMAT(H1,10X,"** SAMPLE SIZE = ",I3)
0113 FORMAT(H1,10X,"** MEAN VECTOR **")
0114 FORMAT(H1,10X,"** SIGMA MATRIX **")
0115 FORMAT(H1,10X,"** C MATRIX **")
0116 FORMAT(H1,10X,"** NORM USED IS ",A6)
0117 FORMAT(H1,10X,"** DO YOU DESIRE TO MAKE ANOTHER RUN?")
0118 FORMAT(H1,2X,"ENTER THE SIZE NORM YOU DESIRE TO DETECT")
0119 FORMAT(H1,2X,"ENTER THE MEAN VECTOR")
0120 FORMAT(H1,2X,"ENTER THE TYPE NORM YOU DESIRE TO USE: EITHER")
0121 FORMAT(H1,2X,"ENTER THE DIMENSION OF THE RESPONSE")
0122 FORMAT(H1,2X,"ENTER THE ITERATIONS SAMPLE SIZE")
0123 FORMAT(H1,2X,"ENTER THE NUMBER OF STARTUP RUNS FOR UNIT")
0124 FORMAT(H1,2X,"DO YOU DESIRE TO CHANGE ONLY SAMPLE SIZE,ALPHA,1 NORM?")
0125 FORMAT(H1,2X,"ENTER THE SAMPLE SIZE")
0126 FORMAT(H1,2X,"ENTER THE MEAN VECTOR")
0127 FORMAT(H1,2X,"ENTER THE TYPE NORM YOU DESIRE TO USE: EITHER")
0128 FORMAT(H1,2X,"ENTER THE DIMENSION OF THE RESPONSE")
0129 FORMAT(H1,2X,"ENTER THE NUMBER OF STARTUP RUNS FOR UNIT")
0130 FORMAT(H1,2X,"DO YOU DESIRE TO MAKE ANOTHER RUN?")
0131 FORMAT(H1,2X,"ENTER THE SIZE NORM YOU DESIRE TO DETECT")
0132 FORMAT(H1,2X,"ENTER THE MEAN VECTOR")
0133 FORMAT(H1,2X,"ENTER THE TYPE NORM YOU DESIRE TO USE: EITHER")
0134 FORMAT(H1,2X,"ENTER THE DIMENSION OF THE RESPONSE")
0135 FORMAT(H1,2X,"ENTER THE NUMBER OF STARTUP RUNS FOR UNIT")
0136 FORMAT(H1,2X,"DO YOU DESIRE TO SPECIFY ALL NORM COMPONENTS?")
0137 FORMAT(H1,2X,"ENTER THE SAMPLE SIZE")
0138 FORMAT(H1,2X,"ENTER THE MEAN VECTOR")
0139 FORMAT(H1,2X,"ENTER THE TYPE NORM YOU DESIRE TO USE: EITHER")
0140 FORMAT(H1,2X,"ENTER THE DIMENSION OF THE RESPONSE")
0141 FORMAT(H1,2X,"ENTER THE NUMBER OF STARTUP RUNS FOR UNIT")
0142 FORMAT(H1,2X,"DO YOU DESIRE TO MAKE ANOTHER RUN?")
0143 FORMAT(H1,2X,"ENTER THE SIZE NORM YOU DESIRE TO DETECT")
0144 FORMAT(H1,2X,"ENTER THE MEAN VECTOR")
0145 FORMAT(H1,2X,"ENTER THE TYPE NORM YOU DESIRE TO USE: EITHER")
0146 FORMAT(H1,2X,"ENTER THE NUMBER OF STARTUP RUNS FOR UNIT")
0147 FORMAT(H1,2X,"DO YOU DESIRE TO MAKE ANOTHER RUN?")
0148 FORMAT(H1,2X," ENTER THE SAMPLE SIZE")
0149 FORMAT(H1,2X," ENTER THE MEAN VECTOR")
0150 FORMAT(H1,2X," ENTER THE TYPE NORM YOU DESIRE TO USE: EITHER")
0151 FORMAT(H1,2X," ENTER THE NUMBER OF STARTUP RUNS FOR UNIT")
0152 FORMAT(H1,2X," ENTER THE NUMBER OF STARTUP RUNS FOR UNIF")
0153 FORMAT(H1,2X," ENTER THE NUMBER OF STARTUP RUNS FOR UNIT")
0154 FORMAT(H1,2X," ENTER THE MEAN VECTOR")
0155 FORMAT(H1,2X," ENTER THE TYPE NORM YOU DESIRE TO USE: EITHER")
0156 FORMAT(H1,2X," ENTER THE DIMENSION OF THE RESPONSE")
0157 FORMAT(H1,2X," ENTER THE NUMBER OF STARTUP RUNS FOR UNIF")
0158 FORMAT(H1,2X," ENTER THE TYPE NORM YOU DESIRE TO USE: EITHER")
0159 FORMAT(H1,2X," ENTER THE NUMBER OF STARTUP RUNS FOR UNIF")
0160 FORMAT(H1,2X," ENTER THE MEAN VECTOR")
0161 FORMAT(H1,2X," ENTER THE TYPE NORM YOU DESIRE TO USE: EITHER")
DATA IRES/6 HYES /

