
Annex B.

AN APPLICATION OF MULTIPLE RESPONSE SURFACE OPTIMIZATION TO THE ANALYSIS OF TRAINING EFFECTS IN OPERATIONAL TEST AND EVALUATION

A THESIS,

Presented to

The Faculty of the Division of Graduate Studies

By

Vernon Manuel Bettencourt, Jr.

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Operations Research

This document has been approved for public release and sale; its distribution is unlimited.

Georgia Institute of Technology

Dec 75
This report is a summary report of four studies in support of the application of statistical theory to design and evaluation of operational tests. The four topics are:

- Evaluation
- Operational testing
- Bayesian Theory
- Sample size
a. A Methodology for Determining the Power of MANOVA when the Observations are Serially Correlated, by Norviel R. Eyrich, CPT, Artillery.

b. An Application of Multiple Response Surface Optimization to the Analysis of Training Effects in Operational Test and Evaluation, by Vernon M. Bettencourt, Jr., CPT, Artillery.

AN APPLICATION OF MULTIPLE RESPONSE SURFACE OPTIMIZATION TO THE ANALYSIS OF TRAINING EFFECTS IN OPERATIONAL TEST AND EVALUATION.

A THESIS
Presented to
The Faculty of the Division of Graduate Studies
By
Vernon Manuel Bettencourt, Jr.

In Partial Fulfillment
of the Requirements for the Degree
Master of Science in Operations Research

Georgia Institute of Technology
December, 1975
AN APPLICATION OF MULTIPLE RESPONSE SURFACE OPTIMIZATION TO THE ANALYSIS
OF TRAINING EFFECTS IN OPERATIONAL TEST AND EVALUATION

Approved:

Douglas C. Montgomery, Chairman
Leslie G. Callahan, Jr.
Russell G. Heikes

Date approved by Chairman: 5 Dec 1975
AKNOWLEDGMENTS

This research would not have been possible without the invaluable assistance of several persons and institutions. I would like to express my appreciation to all those who offered assistance. An initial debt of gratitude must be expressed to the United States Army and the Field Artillery for allowing me two years of graduate study. I am also grateful to the U. S. Army Operational Test and Evaluation Agency for the contractual support of this research.

My sincere appreciation is extended to Dr. Douglas C. Montgomery for his inspirational instruction which motivated me to study response surfaces and for the great amount of time and effort which he spent advising this research. Dr. Leslie G. Callahan, Jr. is also thanked for his advice pertinent to the military aspects of this research and for the invaluable service he is providing in matching the interests of Army graduate students with the research needs of the Army. I would also like to express my gratitude to Dr. Russell C. Heikes for his instruction in design of experiments and his comments on this research, especially in the utilization and analysis of computer simulation.

Special appreciation is extended to Dr. Rick Rosenthal, University of Tennessee, who introduced me to the Geoffrion-Dyer algorithm and took time from his own dissertation to discuss the algorithm in detail. I would also like to acknowledge the excellent assistance in computer programming offered by Dr. Donovan Young and his staff of computer aides.

Finally, I would like to express my admiration for my wife, Mary
Ann, whose efforts to maintain domestic tranquility during the tempest of graduate study and thesis research were truly remarkable.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>viii</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>x</td>
</tr>
<tr>
<td>Chapter</td>
<td></td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Overview: Operational Testing</td>
<td></td>
</tr>
<tr>
<td>Objective, Procedure, and Scope</td>
<td></td>
</tr>
<tr>
<td>II. REVIEW OF MULTIPLE RESPONSE SURFACE THEORY AND OPTIMIZATION</td>
<td>14</td>
</tr>
<tr>
<td>Response Surface Methodology</td>
<td></td>
</tr>
<tr>
<td>Multiple Response Surface Optimization Literature Survey</td>
<td></td>
</tr>
<tr>
<td>Multiple Objective Optimization Literature Survey</td>
<td></td>
</tr>
<tr>
<td>III. DEVELOPMENT OF AN OPTIMIZATION METHODOLOGY</td>
<td>45</td>
</tr>
<tr>
<td>The Frank-Wolfe Linear Approximation Algorithm</td>
<td></td>
</tr>
<tr>
<td>The Geoffrion-Dyer Interactive Vector Maximal Algorithm</td>
<td></td>
</tr>
<tr>
<td>Adaptation of the Interactive Vector Maximal Algorithm to the Optimization of Multiple Response Surfaces</td>
<td></td>
</tr>
<tr>
<td>Application of the Methodology to Multiple Response Surface Problems</td>
<td></td>
</tr>
<tr>
<td>IV. APPLICATION OF MULTIPLE RESPONSE SURFACE OPTIMIZATION TO AN OPERATIONAL TEST PROBLEM</td>
<td>72</td>
</tr>
<tr>
<td>Introduction to the Problem</td>
<td></td>
</tr>
<tr>
<td>Utilization of the AMSAA Tank Duel Simulation</td>
<td></td>
</tr>
<tr>
<td>Derivation of Multiple Response Surfaces</td>
<td></td>
</tr>
<tr>
<td>Application of the Optimization Methodology to the Derived Multiple Response Surfaces</td>
<td></td>
</tr>
<tr>
<td>V. CONCLUSIONS AND RECOMMENDATIONS</td>
<td>107</td>
</tr>
<tr>
<td>Conclusions</td>
<td></td>
</tr>
<tr>
<td>Recommendations</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Quantified Effect of the Learning-Forgetting Curve</td>
<td>9</td>
</tr>
<tr>
<td>2. Uniform Precision and Orthogonal Rotatable Central Composite Designs</td>
<td>18</td>
</tr>
<tr>
<td>3. Umland-Smith Optimization Results</td>
<td>27</td>
</tr>
<tr>
<td>4. Comparison of Fields' and Original Results</td>
<td>37</td>
</tr>
<tr>
<td>5. Comparison of Umland and Smith Problem Solutions</td>
<td>65</td>
</tr>
<tr>
<td>6. Algorithm Search Results, Myers and Carter Problems One</td>
<td>67</td>
</tr>
<tr>
<td>7. Comparison of Myers and Carter Problem One Solutions</td>
<td>67</td>
</tr>
<tr>
<td>8. Comparison of Myers and Carter Problem Two Solutions</td>
<td>68</td>
</tr>
<tr>
<td>9. Input Variable Normal Distributions</td>
<td>75</td>
</tr>
<tr>
<td>10. Distribution of U(0,1) Deviates</td>
<td>75</td>
</tr>
<tr>
<td>11. Distribution of N(0,1) Deviates</td>
<td>76</td>
</tr>
<tr>
<td>12. Fixed Input Variable Values</td>
<td>76</td>
</tr>
<tr>
<td>13. 2^3 Design Variable Values, First Design</td>
<td>80</td>
</tr>
<tr>
<td>14. Steepest Ascent Optimization From First Center Point</td>
<td>843</td>
</tr>
<tr>
<td>15. 2^3 Design Variable Values, Second Design</td>
<td>84</td>
</tr>
<tr>
<td>16. Steepest Ascent Optimization From Second Center Point</td>
<td>87</td>
</tr>
<tr>
<td>17. Uni-Direction Search Along ξ_3</td>
<td>87</td>
</tr>
<tr>
<td>18. 2^3 Design Variable Values, Third Design</td>
<td>89</td>
</tr>
<tr>
<td>19. Axial Points Added to the Third Design</td>
<td>89</td>
</tr>
<tr>
<td>20. AMSAA Tank Duel Model Output at $\xi_1 = 23.0$ and $\xi_2 = 18.0$</td>
<td>99</td>
</tr>
<tr>
<td>21. AMSAA Tank Duel Model Output at $\xi_1 = 8.0$ and $\xi_2 = 5.0$</td>
<td>99</td>
</tr>
<tr>
<td>22. AMSAA Tank Duel Model Output at $\xi_1 = 10.7$ and $\xi_1 = 8.2$</td>
<td>102</td>
</tr>
<tr>
<td>Table</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>23. Sensitivity Analysis Toward (8.0,5.0)</td>
<td>103</td>
</tr>
<tr>
<td>24. Sensitivity Analysis Toward (8.0,15.0)</td>
<td>104</td>
</tr>
<tr>
<td>25. Sensitivity Analysis Toward (16.0,5.0)</td>
<td>105</td>
</tr>
<tr>
<td>26. Sensitivity Analysis Toward (16.0,15.0)</td>
<td>106</td>
</tr>
<tr>
<td>Figure</td>
<td>Illustration Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Major Defense Systems Acquisition Process</td>
</tr>
<tr>
<td>2</td>
<td>The Learning-Forgetting Curve</td>
</tr>
<tr>
<td>3</td>
<td>The Performance Gap</td>
</tr>
<tr>
<td>4</td>
<td>The LAW Weapons Test Performance Gap</td>
</tr>
<tr>
<td>5</td>
<td>System Total Combat Power at Varying Effectiveness</td>
</tr>
<tr>
<td>6</td>
<td>Response Surfaces Generated by a Second Degree Equation With Two Independent Variables</td>
</tr>
<tr>
<td>7</td>
<td>Response Surfaces Generated by a Second Degree Equation With Three Independent Variables</td>
</tr>
<tr>
<td>8</td>
<td>Yield Planes of Box Experiment</td>
</tr>
<tr>
<td>9</td>
<td>Superimposition of Constraint Response on Primary Response in Box Experiment</td>
</tr>
<tr>
<td>10</td>
<td>Umland-Smith Response Surfaces</td>
</tr>
<tr>
<td>11</td>
<td>Lind, et al, Cost and Yield Response Contours</td>
</tr>
<tr>
<td>12</td>
<td>Maximum Estimated Primary Response at Specific Values of the Constraint Response</td>
</tr>
<tr>
<td>13</td>
<td>Conditions of Constrained Maxima on Primary Response for Fixed Values of y_s</td>
</tr>
<tr>
<td>14</td>
<td>Response Surface of Myers and Carter Problem Two</td>
</tr>
<tr>
<td>15</td>
<td>Hooke and Jeeves Pattern Search Technique Flow Chart</td>
</tr>
<tr>
<td>16</td>
<td>Sample Output From the VM((Vector Maximal) Program</td>
</tr>
<tr>
<td>17</td>
<td>Estimation of w_i^k</td>
</tr>
<tr>
<td>18</td>
<td>Example of Data Input Computer Program</td>
</tr>
<tr>
<td>19</td>
<td>Example of Interactive Optimization Computer Program</td>
</tr>
<tr>
<td>20</td>
<td>Algorithm Movement on Umland and Smith Problem $y_s \leq 90.0$</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>21.</td>
<td>Algorithm Movement on Umland and Smith Problem,</td>
</tr>
<tr>
<td></td>
<td>$y_s < 92.5$</td>
</tr>
<tr>
<td>22.</td>
<td>Algorithm Movement on Umland and Smith Problem,</td>
</tr>
<tr>
<td></td>
<td>$y_s < 95.0$</td>
</tr>
<tr>
<td>23.</td>
<td>First Iteration of Myers and Carter Problem Two Optimization</td>
</tr>
<tr>
<td>24.</td>
<td>Second and Third Iterations of Myers and Carter Problem Two Optimization</td>
</tr>
<tr>
<td>25.</td>
<td>Final Iteration of Myers and Carter Problem Two Optimization</td>
</tr>
<tr>
<td>26.</td>
<td>Sample Output From AMSAA Tank Duel Model</td>
</tr>
<tr>
<td>27.</td>
<td>SPSS Multiple Linear Regression of First Design</td>
</tr>
<tr>
<td>28.</td>
<td>SPSS Multiple Linear Regression of Second Design</td>
</tr>
<tr>
<td>29.</td>
<td>SPSS Multiple Linear Regression of Third Design</td>
</tr>
<tr>
<td>30.</td>
<td>SPSS Multiple Polynomial Regression of Second Order Design</td>
</tr>
<tr>
<td>31.</td>
<td>Derived Multiple Response Surface</td>
</tr>
<tr>
<td>32.</td>
<td>Convergence Movement of the Methodology</td>
</tr>
<tr>
<td>33.</td>
<td>Validation of Methodology Convergence</td>
</tr>
<tr>
<td>34.</td>
<td>Movement of Optimization Methodology in Training Problem</td>
</tr>
</tbody>
</table>
SUMMARY

This research considers the analysis of training effects in operational test and evaluation. Previous analysis of weapons system effectiveness highlights the importance of including training effects in any evaluation of a weapons system. Computer simulation is proposed as a method of extending the scope of operational testing into areas for which it is not feasible to test in an operational test. The mutually supporting nature of computer simulations and operational tests are discussed.

Utilization of computer simulation facilitates the derivation of multiple response surfaces relating weapons system effectiveness to training related variables. The research adapts the Geoffrion-Dyer Interactive Vector Maximal algorithm into a methodology for the optimization of multiple response surfaces. Application of the methodology to multiple response problems previously solved in the literature is performed with results which compare favorably to the original.

A hypothetical analysis of the effects of training on the effectiveness of a new main battle tank is described in detail. The methodology is utilized to optimize four objective response functions which are functions of training variables. Utilization of the methodology results in an improved training program for test personnel, in a detailed analysis of the effects of training on the effectiveness of the new tank, and in the inclusion of this analysis in the operational test reports.
CHAPTER I

INTRODUCTION

Overview: Operational Testing

Structure of the Major Defense Systems Acquisition Process

The large sums of federal moneys expended on major defense systems acquisition necessitate a highly structured and well safeguarded procedure. Both the Department of Defense and the Department of the Army utilize such a procedure in their acquisition processes. The procedure is designed to insure acquisition of only those major systems for which a valid need exists within the defense establishment. Department of Defense directives document the acquisition process and its procedures in great detail (60, 63, 64).

The acquisition cycle of a major Army system is comprised of six phases. The first phase is a determination by the Army staff that a valid requirement exists for the addition of the system to the active inventory. A Required Operational Capability (ROC) report, containing a statement of need and conceptual approach, is approved and issued by Department of the Army (50). Next is the conceptual development phase during which the system's hardware is in an experimental prototype configuration. The third phase is the validation phase in which the system's hardware is in engineering development prototype configuration. Next is the development phase during which the system's hardware is in a production prototype configuration. The fifth and sixth phases are, respectively, full production and deployment of the system to tactical units (60).
After issuance of the ROC, the Secretary of Defense must grant approval for the system to move to each of the next phases. The decision options available to the Secretary of Defense are to terminate the system, to permit the system to proceed to the next phase, or to retain the system in its present phase for remedial action. To provide information and recommendations to the Secretary of Defense at these decision points, a permanent advisory body, the Defense Systems Acquisition Review Council (DSARC), has been created. Membership of the DSARC includes the Deputy Secretary of Defense and Assistant Secretaries of Defense within areas of responsibility pertinent to the system under consideration. A meeting of the DSARC precedes each decision point (64).

There exists a parallel acquisition structure within the Department of the Army. The Army Systems Acquisition Review Council (ASARC) has been created as a permanent advisory body to provide the Army's recommendation at each phase of the acquisition process to the DSARC. The ASARC is chaired by the Vice Chief of Staff of the Army. Its membership includes the Commander of the U. S. Army Material Command, the Commander of the U. S. Army Training and Doctrine Command, the Chief of Research, Development, and Acquisition, and pertinent Assistant Secretaries of the Army. To fulfill the requirement of advising the DSARC, the ASARC schedules meetings prior to those of the DSARC. The principle of civilian control over the military is upheld throughout the systems acquisition cycle by the requirement of affirmation by the Secretary of Defense at each phase transition (60).

Testing in the Acquisition Process

Testing of a major system is conducted throughout the acquisition
process to determine whether the system is satisfying technical and operational requirements. Acquisition testing is divided into two categories: a Development Test (DT) and an Operational Test (OT). The DT and OT have diverse objectives. The objective of the DT is to determine whether the engineering design and development process is complete, to determine whether the design risks have been minimized, and to determine whether the system will meet its specifications. The objective of the OT is to estimate the system's military worth in comparison with competing systems, to estimate its operational effectiveness and suitability in its environment, and to determine whether the system required modification (60).

Three distinct DT's and OT's are usually conducted during the acquisition process. The scheduled meetings of the ASARC are preceded by a DT and an OT. Results of the DT and OT are reported to the ASARC for inclusion in the report to the DSARC. To provide additional safeguards and validation, the DT and OT are conducted totally independent of each other (60). Only the OT will be of interest in this research. Sequencing of the acquisition process is graphically depicted in Figure 1.

Operational Testing

Responsibility for the conduct of the OT's on major defense systems within the Department of the Army has been delegated to the U.S. Army Operational Test and Evaluation Agency (OTEA). OTEA is independent of the developing, procuring and using agencies or organizations. The mission of OTEA is to support the material acquisition and force development processes by exercising responsibility for all OT's, managing force development testing and experimentation, and managing joint user testing
<table>
<thead>
<tr>
<th>PHASE</th>
<th>REQUIREMENT DETERMINATION</th>
<th>CONCEPTUAL DEVELOPMENT</th>
<th>VALIDATION</th>
<th>FULL SCALE DEVELOPMENT</th>
<th>PRODUCTION AND DEPLOYMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM STATUS</td>
<td>CONCEPTUAL</td>
<td>EXPERIMENTAL PROTOTYPE</td>
<td>ENGINEERING DEVELOPMENT PROTOTYPE</td>
<td>PRODUCTION PROTOTYPE</td>
<td>FINAL MODEL</td>
</tr>
<tr>
<td>ACQUISITION PROCESS</td>
<td>ROC</td>
<td>ASARC DSARC I — I</td>
<td>ASARC DSARC II — II</td>
<td>ASARC DSARC III — III</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OT I</td>
<td>OT II</td>
<td>OT III</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DT I</td>
<td>DT II</td>
<td>DT III</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Major Defense Systems Acquisition Process
for the Army. In an effort to stress military usage of the tested system, the OT is conducted utilizing typical user/operators, crews, or units in as realistic an operational environment as possible. OT's are conducted throughout the world by several diverse testing and tactical units. The objective of the OT is to provide the data necessary to estimate:

1. The military utility, operational effectiveness, and operational suitability of the system.

2. The system's desirability, considering systems already in service (base-line systems) and other competing systems, and the system's operational advantages and disadvantages from the user's perspective.

3. The need for modification of the system.

4. The adequacy of doctrine, organization, operating techniques, tactics, and training for system deployment.

5. The adequacy of maintenance support for the system.

6. The system's performance in a countermeasures environment.

An independent evaluation of each OT is prepared by OTEA and submitted to the ASARC. An emphasis is placed on a comparison of the proposed system, base-line systems, and competing developmental systems. Feedback from the ASARC and DSARC is utilized to modify future OT's. (61,62).

Computer Simulation in Operational Testing

Computer simulation is finding wide application as a predictive and investigative tool. Most major defense systems undergo a computer simulation in a tactical environment both before and after the issuance of the ROC. Simulation can provide useful pre-test and post-test information for each OT. An important consideration is that computer simula-
tions and OT's are mutually supporting. OT's provide verified data inputs for the simulation. In return the simulation provides predictions of input data for OT's or further investigates OT output data.

Pre-test computer simulation can enhance the OT in three basic areas:

1. Examine the identified critical operational issues to assess their significance.
2. Develop or discover critical operational issues that have been overlooked.
3. Provided a sensitivity analysis to indicate the accuracy required of each measurement (50).

This information will be obtained at relatively little cost and with the utilization of no test troops or equipment. The OT will be initialized with useful information and critical operational issues will be verified or identified. Data requirements in the test plan will be refined.

Post-test computer simulation can contribute to the success of an OT in the following four areas:

1. Constraining the scope of operational field tests to manageable proportions by providing analytical means for test extension.
2. Extending the OT into areas which are currently infeasible (such as two-sided combat).
3. Corroborating the impact of the OT results.
4. Supplying much needed operational performance inputs to other agencies utilizing simulation (50).

OT results can be combined with simulation results to fulfill the stringent requirements of statistical design of experiment methodology analysis.
OT results can be utilized as input for simulations of combat in real time events, thereby eliminating rest or safety time lags. Simulation can be utilized as an independent evaluation of an OT, thereby providing an additional safeguard to the acquisition process.

Training in Operational Testing

The relationship between systems effectiveness and crew/unit training has recently began to receive increased emphasis in the Department of the Army. There are a variety of reasons for this increased interest. Establishment of the U. S. Army Training and Doctrine Command (TRADOC) has institutionalized the importance of training and doctrine by fixing responsibility at a high level of the Army command. Without the troop and equipment demands of a belligerent theater, the main mission of the Army transforms to training for the next belligerency. The ascending cost of systems combined with a federal budget squeeze necessitates increased combat effectiveness from fewer weapons. As previewed in the recent Mid-East conflict, the sophistication and lethality of weapons systems on either side dictates a rapid, deadly, and decisive first encounter in any future conflict. The results of these factors is increased interest in training.

TRADOC is, of course, the major proponent of training in the Army. Within the last year, operations research analysts at TRADOC have been examining training and weapons system effectiveness. A general model of systems effectiveness has been derived.

\[E = f(w, p, t) \]

(1.1)

where E is combat effectiveness expressed as a function of w the perfor-
formance capability of the system, p the proficiency of the crew/unit manning the system, and t the tactic or technique of employment. Various DT results, such as those obtained by the Army Material Systems Analysis Agency (AMSAA), can be utilized to measure and quantify w. Results of OT's conducted by OTEA, can also be utilized in determining w (59).

Some inconsistencies arise in the consideration of p in Equation 1.1. A Department of Defense directive states that, "Operational Test and Evaluation will be accomplished by operational and support personnel of the type and qualification of those expected to use and maintain the system when deployed". (50) Most OT's are conducted with troops/units selected to satisfy this directive and then trained either by the unit or Equipment Training Team in accordance with a training package prepared by OTEA and/or TRADOC. Training is accomplished at home station, at the test site, and at Military Occupational Specialty (MOS) producing schools if required (50). Having undergone such well supervised and concentrated training, it is not unreasonable to assume that the test personnel are atypical of Army users in proficiency on the system.

Another inconsistency in Equation 1.1 is the effect of the learning-forgetting curve on proficiency. Figure 2 depicts the influence of a training season, that is a period of concentrated training in a specific area, on proficiency followed by a forgetting slump. The training cycles of most tactical units approximate such a curve. Table 1 quantifies the effect of the forgetting curve among infantry trainees (59).

The weapons system effectiveness utilized by the ASARC and DSARC is that obtained from the DT and OT. Equation 1.1 states that the aforementioned variation in actual user proficiency will cause variation in
Figure 2. The Learning-Forgetting Curve. From TRADOC (59).