C ** INPUT SECTION **

C WRITE(6,0112)
WRITE(6,0158)
READ(5,*) KSU
IF(EOF(5)) 9791,20
20 D0 0800 I=1,KSU
ZSU=UNIFA(I)
0800 CONTINUE
0900 WRITE(6,0153)
READ(5,*) NI
IF(EOF(5)) 9791,21
21 WRITE(6,0154)
READ(5,*) NJ
IF(EOF(5)) 9791,22
22 WRITE(6,0155)
READ(5,*) NL
IF(EOF(5)) 9791,23
23 WRITE(6,0149)
READ(5,*) N14
IF(EOF(5)) 9791,24
24 WRITE(6,0150)
READ(5,*) ALPHA
IF(EOF(5)) 9791,25
25 WRITE(6,0160)
READ(5,0151) LNOR
IF(LNOR.NE.IRES) GO 10 0902
VBXTE6,O161)
READ(5,*) IDX
WRITE(6,0164)
READ(5,*) RATIO
0902 WRITE(6,0152)
READ(5,*) DC
IF(EOF(5)) 9791,0904
0904 WRITE(6,0157)
READ(5,*) NN
IF(EOF(5)) 9791,26
26 IF(LNOR.EQ.IRES) G0 T0 0908
WRITE(6,0144)
WRITE(6,0145)
READ(5,0151) NORM
0908 WRITE(6,0137)
READ(5,*) (SIGMA(I,J),J=1,NL),I=1,NL)
IF(EOF(5)) 9791,27
WRITE(6,0139)
READ(5,*) (U(I), I=1, NL)
IF(EOF(5)) 9791,28
WRITE(6,0166)
READ(5,*) LAMBDA
IF(EOF(5)) 9791,41
GO TO 0915
0910 WRITE(6,0149)
READ(5,*) N14
IF(EOF(5)) 9791,29
WRITE(6,0166)
READ(5,*) LAMBDA
IF(EOF(5)) 9791,40
WRITE(6,0150)
READ(5,*) ALPHA
IF(EOF(5)) 9791,30
WRITE(6,0152)
READ(5,*) DC
IF(EOF(5)) 9791,31
WRITE(6,0161)
READ(5,*) IDX
IF(EOF(5)) 9791,0915
CALL CMAT1
WRITE(6,0159) KSU
WRITE(6,0121) N1
WRITE(6,0123) NJ
WRITE(6,0125) N14
WRITE(6,0116) NL
WRITE(6,0127) NN
WRITE(6,0114) ALPHA
WRITE(6,0167) LAMBDA
WRITE(6,120) DC
IF(LNOR.EQ.IRES) GO TO 0916
GO TO 0917
0916 WRITE(6,0163) IDX
WRITE(6,0165) RATI0
GO TO 0930
0917 IF(NORM.NE.KNORM) GO TO 0920
WRITE(6,0146) IEUC
GO TO 0930
0920 WRITE(6,0146) ISUP
0930 CONTINUE
WRITE(6,0131)
DO 940 I=1, NL
WRITE(6,0141) (SIGMA(I,J), J=1, NL)
940 CONTINUE
WRITE(6,0133)
DO 950 I=1, NL
WRITE(6,0141) (CMAT(I,J), J=1, NL)
950 CONTINUE
WRITE(6,0128)
WRITE(6,0141)(U(I),I=1,NL)
WRITE(6,0143)
READ(5,0151)IZ
IF(IZ.NE.IRES)G0 TO 0900
POWER=0.0

** COMPUTE THE CRITICAL VALUE OF THE TEST STATISTIC **
CALL CRIT(NI,NJ,N14,NL,ALPHA,PICH1,CHIPRB,CRITV,ERROR)
IF(ERROR.EQ.1.)G0 TO 9795

** LOOP ON REPLICATION FOR THIS NORM **
DO 8500 12a1,NN
IF(LNOR.EQ.IRES)G0 TO 0990
CALL ORDER(NL,UNIT)
IF(NORM.NE.KNORM)GO TO 0970
CALL ASGNOR(DC,DCOM,UNIF)
G0 TO 0990
0970 CALL ASGMAX(DC,DCOM,UNIF)

** LOOP ON ITERATIONS **
0990 IF(LNOR.NE.IRES)G0 TO 1020
D0 1000 LL=1,NL
IF(LL.EQ.IDX)G0 TO 0995
DCOM(LL)=UNIF(A)*DC/RATIO
G0 TO 1000
0995 DCOM(LL)=DC
1000 CONTINUE
1020 D0 1050 13=1,NL
CALL ORDER(NI,UNIF)
CALL FACOM(DCOM(13))
D0 1030 111=1,NL
D0 1029 JJJ=1,NI
A(JJJ,111)=0.0
1029 CONTINUE
1030 CONTINUE
D0 1040 KC=1,NI
JR=KORD(KC)
A(JR,13)=FAC(KC)
1040 CONTINUE
1050 CONTINUE