Table 1. Quantified Effect of the Learning-Forgetting Curve. From TRADOC (59)

<table>
<thead>
<tr>
<th>Marksmanship Proficiency</th>
<th>AVERAGE QUALIFICATION SCORE OBTAINED</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBER OF WEEKS IN THE ARMY</td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td>52</td>
</tr>
<tr>
<td>14-16</td>
<td>44</td>
</tr>
<tr>
<td>24-52</td>
<td>*30</td>
</tr>
</tbody>
</table>

*1 point above unqualified
systems effectiveness. Figure 3 depicts the Probability of Hit and Kill of a system versus Range. Note the Performance Gap between AMSAA data (E_D) and actual performance in the hands of tactical troops (E_A) as predicted by Equation 1.1. This predicted Performance Gap has been verified in actual weapons test. In May 1974, the U. S. Army Infantry Board (USAIB) test fired the M72A2 Light Antitank Weapon (LAW) against moving targets at varying ranges. The Performance Gap uncovered by this test is shown in Figure 4 (59). The major problem encountered by the troops was a lack of proper training on the graduated lead sight for a moving target.

The implications of these variations in combat effectiveness for the national defense posture are profound. Figure 5 exhibits the varying levels of Systems Total Combat Power for a given inventory level N as a function of systems effectiveness. The effectiveness levels graphed are E_A, the actual current level, E_D, the designed effectiveness level, and E_M, the optimum or maximum level (59). It is imperative that OTEA, functioning as a major source of data on weapons systems effectiveness to high level decision bodies, account for training levels in their OT reports and analysis.

Objective, Procedure, and Scope

The objective of this research is to develop an improved methodology for optimizing a set of operational test and evaluation performance measures which are functions of training. The research will consist of a review and adaptation of response surface methodology, multiple response surface optimization, and multiple objective optimization to the problem. The Geoffrion-Dyer Interactive Vector Maximal algorithm will then be re-
Figure 3. The Performance Gap.
From TRADOC (59).

Figure 4. The LAW Weapons Test Performance Gap.
From TRADOC (59).
viewed in detail and adapted to the multiple response problem. The adapted algorithm will then be applied to previously optimized multiple response surfaces to demonstrate its utility.

Multiple response surfaces and the adapted optimization algorithm will be related to OTEA by use of the AMSAA Tank Duel Model computer simulation. The military application will consider:

1. The extension of an OT through computer simulation.
2. The effect of training on tested system effectiveness.
3. The optimization of pre-test and tactical unit training programs concerning the tested system when confronted with multiple objectives or criteria.
4. The role of the military decision maker in the interactive
optimization process.

The scope of this research will be limited by four constraints. All data values utilized in this research are "best guess" hypothetical values which cannot necessarily be inferred to be realistic. For demonstration purposes, only one tactical scenario is analyzed with the AMSAA simulation. The simulation is suited for various scenarios. The tactical scenario is two opposing tanks, in the open, at a range of 1000 meters, sighting each other simultaneously. Only mean time to fire the first round, mean time between subsequent rounds, and probability of sensing fired rounds are assumed to be functions of crew training. All other variables are assumed to be functions of the tested weapon system capabilities.
CHAPTER II

REVIEW OF MULTIPLE RESPONSE SURFACE THEORY AND OPTIMIZATION

Response Surface Methodology

Response surface methodology is a collection of statistical and mathematical techniques to approximate, utilizing designed experimentation, an unknown and complex function, say

\[\eta = f(\xi_1, \xi_2, \ldots, \xi_k) \] (2.1)

where \(\eta \) is the dependent response variable and \(\xi_i, i = 1, 2, \ldots, k \), are the independent, controllable natural variables. The approximating model is usually a low order polynomial, such as a first order model

\[\eta = \beta_0 + \sum_{i=1}^{k} \beta_i x_i + \epsilon \] (2.2)

or a second order model

\[\eta = \beta_0 + \sum_{i=1}^{k} \beta_i x_i + \sum_{i=1}^{k} \beta_i x_i^2 + \sum_{i=1}^{k} \sum_{j=1}^{k} \beta_{ij} x_i x_j + \epsilon \] (2.3)

In these models the \(x_i, i = 1, 2, \ldots, k \), are design variables, coded within a region of experimentation for computational simplification by

\[x_{iu} = \frac{\xi_{iu} - \xi_i}{s_i} \] (2.4)
where \(\xi_{1u} \) is the \(u \)th level of \(\xi_1 \),

\[
\bar{\xi}_1 = \sum_{u=1}^{N} \frac{\xi_{1u}}{N},
\]

and

\[
S_i^2 = \sum_{u=1}^{N} \frac{(\xi_{1u} - \bar{\xi}_1)^2}{N}
\]

(2.5)

Three fundamental assumptions are involved in response surface methodology:

1. The structure \(\eta = f(x_1, x_2, \ldots, x_k) \) exists and is either very complicated or unknown. The variables involved are quantitative or continuous.

2. The function \(f \) can be approximated in the region of interest by a low order polynomial such as Equation 2.2 or 2.3.

3. The independent variables \(x_1, x_2, \ldots, x_k \) are controlled in the data collection process and measured with negligible error (47).

Optimization of a response surface begins with a search for the region of maximum response. Initially a first order fitted response function,

\[
\hat{y} = b_0 + \sum_{i=1}^{k} b_i x_i,
\]

(2.6)

is fitted to a region of experimentation. This fitting is accomplished through the use of statistically designed experiments and least squares regression. Generally orthogonal designs are used to fit the first order model, since they greatly simplify computations and yield uncorrelated
estimates of the response model coefficients. Next the response is improved by moving along the path of steepest ascent. Using Lagrange Multipliers to maximize Equation 2.6 subject to

\[\sum_{i=1}^{k} x_i = R^2, \]

results in

\[x_j = \frac{b_j}{2\mu} \quad (j = 1, 2, \ldots, k) \]

where \(\mu \) is a conveniently selected increment along the path. Equation 2.8 yields an initial point of experimentation for each design variable along the path of steepest ascent. A search is conducted along the path until an optimum response is reached. Addition of center points to the first order design at this improved point will permit a formal analysis of variance and a test for lack of fit. Should these reveal significant lack-of-fit for the first order fitted response function or should the path of steepest ascent yield minimal improvement, the experimenter usually fits a second order response function.

Second order fitted response functions are of the form

\[y = b_0 + \sum_{i=1}^{k} b_i x_i + \sum_{i=1}^{k} \sum_{j=1, j \neq i}^{k} b_{ij} x_i x_j + \sum_{i=1}^{k} b_{ii} x_i^2 \]

(2.9)

There is a considerable amount of theory on the choice of design to fit Equation 2.9. Consideration is given to the bias of the predicted response or the variance of the predicted response. Uniform Precision and
Orthogonal Rotatable Central Composite Designs have received the greatest use in practice. A Central Composite Design (CCD) is well suited to the methodology since it is comprised of the first order orthogonal design and the addition of axial points outside the first order design region of experimentation. A Rotatable Design is defined to be a design in which the variance of the estimated response is a function only of distance from the center of the design and not of the direction from the center. A Uniform Precision Design is defined to be a design in which the precision of \(\hat{y} \),

\[
\rho(\hat{y}) = \frac{N \text{Var}(\hat{y})}{\sigma^2},
\]

at the design center is equal to the precision at a radius \(\rho = 1 \). Philosophically, this means that the estimated response receives uniform importance with the region \(\rho = 1 \). Table 2 depicts the choice of number of first order design points (F), axial points (\(n_a \)), center points (\(n_c \)), total points (N), and displacement distance of axial points (\(a \)) for Uniform Precision (up) and Orthogonal Rotatable CCD (ortho) of a varying number of unknown (k) (47).

Once a design has been selected and the data collected, least squares regression is performed to yield Equation 2.9. An ANOVA and lack-of-fit test is then conducted. If there is significant lack-of-fit, the experimenter can either fit a higher order response function or adjust his region of experimentation until the second order response function is adequate. Equation 2.9 can also be expressed in matrix notation as

\[
\hat{y} = \mathbf{b}_0 + \mathbf{x}'\mathbf{b} + \mathbf{x}'\mathbf{Bx}
\]

(2.11)
Table 2. Uniform Precision and Orthogonal Rotatable Central Composite Designs. From Myers (47).

<table>
<thead>
<tr>
<th>k</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>16</td>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>n_0</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>n_1 (up)</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>6</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>n_1 (orth)</td>
<td>8</td>
<td>9</td>
<td>12</td>
<td>17</td>
<td>10</td>
<td>24</td>
<td>15</td>
</tr>
<tr>
<td>N (up)</td>
<td>13</td>
<td>20</td>
<td>31</td>
<td>52</td>
<td>32</td>
<td>91</td>
<td>53</td>
</tr>
<tr>
<td>N (orth)</td>
<td>16</td>
<td>23</td>
<td>36</td>
<td>59</td>
<td>36</td>
<td>100</td>
<td>59</td>
</tr>
<tr>
<td>λ (up)</td>
<td>1.414</td>
<td>1.682</td>
<td>2.000</td>
<td>2.378</td>
<td>2.000</td>
<td>2.828</td>
<td>2.378</td>
</tr>
<tr>
<td>λ (orth)</td>
<td>0.81</td>
<td>0.86</td>
<td>0.86</td>
<td>0.89</td>
<td>0.89</td>
<td>0.91</td>
<td>0.91</td>
</tr>
<tr>
<td>(\sigma^2)</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>1.01</td>
<td>1.00</td>
<td>1.01</td>
<td>1.00</td>
</tr>
</tbody>
</table>

where

\[
X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix} , \quad B = \begin{bmatrix} b_{11} & b_{12}/2 & \ldots & b_{1k}/2 \\ b_{21} & b_{22} & \ldots & b_{2k}/2 \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \ldots & b_{kk} \end{bmatrix} \]

Elementary calculus optimization of Equation 2.11 yields an estimated point of maximum response, termed the stationary point, given by

\[
x_0 = -B^{-1}b/2
\]

The stationary point can lie inside or outside the region of experimentation. It is not advisable to extrapolate the response function outside the region of experimentation.

When analyzing a multiple response system, the extrapolation caveat assumes great importance. If the optima of all responses are in
one region of experimentation there is no cause for concern. If second order response equations cannot be fitted for all response in the same region of experimentation, two courses of action are available. First, the experimenter may choose a primary response and utilize its region of experimentation to fit first order models to those responses which are not optimum in the chosen region. Second, the experimenter may choose a compromise region of experimentation between the optima and fit first order models for the responses in this region. One must be careful not to extrapolate for any response outside its region of experimentation.

To facilitate interpretation of the second order fitted response function, the experimenter can perform a canonical analysis. Initially the response function is translated from the origin to the stationary point. Next the axes are rotated to correspond to the principle axes of response surface. To translate Equation 2.11 to origin x_0, the transformation

$$z = x - x_0$$

is made resulting in

$$\hat{y} = \hat{b}_0 + x_0'B_b + x_0'B_{x_0} + z'B_b + z'B_{x_0} + x_0'B_{z_0} + z'B_{z_0}.$$ \((2.14)\)

By defining the estimated response at the stationary point as

$$\hat{y}_0 = \hat{b}_0 + x_0'B_b/2,$$ \((2.15)\)

Equation 2.14 becomes

$$\hat{y} = y_0 + z'B_{z_0}.$$ \((2.16)\)
An orthogonal transformation,

\[z = Mw, \]

(2.17)

is then made such that

\[z'Bz = w'M'Bw \]

(2.18)

\[= \sum_{i=1}^{k} \lambda_i w_i^2 \]

where \(\lambda_i, i = 1, 2, \ldots, k, \) are the eigenvalues of matrix B. By substitution of Equations 2.14, 2.16, and 2.18 the canonical form of Equation 2.11 is

\[y = y_0 + \sum_{i=1}^{k} \lambda_i w_i^2. \]

(2.19)

Interpretation of the response function is based on the \(\lambda_i \) of Equation 2.19. If all the \(\lambda_i \) are negative, \(x_0 \) is a maximum as depicted in Figure 6(a). If all the \(\lambda_i \) are positive, \(x_0 \) is a minimum. If the \(\lambda_i \) have different signs, the stationary point lies in a saddle region, as shown in Figure 6(b), and possibly indicates the existence of two maxima. If one \(\lambda_i \) is extremely small, the surface is a stationary ridge, as depicted in Figure 6(c), with a range of possible variable combinations yielding an approximately optimum response. Should \(x_0 \) lie outside the region of experimentation, the surface approaches the shape of a rising ridge as shown in Figure 6(d). The relative magnitudes of the \(\lambda_i \) indicates elongation or contraction of the response surface in various directions. Figure 7 shows various response surfaces for the three inde-
Figure 6. Response Surfaces Generated by a Second Degree Equation With Two Independent Variables. Note: x_1 in this figure is equivalent to λ_1 in the text. From Box (10)
Figure 7. Response Surfaces Generated by a Second Degree Equation With Three Independent Variables. Note: x_i in this figure is equivalent to λ_i in the text. Figures above have the following λ_i: (a) $+++$ or $+++$, (b) $--0$, (c) $--+$, (d) -00, (e) $-0+$, (f) $00 x_0$ at ∞, (g) $-0 x_0$ at ∞. From Box (10).
The foregoing review of response surface methodology is intended to familiarize the reader with concepts utilized in Chapter IV of this research. Should the reader desire additional information on the subject, the text by Myers (47) is recommended as a definitive work.

Multiple Response Surface Optimization Literature Survey

In many practical applications of response surface methodology, more than one response function is generated by the independent variables. For instance, a chemical reaction with independent variables such as amount of reactants, temperature, and pressure may have multiple response functions such as purity, amount of yield, and cost. Each response function will be in the form of Equation 2.6 or 2.9. Confronted with multiple response functions, the decision maker cannot apply simple unifunction optimization. Research on multiple response surface optimization was rather sparse prior to the development of mathematical programming methodology. Each contribution to mathematical programming is ensued by its application to multiple response surface optimization. Thus far, the efforts seem to divide into two classes which could be termed multiple objective optimization and constrained single objective optimization.

Initial efforts were directed toward the graphical optimization of multiple response surfaces. Box (18), in 1954, cites an example of a chemical reaction where two reactants, A and B, formed a mixture of C and D. The objective was to maximize C while constraining D to be less than 20%. Canonical analysis indicated that C was maximized along a plane of 68% yield, as shown in Figure 8. A second response function was derived.
for D and set equal to 20%. As shown in Figure 9, the constraint response function was superimposed on the maximum yield plane, allowing a visual choice of an optimum operating point. Box (10) also recognized that ridge systems, offering a wide choice of independent variable settings with minimal effect on the dependent response, are extremely useful in this type of optimization. For a three variable system, he shows a three dimensional grid which could display contours and assist in visual optimization. Line (42) refined this technique by use of acetate plates with the response surfaces drawn on them. Two articles by Hunter (35,36), in 1956, also describe graphical analysis as an optimization technique.

As mathematical programming methodology was developed, its application to response surfaces was obvious. Schrage (53), in 1957, utilized linear programming to assist in optimization of a Catalytic Cracking operation. The gradient of the objective response was maximized in the presence of the gradients of constraint responses and bounds on the independent variables. This optimum direction was then followed in the steepest ascent search. Linear programming could be utilized since the gradients of second order response functions are linear.

Quadratic response surfaces were optimized directly by Umland and Smith (57), in 1959, through the use of LaGrange Multipliers. Yield, Equation 2.20, was selected as the primary response and maximized constrained by fixed maximum values of the secondary response purity, Equation 2.21.

\[y_p = 55.84 + 7.31x_1 + 26.65x_2 - 3.03x_1^2 - 6.96x_2^2 + 2.69x_1x_2 \] (2.20)
Figure 8. Yield Planes of Box Experiment
From Davies (18)

Figure 9. Superimposition of Constraint Response on Primary Response in Box Experiment. From Davies (18)
\[y_s = 85.72 + 21.85x_1 + 8.59x_2 - 9.20x_1^2 - 5.18x_2^2 - 6.26x_1x_2 \] \hspace{1cm} (2.21)

The response surfaces are graphed in Figure 10 and results are listed in

![Figure 10. Umland-Smith Response Surfaces From Umland and Smith (57).](image)

Table 3. By setting the secondary response equal to maximum values, equality constraints are created. In 1963 Michaels and Pengilly (43) also utilized LaGrange Multipliers to achieve maximum yield constrained by a fixed maximum cost function. The cost function was algebraically derived. Chow (16) demonstrated that the same technique could be utilized with inequality constraints. He also simplified the computational procedure by eliminating the need to solve a set of simultaneous equations through use of a transformation.

Hoerl (34), in 1959, introduced two techniques to the literature.
Table 3. Umland-Smith Optimization Results.

<table>
<thead>
<tr>
<th></th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purity</td>
<td>94.87</td>
<td>92.47</td>
<td>89.995</td>
</tr>
<tr>
<td>Maximum</td>
<td>95.0</td>
<td>92.5</td>
<td>90.0</td>
</tr>
<tr>
<td>Yield</td>
<td>83.66</td>
<td>86.73</td>
<td>88.68</td>
</tr>
<tr>
<td>X_1</td>
<td>0.965</td>
<td>1.005</td>
<td>1.075</td>
</tr>
<tr>
<td>X_2</td>
<td>1.088</td>
<td>1.316</td>
<td>1.479</td>
</tr>
</tbody>
</table>

The first is an extension of graphical analysis to ridge analysis with more than two independent variables. One response is maximized or minimized while constrained by an upper bound on the second response. The variables are constrained to fall on the sphere of radius R by

$$\sum_{i=1}^{n} x_i^2 = R \quad (2.22)$$

and ridge analysis is iteratively performed, starting with the independent variable values which optimize the objective response, until the constraint responses are satisfied. The second technique is a multiple objective technique where the multiple responses are combined into one response by use of subjective weightings. Montgomery, Talavage, and Mullen (46), in 1971, pursued the weighting technique in the multiple response surface optimization of a traffic network computer simulation. Two responses, average delay per vehicle and average stop per vehicle, were linearly combined by transforming both to seconds of delay. This composite response was optimized according to the techniques discussed
in the first section of this chapter.

Nonlinear programming techniques are readily adapted for use in constrained optimization of multiple response surfaces. Carroll (14), in 1960, devised the Created Response Surface Technique which incorporates the constraint responses into the objective response by the use of a penalty function. As the steepest ascent optimization approaches the boundaries of the constraints, the objective function is penalized at a greater rate. Thus, through the sequential application of unconstrained optimization techniques, the stationary point is reached without violating the constraints. This technique was a forerunner of barrier and penalty function techniques in nonlinear programming. In 1960 Box (11) advocated the use of linear programming for the solution of multiple response chemical problems.

Lind, et al, (41) applied the graphical analysis technique to optimize the system shown in Figure 11. The two responses were cost and yield of a pharmaceutical process of American Cyanamid Company. A similar optimization of cost and yield was performed on a liquor fermentation process by Remmers and Dunn (51). Smith and Rose (55), in 1963, utilize the graphical technique with an interesting modification. One response is a usual empirically determined equation while two other response equations are from subjective ratings. Graphical analysis was also utilized by Wu (68) in tool life testing, Ellis, et al, (22) in Raschig synthesis of Hydrazine, and Taraman and Lambert (56) in selection of machining variables. The graphical technique can and has served as both a multiple objective and a constrained optimization technique.

While analyzing the design of extruder screws, Underwood (58)
Figure 11. Lind, et al, Cost and Yield Response Contours. From Lind, et al, (41)
suggested that the advent of computers allowed for an enumerative search for the optimum of a multiple response system. Bolker (9) utilized this technique in studying delignification by Nitrogen compounds. He set one response at consecutive values and solved the response functions simultaneously.

As nonlinear programming progressed, so did its application to multiple response surface optimization. Baily, et al, (3) applied nonlinear optimization to the kraft pulping process. Responses such as yield, brightness, and Kappa number were optimized by an, unfortunately, undisclosed nonlinear technique. A method termed cheapest ascent was developed by Heller and Staats (30), in 1973. They combined a yield response and a cost constraint response into a profit objective response. Since the value of the gradient is dependent upon the metric used, a common scale of equal costs per unit change was adopted. Constraints on the system were both algebraic and response surface functions. The system was optimized utilizing Zoutendijk's method of feasible directions.

The LaGrange Multiplier approach was modified by Myers and Carter (48), in 1973. They did not equate the constraint response to a specific value, but rather devised a methodology which allowed a graphical display of optimal primary response solutions for varying values of the constraint response. Two problems were solved in the article. The first consisted of three independent variables with region constraints.

\[-2.5 \leq x_i \leq 2.5 \quad (i = 1, 2, 3) \quad (2.23)\]

forming the dual responses
\[
\hat{y}_p = 65.39 + 9.24x_1 + 6.36x_2 + 5.22x_3 - 7.32x_1^2 - 7.76x_2^2 - 13.11x_3^2
\]
\[-13.68x_1x_2 - 18.92x_1x_3 - 14.68x_2x_3, \quad (2.24)\]

\[
\hat{y}_s = 56.42 + 4.65x_1 + 8.39x_2 + 2.56x_3 + 5.25x_1^2 + 5.62x_2^2 + 4.22x_3^2
\]
\[+ 8.74x_1x_2 + 2.32x_1x_3 + 3.78x_2x_3, \quad (2.25)\]

Figure 12 is solved for \(\hat{y}_p\) given a value of \(\hat{y}_s\). Values of the independent variables are then obtained from Figure 13. With \(\hat{y}_s = 65.0\), \(\hat{y}_p\) was maximized at \(x_1 = 2.07\), \(x_2 = -1.15\), and \(x_3 = -0.6\), yielding a response of approximately 74.0. A second problem was solved incorporating spherical region constraints necessitated by an unbounded primary response within the constraint response region. Figure 14 shows the response surfaces of the equations

\[
\hat{y}_p = 53.69 + 7.26x_1 - 10.33x_2 + 7.22x_1^2 + 6.43x_2^2 + 11.36x_1x_2 \quad (2.26)
\]

\[
\hat{y}_s = 82.17 - 1.01x_1 - 8.61x_2 + 1.40x_1^2 - 8.76x_2^2 - 7.20x_1x_2 \quad (2.27)
\]

Two constraints are imposed,

\[
84 < \hat{y}_s < 88 \quad (2.28)
\]

and

\[
x_1^2 + x_2^2 < 1. \quad (2.29)
\]

The primary response was maximized at 67.0 while \(\hat{y}_s = 87.8\) and \(x_1 = 0.85\) and \(x_2 = 0.6\). Since this method is graphical, it is limited to two response equations without undue difficulty of interpretation. Also the B
Figure 12. Maximum Estimated Primary Response at Specific Values of the Constraint Response. From Myers and Carter (48)
Figure 13. Conditions of Constrained Maxima on Primary Response for Fixed Values of \tilde{y}_8. From Myers and Carter (48)
Figure 14. Response Surface of Myers and Carter Problem Two. From Myers and Carter (48)
matrix of both responses, shown in Equation 2.11, cannot be indefinite or solution is impossible by this method.

Further application of nonlinear programming was accomplished by Fields (23), in 1974. He utilized the Hooke and Jeeves Pattern Search Technique, diagramed in Figure 15, to optimize versions of the Umland and Smith and Myers and Carter problems discussed previously in this section. Fields examined three formulations of the response systems:

1. A single objective function with other response functions treated as constraints and explicitly set to a fixed value.

2. A single objective function with implicit, penalty function type consideration of the other response functions as constraints.

3. A weighting function combination of all response functions into a single function.

He concluded that the first formulation was unsatisfactory due to the inability to slightly violate the constraints. The second formulation was an improvement, though requiring numerous computer iterations from various starting points with varying penalty sizes. Fields found the most promise in the weighting scheme as an aid to the decision maker.

In his research, however, various weights were applied with solutions displayed in tabular format. Once again the computer runs required are considerable and the assistance of an expert is necessary. His results are compared to the original authors' results in Table 4.

A recent addition to the literature is the work of Biles (8), in 1975, which utilizes the gradient projection technique of nonlinear programming. A primary response is optimized while secondary responses are constrained within specified bounds. The technique is mainly the usual
Figure 15. Hooke and Jeeves Pattern Search Technique Flow Chart.
From Fields (23)
Table 4. Comparison of Fields' and Original Results

<table>
<thead>
<tr>
<th>Variable</th>
<th>Umland and Smith</th>
<th>Fields</th>
<th>Myers and Carter</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{y}_{p1})</td>
<td>83.66</td>
<td>83.4562</td>
<td></td>
</tr>
<tr>
<td>(\hat{y}_{s1})</td>
<td>94.87</td>
<td>94.9992</td>
<td></td>
</tr>
<tr>
<td>(x_{11})</td>
<td>0.965</td>
<td>0.96643</td>
<td></td>
</tr>
<tr>
<td>(x_{21})</td>
<td>1.088</td>
<td>1.07373</td>
<td></td>
</tr>
<tr>
<td>(\hat{y}_{p2})</td>
<td>86.73</td>
<td>86.6441</td>
<td></td>
</tr>
<tr>
<td>(\hat{y}_{s2})</td>
<td>92.47</td>
<td>92.4998</td>
<td></td>
</tr>
<tr>
<td>(x_{12})</td>
<td>1.005</td>
<td>1.00562</td>
<td></td>
</tr>
<tr>
<td>(x_{22})</td>
<td>1.316</td>
<td>1.31055</td>
<td></td>
</tr>
<tr>
<td>(\hat{y}_{p3})</td>
<td>88.68</td>
<td>88.6623</td>
<td></td>
</tr>
<tr>
<td>(\hat{y}_{s3})</td>
<td>89.995</td>
<td>89.9997</td>
<td></td>
</tr>
<tr>
<td>(x_{13})</td>
<td>11.075</td>
<td>1.08223</td>
<td></td>
</tr>
<tr>
<td>(x_{23})</td>
<td>1.479</td>
<td>1.47497</td>
<td></td>
</tr>
<tr>
<td>(\hat{y}_{p1})</td>
<td>73.9145</td>
<td>73.66</td>
<td></td>
</tr>
<tr>
<td>(\hat{y}_{s1})</td>
<td>64.9997</td>
<td>65.22</td>
<td></td>
</tr>
<tr>
<td>(x_{11})</td>
<td>2.1250</td>
<td>2.07</td>
<td></td>
</tr>
<tr>
<td>(x_{21})</td>
<td>-1.25</td>
<td>-1.15</td>
<td></td>
</tr>
<tr>
<td>(x_{31})</td>
<td>-0.6222</td>
<td>-0.6</td>
<td></td>
</tr>
<tr>
<td>(\hat{y}_{p2})</td>
<td>67.5716</td>
<td>67.8</td>
<td></td>
</tr>
<tr>
<td>(\hat{y}_{s2})</td>
<td>87.8056</td>
<td>88.19</td>
<td></td>
</tr>
<tr>
<td>(x_{12})</td>
<td>0.60</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>(x_{22})</td>
<td>-0.80</td>
<td>-0.6</td>
<td></td>
</tr>
</tbody>
</table>
gradient search optimization unless the gradient direction leads out of the feasible region described by the constraint responses. Should this occur, gradient projection is used to bring the search direction back into the feasible region.

As can be seen from this literature survey, most of the research in multiple response surface optimization has been devoted to constrained optimization techniques utilizing various nonlinear programming algorithms. Such approaches require selection of a primary response with relegation of other responses to constraint status. The application of these approaches to more than three responses has not been demonstrated. The military decision maker may well desire to array the importance of multiple responses in a more controlled manner. Thus this research is devoted to the application of a multiple objective optimization technique to the multiple response problem.

Multiple Objective Optimization Literature Survey

Charnes and Cooper (15), in 1961, proposed goal programming as a solution technique for multiple linear objectives with linear constraints. If \(x_1, x_2, \ldots, x_n \) are a set of subgoals to be achieved and \(a_1, a_2, \ldots, a_n \) are technological coefficients, then the objective function is

\[
f(x_1, x_2, \ldots, x_n) = a_1 x_1 + a_2 x_2 + \ldots + a_n x_n \tag{2.30}
\]

The constraints can be expressed in the form

\[
a_{i1} x_1 = b_i \quad (i = 1, 2, \ldots, n) \tag{2.31}
\]

where \(b_i \) is the \(i \) th goal value. Deviation above or below a goal is ac-
commodated by the slack variables y_i^+ or y_i^- respectively. The goal programming problem is then expressed as

\[
\text{Min } Z = y_1^+ + y_2^-
\]

S.T. \(A\mathbf{x} + y_1^+ - y_2^- = b \)

\[
\mathbf{x}, d^-, d^+ \geq 0.
\]

Solution by usual linear programming methods will yield values of \(\mathbf{x} \) which come closest to meeting the goal values, \(b \). Nonlinear objectives or constraints were not considered. Ijiri (37) modified the technique of Charnes and Cooper to develop the formulation stated in Equation 2.32.

Since most problems would not have completely compatible goals, Ijiri proposed a weighting and ordering scheme to allow the decision maker to set goal priorities.

In 1971, Ruefli (52) extended goal programming by adapting it to linear decomposition models. He worked with goals being set at various levels in an organization. Lee (39) has been a prolific advocate of goal programming. He recognizes that goal programming is very limited in nonlinear situations and cites no examples in his text written in 1972. Lee does detail applications of linear goal programming ranging from financial decisions to academic planning to government decision analysis. Lee and Moore (40), in 1973, apply goal programming to the linear optimization of multiple objective transportation problems. In that same year Hindelang (32) discussed the application of multiple objective linear goal programming to Quality Control optimization.

Johnsen (38), in 1968, reviews the basic results of Charnes and Cooper and Ijiri prior to researching the application of computer simula-
tion to the multiple objective problem. He proposes that simulations be performed on a multiple objective system with varying limits on the objectives. This technique would apply only to situations which could be simulated in total and would require considerable computer time.

When confronted with optimization of a refinery, Seinfeld and McBride (54), chose two formulations of the multiple objective problem. Their two objectives were to maximize total profit and to minimize the sensitivity of profit to variations in refinery conditions. The first formulation was a weighted combination of the two objectives. The second approach was to maximize the primary objective, then minimize the second objective while constraining the displacement of the solution from the primary optimum. Zoutendijk's method of feasible direction was used for the nonlinear optimization. The first formulation requires an initial subjective weighting by the decision maker. The second approach implies a primary objective and a secondary objective which will be violated by an uncontrollable amount.

Another approach to the linear multiple objective problem is POP, Progressive Orientation Procedure, devised by Benayoun, Tergny, and Keuneman (7), in 1970. This is a sequential procedure of weighted linear optimizations integrated interactively with the decision maker. By answering questions concerning the current optimum, the decision maker influences the location of the next optimization. Their algorithm, STEM, is confined to linear problems. Geoffrion (27) utilized a similar philosophy in Vector Maximal Decomposition Programming. He uses an implicit preference function to combine multiple nonlinear objectives. The preference function is determined interactively with the decision maker.
This approach will be discussed in detail later in this section.

Multicriterion linear programming problems were examined by Belenson and Kapur (6), in 1973. They developed a two person zero-sum game approach which interacted with the decision maker to determine disparities between the solution and his preferences. Monarchi, Kisiel, and Duckstein (45) developed an algorithm termed a sequential multiobjective problem solving technique, SEMOPS, to interactively solve multiple objective nonlinear goal programming problems. The algorithm involves a surrogate objective function

$$\min s = \sum_{t \in T} d_t$$ \hspace{1cm} (2.33)

where \(d_t\) reflects whether a goal has been satisfied. SEMOPS presents the decision maker with alternatives from which to choose. The approach is very similar to the algorithm adopted by this research. Vemuri (65), in 1974, developed an algorithm which sought a noninferior solution set rather than an optimum solution. It is based on deriving the Pareto optimal set, that is, the line from which a deviation will improve no objective function. Currently this algorithm is limited to specific formulations of the objective functions and no constraints.

The multiple objective optimization algorithm adopted by this research is the Geoffrion-Dyer Interactive Vector Maximal algorithm. Chapter III of this research will detail the algorithm, thus the following will be a description of its development. The early theoretical work by Geoffrion (27) has previously been discussed. Geoffrion and Hogan (29), in 1972, formalized an algorithm and applied it to two-level organizations with multiple objectives. An overall objective function of the decision
maker's utility function is optimized without explicit knowledge of the function. Marginal rate of substitution indifference tradeoffs between objectives, interactively developed by the decision maker, are transformed into point gradients of his utility function. These are maximized, subject to region definition constraints, to produce an optimal direction vector. The decision maker then selects an optimal solution along this vector. Linearity is not a requirement in objectives or constraints.

Dyer (21) adapted the algorithm to Interactive Goal Programming. Nonlinear functions were applicable to the algorithm but Dyer cautioned that his adaptation, "... can be expected to provide an optimal solution to the multiple criteria problem only in restrictive special cases." He found value in the insights and alternatives which the algorithm presented to the decision maker. Garrido (26), in 1974, altered the suboptimization portion of this algorithm by utilizing LaGrange Multipliers in an application to Multi-Item Inventory systems.

In December 1972, Geoffrion, Dyer, and Feinberg (28) formalized the basic algorithm. An article was published detailing the algorithm and its application to the operation of an academic department. Dyer (19), in 1973, published an article describing an ALGOL computer program of the algorithm. He displayed output, Figure 16, of the algorithm optimizing an automobile purchase decision. In a later article (20), he describes an experiment with graduate student subjects knowledgeable in mathematical programming, solving the automobile problem with various algorithms. The Vector Maximal algorithm received unanimous subjective praise for ease of use and comprehension. Most recently, Courtney (17) has drafted a paper
Figure 16. Sample Output From the VM (Vector Maximal) Program. From Dyer (19)
applying the algorithm to capital appreciation and income portfolio selection.

This brief survey of multiple objective optimization has revealed a majority of effort on the linear problem. The work of Geoffrion and Dyer stands out in the nonlinear problem area. Utilization of the Interactive Vector Maximal algorithm would allow participation of the military decision maker in the optimization process. His military experience and expertise would be utilized in making controlled marginal rate of substitution decisions. After an optimal direction is determined, the military decision maker would perform the uni-directional search optimization. In this alliance between military decision maker and mathematical programming, the "black box" fixed solution syndrome is alleviated if not eliminated. Since all alternatives are presented to the decision maker in the dependent response space rather than the independent variable space, a multitude of alternate solutions are considered. An application of the Geoffrion-Dyer Interactive Vector Maximal algorithm to multiple response surface optimization would seem to generate favorable dividends. It is in that direction which this research will now proceed.
CHAPTER III

DEVELOPMENT OF AN OPTIMIZATION METHODOLOGY

The Frank-Wolfe Linear Approximation Algorithm

The theoretical basis of the Geoffrion-Dyer Interactive Vector Maximal algorithm is the Frank-Wolfe Linear Approximation algorithm. Development of a methodology involving the latter algorithm must therefore begin with the former. The Frank-Wolfe algorithm (69) solves the nonlinear programming problem

\[
\begin{align*}
\text{Max } f(x) \\
\text{S. T. } Ax & \leq b \\
& x > 0
\end{align*}
\]

by means of linear approximations. The linear approximation to \(f(y) \), where \(y \) is a solution to Equation 3.1, at the feasible point \(x^k \) is \(f_L(y) \) where

\[
f_L(y) = f(x^k) + \nabla f(x^k)^T(y - x^k).
\]

The algorithm seeks to maximize the linear approximation of the objective function within the constraint set. By substitution of Equation 3.2, Equation 3.1 becomes

\[
\begin{align*}
\text{Max } f(x^k) + \nabla f(x^k)^T(y - x^k) \\
\text{S. T. } Ay & \leq b \\
& y > 0
\end{align*}
\]
Further simplification is possible by realizing that \(x^k \) is a fixed feasible point throughout an iteration of the algorithm, rendering several terms in the objective function constant.

The final form of Equation 3.3 is

\[
\begin{align*}
\text{Max } & \ n(x^k)^T \cdot \gamma \\
\text{S.T. } & \ A \gamma \leq b \\
& \gamma \geq 0
\end{align*}
\]

(3.4)

The optimum \(\gamma^k \) of Equation 3.4 is constrained to be feasible and is the maximum of the linear approximation of the original objective function. An improved value of \(f \) should lie on a direction \(d^k \) from \(x^k \) to \(\gamma^k \):

\[
d^k = \gamma^k - x^k.
\]

(3.5)

A uni—direction search is therefore conducted along

\[
x^k + \tau(\gamma^k - x^k) \quad 0 \leq \tau \leq 1
\]

(3.6)

to yield an improved and feasible \(x^{k+1} \) for the next iteration of the algorithm. The algorithm terminates at solution point \(x^* \) if \(x^* \), the solution to Equation 3.4 where \(x^k = x^* \), implies

\[
\forall f(x^*)^T(\gamma^* - x^*) \leq 0.
\]

(3.7)

By substituting Equation 3.5 into 3.7 it is seen that \(x^* \) satisfies the Kuhn-Tucker conditions that are necessary for optimality. Farkas'Lemma (69) states that

\[
q^T x \leq 0
\]

(3.8)
for all x such that $Ax \leq 0$ is equivalent to the statement that there exists $u \geq 0$ such that

$$q + A^t u = 0.$$ \hfill (3.9)

In Equation 3.4,

$$Ay \leq b \Rightarrow Ay - b \leq 0,$$ \hfill (3.10)

thus

$$V(Ay - b) \leq 0.$$ \hfill (3.11)

Substituting Equation 3.7 and 3.11 into 3.8 yields this version of 3.9:

$$Vf(x^*) + V(Ay - b)u = 0.$$ \hfill (3.12)

which are the Kuhn-Tucker conditions necessary for optimality.

Zangwill (69) proves the following Convergence Theorem for a non-linear programming problem:

Let the point-to-set map $A:V \rightarrow \mathbb{R}^k$ determine an algorithm that given at point $z \in V$ generates the sequence $(z^k)_{k=1}^\infty$. Also let a solution set $\mathbb{S} \subseteq V$ be given.

Suppose

1. All points z^k are in a compact set $X \subseteq V$.
2. There is a continuous function $Z:V \rightarrow \mathbb{R}^1$ such that:
 a. if x is not a solution, then for any $y \in A(z)$
 $$Z(y) > Z(z)$$
 b. if x is a solution, then either the algorithm terminates or for any $y \in A(z)$
 $$Z(y) \geq Z(z)$$
and

(3) The map A is closed at z if z is not a solution. Then either the algorithm stops at a solution, or the limit of any convergent subsequence is a solution.

The foregoing Frank-Wolfe algorithm will now be shown to be convergent (69). An assumption must be made that f is continuous and differentiable and that the feasible region is compact. Compactness is equivalent to assuming that the feasible region is closed and bounded. By this second assumption part (1) of the Theorem is proved since x^k is feasible, x^k is feasible, and any point on a straight line between them is feasible.

To prove part (2a), assume that x' is not a solution. Then let y' be the solution to Equation 3.4 with $x^k = x'$. Since x' is not a solution Equation 3.7 becomes

$$\forall f(x') \in \mathbb{R}^n, (y' - x') > 0. \quad (3.13)$$

But Equation 3.13 states that d' is an improving direction for f. Let w be a point on d' within Equation 3.6. Then

$$f(w) > f(x') \quad (3.14)$$

Part (2b) clearly holds if $z = x$ and $Z(z) = f(x)$.

The final step in establishing convergence of the algorithm is proof of part (3) of the Theorem. Let

$$x^k \to x \quad (3.15)$$

and

$$d^k \to d' \quad (3.16)$$
Substitution of Equations 3.15 and 3.16 into 3.5 yields

$$y^k = \gamma^\infty = d^\infty - x^\infty$$ \hspace{1cm} (3.17)

The algorithmic map is separated into two maps, D which determines the improving direction, and M which calculates x^{k+1} given the improving direction:

$$A = MD$$ \hspace{1cm} (3.18)

The map N was shown to be closed in the proof of part (1). To prove D is closed, it is sufficient to show that γ^∞ solves Equation 3.4 where $x = x^\infty$. Then since $d^\infty = \gamma^\infty - x^\infty$,

$$(x^\infty, d^\infty) \in D(x^\infty).$$

Since γ^∞ is one γ^k, it is feasible. By definition of γ^k

$$\nabla f(x^k)^T (\gamma^k - x^k) \geq \nabla f(x^k)^T (\gamma - x^k)$$ \hspace{1cm} (3.19)

for any feasible γ. Taking the limit of Equation 3.19 as $k \to \infty$ yields

$$\nabla f(x^\infty)^T (\gamma^\infty - x^\infty) \geq \nabla f(x^\infty)^T (\gamma - x^\infty),$$ \hspace{1cm} (3.20)

which states that γ^∞ solves Equation 3.4 for $x = x^\infty$ since Equation 3.20 is true for all feasible γ. The map D is thus closed. Zangwill (69) has proven a theorem which states that if maps M and D are closed in Equation 3.18, map A is closed. This completes the proof of convergence. Wolfe (67) has done further work to establish upper and lower bounds on the rate of convergence of the Frank-Wolfe algorithm.
The Geoffrion-Dyer Interactive Vector Maximal Algorithm

The development and theoretical basis of the Interactive Vector
Maximal algorithm have now been discussed. The following will be a
detailed description of the algorithm (1,19,20,28,29). The multiple
objective optimization problem can be stated as

\[\text{Max } U [f_1(x), f_2(x), \ldots, f_r(x)] \]
\[\text{S. T. } x \in X \]

where \(f_i, i = 1, 2, \ldots, r \), are distinct objective functions, \(X \) is the fea-
sible decision variable space, and \(U \) is the decision maker's utility
function defined on the range of \(f \). The utility function \(U \) and each \(f_i \)
is assumed to be concave and continuously differentiable, and \(U \) is increas-
ing in each \(f_i \). If some \(f_i \) are convex, that is, utility decreases for
an increase in \(f_i \), then a change of sign for that \(f_i \) will be required.
The space \(X \) is assumed to be convex and compact.

Equation 3.21 can be solved by the Frank-Wolfe algorithm as fol-
lows:

Step 0. Choose an initial feasible solution \(x^k \in X \). Let \(k = 1 \).

Step 1. Determine an optimal solution \(\gamma^k \) of the direction finding
problem.

\[\text{Max } \gamma \sum U [f_1(x^k), f_2(x^k), \ldots, f_r(x^k)] \gamma \]
\[\text{S. T. } \gamma \in X \]

Let \(d^k = \gamma^k - x^k \).

Step 2. Determine an optimal solution \(t^k \) of the step-size prob-
lem
Max $U \left[f_1(x^k + td^k), f_2(x^k + td^k), \ldots, f_r(x^k + td^k) \right]$ \hspace{1cm} (3.23)

$0 \leq t \leq 1$.

if the solution is optimal, terminate. Otherwise let

\[
x^{k+1} = x^k + td^k, \\
k = k + 1,
\]

and return to Step 1.

The Frank-Wolfe algorithm was chosen for its computational simplicity, its well established convergence discussed earlier, and its rapid initial rate of convergence as discussed by Amor (2,19).

An immediate difficulty in this procedure is the necessity of quantifying the gradient of the decision maker's utility function in Equation 3.22. By application of the chain rule,

\[
\nabla \left[f_1(x^k), f_2(x^k), \ldots, f_r(x^k) \right] = \sum_{i=1}^{r} \left(\frac{\partial U}{\partial f_1} \right)_i^k \nabla f_i(x^k) \hspace{1cm} (3.25)
\]

where \(\left(\frac{\partial U}{\partial f_1} \right)_i^k \) is the \(i \)th partial derivative of \(U \) evaluated at the point \(\left[f_1(x^k), f_2(x^k), \ldots, f_r(x^k) \right] \), and \(\nabla f_i(x^k) \) is the gradient of \(f_i \) evaluated at \(x^k \). By substitution of Equation 3.25, 3.22 becomes

\[
\text{Max} \sum_{i=1}^{r} \left(\frac{\partial U}{\partial f_1} \right)_i^k \nabla f_i(x^k) \cdot \nu \hspace{1cm} (3.26)
\]

S. T. \(\nu \in X \).

Except for the partial derivatives of \(U \), the quantities in Equation 3.26
are known. The solution of Equation 3.26 is not affected by multiplication of the objective function by a scalar. Thus the objective function can be multiplied by the positive reciprocal of a $\left(\frac{\partial U}{\partial f_1} \right)^k$. As a standard convention, $\left(\frac{\partial U}{\partial f_1} \right)^k$ is utilized. The original vector

$$
\begin{pmatrix}
\left(\frac{\partial U}{\partial f_1} \right)^k, \\
\left(\frac{\partial U}{\partial f_2} \right)^k, \\
\vdots \\
\left(\frac{\partial U}{\partial f_r} \right)^k
\end{pmatrix}
$$

(3.27)

is colinear with the new vector

$$
\begin{pmatrix}
1, \\
\left(\frac{\partial U/\partial f_2}{\partial U/\partial f_1} \right)^k, \\
\vdots \\
\left(\frac{\partial U/\partial f_r}{\partial U/\partial f_1} \right)^k
\end{pmatrix}
$$

(3.28)

The components of Equation 3.28 are termed the marginal rates of substitution between f_1 and f_i, $i = 2, 3, \ldots, r$, that is, the preferred trade-offs between objective 1 and objective i. There are several methods available to obtain the trade-offs. The method utilized in this research is the ordinal comparison method, that is, "I prefer A to B." This method has been shown to be superior to the other methods (20). Initial perturbations of Δf_{1i}^k, $i = 1, 2, \ldots, r$, are obtained from the decision maker. These perturbations are obtained in a direction favorable to the decision maker, thus satisfying the need of sign determination for f_i discussed earlier in the initial assumptions. The first perturbation, Δf_{11}^k is the reference perturbation.