** GENERATE THE OBSERVATIONS **
D0 1500 II=1,NI
D0 1490 JJ=1,NJ
D0 1480 KK=1,N14
IREPS=KK
CALL XVEC1(RNORM1,UNIF,IREPS)
DO 1470 LL=1,NL
IF(I1.NE.1) G0 TO 1501
Y1A(JJ,KK,LL)=A(I1,LL)+XVEC(LL)
1501 IF(I1.NE.2) G0 TO 1502
Y2A(JJ,KK,LL)=A(I1,LL)+XVEC(LL)
1502 Y3A(JJ,KK,LL)=A(I1,LL)+XVEC(LL)
1470 CONTINUE
1480 CONTINUE
1490 CONTINUE
1500 CONTINUE
C ** COMPUTE THE MANOVA **
C ** COMPUTE THE CELL MEANS **
DO 1600 IC=1,NI
DO 1590 JC=1,NJ
DO 1580 LC=1,NL
SUM=0.0
DO 1570 KC=1,NI4
IF(IC.NE.1) G0 TO 1571
SUM=SUM+Y1A(JC,KC,LC)
1571 IF(IC.NE.2) G0 TO 1572
SUM=SUM+Y2A(JC,KC,LC)
1572 IF(IC.NE.3) G0 TO 1570
SUM=SUM+Y3A(JC,KC,LC)
1570 CONTINUE
C(IC,JC,LC)=SUM
1580 CONTINUE
1590 CONTINUE
1600 CONTINUE
C ** COMPUTE THE COLUMN TREATMENTS **
DO 1700 JC=1,NJ
DO 1690 LC=1,NL
SUM=0.0
DO 1680 IC=1,NI
DO 1670 KC=1,NI4
IF(IC.NE.1) G0 TO 1671
SUM=SUM+Y1A(JC,KC,LC)
1671 IF(IC.NE.2) G0 TO 1672
SUM=SUM+Y2A(JC,KC,LC)
1672 IF(IC.NE.3) G0 TO 1670
SUM=SUM+Y3A(JC,KC,LC)
1670 CONTINUE
1680 CONTINUE
T(JC,LC)=SUM
1690 CONTINUE
COMPUTE THE ROW TREATMENTS

```
C  DO 1600 IC=1,NI
C  DO 1790 LC=1,NL
C  SUM=0.0
C  DO 1780 JC=1,NJ
C  DO 1770 KC=1,NI4
C  IF(IC.NE.1) G0 TO 1771
C  SUM=SUM+Y1A(JC,KC,LC)
C  1771 IF(IC.NE.2) G0 TO 1772
C  SUM=SUM+Y2A(JC,KC,LC)
C  1772 IF(IC.NE.3) G0 TO 1770
C  SUM=SUM+Y3A(JC,KC,LC)
C  CONTINUE
C  CONTINUE
C  R(IC,LC)=SUM
C  CONTINUE
C  CONTINUE
C  CONTINUE
```

COMPUTE THE GRAND TOTALS

```
C  DO 1900 LC=1,NL
C  SUM=0.0
C  DO 1890 KC=1,NI4
C  DO 1880 JL=1,NJ
C  DO 1870 IC=1,NI
C  IF(IC.NE.1) G0 TO 1871
C  SUM=SUM+Y1A(JC,KC,LC)
C  1871 IF(IC.NE.2) G0 TO 1872
C  SUM=SUM+Y2A(JC,KC,LC)
C  1872 IF(IC.NE.3) G0 TO 1870
C  SUM=SUM+Y3A(JC,KC,LC)
C  CONTINUE
C  CONTINUE
C  CONTINUE
C  CONTINUE
C  GLC=SUM
C  CONTINUE
C  CONTINUE
C  CONTINUE
```

COMPUTE THE H1 MATRIX

```
C  DO 2000 JL=1,NL
C  DO 1990 IC=1,NI
C  SUM=0.0
C  DO 1980 IC=1,NI
C  SUM=SUM+R(IC,IL)*R(IC,JL)
C  CONTINUE
C  NJK=NJ*NI4
C  Y1=NJK
C  SUM=SUM/Y1
```
** COMPUTE THE E MATRIX **

```plaintext
C
DO 2100 IL=1,NL
DO 2090 JL=1,NL
SUM1=0.0
DO 2060 IC=1,NI
DO 2050 JC=1,NJ
DO 2040 KC=1,N14
IF(IC.NE.1) GO TO 2041
SUM1=SUM1+Y1A(JC,KC,IL)*Y1A(JC,KC,JL)
2041 IF(IC.NE.2) GO TO 2042
SUM1=SUM1+Y2A(JC,KC,IL)*Y2A(JC,KC,JL)
2042 IF(IC.NE.3) GO TO 2040
SUM1=SUM1+Y3A(JC,KC,IL)*Y3A(JC,KC,JL)
2040 CONTINUE
2050 CONTINUE
2060 CONTINUE
SUM2=0.0
DO 2080 IC=1,NI
DO 2070 JC=1,NJ
SUM2=SUM2+C(IC,JC,IL)*C(IC,JC,JL)
2070 CONTINUE
2080 CONTINUE
Y1=N14
E(IL,JL)=SUM1-SUM2/Y1
2090 CONTINUE
2100 CONTINUE
IF(N14.NE.1) GO TO 2600
C
** COMPUTE THE H2 MATRIX **

```
DO 2300 IL=1,NL
DO 2290 JL=1,NL
SUM1=0.0
DO 2260 IC=1,N1
DO 2250 JC=1,NJ
DO 2240 KC=1,NI4
IF(IC .NE. 1) GO TO 2241
SUM1=SUM1+Y1A(JC,KC,IL)*Y1A(JC,KC,JL)
2241 IF(IC .NE. 2) GO TO 2242
SUM1=SUM1+Y2A(JC,KC,IL)*Y2A(JC,KC,JL)
2242 IF(IC .NE. 3) GO TO 2240
SUM1=SUM1+Y3A(JC,KC,IL)*Y3A(JC,KC,JL)
2240 CONTINUE
2250 CONTINUE
2260 CONTINUE
Y1=(NI*NJ*NI4)
Z(IL,JL) = SUM1 - G(IL)*G(JL)/Y1
2290 CONTINUE
2300 CONTINUE