The decision maker is presented with two vectors, A being $f_i(x^k)$, $i = 1, 2, \ldots, r$, and B being $(f_i^k + \Delta f_{1i}^k, f_{i+1}^k, \ldots, f_r^k, f_{i-1}^k, f_{i-2}^k, \ldots, f_2^k)$. If the decision maker prefers B, Figure 17(a), Δf_{1i}^k is doubled. This is repeated until A is preferred. If A is preferred, Δf_{1i}^k is halved. This
is repeated until B is preferred. After possibly several iterations of this procedure, the decision maker is indifferent to the ordinal comparison presented and Δf_i^{*} is determined, Figure 17(b). This procedure is repeated until all Δf_i^{k*}, $i = 2,3,...,r$, are determined.

One alternate method of determining the tradeoff is to simply ask the decision maker what change in the first objective value would exactly compensate a given change in each of the other objective values. Another method would be to place the objective function values 1 and i on axes of a graph and designate the current solution point. A reference point is then chosen and the decision maker trades off movement on one axis against the other. Probably the least desirable method would be to obtain a range of tradeoff values from the decision maker, and solve the direction finding problem with all values given. The decision maker would then choose a solution from the several generated step-size problems. It has been shown that the algorithm will converge even though errors are made in the determination of the tradeoffs as long as the errors decrease with each iteration (28). This is not unreasonable to assume since each iteration will educate the decision maker in the implications of his tradeoffs.

After the tradeoffs are determined, the approximation is made

$$
\omega_i^k = \frac{\partial U/\partial f_i^k}{\partial U/\partial f_i^1} = \frac{\Delta f_i^k}{\Delta f_i^1}, \quad i = 1,2,...,r.
$$

By substitution of Equation 3.29, 3.36 becomes
Figure 17. Estimation of w^k_i.
From Dyer (20).
\[
\begin{align*}
\text{Max } & \quad \sum_{i} \omega_i^k \varepsilon_i^k, \\
\text{S. T. } & \quad \forall x \in X
\end{align*}
\] (3.30)

of which all quantities except \(\varepsilon \) are known. Equation 3.22, and therefore Step 1 of the Frank-Wolfe method, can now be solved. Step 2 is solved by presenting the decision maker with alternatives

\[
f(x^k + td^k) \quad 0 \leq t \leq 1
\] (3.31)

By choosing his preferred alternative from Equation 3.31, the decision maker solves 3.23. He is then allowed to return to Step 1 or terminate the algorithm.

The Interactive Vector Maximal Algorithm is now seen to be:

Step 0. The decision maker chooses an initial point \(x_1 \in X \). Let \(k = 1 \).

Step 1(a). The decision maker assesses his tradeoff weights \(\omega_i^k \).

(b). Compute the optimal solution \(\varepsilon^k \) of Equation 3.30. Let \(d^k = \varepsilon^k - x^k \).

Step 2. The decision maker chooses an optimal \(t^k \) to Equation 3.31. If the decision maker is satisfied, terminate. Otherwise proceed as in Equation 3.24.

It is important to realize that the decision maker views the entire problem in objective value space rather than in the more confusing decision variable space. He is making tradeoffs of objectives with no distractions from the decision variables. He is also seeing a multitude of alternate solutions as he progresses through the procedure. This is an educational process for the decision maker in the implications of his tradeoffs a-
mong objectives. There is no requirement for the decision maker to be familiar with mathematical programming. It was shown earlier that the algorithm converges to an optimal solution. The decision maker may subjectively terminate the algorithm once he feels further iterations would yield minimal improvement.

Adaptation of the Interactive Vector Maximal Algorithm to the Optimization of Multiple Response Surfaces

Adaptation of the Interactive Vector Maximal Algorithm to the optimization of multiple response surfaces must begin with an examination of the algorithm's assumptions. Utility theory shows that the majority of utility functions are concave and continuously differentiable. Most multiple response problems constrain the independent design variables in one of three ways. First the variables may be given range constraints such as

$$a_i \leq x_i \leq b_i \quad i = 1,2,\ldots,k .$$

(3.32)

These constraints are of course straight line segments and describe a convex, compact set. A second alternative would be

$$x_i + x_j \leq b_{ij} \quad i,j = 1,2,\ldots,k .$$

(3.33)

These are also straight line segments and satisfy the assumption. The third constraint definition would be

$$\sum_{i=1}^{r} x_i^2 = b .$$

(3.34)

These constraints describe a sphere which is convex and compact.
The assumption which is violated concerns the concavity or convexity of f_1, the response functions. As discussed in Chapter II, and pictured in Figures 6 and 7, a second order response function can take various shapes. For ease of interpretation, the two variable case will be discussed though the discussion applies to surfaces of more than two variables. If the response surface is a pure maximum or minimum, the assumptions are satisfied. If the surface is a saddle system, local and/or alternate optima might exist. In this case the algorithm is performed by choosing alternate starting points, x_1, and proceeding to an optimum point in each case. A thorough procedure would be to start from each vertex of the constraint space and from the origin. Experience with the surface may dictate fewer starting points. The surface optimum would be the optimum of the local optima.

The existence of a ridge system also requires alteration of the algorithm. As long as the decision maker's usual tradeoffs lead to improvement, the algorithm proceeds normally. If the current x^k lies on the down slope of the ridge, normal tradeoffs will lead to unsatisfactory alternatives in the step-size problem. At this point the decision maker should reverse the sign of his Δf_i^k perturbation and the algorithm will bring him back up the ridge to an improved point. If the current x^k lies on the crest of the ridge, neither sign of usual perturbations will lead to improvement. At this time the decision maker must judiciously adjust the sign and magnitude of his perturbations until a different search direction is generated. This is not difficult if the interactive program displays the coefficients of Equation 3.30. The program developed for this research displays these coefficients and offers another method of
solving this problem. In the nonlinear constraint version of the program, the decision maker obtains these coefficients from the main program, terminates the main program and optimizes the suboptimization problem with another program, then returns to the main program. Upon returning to the main program, he could input a new search direction to move the current \mathbf{x}^k off the crest of the ridge. The presence of a semi-trained analyst might be required but the procedure is not difficult. Once an \mathbf{x}^k not on the crest is reached, usual perturbation may again be utilized. Application of the algorithm to representative problems has shown the occurrence of a current \mathbf{x}^k on the crest of a ridge to be extremely rare.

The three design variable constraint definitions, Equation 3.32, 3.33, and 3.34, yield three formulations of Equation 3.30. The w_i^k and $V_f(x^k)$ are known and are constants. Thus Equation 3.30 and 3.32 reduce to

$$\begin{align*}
\text{Max} & \quad \sum_{i=1}^{r} c_i y_i \\
\text{S. T.} & \quad a_i \leq y_i \leq b_i, \quad i = 1, 2, \ldots, r
\end{align*}$$

(3.35)

where $c = \mathbf{w}^t V_f(x^k)$. Equation 3.35 can be solved by direct substitution. If c_i is positive, then set y_i at its upper bound, b_i. If c_i is negative, set y_i at its lower bound, a_i. Constraints of the type Equation 3.33 yield

$$\begin{align*}
\text{Max} & \quad \sum_{i=1}^{r} c_i y_i \\
\text{S. T.} & \quad A_1 x \leq b
\end{align*}$$

(3.36)
This is the classic linear programming problem and can be solved by the simplex method. Constraints such as Equation 3.34 yield

$$\text{Max} \sum_{i=1}^{r} c_i y_i$$

(3.37)

$$\text{S. T.} \sum_{i=1}^{r} x_i^2 = b.$$

This research used the Bazaraa Cyclic Coordinate Algorithm for Optimizing Penalty Functions computer program (5) to solve Equation 3.37.

The interactive optimization algorithm was programmed in FORTRAN for use on a CDC computer through two programs, listed in Appendix D. The first program is utilized for data input. As can be seen from an example run in Figure 18, the decision maker responds to interactive questions. The only analysis required is to compute gradients of the response functions. The upper and lower bounds of x_i are defining the region of experimentation utilized for the second order model and thus must coincide for all response functions. An example of the interactive optimization program is shown in Figure 19. The coefficients mentioned as aids in ridge problems are seen between the tradeoffs and the new decision vector.

Application of the Methodology to Multiple Response Surface Problems

This section will examine the application of the adapted Interactive Vector Maximal algorithm to the multiple response surface problems utilized by Fields. These problems were previously solved by Myers and Carter and Umland and Smith as discussed in Chapter II. It must be re-
Figure 18. Example of Data Input Computer Program.
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>64662</td>
<td>74662</td>
</tr>
<tr>
<td>1.59432</td>
<td>1.59432</td>
</tr>
<tr>
<td>55.32262</td>
<td>55.32262</td>
</tr>
<tr>
<td>76.25262</td>
<td>76.25262</td>
</tr>
<tr>
<td>6373.98002</td>
<td>6373.98002</td>
</tr>
</tbody>
</table>

Figure 19. Example of Interactive Optimization Computer Program.
THE TRADEOFFS ARE

\[
\begin{array}{|c|c|}
\hline
\text{VECTOR} & \text{VALUE} \\
\hline
\text{CVS1 TS} & 1.0022 \\
\text{CVS2 TS} & 0.2600 \\
\text{CVS3 TS} & -0.6202 \\
\text{CVS4 TS} & -0.6202 \\
\text{CVS5 TS} & -0.3825 \\
\text{CVS6 TS} & 1.547774 \\
\text{CVS7 TS} & 1.777536 \\
\text{CVS8 TS} & 1.547774 \\
\text{CVS9 TS} & 1.777536 \\
\hline
\end{array}
\]

NEW DECISION VECTOR
\[
\begin{array}{c|c|}
\hline
\text{V1} & 16.0300 \\
\text{V2} & 15.0300 \\
\hline
\end{array}
\]

NEW OPERATING POINT
\[
\begin{array}{c|c|c|c|c|c|c}
\hline
\text{U01} & 4.3800 \\
\text{V01} & 1.0520 \\
\text{V02} & 13.0133 \\
\text{V03} & 14.4136 \\
\text{V04} & 1877.0000 \\
\hline
\end{array}
\]

INPUT NUMBER OF POINTS TO SEE IN STEP SIZE

\[
\begin{array}{c|c|c|c|c|c}
\hline
\text{U05} & 1.6460 & 1.5940 & 55.9226 & 75.2526 & 6373.0000 \\
\text{U06} & 1.6540 & 1.5230 & 43.9342 & 65.9444 & 5945.0000 \\
\text{U07} & 1.4530 & 1.4530 & 41.3353 & 55.6339 & 5817.0000 \\
\text{U08} & 1.3630 & 1.3630 & 34.5667 & 45.3033 & 4708.0000 \\
\text{U09} & 1.2720 & 1.2720 & 27.3491 & 25.2277 & 3162.0000 \\
\text{U10} & 1.1660 & 1.1660 & 20.3294 & 24.7222 & 2235.0000 \\
\text{U11} & 1.0590 & 1.0590 & 13.3103 & 14.4166 & 1387.0000 \\
\hline
\end{array}
\]

INPUT NUMBER OF PREFERRED POINT

\[
\begin{array}{c|c|c|c|c|c}
\hline
\text{V1} & 16.0867 & 1.3333 \\
\text{V2} & -0.0000 & 0.0000 \\
\hline
\end{array}
\]

CPU SECONDS EXECUTION TIME

Figure 19. (Continued)
membered that the original and Fields' solutions were obtained from algorithms designed for, and limited by, a primary and one constraint response function. Their solutions are supposedly precise mathematical programming solutions. In solving these problems with the methodology of this research, close approximation to the previous solutions will be considered validation of the methodology. More precise approximations could have been obtained with numerous iterations of the methodology and extremely large numbers of step-size alternatives to more accurately approach the constraint values. Such a procedure would have approached the numerous iterations of Fields. The solutions obtained in this research are meant to approximate the effort which would be expended by a decision maker. It will be seen that even without extensive computer time or iterations, the methodology of this research compares favorably with the other solution techniques.

The first problem is the Umland and Smith problem shown in Figure 10 and with response functions represented by Equations 2.20 and 2.21. A canonical analysis of Equation 2.20 indicated a stationary point, \(x_0 = (2.25, 2.35) \) and eigenvalues \(\lambda_1 = -7.38 \) and \(\lambda_2 = -2.61 \). This surface is a maximum. Equation 2.21 has a stationary point \(x_0 = (1.15, 0.11) \) and eigenvalues \(\lambda_1 = -10.99 \) and \(\lambda_2 = -3.39 \). This surface is also a maximum. The initial point was chosen to be \(x_0 \) of the primary response. Figures 20, 21, and 22 graph the movement of the algorithm while Table 5 compares results.

The next problem is the first Myers and Carter problem given by Equations 2.24 and 2.25. A canonical analysis of Equation 2.24 yielded \(x_0 = (-8.08, 3.89, 3.85) \), which is outside the constraint region, and
Figure 20. Algorithm Movement on Umland and Smith Problem, $y_s \leq 90.0$.

Figure 21. Algorithm Movement on Umland and Smith Problem, $y_s \leq 92.5$.
Figure 22. Algorithm Movement on Umland and Smith Problem, \(y_s \leq 95.0 \).

Table 5. Comparison of Umland and Smith Problem Solutions.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Umland and Smith</th>
<th>Fields</th>
<th>This Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_{p1})</td>
<td>88.68</td>
<td>88.66</td>
<td>88.11</td>
</tr>
<tr>
<td>(y_{s1})</td>
<td>89.995</td>
<td>89.997</td>
<td>90.003</td>
</tr>
<tr>
<td>(x_{11})</td>
<td>1.075</td>
<td>1.082</td>
<td>1.285</td>
</tr>
<tr>
<td>(x_{12})</td>
<td>1.479</td>
<td>1.475</td>
<td>1.343</td>
</tr>
<tr>
<td>(y_{p2})</td>
<td>86.73</td>
<td>86.64</td>
<td>86.29</td>
</tr>
<tr>
<td>(y_{s2})</td>
<td>92.47</td>
<td>92.498</td>
<td>92.47</td>
</tr>
<tr>
<td>(x_{12})</td>
<td>1.005</td>
<td>1.0056</td>
<td>1.174</td>
</tr>
<tr>
<td>(x_{22})</td>
<td>1.316</td>
<td>1.310</td>
<td>1.223</td>
</tr>
<tr>
<td>(y_{p3})</td>
<td>83.66</td>
<td>83.47</td>
<td>83.43</td>
</tr>
<tr>
<td>(y_{s3})</td>
<td>94.87</td>
<td>94.99</td>
<td>94.99</td>
</tr>
<tr>
<td>(x_{13})</td>
<td>0.965</td>
<td>0.966</td>
<td>1.013</td>
</tr>
<tr>
<td>(x_{23})</td>
<td>1.088</td>
<td>1.074</td>
<td>1.058</td>
</tr>
</tbody>
</table>
eigenvalues $\lambda_1 = -25.65$, $\lambda_2 = -2.63$, and $\lambda_3 = 0.18$. This surface is a slight saddle system with an optimum outside the region of experimentation. One must beware of local optima during the optimization procedure. Canonical analysis of Equation 2.25 showed $x_0 = (0.52, -1.18, 0.08)$ and eigenvalues $\lambda_1 = 10.55$, $\lambda_2 = 3.56$, and $\lambda_3 = 0.98$, which indicates a minimum surface. The algorithm was initialized at various starting points. Table 6 details the results of these searches and Table 7 compares the optimum solution with previous results. The local optima found in this research were also found in Fields' investigation. This surface also required the use of ridge system procedures during its optimization.

The final problem is the Myers and Carter Problem Two described by Equations 2.26, 2.27, 2.28, and 2.29 and graphed in Figure 14. Canonical analysis of Equation 2.26 indicated $x_0 = (-3.72, 4.09)$ and eigenvalues $\lambda_1 = 12.52$ and $\lambda_2 = 1.13$. As seen in the Figure, this system is a minimum with the stationary point outside the region of experimentation. Equation 2.27 has an $x_0 = (-0.44, -0.31)$ and eigenvalues $\lambda_1 = -9.91$ and $\lambda_2 = 2.55$ which indicates a saddle system. The constraint of Equation 2.29, however, is so restrictive that virtually all of the saddle effect is eliminated within the feasible region. It is interesting to note that such a restrictive and arbitrary constraint was necessitated by the Myers and Carter and Fields techniques. Utilizing the methodology of this research, however, a more meaningful constraint such as cost or production time could have been incorporated into the problem formulation.

The constraint formulation of the Myers and Carter Problem Two re-
Table 6. Algorithm Search Results, Myers and Carter Problem One.

<table>
<thead>
<tr>
<th>Point</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>y_p</th>
<th>y_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting</td>
<td>.52</td>
<td>-1.18</td>
<td>.08</td>
<td>70.93</td>
<td>64.08</td>
</tr>
<tr>
<td>Solution</td>
<td>1.00</td>
<td>-.06</td>
<td>-.52</td>
<td>73.51</td>
<td>64.70</td>
</tr>
<tr>
<td>Starting</td>
<td>2.5</td>
<td>-2.5</td>
<td>-2.5</td>
<td>72.09</td>
<td>64.73</td>
</tr>
<tr>
<td>Solution</td>
<td>2.02</td>
<td>-1.17</td>
<td>-0.69</td>
<td>73.51</td>
<td>64.70</td>
</tr>
<tr>
<td>Starting</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>72.09</td>
<td>64.73</td>
</tr>
<tr>
<td>Solution</td>
<td>1.29</td>
<td>-0.30</td>
<td>-0.61</td>
<td>73.03</td>
<td>64.58</td>
</tr>
<tr>
<td>Starting</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solution</td>
<td>1.59</td>
<td>-0.63</td>
<td>-0.64</td>
<td>73.03</td>
<td>64.58</td>
</tr>
</tbody>
</table>

Table 7. Comparison of Myers and Carter Problem One Solutions.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Myers and Carter</th>
<th>Fields</th>
<th>This Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_p</td>
<td>73.66</td>
<td>73.91</td>
<td>73.51</td>
</tr>
<tr>
<td>y_s</td>
<td>65.22</td>
<td>64.9997</td>
<td>64.70</td>
</tr>
<tr>
<td>x_1</td>
<td>2.07</td>
<td>2.13</td>
<td>2.02</td>
</tr>
<tr>
<td>x_2</td>
<td>-1.15</td>
<td>-1.25</td>
<td>-1.17</td>
</tr>
<tr>
<td>x_3</td>
<td>-0.6</td>
<td>-0.62</td>
<td>-0.69</td>
</tr>
</tbody>
</table>
quired the utilization of the Cyclic Coordinate Penalty Function suboptimization program. The procedure was initialized at $x_0 \approx y$. Figures 23, 24, and 25 trace the iteration solutions of the optimization algorithm. Table 8 compares the results of this research with earlier results.

In the previously solved problems of this section, a close approximation to past results was obtained by the methodology developed in this research. The surfaces optimized were representative of multiple response surface shapes. Two constraint formulations for the feasible region were optimized in two and three variable problems. Application of the adapted Interactive Vector Maximal algorithm to multiple response surfaces has increased the potentiality of their optimization. The restriction of a primary response and one or two constraint responses no longer applies. Theoretically sound optimization may now be performed on large scale multiple response surfaces of various feasible region constraint definitions. In the next chapter, this research will demonstrate the methodology on a training problem applicable to OTEA.

Table 8. Comparison of Myers and Carter Problem Two Solutions.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Myers and Carter</th>
<th>Fields</th>
<th>This Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_p</td>
<td>67.80</td>
<td>67.57</td>
<td>67.78</td>
</tr>
<tr>
<td>y_s</td>
<td>88.19</td>
<td>86.81</td>
<td>87.996</td>
</tr>
<tr>
<td>x_1</td>
<td>.85</td>
<td>.60</td>
<td>.8502</td>
</tr>
<tr>
<td>x_2</td>
<td>-.60</td>
<td>-.80</td>
<td>-.5971</td>
</tr>
</tbody>
</table>
Figure 23. First Iteration of Myers and Carter Problem Two Optimization.
Figure 24. Second and Third Iterations of Myers and Carter Problem Two Optimization.
Figure 25. Final Iteration of Myers and Carter Problem Two Optimization.
CHAPTER IV

APPLICATION OF MULTIPLE RESPONSE SURFACE OPTIMIZATION TO AN OPERATIONAL TEST PROBLEM

Introduction to the Problem

In Chapter I the importance and effects of training in operational testing was discussed. The utilization of computer simulation concurrent with an OT was also discussed. In Chapter III a methodology was developed to analyze and optimize multiple response surfaces. The role of the decision maker in the interactive algorithm and the benefits accrued by his participation were discussed. In this chapter, computer simulation and the methodology of this research will be applied to a hypothetical acquisition program.

Subsequent to the cancellation of the costly Main Battle Tank 1970 (MBT70) acquisition program, the Army began development of the less costly MBT76. As one means of cost reduction, all factors of system effectiveness were considered rather than exclusive consideration of the MBT76 technological capabilities. The Project Manager (PM) felt that crew training could be of utmost importance in overall MBT76 combat effectiveness. Prior to OT II, he directed an analysis of the effects of crew training utilizing a computer simulation of a combat situation indicative of the European environment. The laser ranging and optical tracking of the MBT76 were sophisticated enough to negate any effect of training on weapon accuracy. Consequently the PM directed that mean time to fire the first round, mean time between rounds, and probability
of sensing be studied as system factors affected by crew training. In this initial stage, he also directed that one scenario, an engagement between two tanks in the open at a range of 1000 meters, be analyzed to establish feasibility of the methodology. This scenario was representative of tank combat in the European theater.

Utilization of the AMSAA Tank Duel Simulation

The MBT76 Analysis Team (AT) used the AMSAA Tank Duel simulation programmed by Mr. Robert Lake. It is a low level, small scale, two-sided, deterministic model used to simulate brief fire engagements between two armored vehicles. The model plays a defending vehicle (MBT76, Blue) which is stationary and fires first at an attacker (Red) which is fully exposed. The engagement ends when a kill occurs or when a time limit expires. It is programmed in FORTRAN IV for the BRLESC computer. Inputs include various probabilities of hit and kill, expected time to fire rounds, and probabilities of sensing. Outputs include the probability of victory and expected number of rounds fired.

The AMSAA Tank Duel Model was well suited to the AT's needs with a few modifications. Planning to use statistical analysis, the AT required a stochastic simulation. Where the model utilized the mean of certain probability distributions, the AT decided to input random deviates from the distributions. It was assumed that the random variables in this model were normally distributed. The means and variances of the various inputs, shown in Table 9, were based on OT I and DT I results for the MBT76 and best intelligence estimates for the Red. After converting the model for use on the CDC CYBER 74 computer, as shown in
Appendix B, the AT wrote two programs to generate the random deviates.

The first program, listed in Appendix A, utilized a CDC internal random number generator to generate 200 Uniform (0,1) random deviates. The generator was analyzed by a Chi-square test which showed that at $\alpha = .11$ the random deviates were $U(0,1)$. Table 10 shows the distribution of the deviates. The Chi-square statistic was computed as follows

\[\chi^2 = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i} \]

(4.1)

to be $\chi^2_0 = 11.0$. The $U(0,1)$ deviates were then converted to $N(0,1)$ deviates and subsequently to normal random deviates of the distributions in Table 9. This conversion was accomplished by the well known and tested Fishman Equations (24),

\[X_1 = (-2 \log U_1)^{1/2} \cos 2\pi U_2 \]

(4.2)

\[X_2 = (-2 \log U_1)^{1/2} \sin 2\pi U_2, \]

where X_1 are $N(0,1)$ and U_1 are $U(0,1)$. This conversion was accomplished by a computer program listed in Appendix A. A Chi-square statistic of $\chi^2_0 = 5.28$ was computed for the $N(0,1)$ deviates as shown in Table 11. At $\alpha = .27$ the deviates are distributed $N(0,1)$.

Specification of the scenario by the PM allowed certain model parameters to be fixed for all trials of the model. These values are shown in Table 12. The time of flight was based on use of high Explosive Anti-Tank (HEAT) rounds with a muzzle velocity of 3800 feet per
Table 9. Input Variable Normal Distributions

<table>
<thead>
<tr>
<th>Input Variable</th>
<th>BLUE</th>
<th></th>
<th>RED</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Variance</td>
<td>Mean</td>
<td>Variance</td>
</tr>
<tr>
<td>P(Hit 1st Rd)</td>
<td>.75</td>
<td>.0025</td>
<td>.60</td>
<td>.0025</td>
</tr>
<tr>
<td>P(Rehit)</td>
<td>.85</td>
<td>.0011</td>
<td>.75</td>
<td>.0011</td>
</tr>
<tr>
<td>P(Hit Sensing 1st Rd Miss)</td>
<td>.80</td>
<td>.0011</td>
<td>.7</td>
<td>.0011</td>
</tr>
<tr>
<td>P(Hit Loss of 1st Rd Miss)</td>
<td>.775</td>
<td>.0017</td>
<td>.625</td>
<td>.0017</td>
</tr>
<tr>
<td>P(Kill 1st Rd Hit)</td>
<td>.5</td>
<td>.0011</td>
<td>.45</td>
<td>.0011</td>
</tr>
<tr>
<td>P(Kill Rehit)</td>
<td>.85</td>
<td>.0003</td>
<td>.8</td>
<td>.0003</td>
</tr>
<tr>
<td>P(Kill Hit ∩ Sensing 1st Rd Miss)</td>
<td>.5</td>
<td>.0011</td>
<td>.45</td>
<td>.0011</td>
</tr>
<tr>
<td>P(Kill Hit ∩ Loss of 1st Rd Miss)</td>
<td>.5</td>
<td>.0011</td>
<td>.45</td>
<td>.0011</td>
</tr>
<tr>
<td>P(Sensing)</td>
<td>.525</td>
<td>.0006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time to Fire 1st Rd (sec)</td>
<td>8.5</td>
<td>.6944</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time to Fire Subsequent Rd (sec)</td>
<td>10.5</td>
<td>.6944</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 10. Distribution of U(0,1) Deviates.

<table>
<thead>
<tr>
<th>Interval</th>
<th>Observed</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00 - .05</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>.05 - .10</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>.10 - .15</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>.15 - .20</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>.20 - .25</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>.25 - .30</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>.30 - .35</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>.35 - .40</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>.40 - .45</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>.45 - .50</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>.50 - .55</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>.55 - .60</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>.60 - .65</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>.65 - .70</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>.70 - .75</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>.75 - .80</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>.80 - .85</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>.85 - .90</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>.90 - .95</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>.95 -1.00</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>
Table 11. Distribution of N(0,1) Deviates.

<table>
<thead>
<tr>
<th>Interval</th>
<th>Observed</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>-∞, -2.0</td>
<td>2</td>
<td>13.36</td>
</tr>
<tr>
<td>-2.0, -1.5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>-1.5, -1.0</td>
<td>17</td>
<td>18.38</td>
</tr>
<tr>
<td>-1.0, -0.5</td>
<td>33</td>
<td>29.96</td>
</tr>
<tr>
<td>-0.5, 0.0</td>
<td>47</td>
<td>38.3</td>
</tr>
<tr>
<td>0.0, 0.5</td>
<td>35</td>
<td>38.3</td>
</tr>
<tr>
<td>0.5, 1.0</td>
<td>30</td>
<td>29.96</td>
</tr>
<tr>
<td>1.0, 1.5</td>
<td>13</td>
<td>18.38</td>
</tr>
<tr>
<td>1.5, 2.0</td>
<td>7</td>
<td>8.82</td>
</tr>
<tr>
<td>2.0, +∞</td>
<td>6</td>
<td>4.54</td>
</tr>
</tbody>
</table>

Table 12. Fixed Input Variable Values.

<table>
<thead>
<tr>
<th>Input Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engagement Time (sec)</td>
<td>120.0</td>
</tr>
<tr>
<td>Blue Time of Flight (sec)</td>
<td>.86</td>
</tr>
<tr>
<td>Blue Fixed Time to Fire (sec)</td>
<td>7.0</td>
</tr>
<tr>
<td>Range (meters)</td>
<td>1000</td>
</tr>
<tr>
<td>Blue Rd Reliability</td>
<td>.85</td>
</tr>
<tr>
<td>Red Time of Flight (sec)</td>
<td>1.17</td>
</tr>
<tr>
<td>Red Fixed Time to Fire (sec)</td>
<td>7.0</td>
</tr>
<tr>
<td>Red Rd Reliability</td>
<td>.825</td>
</tr>
</tbody>
</table>
second for the MBT76 and 2800 feet per second for the Red tank. The fixed time to fire variable accounts for the mechanical actions between rounds such as recoil and breech operation. Thus the firing times analyzed by the AT in this demonstration are human actions such as issuing a fire order, loading the round, and tracking the target. A sample of the model output is shown in Figure 26.

Derivation of Multiple Response Surfaces

The modified AMSAA Tank Duel Model could now be utilized by the AT for the derivation of multiple response surfaces. As directed by the PM, mean time to fire the first round (ξ_1), mean time between rounds (ξ_2), and probability of sensing (ξ_3) were chosen as independent design variables while probability of an MBT76 victory (\hat{y}_1) and expected number of MBT76 rounds fired (\hat{y}_2) were chosen as the response variables. Based on experience by OTEA and TRADOC in crew performance, realistic ranges were chosen for the design variables. Mean time to fire the first round, human action component, ranged between 30 and 8 seconds. Mean time between rounds, human component, ranged between 30 and 5 seconds. Probability of sensing ranged between .0 and .6. The Red probability of sensing is somewhat higher since the Red round has a lower muzzle velocity and, consequently, is easier to sense.

A full 2^3 experimental design was performed on the AMSAA Model. Table 13 details the design and the responses. The values in parentheses are the ξ_1 (natural) independent variable values while those outside the parentheses are the coded values as defined by Equation 2.4. Next the AT performed multiple linear regression on this data using the Statisti-
A MEETING ENGAGEMENT BETWEEN BLUE AND RED

THE TIME LIMIT IS 120.00 SECONDS
RANGE IS 1000 METERS
BLUE DATA IS BLU BLU BLU
RED DATA IS RED RED RED

<table>
<thead>
<tr>
<th>TFL</th>
<th>TT</th>
<th>T1</th>
<th>TS</th>
<th>PH1</th>
<th>PH</th>
<th>PHL</th>
<th>KMH</th>
<th>KHS</th>
<th>KHL</th>
<th>PS</th>
<th>REL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.86</td>
<td>7.00</td>
<td>25.00</td>
<td>25.00</td>
<td>790</td>
<td>911</td>
<td>764</td>
<td>867</td>
<td>496</td>
<td>849</td>
<td>504</td>
<td>541</td>
</tr>
</tbody>
</table>

PROB (BLUE WINS) = .336
PROB (RED WINS) = .653
PROB (NO DECISION) = .012
E (ROS FOR BLUE) = .673
E (ROS FOR RED) = 2.360

Figure 26. Sample Output From AMSAA Tank Duel Model.
cal Package for the Social Sciences (SPSS) regression computer program (49) discussed in Appendix C. Figure 27 is the output from the SPSS program on the data of Table 13. The top half of the Figure concerns y_1 while the bottom half concerns y_2. In the upper right quadrant of each half is the ANOVA table for regression and residual error. The lower left quadrant contains the regression coefficients of the independent variables. The following two response equations are determined from Figure 27,

\[
\hat{y}_1 = -0.037x_1 - 0.23x_2 + 0.002x_3 + 0.344 \\
\hat{y}_2 = -0.074x_1 - 0.054x_2 + 0.010x_3 + 0.697
\]

(4.3)

where \hat{y}_1 is probability of victory, \hat{y}_2 is expected number of rounds fired, x_1 is time to fire the first round, x_2 is time between rounds, and x_3 is probability of sensing. An interesting result is that probability of sensing over the region of experimentation is statistically insignificant.

The AT performed two further statistical tests on the data of Table 13. First a goodness of fit test was computed (33). The residual sum of squares is separated into two parts, a sum of squares due to pure experimental error and sum of squares due to lack-of-fit,

\[
SS_E = SS_{PE} + SS_{LOF} .
\]

(4.5)

Sum of square pure error is calculated by
Table 13. 2^3 Design Variable Values, First Design.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>y_1</th>
<th>y_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1 (20)</td>
<td>-1 (20)</td>
<td>-1 (.0)</td>
<td>.407</td>
<td>.795</td>
</tr>
<tr>
<td>1 (30)</td>
<td>-1 (20)</td>
<td>-1 (.0)</td>
<td>.341</td>
<td>.738</td>
</tr>
<tr>
<td>-1 (20)</td>
<td>1 (30)</td>
<td>-1 (.0)</td>
<td>.347</td>
<td>.709</td>
</tr>
<tr>
<td>1 (30)</td>
<td>1 (30)</td>
<td>-1 (.0)</td>
<td>.307</td>
<td>.581</td>
</tr>
<tr>
<td>-1 (20)</td>
<td>-1 (20)</td>
<td>1 (.2)</td>
<td>.450</td>
<td>.931</td>
</tr>
<tr>
<td>1 (30)</td>
<td>-1 (20)</td>
<td>1 (.2)</td>
<td>.304</td>
<td>.612</td>
</tr>
<tr>
<td>-1 (20)</td>
<td>1 (30)</td>
<td>1 (.2)</td>
<td>.356</td>
<td>.721</td>
</tr>
<tr>
<td>1 (30)</td>
<td>1 (30)</td>
<td>1 (.2)</td>
<td>.310</td>
<td>.637</td>
</tr>
<tr>
<td>0 (25)</td>
<td>0 (25)</td>
<td>0 (.1)</td>
<td>.318</td>
<td>.629</td>
</tr>
<tr>
<td>0 (25)</td>
<td>0 (25)</td>
<td>0 (.1)</td>
<td>.301</td>
<td>.576</td>
</tr>
<tr>
<td>0 (25)</td>
<td>0 (25)</td>
<td>0 (.1)</td>
<td>.342</td>
<td>.729</td>
</tr>
<tr>
<td>0 (25)</td>
<td>0 (25)</td>
<td>0 (.1)</td>
<td>.329</td>
<td>.739</td>
</tr>
<tr>
<td>0 (25)</td>
<td>0 (25)</td>
<td>0 (.1)</td>
<td>.371</td>
<td>.690</td>
</tr>
<tr>
<td>0 (25)</td>
<td>0 (25)</td>
<td>0 (.1)</td>
<td>.336</td>
<td>.673</td>
</tr>
</tbody>
</table>
DEF. VAR... PV

FINAL STEP.

<table>
<thead>
<tr>
<th>MULTIPLE R</th>
<th>0.514</th>
<th>ANOVA</th>
<th>DF</th>
<th>SUM SQUARES</th>
<th>MEAN SQ.</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>R SQUARE</td>
<td>0.5688</td>
<td>15.55</td>
<td>8</td>
<td>15.15</td>
<td>1.15</td>
<td>6.567</td>
</tr>
<tr>
<td>STE DEV</td>
<td>0.274</td>
<td>RESIDUAL</td>
<td>10</td>
<td>0.098</td>
<td>0.001 SIG</td>
<td>0.010</td>
</tr>
</tbody>
</table>

VARIABLES

<table>
<thead>
<tr>
<th></th>
<th>S. C. E.</th>
<th>F</th>
<th>SIG.</th>
<th>BETA</th>
<th>ELASTICITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB1</td>
<td>0.037</td>
<td>0.010</td>
<td>14.11</td>
<td>0.044</td>
<td>-0.9414</td>
</tr>
<tr>
<td>TBS</td>
<td>0.026</td>
<td>0.010</td>
<td>9.358</td>
<td>0.043</td>
<td>-0.4294</td>
</tr>
<tr>
<td>PS</td>
<td>0.022</td>
<td>0.010</td>
<td>0.022</td>
<td>0.024</td>
<td>0.04153</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>0.544</td>
<td>0.017</td>
<td>2138.95</td>
<td>0.003</td>
<td></td>
</tr>
</tbody>
</table>

All variables are in the equation.

DEF. VAR... B

FINAL STEP.

<table>
<thead>
<tr>
<th>MULTIPLE R</th>
<th>0.7568</th>
<th>ANOVA</th>
<th>DF</th>
<th>SUM SQUARES</th>
<th>MEAN SQ.</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>R SQUARE</td>
<td>0.5641</td>
<td>15.55</td>
<td>8</td>
<td>15.15</td>
<td>1.15</td>
<td>4.739</td>
</tr>
<tr>
<td>STE DEV</td>
<td>0.274</td>
<td>RESIDUAL</td>
<td>10</td>
<td>0.098</td>
<td>0.005 SIG</td>
<td>0.025</td>
</tr>
</tbody>
</table>

VARIABLES

<table>
<thead>
<tr>
<th></th>
<th>S. C. E.</th>
<th>F</th>
<th>SIG.</th>
<th>BETA</th>
<th>ELASTICITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB1</td>
<td>0.074</td>
<td>0.024</td>
<td>9.226</td>
<td>0.13</td>
<td>-0.1647</td>
</tr>
<tr>
<td>TBS</td>
<td>0.034</td>
<td>0.024</td>
<td>4.338</td>
<td>0.051</td>
<td>-0.44873</td>
</tr>
<tr>
<td>PS</td>
<td>0.022</td>
<td>0.024</td>
<td>0.42</td>
<td>0.095</td>
<td>0.018178</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>0.407</td>
<td>0.018</td>
<td>1452.029</td>
<td>0.003</td>
<td></td>
</tr>
</tbody>
</table>

Figure 27. SPSS Multiple Linear Regression of First Design.
SS_{PE} = \sum_{i=1}^{n_2} y_{ci}^2 - \frac{1}{n_2} \sum_{i=1}^{n_2} y_{ci} \quad (4.6)

where \(y_{ci} \) are observations at the center point and \(n_2 \) is the number of center points. Since residual sum of squares is given by SPSS and sum of squares pure error is computed by Equation 4.6, sum of squares lack-of-fit can be computed from 4.5. An F test statistic is then computed by

\[
F_0 = \frac{SS_{LOF}}{SS_{PE}/n_e} F(n-p-n_e-1), n_e
\]

(4.7)

where \(n \) is total number of observations, \(p \) is the number of variables, and

\[
n_e = \sum_{i=1}^{m} (p_i-1)
\]

(4.8)

where \(m \) is the number of different variable levels and \(p_i \) is the number of observations at each level. For the first \(2^3 \) design \(F_{0.1} = 1.86 \) and \(F_{0.2} = 1.46 \), neither of which are significant at the \(\alpha = .10 \) level. Therefore the fit of Equations 4.3 and 4.4 is satisfactory.

The final test was to establish a confidence interval about the mean predicted responses at the center point of the design. The desired confidence intervals are computed by (33)
where

\[
S^2 = \sum_{i=1}^{n_2} (y_{ci} - \bar{y}_c)^2/(n_2 - 1) \tag{4.10}
\]

and

\[
\bar{y}_c = \sum_{i=1}^{n_2} y_{ci}/n_2 \tag{4.11}
\]

The following are 90% confidence intervals for the values of the mean predicted responses at the center point of the first design:

Probability of Victory; \(0.314 \leq \mu y_1 \leq 0.352\) \tag{4.12}

Expected Number of Rounds; \(0.622 \leq \mu y_2 \leq 0.724\) \tag{4.13}

Next the AT performed a steepest ascent analysis, starting from the center point, and proceeding in directions determined by Equations 4.3 and 4.4. Table 14 shows the results of this optimization. The new center point for the next 2^3 design is \(\xi_1 = 10.0\), \(\xi_2 = 15.67 \approx 16.0\), and \(\xi_3 = 0.115\). Table 15 and Figure 28 show the results of this second design. The fitted response equations for this design are

\[
y_1 = -0.025x_1 - 0.032x_2 - 0.010x_3 + 0.525 \tag{4.14}
\]

\[
y_2 = -0.043x_1 - 0.112x_2 - 0.031x_3 + 1.158 \tag{4.15}
\]
Table 14. Steepest Ascent Optimization From First Center Point.

<table>
<thead>
<tr>
<th>MOVE</th>
<th>ξ_1</th>
<th>ξ_2</th>
<th>ξ_3</th>
<th>y_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ</td>
<td>-1.0</td>
<td>-.622</td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td>Base</td>
<td>25.0</td>
<td>25.0</td>
<td>.1</td>
<td>.333</td>
</tr>
<tr>
<td>+5 Δ</td>
<td>20.0</td>
<td>21.89</td>
<td>.105</td>
<td>.357</td>
</tr>
<tr>
<td>+10Δ</td>
<td>15.0</td>
<td>18.78</td>
<td>.11</td>
<td>.425</td>
</tr>
<tr>
<td>+15Δ</td>
<td>10.0</td>
<td>15.67</td>
<td>.115</td>
<td>.601</td>
</tr>
<tr>
<td>+16Δ</td>
<td>9.0</td>
<td>15.05</td>
<td>.116</td>
<td>.557</td>
</tr>
<tr>
<td>+17Δ</td>
<td>8.0</td>
<td>14.43</td>
<td>.117</td>
<td>.549</td>
</tr>
</tbody>
</table>

Table 15. 2^3 Design Variable Values, Second Design.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>y_1</th>
<th>y_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1 (8)</td>
<td>-1 (11)</td>
<td>-1 (0)</td>
<td>.593</td>
<td>1.190</td>
</tr>
<tr>
<td>-1 (8)</td>
<td>1 (21)</td>
<td>-1 (0)</td>
<td>.520</td>
<td>1.093</td>
</tr>
<tr>
<td>1 (12)</td>
<td>-1 (11)</td>
<td>-1 (0)</td>
<td>.528</td>
<td>1.082</td>
</tr>
<tr>
<td>-1 (8)</td>
<td>-1 (11)</td>
<td>1 (.24)</td>
<td>.610</td>
<td>1.499</td>
</tr>
<tr>
<td>1 (12)</td>
<td>-1 (11)</td>
<td>1 (.24)</td>
<td>.535</td>
<td>1.251</td>
</tr>
<tr>
<td>-1 (8)</td>
<td>1 (21)</td>
<td>1 (.24)</td>
<td>.480</td>
<td>1.028</td>
</tr>
<tr>
<td>1 (12)</td>
<td>1 (21)</td>
<td>1 (.24)</td>
<td>.438</td>
<td>0.984</td>
</tr>
<tr>
<td>0 (10)</td>
<td>0 (16)</td>
<td>0 (.12)</td>
<td>.577</td>
<td>1.186</td>
</tr>
<tr>
<td>0 (10)</td>
<td>0 (16)</td>
<td>0 (.12)</td>
<td>.528</td>
<td>1.107</td>
</tr>
<tr>
<td>0 (10)</td>
<td>0 (16)</td>
<td>0 (.12)</td>
<td>.510</td>
<td>1.168</td>
</tr>
<tr>
<td>0 (10)</td>
<td>0 (16)</td>
<td>0 (.12)</td>
<td>.514</td>
<td>1.206</td>
</tr>
<tr>
<td>0 (10)</td>
<td>0 (16)</td>
<td>0 (.12)</td>
<td>.492</td>
<td>1.110</td>
</tr>
<tr>
<td>0 (10)</td>
<td>0 (16)</td>
<td>0 (.12)</td>
<td>.518</td>
<td>1.163</td>
</tr>
</tbody>
</table>
DEF. VAR... PV

FINAL STEP.

MULTIPLE R
R SQUARE
STDEV
VARIABLE

.7145 ANOVA
.9106 REGRESSION
.8364 RESIDUAL

D. S.E. B

TB1
TB2
PS
CONSTANT

F
SIG.

-4.3178
-5.4349
-4.971

0
0

.484
5.67134

BETA
ELASTICITY

0
0

ALL VARIABLES ARE IN THE EQUATION.

DEF. VAR... EK

FINAL STEP.

MULTIPLE R
R SQUARE
STDEV
VARIABLE

.3048 ANOVA
.470 REGRESSION
.82 RESIDUAL

D. S.E. B

TB1
TB2
PS
CONSTANT

F
SIG.