C ** COMPUTE THE H3 MATRIX **
C
DO 2400 IL=1,NL
DO 2390 JL=1,NL
H3(IL,JL)=Z(IL,JL)-H1(IL,JL)-H2(IL,JL)-E(IL,JL)
2390 CONTINUE
2400 CONTINUE
C
C ** REPLACE E MATRIX WITH H3 MATRIX **
C
DO 2500 IL=1,NL
DO 2490 JL=1,NL
E(IL,JL)=H3(IL,JL)
2490 CONTINUE
2500 CONTINUE
C
C ** COMPUTE THE TEST STATISTIC OF THE MANOVA **
C
2600 CALL MATADD
CALL DECOM(E,20,NL,JD,IPR,D1, VIPDA)
DET=D1
DO 10 I=1,NL
10 DET=DET*E(I,I)
ED=DET
CALL DECOM(HD,20,NL,JD,IPR,D1, VIPDA)
DET=D1
DO 11 I=1,NL
11 DET=DET*HD(I,I)
HT = DET
CV = ED/HT

** TEST THE CRITICAL VALUE OF THE TEST STATISTIC **

IF (CV.GT.CRITV) GO TO 3000
POW = POW + 1.0
3000 CONTINUE
8500 CONTINUE
G0 TO 9801

** ERROR MESSAGES **

9791 WRITE(6,0101)
G0 TO 9801
9793 WRITE(6,0105)
G0 TO 9801
9795 WRITE(6,0103)
G0 TO 9801

** COMPUTE THE POWERS BY SAMPLE SIZE **

9801 W = NN
POW = POW/W

** OUTPUT SECTION **

WRITE(6,0118)
WRITE(6,0122)
WRITE(6,0124) NI4,POW
WRITE(6,0147)
READ(5,0151) IZ
IF(EOF(5)) 9791,35
35 IF(IZ.NE.IRES) GO TO 9990
WRITE(6,0148)
READ(5,0151) IZ
IF(EOF(5)) 9791,36
36 IF(IZ.NE.IRES) G0 TO 0900
G0 TO 0910
9990 CONTINUE
STOP
END
SUBROUTINE CRIT(NI,NJ,i4,NL,ALPHA,PICHI,CHIPRB,CRTV,ERROR)

** This subroutine computes the second-order approximation of the critical value of the MANOVA test using the Box method by means of a nonlinear search optimization routine for a given probability of type I error, ALPHA.

INTEGER ERROR
S=1. - ALPHA
KQUNT=1
DEL=.01
P=NL
Q1=(NI-1)
SN=(NI*NJ*(I4-1))
IF(I4.EQ.1) SN=(NI-1)*(NJ-1)
ZR=NI
BN=SN+ZR
Q2=ZR-Q1
CM=BN-Q2-.5*(P+Q1+1.)
G=(P+Q1*(P**2+Q1**2-5.))/48.
KDF1=NL*(NI-1)
KDF2=KDF1+4
AKDF1=KDF1
AKDF2=KDF2
X=PICHI(S,AKDF1,IR)
IF(IR.EQ.1.OR.IR.EQ.2) GO TO 900
100 APT=CHIPRB(X,AKDF1,IR)
BPT=CHIPRB(X,AKDF2,IR)
Z=APT+(BPT-APT)*G/(CM**2)
IF(IR.EQ.1.OR.IR.EQ.2) GO TO 900
XEWF=S-Z
IF(XEWF.LT.0.0) XEWF=-XEWF
IF(KQUNT.NE.1) GO TO 200
KQUNT=KQUNT+1
150 Y=X
X=Y+DEL
OLDV=XEWF
G0 TO 100
200 IF(XEWF-OLDV).LT.0.00001) G0 TO 800
DEL=DEL*3.0
OLDV=XEWF
G0 TO 150
202 DEL=DEL*(-.5)
X=Y
XEWF=OLDV
G0 TO 150
800 CRTV=EXP(X/(-CM))
G0 TO 950
900 ERROR=1
G0 TO 990
950 ERROR=2
990 CONTINUE
RETURN
END
SUBROUTINE ORDER(N, UNIF)
C ** THIS SUBROUTINE RANDOMLY ASSIGNS ORDER TO A P-DIMENSIONAL
C VECTOR'S COMPONENTS.
COMMON /THREE/ KORD(20)
COMMON /FOUR/ KUSED(20)
DO 100 I=1,N
KORD(I)=0
KUSED(I)=0
100 CONTINUE
LEFT=N
DO 500 J=1,N
X=UNIF(X)
DO 400 K=1,LEFT
Y=FLOAT(K)
Y=Y/FLOAT(LEFT)
IF(X.GT.Y) G0 TO 400
LU=0
DO 300 M=1,N
IF(KUSED(M).NE.0) G0 TO 300
LU=LU+1
IF(LU.NE.M) G0 TO 300
KUSED(M)=1
KORD(J)=M
G0 TO 450
300 CONTINUE
400 CONTINUE
450 LEFT=LEFT-1
500 CONTINUE
RETURN
END

SUBROUTINE MATADD
COMMON /ONE/ E(20,20), H1(20,20), HD(20,20)
COMMON /TWO/ ML
DO 100 I=1,ML
DO 90 J=1,ML
HD(I,J)=E(I,J)+H1(I,J)
90 CONTINUE
100 CONTINUE
RETURN
END