-2.8043
-7.265
.2485

0
0

BETA
ELASTICITY

0
0

Figure 28. SPSS Multiple Linear Regression of Second Design.
Again it is noted that probability of sensing is not statistically significant. Goodness of fit computations for this data are $F_{0.1}^{y_1} = 2.11$ which is not significant at $\alpha = .10$ and $F_{0.15}^{y_2} = 7.27$ which is not significant at $\alpha = .15$. The 90% confidence intervals for the responses at the center point are:

\[
\text{Probability of Victory;} \quad .499 \leq y_1 \leq .548 \quad (4.16)
\]
\[
\text{Expected Number of Rounds;} \quad 1.124 \leq y_2 \leq 1.190 \quad (4.17)
\]

Upon determining the path of steepest ascent, a change in ξ_3, the probability of sensing, in a negative direction was noted. Since ξ_3 has been statistically insignificant and clearly does not improve in the negative direction, no change in x_3 was made in the initial steepest ascent optimization. Table 16 displays the results of this search. ξ_1 and ξ_2 have now reached the lower bound of their practical ranges. From this point a uni-direction search was made along the ξ_3 direction to determine if any further improvement could be obtained. Table 17 shows the results of this uni-direction search. Based on this search and the fact that ξ_3 has been insignificant in two successive 2^3 designs, the AT decided to eliminate ξ_3 from further designs as statistically insignificant and fix it at .3, the median of its practical range. Apparently, at the given range and with the given probabilities of hit and kill, the ability to sense a round is not critical. The engagement seems to be won on the speed of firing the first round and a second round if required. Given another scenario, it is not unreasonable to expect that ξ_3 would be significant. The center point is moved to
Table 16. Steepest Ascent Optimization From Second Center Point

<table>
<thead>
<tr>
<th>Move</th>
<th>ξ_1</th>
<th>ξ_2</th>
<th>ξ_3</th>
<th>y_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ</td>
<td>-.31</td>
<td>-1.0</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>Base</td>
<td>10</td>
<td>16</td>
<td>.12</td>
<td>.523</td>
</tr>
<tr>
<td>5Δ</td>
<td>9.69</td>
<td>11</td>
<td>.12</td>
<td>.572</td>
</tr>
<tr>
<td>8Δ</td>
<td>9.39</td>
<td>8</td>
<td>.12</td>
<td>.620</td>
</tr>
<tr>
<td>9Δ</td>
<td>9.07</td>
<td>7</td>
<td>.12</td>
<td>.650</td>
</tr>
<tr>
<td>10Δ</td>
<td>8.76</td>
<td>6</td>
<td>.12</td>
<td>.665</td>
</tr>
<tr>
<td>11Δ</td>
<td>8.45</td>
<td>5</td>
<td>.12</td>
<td>.671</td>
</tr>
</tbody>
</table>

Table 17. Uni-direction Search Along ξ_3

<table>
<thead>
<tr>
<th>ξ_1</th>
<th>ξ_2</th>
<th>ξ_3</th>
<th>y_1</th>
<th>y_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>5</td>
<td>.2</td>
<td>.661</td>
<td>1.648</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>.3</td>
<td>.696</td>
<td>1.624</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>.4</td>
<td>.693</td>
<td>1.737</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>.5</td>
<td>.673</td>
<td>1.650</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>.55</td>
<td>.650</td>
<td>1.637</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>.6</td>
<td>.658</td>
<td>1.596</td>
</tr>
</tbody>
</table>
\[\xi_1 = 12.0 \text{ and } \xi_2 = 10.0. \]

For the third \(2^3\) design, the design variable ranges were chosen so as to border on the optimum lower bound and include a large portion of the region of experimentation. Table 18 and Figure 29 show the third design and its results. The response equations are

\[y_1 = -0.042x_1 - 0.063x_2 + 0.575 \] \((4.18) \)

\[y_2 = -0.133x_1 - 0.174x_2 + 1.339 \] \((4.19) \)

The \(F_{0_y} = 2.99 \) and \(F_{0_y} = 4.23 \) are not significant at \(\alpha = 0.10 \) which justifies elimination of \(\xi_3 \) as a design variable. The 90% confidence intervals at the center point are:

Probability of Victory; \(0.572 \leq \mu y_1 \leq 0.598 \) \((4.20) \)

Expected Number of Rounds; \(1.332 \leq \mu y_2 \leq 1.404 \) \((4.21) \)

Since the design now bordered on the lower bound of the practical region, a second order design was employed to determine if the fit could be improved with the use of second order equations. To create a Uniform Precision Rotatable Central Composite Design (UP CCD), axial points were added as shown in Table 19 and a second order polynomial was fit using polynomial regression, as shown in Figure 30. The goodness of fit test revealed \(F_{0_y} = 2.66 \) and \(F_{0_y} = 0.60 \), both of which are improvements over the linear model. Thus the second order response equations were adopted:
Table 18. 2^3 Design Variable Values, Third Design.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>y_1</th>
<th>y_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1 (8)</td>
<td>-1 (5)</td>
<td>.669</td>
<td>1.635</td>
</tr>
<tr>
<td>1 (16)</td>
<td>-1 (5)</td>
<td>.581</td>
<td>1.315</td>
</tr>
<tr>
<td>-1 (8)</td>
<td>1 (15)</td>
<td>.538</td>
<td>1.235</td>
</tr>
<tr>
<td>1 (16)</td>
<td>1 (15)</td>
<td>.460</td>
<td>1.021</td>
</tr>
<tr>
<td>0 (12)</td>
<td>0 (10)</td>
<td>.577</td>
<td>1.337</td>
</tr>
<tr>
<td>0 (12)</td>
<td>0 (10)</td>
<td>.585</td>
<td>1.380</td>
</tr>
<tr>
<td>0 (12)</td>
<td>0 (10)</td>
<td>.581</td>
<td>1.366</td>
</tr>
<tr>
<td>0 (12)</td>
<td>0 (10)</td>
<td>.573</td>
<td>1.332</td>
</tr>
<tr>
<td>0 (12)</td>
<td>0 (10)</td>
<td>.609</td>
<td>1.426</td>
</tr>
</tbody>
</table>

Table 19. Axial Points Added to the Third Design.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>y_1</th>
<th>y_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.414 (6.344)</td>
<td>0 (10)</td>
<td>.591</td>
<td>1.404</td>
</tr>
<tr>
<td>1.414 (17.656)</td>
<td>0 (10)</td>
<td>.518</td>
<td>1.148</td>
</tr>
<tr>
<td>0 (12)</td>
<td>-1.414 (2.93)</td>
<td>.617</td>
<td>1.504</td>
</tr>
<tr>
<td>0 (12)</td>
<td>1.414 (17.07)</td>
<td>.533</td>
<td>1.092</td>
</tr>
</tbody>
</table>
Dep. Var... PV

FINAL STEP.

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>β</th>
<th>S.E. β</th>
<th>F</th>
<th>Sig.</th>
<th>Beta</th>
<th>Elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>T81</td>
<td>-.042</td>
<td>.009</td>
<td>20.651</td>
<td>.004</td>
<td>-.52742</td>
<td>0</td>
</tr>
<tr>
<td>T9S</td>
<td>-.053</td>
<td>.009</td>
<td>47.615</td>
<td>.000</td>
<td>-.80056</td>
<td>0</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>.575</td>
<td>.006</td>
<td>3917.499</td>
<td>.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ALL VARIABLES ARE IN THE EQUATION.

Dep. Var... EP

FINAL STEP.

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>β</th>
<th>S.E. β</th>
<th>F</th>
<th>Sig.</th>
<th>Beta</th>
<th>Elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>T81</td>
<td>-.133</td>
<td>.028</td>
<td>23.156</td>
<td>.003</td>
<td>-.54242</td>
<td>0</td>
</tr>
<tr>
<td>T9S</td>
<td>-.174</td>
<td>.028</td>
<td>39.127</td>
<td>.001</td>
<td>-.75692</td>
<td>0</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>1.319</td>
<td>.014</td>
<td>5240.051</td>
<td>.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 29. SPSS Multiple Linear Regression of Third Design.
<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>B</th>
<th>S.E.</th>
<th>P</th>
<th>R</th>
<th>S.E.</th>
<th>P</th>
<th>T.S.</th>
<th>T.B.S.</th>
<th>T.S.B.</th>
<th>T.B.S.</th>
<th>T.S.B.</th>
<th>T.B.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T12</td>
<td>1.23</td>
<td>0.09</td>
<td>0.01</td>
<td>0.17</td>
<td>0.03</td>
<td>0.93</td>
<td>0.01</td>
<td>0.34</td>
<td>0.08</td>
<td>0.94</td>
<td>0.01</td>
<td>0.65</td>
</tr>
<tr>
<td>T13</td>
<td>0.84</td>
<td>0.08</td>
<td>0.01</td>
<td>0.14</td>
<td>0.04</td>
<td>0.91</td>
<td>0.01</td>
<td>0.36</td>
<td>0.09</td>
<td>0.95</td>
<td>0.01</td>
<td>0.62</td>
</tr>
<tr>
<td>T14</td>
<td>0.85</td>
<td>0.09</td>
<td>0.01</td>
<td>0.33</td>
<td>0.07</td>
<td>0.19</td>
<td>0.01</td>
<td>0.52</td>
<td>0.08</td>
<td>0.96</td>
<td>0.01</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Figure 30. SPSS Multiple Polynomial Regression of Second Order Design.
To be meaningful for future analysis, the coded variables in Equations 4.22 and 4.23 were transformed to natural design variables

\[\hat{y}_1 = -0.016x_1^2 - 0.006x_2^2 + 0.003x_1x_2 - 0.034x_1 - 0.046x_2 + 0.585 \] \hspace{1cm} (4.22)

\[\hat{y}_2 = -0.042x_1^2 - 0.031x_2^2 + 0.027x_1x_2 - 0.112x_1 - 0.160x_2 + 1.368 \] \hspace{1cm} (4.23)

A canonical analysis was performed with the assistance of the XEIGEN library computer program. Equation 4.22 has a stationary point \(\hat{\xi}_0 = (6.176, -10.99) \) outside the region of experimentation, and eigenvalues \(\lambda_1 = -0.016 \) and \(\lambda_2 = -0.006 \) indicating a maximum surface. Equation 4.23 has \(\hat{\xi}_0 = (-7.29, -21.18) \) outside the region of experimentation, and eigenvalues \(\lambda_1 = -0.061 \) and \(\lambda_2 = -0.012 \) indicating another maximum surface.

Response equations relating the design variables to training were sought from TRADOC training studies on armored crew training.\(^1\) The approximating relationship between \(\hat{\xi}_1, \hat{\xi}_2 \) and hours of dry (no live firing) training \(\hat{y}_3 \), in the region of experimentation for Equations 4.24 and 4.25, was found to be

\[\hat{y}_1 = -0.001\xi_1^2 - 0.00024\xi_2^2 + 0.00015\xi_1\xi_2 + 0.014\xi_1 - 0.0062\xi_2 + 0.629 \] \hspace{1cm} (4.24)

\[\hat{y}_2 = -0.0002625\xi_1^2 - 0.00124\xi_2^2 + 0.00135\xi_1\xi_2 + 0.0215\xi_1 - 0.0234\xi_2 + 1.684 \] \hspace{1cm} (4.25)

\(^1\)See Appendix E for an explanation of the derivation of Equations 4.26, 4.27, and 4.28
\[\hat{y}_3 = -2.5556\xi_1 - 2.1667\xi_2 + 87.2009 \]

(4.26)

The approximating equation for live training rounds fired (\(\hat{y}_4\)), in the region of experimentation for Equations 4.24 and 4.25, was found to be

\[\hat{y}_4 = -2.611\xi_1 - 2.9167\xi_2 + 107.30015 \]

(4.27)

The cost of training (\(\hat{y}_5\)), in the region of experimentation for Equations 4.24 and 4.25, based mainly on cost of rounds and of Petroleum, Oil, and Lubricants (POL), was computed to be approximately

\[\hat{y}_5 = -234.999\xi_1 - 262.503\xi_2 + 9667.5135 \]

(4.28)

Application of the Optimization Methodology to the Derived Multiple Response Surfaces

With the five multiple response surfaces derived in the last section, the AT was prepared to present the PM with optimization and analysis of training effects. The independent variables for his given scenario were mean time to fire first round and mean time between rounds. The response variables were probability of victory for the MBT76, expected number of rounds fired, hours of dry training, live training rounds fired, and cost of training. Foreseeing minimal information gain by its continued inclusion, the PM directed that expected number of rounds fired be eliminated from the optimization. Figure 31 graphs the response surfaces in the area of the region of experimentation.

To acquaint the PM and themselves with the surface, and to alleviate the PM's concern about convergence of the methodology, the AT began a sample optimization with an impractical point, \(\xi_1 = 5.0\) and
Time to Fire First Round (ξ_1)

Figure 31: Derived Multiple Response Surfaces.
Figure 31. (Continued). Glossary for Figures 31, 32, 33 and 34.

\[y_1 \quad \text{Probability of Victory} \]
\[y_3 \quad \text{Training Hours} \]
\[y_4 \quad \text{Training Rounds} \]
\[y_5 \quad \text{Training Cost in Dollars} \]
\(\xi_2 = 30.0 \). The objective was to maximize \(y_1 \) while constraining \(y_5 \) to be less than $4500.00. Figure 32 depicts the operation of the methodology. It was discovered that larger violations of the constraint on each iteration hastened convergence. The optimum point reached was \(\xi_1 = 11.3444 \) secs and \(\xi_2 = 9.6965 \) secs where \(y_1 = .5929, y_3 = 37.1966 \) hrs., \(y_4 = 49.3968 \) rds, and \(y_5 = $4456.22 \). A validation was run, as graphed in Figure 33, by moving from the initial point to the region of experimentation optimum and then back to a constrained optimum. This optimum point, which violated the constraint by $78.16 (1.7\%) was \(\xi_1 = 11.3684 \) secs and \(\xi_2 = 9.2105 \) secs. Thus the zig-zag behavior of the PM had converged to the optimum constrained point. The small discrepancy was caused by the step-size intervals which were not small enough to permit the constraint to be satisfied exactly.

Analysis of data from the training program prior to OT I and from OT I indicated initial crew performance on the MBT76 to be 30 secs mean time to fire the first round and 25 secs mean time between rounds. Allowing for 7 secs mechanical fixed time this converted to \(\xi_1 = 23.0 \) secs and \(\xi_2 = 18.0 \) secs. Performing iterations at this level on the AMSAA simulation, the AT obtained the data in Table 20 and a 90\% confidence interval about the probability of victory of

\[
.3520 \leq \mu y_1 \leq .4332
\]

(4.29)

In an effort to predict the optimum performance of the MBT76, stochastic simulation iterations were performed with \(\xi_1 = 8.0 \) secs and \(\xi_2 = 5.0 \) secs. The results are shown in Table 21 with a derived 90\% confidence interval
Figure 22. Convergence of the Methodology.
Figure 33. Validation of Methodology Convergence.
Table 20. AMSAA Tank Duel Model Output at $\xi_1 = 23.0$ and $\xi_2 = 18.0$.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>.390</td>
<td>.406</td>
<td>.387</td>
<td>.407</td>
<td>.432</td>
<td></td>
</tr>
<tr>
<td>.372</td>
<td>.389</td>
<td>.420</td>
<td>.369</td>
<td>.345</td>
<td></td>
</tr>
<tr>
<td>.392</td>
<td>.387</td>
<td>.419</td>
<td>.382</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 21. AMSAA Tank Duel Model Output at $\xi_1 = 8.0$ and $\xi_2 = 5.0$.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>.669</td>
<td>.691</td>
<td>.652</td>
<td>.665</td>
<td>.689</td>
<td></td>
</tr>
<tr>
<td>.678</td>
<td>.639</td>
<td>.674</td>
<td>.670</td>
<td>.689</td>
<td></td>
</tr>
<tr>
<td>.695</td>
<td>.720</td>
<td>.699</td>
<td>.690</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
about the probability of victory of

\[0.6435 \leq \mu y_1 \leq 0.7165 \]

(4.30)

From this analysis of training effects on MBT76 OT performance, it was apparent to the PM that his test personnel must receive further training. Indications were that when OT I data was simulated in two-sided combat, the MBT76 would not be victorious. Yet with proper crew training, the MBT76 would be victorious 68% of the time. Certainly further OT's must be conducted at a training level closer to optimum.

Much as a tactical unit commander would do, the PM and the AT designed a training program for the test personnel. Their objective was to maximize probability of victory. The test cycle timetable and budget, however, imposed constraints of no more than 50 hours dry training per crew, no more than 55 training rounds per crew, and no more than $5500.00 training cost per crew. With this problem formulation, the PM and AT began optimization utilizing the adapted Interactive Vector Maximal algorithm. Figure 34 graphs the four iterations of the methodology resulting in an optimum point of \(\xi_1 = 10.7 \) secs and \(\xi_2 = 8.2 \) secs. Output from the optimization methodology predicted that training to this proficiency would result in a probability of victory of .6099. The predicted training effort to arrive at this level was 41.9 hours of dry training per crew, 55.2 live rounds fired per crew, and a cost of $4982.62 per crew.

To confirm these results the AT ran the simulation at these levels yielding the results in Table 22 and a 90% confidence interval around the
Figure 34. Movement of Optimization Methodology in Training Problem.
probability of victory of

\[0.5377 \leq \mu y_1 \leq 0.6547 \] (4.31)

Further sensitivity analysis around the optimum point was accomplished by iterating the adapted algorithm in varied uni-direction searches from the optimum point. The searches are listed in the following tables:
Table 23 toward point (8.0,5.0), Table 24 toward point (8.0,15.0), Table 25 toward point (16.0, 5.0), and Table 26 toward point (16.0, 15.0).

Upon analyzing this sensitivity analysis, the PM was satisfied with the proposed training program and its crew performance objectives. Implementation of the training program was begun immediately. Future OT reports to the ASARC included a section analyzing the training level of the test personnel and the effect of training on the performance of the MBT76 in two-sided, European type conflicts.

Table 22. ANSAA Tank Duel Model Output at \(\xi_1 = 10.7 \) and \(\xi_1 = 8.2 \).

<table>
<thead>
<tr>
<th>(\xi_1)</th>
<th>(\xi_2)</th>
<th>(\xi_3)</th>
<th>(\xi_4)</th>
<th>(\xi_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.589</td>
<td>.592</td>
<td>.662</td>
<td>.619</td>
<td>.563</td>
</tr>
<tr>
<td>.567</td>
<td>.650</td>
<td>.596</td>
<td>.578</td>
<td>.590</td>
</tr>
<tr>
<td>.561</td>
<td>.587</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4548</td>
<td>41.9288</td>
<td>55.2458</td>
<td>4982.6208</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>.6099</td>
<td>1.4653</td>
<td>42.8618</td>
<td>56.3513</td>
<td>5082.1132</td>
</tr>
<tr>
<td>.6129</td>
<td>1.4757</td>
<td>43.7947</td>
<td>57.4567</td>
<td>5181.6056</td>
</tr>
<tr>
<td>.6157</td>
<td>1.4859</td>
<td>44.7276</td>
<td>58.5622</td>
<td>5281.0980</td>
</tr>
<tr>
<td>.6185</td>
<td>1.4959</td>
<td>45.6605</td>
<td>59.6677</td>
<td>5380.5904</td>
</tr>
<tr>
<td>.6212</td>
<td>1.5057</td>
<td>46.5934</td>
<td>60.7731</td>
<td>5480.0827</td>
</tr>
<tr>
<td>.6239</td>
<td>1.5154</td>
<td>47.5263</td>
<td>61.8786</td>
<td>5579.5751</td>
</tr>
<tr>
<td>.6264</td>
<td>1.5249</td>
<td>48.4593</td>
<td>62.9841</td>
<td>5679.0675</td>
</tr>
<tr>
<td>.6289</td>
<td>1.5341</td>
<td>49.3922</td>
<td>64.0896</td>
<td>5778.5599</td>
</tr>
<tr>
<td>.6313</td>
<td>1.5432</td>
<td>50.3251</td>
<td>65.1950</td>
<td>5878.0522</td>
</tr>
<tr>
<td>.6336</td>
<td>1.5522</td>
<td>51.2580</td>
<td>66.3005</td>
<td>5977.5446</td>
</tr>
<tr>
<td>.6359</td>
<td>1.5609</td>
<td>52.1909</td>
<td>67.4060</td>
<td>6077.0370</td>
</tr>
<tr>
<td>.6381</td>
<td>1.5694</td>
<td>53.1238</td>
<td>68.5114</td>
<td>6176.5294</td>
</tr>
<tr>
<td>.6402</td>
<td>1.5778</td>
<td>54.0568</td>
<td>69.6169</td>
<td>6276.0217</td>
</tr>
<tr>
<td>.6422</td>
<td>1.5860</td>
<td>54.9897</td>
<td>70.7224</td>
<td>6375.5141</td>
</tr>
<tr>
<td>.6441</td>
<td>1.5940</td>
<td>55.9226</td>
<td>71.8279</td>
<td>6475.0065</td>
</tr>
</tbody>
</table>
Table 24. Sensitivity Analysis Toward (8.0,15.0).

.6099	1.4548	41.9288	55.2458	4982.6208
.6077	1.4474	41.5250	54.5834	4923.0080
.6054	1.4395	41.1211	53.9211	4863.3951
.6030	1.4311	40.7173	53.2587	4803.7823
.6004	1.4221	40.3134	52.5963	4744.1694
.5977	1.4125	39.9096	51.9340	4684.5565
.5949	1.4024	39.5057	51.2716	4624.9437
.5920	1.3917	39.1019	50.6092	4565.3308
.5890	1.3805	38.6980	49.9469	4505.7180
.5859	1.3687	38.2941	49.2845	4446.1051
.5826	1.3563	37.8903	48.6221	4386.4922
.5792	1.3434	37.4864	47.9598	4326.8794
.5757	1.3299	37.0826	47.2974	4267.2665
.5721	1.3159	36.6787	46.6350	4207.6537
.5684	1.3013	36.2749	45.9727	4148.0408
.5645	1.2862	35.8710	45.3103	4088.4279
.5606	1.2705	35.4672	44.6479	4028.8151
.5565	1.2542	35.0633	43.9856	3969.2022
.5523	1.2374	34.6595	43.3232	3909.5894
.5480	1.2200	34.2556	42.6609	3849.9765
Table 25. Sensitivity Analysis Toward (16.0, 5.0).

1.4548	41.9268	55.2458	4982.6205
1.4529	41.5893	55.0191	4962.2205
1.4505	41.2498	54.7924	4941.8202
1.4474	40.9102	54.5658	4921.4198
1.4437	40.5707	54.3391	4901.0195
1.4395	40.2312	54.1124	4880.6192
1.4346	39.8917	53.8858	4860.2188
1.4291	39.5521	53.6591	4839.8185
1.4230	39.2126	53.4324	4819.4182
1.4163	38.8731	53.2058	4799.0178
1.4090	38.5336	52.9791	4778.6175
1.4011	38.1940	52.7524	4758.2172
1.3926	37.8545	52.5257	4737.8166
1.3835	37.5150	52.2991	4717.4165
1.3737	37.1754	52.0724	4697.0162
1.3634	36.8359	51.8457	4676.6158
1.3525	36.4964	51.6191	4656.2155
1.3409	36.1569	51.3924	4635.8152
1.3288	35.8173	51.1657	4615.4148
1.3160	35.4778	50.9391	4595.0145
Table 26. Sensitivity Analysis Toward (16.0, 15.0).

<table>
<thead>
<tr>
<th>(16.0, 15.0)</th>
<th>(16.0, 15.0)</th>
<th>(16.0, 15.0)</th>
<th>(16.0, 15.0)</th>
<th>(16.0, 15.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6099</td>
<td>1.4548</td>
<td>41.9288</td>
<td>55.2458</td>
<td>4982.6208</td>
</tr>
<tr>
<td>1.6051</td>
<td>1.4375</td>
<td>40.4489</td>
<td>53.4840</td>
<td>4824.0610</td>
</tr>
<tr>
<td>1.6000</td>
<td>1.4198</td>
<td>38.9690</td>
<td>51.7222</td>
<td>4665.5012</td>
</tr>
<tr>
<td>1.5948</td>
<td>1.4017</td>
<td>37.4891</td>
<td>49.9605</td>
<td>4506.9414</td>
</tr>
<tr>
<td>1.5894</td>
<td>1.3831</td>
<td>36.0092</td>
<td>48.1987</td>
<td>4348.3816</td>
</tr>
<tr>
<td>1.5838</td>
<td>1.3641</td>
<td>34.5294</td>
<td>46.4369</td>
<td>4189.8218</td>
</tr>
<tr>
<td>1.5780</td>
<td>1.3446</td>
<td>33.0495</td>
<td>44.6751</td>
<td>4031.2620</td>
</tr>
<tr>
<td>1.5721</td>
<td>1.3246</td>
<td>31.5696</td>
<td>42.9134</td>
<td>3872.7022</td>
</tr>
<tr>
<td>1.5659</td>
<td>1.3042</td>
<td>30.0897</td>
<td>41.1516</td>
<td>3714.1424</td>
</tr>
<tr>
<td>1.5596</td>
<td>1.2834</td>
<td>28.6098</td>
<td>39.3898</td>
<td>3555.5826</td>
</tr>
<tr>
<td>1.5531</td>
<td>1.2621</td>
<td>27.1299</td>
<td>37.6280</td>
<td>3397.0228</td>
</tr>
<tr>
<td>1.5463</td>
<td>1.2403</td>
<td>25.6500</td>
<td>35.8663</td>
<td>3238.4630</td>
</tr>
<tr>
<td>1.5394</td>
<td>1.2181</td>
<td>24.1701</td>
<td>34.1045</td>
<td>3079.9032</td>
</tr>
<tr>
<td>1.5324</td>
<td>1.1954</td>
<td>22.6902</td>
<td>32.3427</td>
<td>2921.3433</td>
</tr>
<tr>
<td>1.5251</td>
<td>1.1723</td>
<td>21.2103</td>
<td>30.5809</td>
<td>2762.7835</td>
</tr>
<tr>
<td>1.5177</td>
<td>1.1488</td>
<td>19.7304</td>
<td>28.8192</td>
<td>2604.2237</td>
</tr>
<tr>
<td>1.5100</td>
<td>1.1248</td>
<td>18.2505</td>
<td>27.0574</td>
<td>2445.6639</td>
</tr>
<tr>
<td>1.5022</td>
<td>1.1003</td>
<td>16.7706</td>
<td>25.2956</td>
<td>2287.1041</td>
</tr>
<tr>
<td>1.4942</td>
<td>1.0754</td>
<td>15.2907</td>
<td>23.5338</td>
<td>2128.5443</td>
</tr>
<tr>
<td>1.4860</td>
<td>1.0500</td>
<td>13.8108</td>
<td>21.7721</td>
<td>1969.9845</td>
</tr>
</tbody>
</table>
CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The field of multiple response surface methodology was found to consist largely of applications of nonlinear programming techniques to problem formulations of a primary and a constraint response. Contemporary efforts continue to enhance this area with application of further nonlinear programming algorithms. This research is an initial effort to optimize multiple response surfaces by means of the Geoffrion-Dyer Interactive Vector Maximal algorithm.

A modified version of the Interactive Vector Maximal algorithm was found to be well suited to the optimization of multiple response surfaces. Various practical region of experimentation boundary definitions are easily incorporated into the methodology. Algorithm assumption violations were present in saddle and ridge systems. Methods for optimization in the presence of such assumption violations were devised. The methodology was shown to converge and to satisfy the Kuhn-Tucker conditions necessary for optimality. FORTRAN IV computer programs were written to perform the procedure on a CDC CYBER 74 computer.

It has been demonstrated that through computer simulation and response surface methodology, OTEA can extend the analysis, scope and optimization of OT results. A mutually supporting relationship between OT's and computer simulations was discussed. The importance of the
military decision maker and the benefits accrued by his participation in the methodology of this research have been discussed. An application of the methodology to the analysis of the effects of training in OT's has been demonstrated.

Recommendations

This research generated several recommendations. The suboptimization algorithm of the methodology should be investigated for an algorithm which would better optimize a saddle and/or a ridge system. A nonlinear algorithm such as Zoutendijk's Method or the Conjugate Direction Method should be considered. Another aid in this area might be the simultaneous utilization of a visual display of the response surface so that the decision maker might better follow the implications of his optimization movements. Some of the other multiple objective algorithms mentioned in Chapter II, such as SEMOPS, should be investigated for applicability to multiple response surface optimization. The design of OT's should be analyzed from a design of experiment viewpoint. Utilization of fractional designs would greatly reduce the number of replications, thereby perhaps making actual OT data available for analysis by this methodology. Finally OTEA should implement the methodology of this research to enhance and improve the resulting analysis of operational tests. There are several excellent military computer simulations available. Hopefully this research and its references can serve as a guide in the implementation of multiple response surface optimization and analysis.
APPENDIX A

This appendix contains two programs utilized to generate the normal deviates necessary for input to the AMSAA Tank Duel Model. The first program utilizes an internal CDC CYBER 74 U(0,1) generator to generate U(0,1) deviates. The second program transforms these uniform deviates to normal deviates of specified mean and variance through the use of the Fishman equations.
C
C*****THIS PROGRAM GENERATES U(0,1) DEVIATES AND STORES
C*****IN A FILE.
C
PROGRAM UNGEN(INPUT,OUTPUT,TAPES,TAPES=INPUT,
* TAPE6=OUTPUT)
DIMENSION RAN(200)
NUM=200
CALL HANSET(0)
DO 200 I=1,NUM
 RAN(I)=HANF(0)
200 CONTINUE
WRITE(3,*)((RAN(I),I=1,NUM))
STOP
END
C
C***** THIS PROGRAM TRANSFORMS U(0,1) INTO N(0,1) DEVIATES OF GIVEN MEAN AND VARIANCE.
C
PROGRAM NORM(INPUT,OUTPUT,TAPE3,TAPES=INPUT,
* TAPE6=OUTPUT)
DIMENSION RAN(200),RANORM(200)
NUM=200
PI=2. * 3. 141592653
C
C***** THIS STATEMENT READS THE U(0,1) FROM A FILE.
C
READ(5,*) (RAN(J), J=1, NUM)
C
C***** THIS SECTION COMPUTES THE NORMAL(0,1).
C
100 PRINT 548
548 FORMAT(*WHAT ARE NORMAL MEAN AND VARIANCE*)
READ(5,*) ORMU, ORMVAR
C
C***** THESE ARE THE FISHMAN EQUATIONS.
C
DO 550 J=1, NUM, 2
DUMMY=SQR((-2.* ORMVAR* AL6G (RAN(J))))
RANORM(J)=ORMU+DUMMY* COS(PI* RAN(J+1))
RANORM(J+1)=ORMU+DUMMY* SIN(PI* RAN(J+1))
550 CONTINUE
WHILE(6,*) ORMU, ORMVAR,RANORM(J), J=1, NUM
GOTO 100
STOP
END
APPENDIX B

This appendix contains the AMSAA Tank Duel Model simulation modified for use in this research. Several of the inputs have been fixed or rendered stochastic as discussed in Chapter IV of this thesis. Following the listing of the simulation is an example of an input data file utilized by the simulation. Figure 26, page 78, is an example of the simulation's output.
C
C*****THIS IS THE AMSAA TANK DUEL SIMULATION MODEL
C
PROGRAM TANK(INPUT, OUTPUT, TAPE3, TAPE5 = INPUT, TAPE6 = OUTPUT)
DIMENSION TMDB(45), TMDR(45), SDB(45), SDR(45), SKB(45), SKR *(45)
REAL KB(45), KR(45), M(40,40), N(40,40), NDF, NODEC
INTEGER RANGE
DATA SIGMA, BLUE, RED, TCUT, LS, TFB, TTB, ID1, ID2, ID3, RANGE,
1 RELB, TFR, TTR, ID4, ID5, ID6, RELR / 5, 4HBLUE, 3HRED, 120.0, 0,
2.86, 7, 3HBLU, 3HBLU, 3HBLU, 1000, 85, 1.17, 7, 3HRED, 3HRED,
33HRED, .825/
100 READ(3,912) TB1, TBS, BPH1, BPHH, BPHS, BPHL, BKHI,
1BKHH, BKHS, BKHL, BS
READ(3,912) TRI, TRS, RPH1, RPHH, RPHS, RPHL, RKHI,
1RKHH, RKHS, RKHL, RS
IF (LS .EQ. 0) WRITE(6,904) BLUE, RED, TCUT
IF (LS .NE. 0) WRITE(6,905) ELUE, LS, RED, TCUT
WRITE(6,916) RANGE, ID1, ID2, ID3, ID4, ID5, ID6
WRITE(6,917) TFB, TTB, TB1, TBS, BPH1, BPHH, BPHS, BPHL, BKHI, BKHH,
1BKHS, BKHL, BS, RELB, TFR, TTR, TRI, TRS, RPH1, RPHH, RPHS, RPHL,
*RKHI
2RKHH, RKHS, RKHL, RS, RELR
CALL KASFT(KB, SKB, JOUTB, BKHI, BKHH, BKHS, BKHL, BPH1, BPHH,
*BPHS,
1BPHL, BS, RELB)
CALL KASFT(KR, SKR, JOUTR, RKHI, RKHH, RKHS, RKHL, RPH1, RPHH,
*RPHS,
1RPHL, RS, RELR)
JOUT=MIN(40, MAXO(JOUTB, JOUTR))
SFTB=0.0
SFTR=0.0
IF (TFB .GT. TFR) SFTB=TFB-TFR
IF (TFR .GT. TFB) SFTR=TFR-TFB
TMDB(1)=TB1
SDB(1)=SIGMA
DO 120 I=2,45
120 CALL COONLOG(TBS, SIGMA, TMDB(I-1), SDB(I-1), TMDB(I), SDB *
(I))
TMDR(I)=TRI
SDR(I)=SIGMA
IF (LS .EQ. 0) GOTO 130
C
C*****ADJUST RED TIMES FOR HEADSTART
C
TSAVE=TMDB(1)
CALL COONLOG(TMRD(1), SDR(1), TMDB(LS), SDB(LS), TMDR(1), SDR *
(1))
130 DO 140 I=2,40
140 CALL COONLOG(TRS, SIGMA, TMDR(I-1), SDR(I-1), TMDR(I), SDR(I))
DO 150 I=1,45
150 TMDR(I)=TMDR(I)+FLOA(T(I-1))*TTB+SFTB
IF (LS.LE.1) GOTO 170
TSAVE=TTB*(FLOA(LS-1))
DO 160 I=1,40
160 TMDR(I)=TMDR(I)+TSAVE
170 DO 180 I=1,40
180 TMDR(I)=TMDR(I)+FLOA(I-1)*TTR+SFTT
C
C*****COMPUTE AVERAGE NUMBER OF ROUNDS FIRING ASSUMING NO
C*****KILLS.
C
RNDB=NDF(ALOG((TCUT/TMDB(I)))/SDB(I))
RNDR=NDF(ALOG((TCUT/TMDR(I)))/SDR(I))
L=40+LS
DO 190 I=2,L
190 RNDB=RNDB+NDF(ALOG((TCUT/TMDB(I)))/SDB(I))
D0 195 I=1,2,L
195 RNDR=RNDR+NDF(ALOG((TCUT/TMDB(I)))/SDR(I))
C
C*****M(I,,J) GIVES THE PROBABILITY THAT BLUE FIRES HIS
C*****I TH ROUND BEFORE RED KILLS WITH HIS J TH, AND
C*****BOTH BEFORE TCUT.
C*****N(I,1) GIVES THE RESULTS FOR RED.
C
DO 200 I=1,JOUT
D0 200 J=1,JOUT
M(I,J)=PABAT(TCUT,TMDB(I+LS),TMDR(J),SDB(I+LS),SDB(J))
200 N(I,J)=PABAT(TCUT,TMDR(I),TMDR(J+LS),SDB(I),SDB(J+LS))
D0 210 I=1,JOUT
D0 210 J=2,JOUT
K=JOUT+2-J
M(I,K)=M(I,K)-M(I,K-1)
210 N(I,K)=N(I,K)-N(I,K-1)
PWINB=0.0
PWINR=0.0
ANRB=0.0
ANRR=0.0
IF (LS.EQ.0) GOTO 225
D0 220 I=1,LS
220 TSAVE=NDF(ALOG((TCUT/TMDB(I)))/SDB(I))
PWINB=PWINB+KB(I)*TSAVE
ANRB=ANRB+FLOA(I)*KB(I)*TSAVE
ANRB=ANRB+FLOA(LS)*SKB(LS)*KR(1)*N(I,1)
225 D0 230 LQQ=1,JOUT
PWINB=PWINB+M(LQQ,I)*KB(LS+LQQ)
230 ANRB=ANRB+FLOA(LS+LQQ)*M(LQQ,1)*(KB(LS+LQQ)*KR(1)*SKB(LS+LQQ))
D0 235 LQQ=2,JOUT
D0 235 LQQ=1,JOUT
PWINB=PWINB+KB(LS+LQQ)*M(LQQ,LQ)*SKR(LQQ-1)
235 ANRB=ANRB+FLATE(LS+LQQ)*M(LQQ,LQ)*(KB(LS+LQQ)+KR(LQQ)*SKB(LS+LQQ)*SKR(LQQ-1)
IF (LS.EQ.0) GOTO 245
D0 240 LQQ=1,JOUT
PWINR=PWINR+KR(LQQ)*N(LQQ,1)*SKB(LS)
240 ANRR=ANRR+FLATE(LQQ)*M(LQQ,1)*(KR(LQQ)+SKR(LQQ)*KB(LS+1))
1*SKB(LS)
GOTO 260
245 D0 250 LQQ=1,JOUT
PWINR=PWINR+KR(LQQ)*N(LQQ,1)
250 ANRR=ANRR+FLATE(LQQ)*N(LQQ,1)*(KR(LQQ)+SKR(LQQ)*KB(LS+1))
260 D0 270 LQQ=2,JOUT
D0 270 LQQ=1,JOUT
PWINR=PWINR+KR(LQQ)*N(LQQ,LQ)*SKB(LQ+L5-1)
270 ANRR=ANRR+FLATE(LQQ)*N(LQQ,LQ)*SKB(LQ+L5-1)*(KR(LQQ)+SKR(LQQ)*KB(LS+LQQ))
NODEC=1.0-PWIN-B-PWINR
ANRB=ANRB+NODEC*RNB
ANRR=ANRR+NODEC*RNDR
WRITE(6,915)BLUE,PWINB,RED,PWINR,NODEC,BLUE,ANRB,RED,
ANRR
GOTO 100
904 FORMAT(10X,*A MEETING ENGAGEMENT BETWEEN*,A10,*AND*,
1/A10/10X,*THE TIME LIMIT IS*,F8.2,*SECONDS*)
905 FORMAT(10X,*THE DEFENDER HAS A*,I2,*ROUNI*,
&HEADSTART*,
1/10X,A10,* IS THE ATTACKER*/10X,*THE TIME LIMIT IS*,
2/F8.2,* SECONDS*)
912 FORMAT(2F5.2,9F5.4)
915 FORMAT(10X,*PROB(*) WINS)**,F6.3/10X,*PROB(0) WINS)**,F6.3/10X,*PROB(0 DECISION)**,F6.3/10X,*PRBOR**,F6.3/10X,*PRBOR**,F6.3/10X,*PRBOR**,F6.3/10X,*PRBOR**,
2,2A5,2H)=F9.3/10X,*ERDS FOR *,A5,2H)=F9.3)
916 FORMAT(10X,*RANGE IS*,1,5,* METERS*/10X,*BLUE DATA IS *
1.5/(A3,1X)/10X,*RED DATA IS *,3/(A3,1X)/9X,3HTFL,4X,2HTT,
24X,2HT1,4X,2HTS,2X,3PH1,2X,3PHS,2X,3PHL,2X,
33XXH,2X,3XXH2,2X,3XXH5,2X,3XXHL,3X,2HP5,3X,3XXHL)
917 FORMAT(1X,4HBLUE,1X,4F6.2,9F5.3,F5.2/1X,3HRED,2X,4F6.2,
19F5.3,F5.2)
STOP
C
C*****THIS SUBROUTINE COMPUTES THE MEDIAN AND STANDARD
C*****DEVIATION FOR CONVOLUTION.
C
SUBROUTINE CONLLOG(XI,SIGX,ETA,SIGY,ZETA,SIGZ)
XBAR=XI*EXP(.5*SIGX*SIGX)
YBAR=ETA*EXP(.5*SIGY*SIGY)
SSX=XBAR*XBAR*(EXP(SIGX*SIGX)-1.0)
SSY=YBAR*YBAR*(EXP(SIGY*SIGY)-1.0)
\[
\begin{align*}
\text{SIGZ} &= 1.0 + \left(\frac{SSX + SSY}{(XBAR + YBAR)^2} \right) \\
\text{ZETA} &= \frac{(XBAR + YBAR)}{\text{SIGZ}} \\
\text{RETURN} \\
\end{align*}
\]

C

C*****THIS SUBROUTINE COMPUTES THE KILL AND SURVIVAL
C*****FOR THE TWO TANKS.

SUBROUTINE KASFT(K, SK, JOUT, KHI, KHH, KHS, KHL, PHI, PHH, PHS, PHL, S, R)

DIMENSION SK(45)
REAL K(45), KHI, KHH, KHS, KHL, PHI, PHH, PHS, PHL, S, R

DO 100 I = 2, 45

K(I) = 0.0

100 SK(I) = 0.0

K(1) = PHI*KHI*R

SK(1) = 1.0 - K(1)

L = 1.0 - S

X2 = PHI*(1.0 - KHI*R)

X3 = (1.0 - PHI)*S

X4 = (1.0 - PHI)*L

A12 = PHH*KHH*R

A13 = PHS*KHS*R

A14 = PHL*KHL*R

A22 = PHH*(1.0 - KHH*R)

A23 = PHS*(1.0 - KHS*R)

A24 = PHL*(1.0 - KHL*R)

A32 = (1.0 - PHH)*S

A33 = (1.0 - PHS)*S

A34 = (1.0 - PHL)*S

A42 = (1.0 - PHH)*L

A43 = (1.0 - PHS)*L

A44 = (1.0 - PHL)*L

DO 130 I = 2, 45

K(I) = A12*X2 + A13*X3 + A14*X4

X3P = A32*X2 + A33*X3 + A34*X4

X2P = A22*X2 + A23*X3 + A24*X4

X4P = A42*X2 + A43*X3 + A44*X4

X2 = X2P

X3 = X3P

X4 = X4P

JOUT = I

SK(I) = SK(I - 1) - K(I)

130 CONTINUE

135 RETURN

END

C

C*****THIS FUNCTION COMPUTES THE ELEMENTS OF
FUNCTION PABAT(T,TA,TB,SA,SB)
REAL NDF
EXTERNAL PAFINT
COMMON/PAF/A,B
IF (SA.GE.0.) GOTO 2
X=T
A=TA
B=TB
GOTO 7
2 X=T/TA
IF (X.GT.0.0000001) GOTO 5
PABAT=0.
RETURN
5 X=ALOG(X)/SA
A=ALOG(TA/TB)/SB
B=SA/SB
C=B*B+1.
D=A/SQRT(C)
E=A+B*X
IF (X*X+E*E.LT.25.) GOTO 30
IF (E.LT.0.) GOTO 10
PABAT=1.-NDF(D)
RETURN
10 IF (X.GT.0.) GOTO 20
PABAT=NDF(X)
RETURN
20 PABAT=NDF(X)
IF(A*B/C.LT.X) RETURN
PABAT=PABAT-NDF(D)
RETURN
30 F=SQRT(25.*C-A*A)
AB=A*B
UZ=-A/B
UIM= (-AB-F)/C
UPI=(-AB+F)/C
BR=-5.
IF (UZ.GE.-5.) BR=UIM
TS=5.
IF (UZ.LT.5.) TS=UPI
IF (X-BR.LE.TS-X) GOTO 40
CALL SAMSØN(PAFINT,G,X,TS,.0001)
PABAT=1.-NDF(D)-NDF(TS)+NDF(X)+G
PABAT=ABS(PABAT)
RETURN
40 CALL SAMSØN(PAFINT,G,BR,X,.0001)
PABAT=NDF(X)-G
PABAT=ABS(PABAT)
RETURN
FUNCTION PAFINT(U)
REAL NDF
COMMON/PAF/A,B
PAFINT=.3989422803*EXP(-U*U/2.)*NDF(A+B*U)
RETURN
END

SUBROUTINE SAMSØN(FUN,R,A,B,EPS)
IF (B-A.GE.0.0001) G0T0 18
R=0.
RETURN
EPS1=EPS
NT=0
N=1
M=1
XU=B
XL=A
H=(XU-XL)/2.
HBAR=0.
FJ=H*(FUN(XU)+FUN(XL))
FIBAR=10000.
S=0.
X=XL+H
5 S=S+FUN(X)
X=X+HBAR
M=M-1
IF (M) 3,3,2
F1=FJ+4.*H*S
IF (FIBAR) 4,5,4
ERR=ABS((FIBAR-F1)/FIBAR)
IF (ERR-EPS1) 9,5,5
IF (NT-13) 7,9,9
7 NT=NT+1
FIBAR=F1
FJ=(F1+FJ)/4.
HBAR=H
H=H/2.
N=2*N
M=N
G0T0 1
9 R=F1/3.
RETURN
END
C
C*****THIS FUNCTION IS THE CUMULATIVE NORMAL DISTRIBUTION C

REAL FUNCTION NDF(X)
 NDF=0.
 AX=ABS(X)
 IF (AX.GE.5.) GOTO 3
 NDF=(((.5383E-5*AX+.488906E-4)*AX+.360036E-4)*AX
 +.021140061)*AX+.0498673469)*AX+1.
 NDF=.5/((NDF**8)**2)
3 IF (X.GE.0.) NDF=1.-NDF
RETURN
END
<table>
<thead>
<tr>
<th>Time</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
<th>Value 5</th>
<th>Value 6</th>
<th>Value 7</th>
<th>Value 8</th>
<th>Value 9</th>
<th>Value 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.01</td>
</tr>
<tr>
<td>0.02</td>
</tr>
<tr>
<td>0.03</td>
</tr>
<tr>
<td>0.04</td>
</tr>
<tr>
<td>0.05</td>
</tr>
<tr>
<td>0.06</td>
</tr>
<tr>
<td>0.07</td>
</tr>
<tr>
<td>0.08</td>
</tr>
<tr>
<td>0.09</td>
</tr>
<tr>
<td>0.10</td>
</tr>
</tbody>
</table>

The table continues with similar entries for each subsequent time interval.
APPENDIX C

This appendix contains two procedure files and their respective input data files for utilization with the SPSS Multiple Linear Regression program. The first procedure and input files are examples of those utilized for multiple linear regression. The second files are examples of those utilized for multiple polynomial regression. Examples of SPSS Multiple Linear Regression output can be found throughout Chapter IV of this thesis.
<table>
<thead>
<tr>
<th>Case</th>
<th>RUN NAME</th>
<th>MULTIPLE LINEAR REGRESSION ON TANK</th>
<th>VARIABLE LIST</th>
<th>INPUT FORMAT</th>
<th>NO. OF CASES</th>
<th>REGRESSION VARIABLES</th>
<th>REGRESSION WITH TBS,PS (2)</th>
<th>REGRESSION WITH TBS, PS (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.005</td>
<td>Tb1, TBS, PS, PV, ER</td>
<td>10.005</td>
<td>30.005</td>
<td>40.005</td>
<td>50.001</td>
<td>50.002</td>
<td>50.003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. RUN NAME
5.005 MULTIPLE LINEAR REGRESSION ON TANK
10. VARIABLE LIST
10.005 TBL, TBS, PV, ER
30. INPUT FORMAT
30.005 FIXED(2F6.3, F4.3, F5.3)
40. NO. OF CASES
40.005 13
41.0 COMPUTE
41.005 TBL2=TBL*TBL
44.0 COMPUTE
44.005 TBLTBS=TBL*TBS
46.0 COMPUTE
46.005 TBS2=TBS*TBS
50. REGRESSION
50.005 VARIABLES=TBL2, TBLTBS, TBS2, TBL
50.002 , PV, ER/
50.003 REGRESSION=PV WITH TBL2, TBLTBS
50.004 , TBS2, TBL, TBS(2)/
50.005 REGRESSION=ER WITH TBL2, TBLTBS
50.006 , TBS2, TBL, TBS(4)
This appendix contains the programs necessary for the adapted Interactive Vector Maximal algorithm. The first program is an interactive data program which queries the decision maker for necessary data and stores that data in a data file. Figure 18, page 60, is an example of the output from and the input to this program. The program allows a maximum of 10 response equations and 5 independent variables. The coefficients of the response equations are input in the following order:

\[
\begin{align*}
 x_1^2 & \quad i = 1, \ldots, 5, \\
 x_{11} & \quad i = 2, 3, 4, 5, \\
 x_{21} & \quad i = 3, 4, 5, \\
 x_{31} & \quad i = 4, 5, \\
 x_{45}, \\
 x_{1} & \quad i = 1, \ldots, 5
\end{align*}
\]

and the constant term. The gradient coefficients are input as \(x_{1i}, i = 1, \ldots, 5, \) and the constant term. The region of interest boundaries are the limits on the region of experimentation utilized in the second order design for the primary or all response functions. The limits must coincide to prevent extrapolation of an equation outside its region of experimentation. During optimization, these limits will not be exceeded, thus preventing extrapolation. The second program is an interactive program which utilizes input from both the first program of this appendix and
from the decision maker to perform iterations of the adapted Interactive Vector Maximal algorithm. Figure 19, page 61, is an example of the output from and the input to this second program.