FUNCTION RNORM1 (UNIF, RNORM2, U, SIG2)
C ** THIS FUNCTION PRODUCES INDEPENDENT NORMAL VARIATES WITH MEAN
C ** U AND VARIANCE SIG2 BY MEANS OF THE BOX AND MULLER
C ** TRANSFORMATION OF UNIFORM(0,1) DEVIATES.
TP1=.8831852
A=UNIF(X)
B=UNIF(X)
RNORM1=U+SQRT(-2.0*SIG2*ALOG(A))*COS(TPI*B)
RNORM2=U+SQRT(-2.0*SIG2*ALOG(A))*SIN(TPI*B)
RETURN
END
SUBROUTINE ASGMAXC(D,DCOM,UNIF)
C ** THIS SUBROUTINE RANDOMLY ASSIGNS THE COMPONENTS OF A SUPREMUM
C ** NORM SUCH THAT THE COMPONENTS ARE IN NORM EQUAL TO THE ORIGINAL
C ** NORM.
COMMON /TWO/ N
COMMON /THREE/ KORD(20)
DIMENSION DCOM(20)
M=N-1
DO 100 I=1,M
J=KORD(I)
DCOM(J)=D*UNIF(A)
100 CONTINUE
J=KORD(N)
DCOM(J)=D
RETURN
END

SUBROUTINE XVEC1(RNORM1,UNIF,IREPS)
C ** THIS SUBROUTINE GENERATES MULTIVARIATE NORMAL AUTOCORRELATED
C ** VECTORS USING THE TRANSFORMATION Y=CX+U, WHERE C IS THE
C ** MATRIX FROM SUBROUTINE CMAT, LAMBDA IS THE AUTOCORRELATION
C ** COEFFICIENT, AND X IS A P-DIMENSIONAL VECTOR FROM N(0,1).
COMMON /TWO/ N
COMMON /SIX/ CMAT(20,20)
COMMON /SEVEN/ ZVEC(20),U(20),XVEC(20),BUF(20)
COMMON /TVEL/ LAMBDA
DIMENSION OLDVEC(20),VECNEW(20)
IF(IREPS.NE.1) GO TO 90
DO 27 I=1,N,2
ZVEC(1)=RNORM1(UNIF,RNORM2,0.0,1.0)
II=I+1
ZVEC(II)=RNORM2
27 CONTINUE
GO TO 1000
90 DO 1 I=1,N
OLDVEC(I)=ZVEC(I)
1 CONTINUE
DO 28 I=1,N,2
VECNEW(I)=RNORM1(UNIF,RNORM2,0.0,1.0)
II=I+1
VECNEW(II)=RNORM2
28 CONTINUE
DO 29 I=1,N
ZVEC(I)=LAMBDA*OLDVEC(I)+(1.-LAMBDA)*VECNEW(I)
29 CONTINUE
1000 DO 121 I=1,N
SUM=0.0
DO 111 J=1,N
SUM=SUM+CMAT(I,J)*ZVEC(J)
111 CONTINUE
BUF(I)=SUM
121 CONTINUE
DO 131 K=1,N
XVEC(K)=BUF(K)+U(K)
131 CONTINUE
RETURN
END
SUBROUTINE ASGNO(R(D,DCOM,UNIF)
C ** THIS SUBROUTINE RANDOMLY ASSIGN THE COMPONENTS OF A EUCLIDEAN
C ** NORM SUCH THAT THE COMPONENTS ARE IN NORM EQUAL TO THE ORIGINAL
C
COMMON /TVS/ N
COMMON /THREE/ KORD(20)
DIMENSION DCOM(20)
R=Deg2'
M=N-1
DO 100 I=1,M
J=KORD(I)
DCOM(J)=R=UNIF(A)
R=R-DCOM(J)
100 CONTINUE
J=KORD(N)
DCOM(J)=R
DO 200 K=1,N
DCOM(K)=SQRT(DCOM(K))
200 CONTINUE
RETURN
END

SUBROUTINE CMATI
C ** THIS SUBROUTINE COMPUTES THE C-MATRIX REQUIRED TO GENERATE
C ** MULTIVARIATE NORMAL RANDOM VECTORS, SUCH THAT CC'='SIGMA,
C ** WHERE SIGMA IS THE POPULATION COVARIANCE MATRIX.
C
COMMON /TVS/ N
COMMON /FIVE/ SIGMA(20,20)
COMMON /SIX/ CMAT(20,20)
DO 110 J=1,N
IF(J,GE.2) GO TO 91
DO'81 I=1,N
CMAT(I,J)=SIGMA(I,J)/SQRT(SIGMA(I,I))
81 CONTINUE
GO TO 110
91 DO 105 I=1,N
IF(J,GE.I+1) GO TO 104
IF(J,NE.1) GO TO 95
SUB1=0.0
L=1-1
DO'93 K=1,L
SUB1=SUB1+CMAT(I,K)**2
93 CONTINUE
CMAT(I,J)=SIGMA(I,J)-SUB1
GO TO 105
95 SUB2=0.0
L=J-1
DO'97 K=1,L
SUB2=SUB2+CMAT(I,K)*CMAT(J,K)
97 CONTINUE
CMAT(I,J)=(SIGMA(I,J)-SUB2)/CMAT(J,J)
GO TO 105
104 CMAT(I,J)=0.0
105 CONTINUE
110 CONTINUE
RETURN
END
SUBROUTINE FACOM(D)
COMMON /NINE/ X(20)
COMMON /ELEVEN/ NI
DO 50 I=1,NI
X(I)=0.0
50 CONTINUE
IMOD=0
Y=NI
NN=NI
IF(AMOD(Y,2.) .GT. 1) IMOD=1
IF(IMOD.EQ.1) NN=NN-1
Y=NN
R=D/Y
R=SQRTR(R)
DO 100 I=1,NN,2
X(I)=R
II=I+1
X(II)=-R
100 CONTINUE
IF(IMOD.EQ.1) X(NI)=0.
RETURN
END

FUNCTION UNIF(A)
DATA IU/31415926531/
UNX=2000777777777777777B
IX=16777213
IU=IU*IX
U=10
U=(U/UNX)
IF(U.LT.0) U=U+1.
UNIF=U
RETURN
END
APPENDIX B

This appendix contains a complete FORTRAN IV listing of the program which computes the multiple correlation coefficients of a set of responses, given the sample correlation or covariance matrix. The program is interactive and input is free-field format. An example of its use is also given.
*** MULTIPLE CORRELATION COEFFICIENT PROGRAM ***

ENTER THE DIMENSION OF THE RESPONSE
7

ENTER THE SAMPLE COVARIANCE MATRIX
1.00 -06 -.12 00 -.17 16
.00 1.01 -.11 01 -.04 76
-.06 .01 1.68 -.49 .56 .07
-.12 -.11 .68 1.21 .72 -.04
-.00 -.01 -.49 -.21 1.26 -.11
-.17 -.04 .56 .72 -.26 1.08
-.16 .76 .07 -.04 -.11 -.08 1

R(1)**2 = .086114
R(1) = .293452

R(2)**2 = .623385
R(2) = .789547

R(3)**2 = .597057
R(3) = .772694

R(4)**2 = .665777
R(4) = .815951

R(5)**2 = .303452
R(5) = .550865

R(6)**2 = .558023
R(6) = .747010

R(7)**2 = .632303
R(7) = .795175

DETERMINANT IS .06341
.487 CP SECONDS EXECUTION TIME
PROGRAM MLTCOR(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT)
INTEGER POS(20)
DIMENSION S(20,20),C(20,20),S12(20,20),S22T(20,20),S22(20,20)
DIMENSION JDC(20),A(20,20),B(20,20),1PR(20)
DIMENSION UL(20,20),RR(20,20),X(20,20)
EXTERNAL VIDA
WRITE(6,101)
101 FORMAT(/,5X,"*** MULTIPLE CORRELATION COEFFICIENT PROGRAM ***")
WRITE(6,103)
103 FORMAT(/,2X,"ENTER THE DIMENSION OF THE RESPONSE")
READ(5,*) NL
WRITE(6,105)
105 FORMAT(/,2X,"ENTER THE SAMPLE COVARIANCE MATRIX")
READ(5,*)(C(I,J),I=1,NL),J=1,NL)
N2=NL-1
N1=1
DO 900 IP=1,NL
IF(IP.NE.1) GO TO 175
DO 150 IC=1,NL
P0S(1C)=IC
150 CONTINUE
G0 TO 200
175 P0S(1)=IP
P0S(2)=1
IK=2
DO 190 IC=2,NL
IF(IP.EQ.IK) IX=IK+1
P0S(1C)=IK
IK=IK+1
190 CONTINUE
200 CONTINUE
DO 250 IC=1,NL
IA=POS(1C)
DO 240 JC=1,NL
JA=POS(JC)
S12T(1C,J)=S12(IA,J)
240 CONTINUE
250 CONTINUE
DO 300 IC=1,N2
IA=IC+1
DO 290 JC=1,N2
JA=JC+1
S22(1C,J)=S22(IA,J)
290 CONTINUE
300 CONTINUE
DO 340 JC=1,N2
JA=JC+1
S12T(1C,J)=S12T(1C,J)+S(1C,J)
340 CONTINUE
L=0
CALL INVTR(S22,UL,20,N2,1PR,RR,X,DI,L,DX,KD)
IF(DI.EQ.0) GO TO 950
CALL FMHX(S12T,X,A,N1,N2,20,20,N2)
CALL FMHX(A,S12,B,N1,N2,20,20,N1)
R=B(1,1)/S(1,1)
WRITE(6,109) IP,R
109 FORMAT(/,2X,"R("/../"),"**2 =",F10.6)
R=SQRTR(R)
WRITE(6,111) IPR,R
111 FORMAT(/,2X,"R"(,11,1)','=F10.6)
900 CONTINUE
CALL DECOM(C,20,NL,JD,IPR,DI,VIPDA)
DET=DI
DO 10 I=1,NL
10 DET=DET*C(I,I)
D=DET
WRITE(6,113) D
113 FORMAT(/,2X,"DETERMINANT IS ",F10.5)
950 CONTINUE
END
APPENDIX C

This appendix contains a complete FORTRAN IV listing of a program which computes the test statistic used to test if two sets of responses are independent. The program is interactive and the input is in free-field format. An example of its use is also given.
TEST FOR INDEPENDENCE OF 2 SETS OF VARIATES