Within the program, ZX3LP is called as a subroutine. This subroutine is part of the IMSL library available on the Georgia Tech CDC CYBER 74. The library subroutine ZX3LP accepts input for a linear programming optimization problem and utilizes the simplex method to optimize the problem. Also utilized in conjunction with the second program of this appendix is the Bazaraa Cyclic Coordinate Algorithm for Optimizing Penalty Functions computer program (5) available in the Georgia Tech ISyE computer library. If the boundary definitions of the suboptimization problem are nonlinear, the second program of this appendix terminates after outputting the objective function coefficients of the suboptimization problem. The Bazaraa program is then utilized to compute the optimum search direction. This new direction is then input back into the main program.
C
C*****THIS PROGRAM INPUTS DATA INTO A DATA FILE FOR
C*****OPTIMIZATION BY THE INTERACTIVE VECTOR MAXIMAL
C*****ALGORITHM.
C
PROGRAM DATAPR0(INPUT,OUTPUT,TAPE3,TAPE5=INPUT,TAPE6=)
*OUTPUT)
DIMENSION X(5),REQ(10,21),NAME(10),REQG(50,6),B0UN(5,2),
SA(50,5),SB(50)
WRITE (6,100)
100 FORMAT (*INPUT NUMBER OF RESPONSE EQUATIONS*)
READ (5,*)NREQ
WRITE (3,*)NREQ
WRITE (6,101)
101 FORMAT (*INPUT NUMBER OF INDEPENDENT VARIABLES (X"S")*)
READ (5,*)NX
WRITE (3,*)NX
WRITE (6,102)
102 FORMAT (*INPUT INITIAL VALUE OF INDEPENDENT VARIABLES
*WITH * AND
1,*)
READ (5,*)(X(IX),IX=1,NX)
WRITE (3,*)(X(IX),IX=1,NX)
DO
301 IM=1,NREQ
WRITE (6,103)UI
103 FORMAT (*INPUT COEFFICIENTS OF RESPONSE EQUATION*.I2
READ (5,*)(REQ(IM,IC),IC=1,21)
WRITE (3,*)(REQ(IM,IC),IC=1,21)
301 CONTINUE
WRITE (6,107)
107 FORMAT (*INPUT RESPONSE EQUATION NAMES IN GROUPS OF TEN
LETTERS/
AND SPACES, RIGHT JUSTIFIED, ONE PER LINE)
READ (5,108)(NAME(IN),IN=1,NREQ)
WRITE (3,108)(NAME(IN),IN=1,NREQ)
108 FORMAT (A10)
DO 312 IF=1,NREQ
DO 313 IX=1,5
WRITE (6,116) IF,IX
116 FORMAT (*INPUT COEFFICIENTS OF GRADIENT F*,I2,*X*,I2
READ (5,*)(REQG(JC,KC),KC=1,6)
WRITE (3,*)(REQG(JC,KC),KC=1,6)
JC=JC+1
312 CONTINUE
313 CONTINUE
WRITE (6,114)
114 FORMAT (*INPUT REGION OF INTEREST BOUNDARY DEFINITION, I
FOR/
1*INTEGER, L FOR LINEAR, OR N FOR NONLINEAR*)
READ (5,115) NB6N
WRITE (3,115)NB0N

115 FORMAT (A1)
IF (NB0N.EQ.1H1) G0T0 210
IF (NB0N.EQ.1H1L) G0T0 231
IF (NB0N.EQ.1HN) G0T0 232

210 DO 319 KB=1,NX
WRITE (6,117)KB

117 FORMAT (*INPUT LOWER AND UPPER BOUNDS OF X*,11)
READ(5,*) (BOUN(KB,LB),LB=1,2)
WRITE (3,*) (BOUN(KB,LB),LB=1,2)
CONTINUE
G0T0 232

231 WRITE (6,135)

135 FORMAT (*INPUT NUMBER OF LESS THAN OR EQUAL CONSTRAINTS*)
READ (5,*)M1
WRITE (3,*)M1
WRITE (6,136)

136 FORMAT (*INPUT NUMBER OF EQUALITY CONSTRAINTS*)
READ (5,*)M2
WRITE (3,*)M2
IAS=M1+M2+2
WRITE (3,*)IAS
IF (M1.EQ.0) G0T0 330
DO 330 IM1=1,M1
WRITE (6,137)NX,IM1

137 FORMAT (*INPUT *,11, COEFFICIENTS OF LESS THAN
CONSTRAINT*,12)
READ (5,*) (SA(IM1,JM1),JM1=1,NX)
WRITE (3,*) (SA(IM1,JM1),JM1=1,NX)
CONTINUE
IF (M2.EQ.0) G0T0 331
DO 331 IM2=1,M2
WRITE (6,138)NX,IM2

330 FORMAT (*INPUT *,11, COEFFICIENTS OF EQUALITY CONSTRAINT
**,12)
READ (5,*) (SA((M1+IM2),JM2),JM2=1,NX)
WRITE (3,*) (SA((M1+IM2),JM2),JM2=1,NX)
CONTINUE

331 FORMAT (I5+M1+M2)
WRITE (6,139)

139 FORMAT (*INPUT RHS OF CONSTRAINTS AS INPUT ABOVE*)
READ (5,*) (SB(JSB),JSB=1,ISB)
WRITE (3,*) (SB(JSB),JSB=1,ISB)
G0T0 232

232 ENDFILE 3
REWIND 3
STOP
END
C*****ADAPTED INTERACTIVE VECTOR MAXIMAL OPTIMIZATION
C*****ALGORITHM.
C
PROGRAM OPTIMIZ(INPUT,OUTPUT,TAPE3,TAPE5=INPUT,TAPE6=
*OUTPUT)
DIMENSION SF(10),SY(10),W(10),DF(10,20),BB(10),NAME(10),
*G(20),
*REQG(50,6),REQJ(10,5),WG(5),BOUN(5,2),D(5),F(10),REQ(10,
*21),
*I(5),A(5),S(5),SA(50,5),SB(50),PSOL(5),DSOL(5),RW(2650)
*),IW(172)
DO 305 II=1,5
W(II)=0.
305 CONTINUE
C
C*****THIS SECTION READS INPUT DATA FROM A DATA FILE.
C
READ (3,*)NREQ
READ (3,*)NX
READ (3,*)((I,IX),IX=1,NX)
DO 301 IM=1,NREQ
READ (3,*)(REQ(IM,IC),IC=1,21)
301 CONTINUE
READ (3,1081)(NAME(IN),IN=1,NREQ)
1081 FORMAT (A10)
JC=1
DO 312 IF=1,NREQ
DO 313 IX=1,5
READ (3,*)(REQG(JC,KC),KC=1,6)
JC=JC+1
313 CONTINUE
312 CONTINUE
READ (3,1151)NBON
1151 FORMAT (A1)
IF (NBON.EQ.1HL) GOTO 233
IF (NBON.EQ.1HI) GOTO 234
IF (NBON.EQ.1HN) GOTO 215
234 DO 319 KB=1,NX
READ (3,*)((BOUN(KB,LB),LB=1,2)
319 CONTINUE
GOT0 215
C
C*****THIS SECTION PRESENTS THE DECISION MAKER WITH
*ALTERNATIVES
C*****AND READS HIS TRADEOFF INPUTS.
C
READ (3,*)M1
READ (3,*)M2
READ (3,*)IAS
ISB=M1+M2
DO 332 ISA=1,ISB
READ (3,*) (SA(ISA,JSB),JSA=1,NX)
332 CONTINUE
READ (3,*) (SB(JSB),JSB=1,ISB)
G0T0 215
215 CALL REQEV(NREQ,F,NX,REQ,X)
DO 324 MS=1,NREQ
SF(MS)=F(MS)
324 CONTINUE
JC=1
LC=1
L=1
WRITE (6,104)
104 FORMAT (*INPUT PERTURBATION OF F(1), IN FAVORABLE
DIRECTION*)
READ (5,*) DFONE
BB(1)=F(1)+DFONE
DO 308 JB=2,NREQ
BB(JB)=F(JB)
308 CONTINUE
DO 307 KT=2,NREQ
WRITE (6,105) KT
105 FORMAT (*INPUT PERTURBATION OF F(*,12,*), IN FAVORABLE
DIRECTION*)
READ (5,*) DF(KT,L)
204 IF (KT.EQ.2) G0T0 200
BB(KT-1)=F(KT-1)
200 BB(KT)=F(KT)-DF(KT,L)
WRITE (6,106)
106 FORMAT (25X,1HA.16X,IHB)
DO 309 NW=1,NREQ
WRITE (6,109) NWIE(NW),F(NW),SB(NW)
309 CONTINUE
WRITE (6,110)
C
C*****THIS SECTION ADJUSTS THE ALTERNATIVES PRESENTED TO
C*****THE DECISION MAKER UNTIL HE IS INDIFFERENT.
C
110 FORMAT (*WHICH DO YOU PREFER, IF YOU ARE INDIFFERENT
TYPE I.*)
READ (5,111) NDEC
111 FORMAT (A1)
IF (NDEC.EQ.'H') G0T0 201
IF (NDEC.EQ.'A') G0T0 202
DF(KT,L+1)=2*DF(KT,L)
L=L+1
G0T0 204
206 WRITE (6,106)
BB(KT) = F(KT) - DF(KT, L)
DO 310 JW = 1, NREQ
WRITE (6, 109) NAME(JW), F(JW), BB(JW)
310 CONTINUE
WRITE (6, 110)
READ (5, 111) NDEC
IF (NDEC .EQ. 1HA) G0T0 203
IF (NDEC .EQ. 1HB) G0T0 208
G0T0 201
202 G(L) = DF(KT, L)
203 DF(KT, L + 1) = DF(KT, L) - (G(L)/2.)
G(L + 1) = G(L)/2
L = L + 1
G0T0 206
208 DF(KT, L + 1) = DF(KT, L) + (G(L)/2.)
G(L + 1) = G(L)/2
L = L + 1
G0T0 206
C
C*****THIS SECTION COMPUTES THE TRADEOFF VALUES.
C
201 W(KT) = DF0NE / (DF(KT, L))
307 CONTINUE
WRITE (6, 112)
112 FORMAT (*THE TRADEOFFS ARE*)
DO 311 LT = 1, NREQ
WRITE (6, 113) NAME(LT), W(LT)
113 FORMAT (A10, 10X, F10.5)
311 CONTINUE
C
C*****THIS SECTION COMPUTES THE COEFFICIENTS OF THE
C*****SUBOPTIMIZATION OBJECTIVE FUNCTION.
C
D0 314 1J = 1, NREQ
D0 315 1J = 1, 5
E = 0.
D0 316 JS = 1, NX
E = E + (REQG(1J, JS) * X(JS)
316 CONTINUE
REQJ(1J, JJ) = E + (REQG(LC, JS) * X(JJ)
LC = LC + 1
315 CONTINUE
314 CONTINUE
D0 317 KW = 1, NX
WG(KW) = 0.
D0 318 LW = 1, NREQ
WG(KW) = WG(KW) + (W(LW) * REQJ(LW, KW))
318 CONTINUE
WRITE (6, *) W(KW)
317 CONTINUE
DO IIW=1, NX
WRITE (6,*) WG(IIW)
CONTINUE

C****THIS SECTION PERFORMS THE SUBOPTIMIZATION.
C
IF (NBON.EQ.IHI) CALL SINT(Y, WG, BOUN, NX)
IF (NBON.EQ.IHL) CALL ZX3LP(SA, SB, WG, NX, M1, M2, S, Y)
IF (NBON.EQ.IHN) CALL NLP(Y, NX), RETURNS(214, 999)
D0 321 ID=1, NX
D(ID)=Y(ID)-X(ID)
CONTINUE
WRITE (6, 118)
118 FORMAT (*NEW DECISION VECTOR*)
D0 322 JD=1, NX
WRITE (6, 119) JD, Y(JD)
CONTINUE
WRITE (6, 120)
120 FORMAT (*NEW OPERATING POINT*)
CALL REQEV(NREQ, F, NX, REQ, Y)
D0 323 IY=1, NREQ
WRITE (6, 121) F(IY)
CONTINUE
WRITE (6, 122)

C****THIS SECTION PERFORMS THE STEP-SIZE OPTIMIZATION.
C
122 FORMAT (*INPUT NUMBER OF POINTS TO SEE IN STEP SIZE*)
READ (5, *) KS
T=1. / (KS-1)
D0 325 NS=1, NREQ
SY(NS)=F(NS)
CONTINUE
WRITE (6, 123) (SF(MW), MW=1, NREG)
123 FORMAT (5F12.4/5X,5F12.4)
KZ=KS-2
D0 326 MT=1, KZ
D0 327 MX=1, NX
Z(MX)=X(MX)+(T*MT*D(MX))
CONTINUE
CALL REQEV(NREQ, F, NX, REQ, Z)
WRITE (6, 123) F(MZ), MZ=1, NREQ
CONTINUE
WRITE (6, 124) (SY(MY), MY=1, NREQ)
WRITE (6, 124)
124 FORMAT (*INPUT NUMBER OF PREFERRED POINT*)
READ (5, *) MN
DO 328 NN=1,NX
X(NN)=X(NN)+(D(NN)*T*(MN-1))

CONTINUE

WRITE (6,125)

125 FORMAT (*IF YOU WISH TO TERMINATE TYPE T. OTHERWISE,*
TYPE C.)
READ (5,130) NTER

130 FORMAT (A1)
IF (NTER.EQ.'H') GOTO 215
WRITE (6,126)(X(M0),M0=1,NX)

126 FORMAT (5F12.4)
999 STOP

END

C*****THIS SUBROUTINE EVALUATES THE RESPONSE EQUATIONS.
C
SUBROUTINE REQEV(NREQ,F,NX,REQ,X)
DIMENSION F(10),REQ(10,21),X(5)
DO 300 JT=1,NREQ
F(JT)=0.
DO 302 IS=1,NX
F(JT)=F(JT)+(REQ(JT,IS))*(X(IS)**2)
302 CONTINUE

DO 303 IA=2,NX
F(JT)=F(JT)+(REQ(JT,IA+4))*(X(1)*X(IA))
303 CONTINUE

DO 304 IB=3,NX
F(JT)=F(JT)+(REQ(JT,IB+7))*(X(2)*X(IB))
304 CONTINUE

F(JT)=F(JT)+(REQ(JT,13))*(X(3)*X(4))*(REQ(JT,14))*(X(3)**2)
F(JT)=F(JT)+(REQ(JT,15))*(X(4)*X(5))
DO 306 IO=1,NX
F(JT)=F(JT)+(REQ(JT,IO+15)*X(IO))
306 CONTINUE

F(JT)=F(JT)+REQ(JT,21)

300 CONTINUE
RETURN

END

C*****THIS SUBROUTINE PERFORMS THE SUBOPTIMIZATION FOR
C*****INTEGRAL REGION OF EXPERIMENTATION BOUNDARIES.
C
SUBROUTINE SINT(Y,WG,BOUN,NX)
DIMENSION Y(5),WG(5),BOUN(5,2)
DO 320 IP=1,NX
Y(IP)=0.
IF (WG(IP).LT.0.) Y(IP)=BOUN(IP,1)
IF (WG(IP).GT.0.) Y(IP)=BOUN(IP,2)

320 CONTINUE
RETURN
C
C*****THIS SUBROUTINE ROUTES THE PROGRAM TO THE PROGRAM
C*****FOR THE SUBOPTIMIZATION OF NONLINEAR REGION OF
C*****EXPERIMENTATION BOUNDARIES.
C
SUBROUTINE NLP(Y,NX), RETURNS(AAA,BBB)
DIMENSION Y(5)
WRITE (6,140)
140 FORMAT (*IF YOU DO NOT HAVE Y, INPUT NO, OTHERWISE YES*)
READ (5,145) ITER
145 FORMAT (A2)
IF (ITER.EQ.2HNO) RETURN BBB
WRITE (6,150)
150 FORMAT (*INPUT VALUES OF Y*)
READ (5,*) (Y(I), I=1,2)
RETURN AAA
END
APPENDIX E

In keeping with the hypothetical nature of Chapter IV, Equation 4.26, 4.27 and 4.28 were not actually obtained from TRADOC. An interview was conducted with Armor officers studying Operations Research at Georgia Tech. To insure commonality of independent variables for all response equations, time to fire the first round and time between rounds were treated as independent variables in the interview with trainings hours and training rounds as dependent variables.

Initially an attempt was made to fit second order equations to the training responses in the optimum region of experimentation of Equations 4.24 and 4.25. A statistically satisfactory fit was not possible in the optimum region of experimentation. A first order approximation in the optimum region of experimentation to the training curves was then fit by use of the SPSS regression program. The input to the program was:

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>y_3</th>
<th>y_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1 (8)</td>
<td>-1 (5)</td>
<td>48</td>
<td>60</td>
</tr>
<tr>
<td>1 (16)</td>
<td>-1 (5)</td>
<td>30</td>
<td>48</td>
</tr>
<tr>
<td>-1 (8)</td>
<td>1 (15)</td>
<td>40</td>
<td>54</td>
</tr>
<tr>
<td>1 (16)</td>
<td>1 (15)</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>0 (12)</td>
<td>0 (10)</td>
<td>36</td>
<td>48</td>
</tr>
</tbody>
</table>

The SPSS output is found on the next page of this Appendix, y_3 on top y_4 at the bottom.

The SPSS output yielded the following two response equations,

$$y_3 = -11.5x_1 - 6.5x_2 + 33.2$$
REGRESSION

DEP. VAR... HT

FINAL STEP.

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>B</th>
<th>S.E. B</th>
<th>F</th>
<th>SIG.</th>
<th>BETA</th>
<th>ELASTICITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBI</td>
<td>-11.500</td>
<td>2.086</td>
<td>30.402</td>
<td>.031</td>
<td>-.84964</td>
<td>0</td>
</tr>
<tr>
<td>TBS</td>
<td>-6.500</td>
<td>2.086</td>
<td>9.713</td>
<td>.089</td>
<td>-.48023</td>
<td>0</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>33.200</td>
<td>1.665</td>
<td>316.736</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ALL VARIABLES ARE IN THE EQUATION.

DEP. VAR... LR

FINAL STEP.

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>B</th>
<th>S.E. B</th>
<th>F</th>
<th>SIG.</th>
<th>BETA</th>
<th>ELASTICITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBI</td>
<td>-11.750</td>
<td>4.158</td>
<td>7.986</td>
<td>.106</td>
<td>-.74433</td>
<td>0</td>
</tr>
<tr>
<td>TBS</td>
<td>-8.750</td>
<td>4.158</td>
<td>4.429</td>
<td>.170</td>
<td>-.55429</td>
<td>0</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>45.600</td>
<td>3.719</td>
<td>151.673</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[\hat{y}_4 = -11.75x_1 - 8.75x_2 + 45.8. \]

After decoding the above are

\[\hat{y}_3 = -2.5556x_1 - 2.1667x_2 + 87.2009 \]

\[\hat{y}_4 = -2.6111x_1 - 2.9167x_2 + 107.30015. \]

The regression F statistics are \(F_{y_3}^\gamma = 20.057 \), significant at \(\alpha = .047 \), and \(F_{y_4}^\gamma = 6.208 \), significant at \(\alpha = .139 \). A response equation for \(\hat{y}_5 \) was derived by multiplying \(\hat{y}_4 \) by a cost of $90.00 per training round fired and adding a POL cost of $10.50. Manpower costs were not included since they are fixed no matter what the personnel are doing.

17. Courtney, James, Jr., "Differentiating Capital Appreciation and Income in Portfolio Selection (Draft)", School of Industrial Management, Georgia Tech, 1975.