ENTER THE DIMENSION OF THE RESPONSE
6

ENTER THE NUMBER OF VARIATES IN 1ST SET
2

ENTER THE NUMBER OF VARIATES IN 2ND SET
4

ENTER THE SAMPLE COVARIANCE MATRIX
1.0000 -11.00 -04.76
-01.00 -49.56 0.07
-11.68 -21.72 -04
-01.49 -21.68 -11
-04.56 -72.26 -08
-76.07 -04.11 -08.1

ENTER THE INDEX NRS OF 1ST SET OF VARIATES
1, 6

ENTER THE INDEX NRS OF 2ND SET OF VARIATES
2, 3, 4, 5

ENTER THE SAMPLE SIZE
42

ENTER ALPHA
.05

** DIMENSION OF THE RESPONSE = 6 **
** NR OF VARIATES IN 1ST SET = 2 **
** NR OF VARIATES IN 2ND SET = 4 **
** SAMPLE SIZE = 42 **
** ALPHA = .05 **

** REARRANGED COVARIANCE MATRIX **
1.0000 -7600 0.0000 -1100 -0100 -0400
-7600 1.0000 .0700 -0400 -1100 -0800
-0100 .0700 1.0000 .6800 -4900 .5600
-1100 -0400 .6800 1.0000 -2100 .7200
-0100 -1100 -4900 -2100 1.0000 -2600
-0400 -0800 -5600 .7200 -2600 1.0000

** TEST STATISTIC = 4.1630 **
** CRITICAL VALUE = 15.5072 **

** HENCE FAIL TO REJECT INDEPENDENCE **
.232 CP SECONDS EXECUTION TIME
PROGRAM INSET(INPUT, OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT)
INTEGER POS(20)
DIMENSION R11(20,20),R22(20,20)
DIMENSION R(20,20),C(20,20),JD(20),IPR(20)
EXTERNAL VIPDA
WRITE(6,101)
101 FORMAT(1H1,2X, "**TEST FOR INDEPENDENCE OF 2 SETS OF VARIATES**")
WRITE(6,103)
103 FORMAT(1H1,2X, "ENTER THE DIMENSION OF THE RESPONSE")
READ(S,*) NL
IF(EOTF(S)) 995,20
WRITE(6,105)
20 WRITE(6,105)
105 FORMAT(1H1,2X, "ENTER THE NUMBER OF VARIATES IN 1ST SET")
READ(S,*) N1
IF(EOTF(S)) 995,21
WRITE(6,107)
21 WRITE(6,107)
107 FORMAT(1H1,2X, "ENTER THE NUMBER OF VARIATES IN 2ND SET")
READ(S,*) N2
IF(EOTF(S)) 995,22
WRITE(6,109)
22 WRITE(6,109)
109 FORMAT(1H1,2X, "ENTER THE SAMPLE COVARIANCE MATRIX")
READ(S,*) (R(I,J),J=1,NL),I=1,NL
IF(EOTF(S)) 995,23
WRITE(6,111)
23 WRITE(6,111)
111 FORMAT(1H1,2X, "ENTER THE INDEX NRS OF 1ST SET OF VARIATES")
READ(S,*) (POS(I),I=1,N1)
IF(EOTF(S)) 995,24
WRITE(6,113)
24 WRITE(6,113)
113 FORMAT(1H1,2X, "ENTER THE INDEX NRS OF 2ND SET OF VARIATES")
N3=N1+1
READ(S,*) (POS(I),I=N3,NL)
IF(EOTF(S)) 995,25
WRITE(6,115)
25 WRITE(6,115)
115 FORMAT(1H1,2X, "ENTER THE SAMPLE SIZE")
READ(S,*) NS
IF(EOTF(S)) 995,26
WRITE(6,117)
26 WRITE(6,117)
117 FORMAT(1H1,2X, "ENTER ALPHA")
READ(S,*) ALPHA
IF(EOTF(S)) 995,27
DO 300 IC=1,NL
IA=POS(IC)
DO 290 JC=1,NL
JA=POS(JC)
C(IC,JC)=R(IA,JA)
290 CONTINUE
300 CONTINUE
WRITE(6,121) NL
121 FORMAT(1H1,5X, "DIMENSION OF THE RESPONSE =",12)
WRITE(6,122) N1
122 FORMAT(1H1,5X, "NR OF VARIATES IN 1ST SET =",12)
WRITE(6,123) N2
123 FORMAT(1H1,5X, "NR OF VARIATES IN 2ND SET =",12)
WRITE(6,124) NS
124 FORMAT(1H1,5X, "SAMPLE SIZE =",13)
WRITE(6,125) ALPHA
125 FORMAT(1H1,5X, "ALPHA =",F3.2)
WRITE(6,126)
126 FORMAT(1H1,5X, "REARRANGED COVARIANCE MATRIX **")
DO 200 I=1,NL

WRITE(6,127)(C(I,J),J=1,NL)

200 CONTINUE
DO 400 IC=1,N1
DO 390 JC=1,N1
R11(IC,JC)=C(IC,JC)
390 CONTINUE

400 CONTINUE
DO 500 IC=1,N2
IA=N1+IC
DO 490 JC=1,N2
JA=N1+JC
R22(IC,JC)=C(IA,JA)
490 CONTINUE

500 CONTINUE
YN1=N1
YNS=NS
YN2=N2
V1=YNS-(YN1+YN2+1.)/2.
CALL CHSDEC(C,20,NL,JD,D1,VIPDA)
DET=D1
DO 10 I=1,NL
DET=DET*JD(I)
T=1./(DET*DET)
CALL CHSDEC(R11,20,N1,IPR,D1,VIPDA)
DET=D1
DO 11 I=1,N1
DET=DET*IPR(I)
B1=1./(DET*DET)
CALL CHSDEC(R22,20,N2,IPR,D1,VIPDA)
DET=D1
DO 12 I=1,N2
DET=DET*IPR(I)
B2=1./(DET*DET)
CVT=-ALOG(T/(B1*B2))*V1
AIDF=N1*N2
ALPH=ALPHA
CRIT=PHICHI(ALPH,AIDF,IR)
IF(IR.EQ.1.OR.IR.EQ.2) G0 TO 995
WRITE(6,131) CVT
131 FORMAT(/5X,"** TEST STATISTIC =",F10.4)
WRITE(6,133) CRIT
133 FORMAT(/5X,"** CRITICAL VALUE =",F10.4)
IF(CVT.GT.CRIT) G0 TO 800
WRITE(6,135)
135 FORMAT(/5X,"** HENCE FAIL TO REJECT INDEPENDENCE **")
G0 TO 900
WRITE(6,137)
800 CONTINUE
137 FORMAT(/5X,"** HENCE REJECT INDEPENDENCE **")
900 CONTINUE
995 CONTINUE
END
APPENDIX D

This appendix contains a complete FORTRAN IV listing of a program used to test whether a set of responses is independent using the results of (2.27). The program is interactive and the input is in free-field format. An example of its use is also given.
** TEST FOR COMPLETE INDEPENDENCE **

ENTER DIMENSION OF THE RESPONSE
4

ENTER THE SAMPLE CORRELATION MATRIX
1.0000 .6800 -.4900 .5600
 .6800 1.0000 -.2100 .7200
-.4900 -.2100 1.0000 -.2600
 .5600 .7200 -.2600 1.0000

ENTER THE SAMPLE SIZE
42

ENTER ALPHA
.05

** DIMENSION OF THE RESPONSE = 4
** SAMPLE SIZE = 42
** ALPHA = .050

** CORRELATION MATRIX **
1.0000 .6800 -.4900 .5600
 .6800 1.0000 -.2100 .7200
-.4900 -.2100 1.0000 -.2600
 .5600 .7200 -.2600 1.0000

THE VALUE OF THE TEST STATISTIC = 65.81137

THE CRITICAL VALUE = 12.59120

** HENCE REJECT INDEPENDENCE **

.075 CP SECONDS EXECUTION TIME
PROGRAM INDEP (INPUT, OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT)
DIMENSION R(20,20), JD(20), IPR(20)
EXTERNAL VIPDA
WRITE(6,101)
101 FORMAT(1HI,5X:"** TEST FOR COMPLETE INDEPENDENCE **")
WRITE(6,103)
103 FORMAT(/,2X,"ENTER DIMENSION OF THE RESPONSE")
READ(5,*) NL
IF(EOF(5)) 999,90
90 WRITE(6,105)
105 FORMAT(/,2X,"ENTER THE SAMPLE CORRELATION MATRICE")
READ(5,*)((R(I,J), J=1,NL), I=1,NL)
IF(EOF(5)) 999,93
93 WRITE(6,107)
107 FORMAT(/,2X,"ENTER THE SAMPLE SIZE")
READ(5,*) NK
IF(EOF(5)) 999,91
91 WRITE(6,109)
109 FORMAT(/,2X,"ENTER ALPHA")
READ(5,*) ALPHA
IF(EOF(5)) 999,92
92 WRITE(6,121) NL
121 FORMAT(/,5X,"** DIMENSION OF THE RESPONSE =",12)
WRITE(6,125) NK
125 FORMAT(/,5X,"** SAMPLE SIZE =",14)
WRITE(6,127) ALPHA
127 FORMAT(/,5X,"** ALPHA =",F4.3)
WRITE(6,122)
122 FORMAT(/,5X,"** CORRELATION MATRIX **")
DO 200 I=1,NL
WRITE(6,123)(R(I,J), J=1,NL)
200 CONTINUE
ALPHA=1.-ALPHA
CALL DECOM(R,RO, NL, JD, IPR, DI, VIPDA)
DET=DI
DO 10 1=1,NL
DET=DET*R(I,1)
10 ED=ALOG(DET)
YN=NK-1
YM=(2*NL+5)
YN=YN/6.
YN=-(YN-YM)
CHISQ=YN*ED
AIDF=(NL*(NL-1))/2
CV=PICHI(ALPHA,AIDF,IR)
IF(IR.EQ.1.OR.IR.EQ.2) 60 TO 900
WRITE(6,111) CHISQ
111 FORMAT(/,5X,"THE VALUE OF THE TEST STATISTIC =",F10.5)
WRITE(6,113) CV
113 FORMAT(/,5X,"THE CRITICAL VALUE =",F10.5)
IF(CHISQ.GE.CV) GO TO 800
WRITE(6,115)
115 FORMAT(/,5X,** HENCE FAIL TO REJECT INDEPENDENCE **)
GO TO 900

800 WRITE(6,117)
117 FORMAT(/,5X,** HENCE REJECT INDEPENDENCE **)

900 CONTINUE
999 CONTINUE
END
BIBLIOGRAPHY

7. AR 1000-1, dated 5 November 1974, Basic Policies for Systems Acquisition by the Department of the Army, Headquarters, Department of the Army, Washington, D. C.

