MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-3
ON INTEGRAL FORMS OF THE BALANCE LAWS FOR DEFORMABLE SEMICONDUCTORS

by

M.F. McCarthy and H.F. Tiersten

Office of Naval Research
Contract N00014-76-C-0368
Project NR 318-009
Technical Report No. 23

February 1978

Distribution of this document is unlimited. Reproduction in whole or in part is permitted for any purpose of the United States Government.
ON INTEGRAL FORMS OF THE BALANCE LAWS FOR DEFORMABLE SEMICONDUCTORS

by

M.F. McCarthy and H.F. Tiersten

Office of Naval Research
Contract N00014-76-C-0368
Project NR 318-009
Technical Report No. 23

February 1978

Distribution of this document is unlimited. Reproduction in whole or in part is permitted for any purpose of the United States Government.
The general nonlinear differential equations describing the interaction of finitely deformable, polarizable, heat conducting intrinsic n-type semiconductors with the quasi-static electric field are transformed from the unknown present coordinate description to the known reference coordinate description, which is the form needed in the treatment of problems. From the differential form of each balance equation in the reference coordinate description, the associated integral form is obtained. The resulting integral forms turn out as expected with the exception of the one due to the balance of...
linear momentum for the semiconducting fluid, in which an important change in
and simplification from the form used heretofore is introduced. More import-
antly, the previous existing integral form of the equation of the balance of
energy in the present coordinate description is transformed to a different
form, which is equivalent to the original form only when the field variables
are differentiable. The revised integral form in the present coordinate
description is then transformed to the reference coordinate description,
from which an energetic jump condition across a moving non-material surface
of discontinuity is obtained which is consistent with all the other jump
conditions obtained from the other integral forms. In addition, the expres-
sion for the quasi-static electric Poynting vector in the reference coordinate
description is determined.
ON INTEGRAL FORMS OF THE BALANCE LAWS FOR DEFORMABLE SEMICONDUCTORS

M.F. McCarthy
National University of Ireland
University College
Galway, Ireland

H.F. Tiersten
Department of Mechanical Engineering,
Aeronautical Engineering & Mechanics
Rensselaer Polytechnic Institute
Troy, New York 12181

ABSTRACT

The general nonlinear differential equations describing the interaction of finitely deformable, polarizable, heat conducting intrinsic n-type semiconductors with the quasi-static electric field are transformed from the unknown present coordinate description to the known reference coordinate description, which is the form needed in the treatment of problems. From the differential form of each balance equation in the reference coordinate description, the associated integral form is obtained. The resulting integral forms turn out as expected with the exception of the one due to the balance of linear momentum for the semiconducting fluid, in which an important change in and simplification from the form used heretofore is introduced. More importantly, the previous existing integral form of the equation of the balance of energy in the present coordinate description is transformed to a different form, which is equivalent to the original form only when the field variables are differentiable. The revised integral form in the present coordinate description is then transformed to the reference coordinate description, from which an energetic jump condition across a moving non-material surface of discontinuity is obtained which is consistent with all the other jump conditions obtained from the other integral forms. In addition, the expression for the quasi-static electric Poynting vector in the reference coordinate description is determined.
1. **Introduction**

In a treatment of the interaction of the quasi-static electric field with a finitely deformable, polarizable, heat conducting, dielectric continuum a system of rotationally invariant differential equations and jump conditions were derived. First, the differential equations were obtained from a systematic application of the laws of continuum physics to a well-defined macroscopic model. Then, the integral forms obtained from the respective differential forms were taken to be valid across moving surfaces of discontinuity even when the differential forms from which they were obtained did not hold because of the lack of differentiability across the singular surface. This is a standard, perfectly reasonable procedure for obtaining the governing integral forms for an interacting continuum. The jump conditions across moving, not necessarily material, surfaces of discontinuity were then obtained from the respective integral forms. The resulting integral forms and associated jump conditions were referred to the unknown present (spatial) coordinates of material points whereas it would have been more useful to refer them to the known reference (material) coordinates of material points. However, this is not a severe limitation since it is a straight-forward matter to transform from present to reference coordinates of material points using well known relations. Nevertheless, although in the work in question the appropriate reference forms of the jump conditions for the balance of mass, linear momentum, charge and entropy may readily be obtained in the aforementioned manner, the reference form of the jump condition for the balance of energy may not be obtained directly from the equations presented in Ref.1. Indeed, although the integral form of the equation of the balance of energy is not incorrect, the present form of the jump condition for the balance of energy presented there is not directly useful for application to problems concerning
the propagation of surfaces of discontinuity and, hence, is not actually correct. This dilemma is a consequence of the fact that the integral form of the balance of energy is not unique because the differential form can have terms added to it which vanish at each volumetric point and yet give surface terms. Since the field variables are not differentiable when the jump conditions are obtained from the integral forms, the different integral forms yield different jump conditions which are not equivalent. In a later work\textsuperscript{2} the treatment was extended from the case of deformable insulators\textsuperscript{1} to deformable semiconductors. In the latter work\textsuperscript{2} although an integral form of the equation of the conservation of energy is written, the associated jump condition is not because the authors were aware of the problem involved.

In this paper the proper revised differential form of the equation of the conservation of energy is found for the more general case of the deformable semiconductor. From the revised differential form the appropriate integral form of the equation of the conservation of energy is obtained in both the present and reference coordinate descriptions, from which the required correct energetic jump condition in the reference coordinate description is obtained. One by-product of this work is the determination of the proper expression for the quasi-static Poynting vector in the reference coordinate description. In addition to the foregoing a new integral form of the equation of the conservation of linear momentum for the free-electronic charge continuum is introduced. The new form is better for obtaining jump conditions because certain assumptions that had to be made in obtaining jump conditions from the previous form\textsuperscript{2,3} need not be made with the present form. Moreover, the jump condition at a material surface of discontinuity resulting from the present form will be different from and more convincing than the one obtained from the previous form.
2. Basic Equations

It has been shown\(^2\) that a system of general nonlinear rotationally invariant differential equations for deformable intrinsic n-type semiconductors can be written in the form\(^2\)

\[
\begin{align*}
\left( T_{ij}^S + T_{ij}^{ES} - \rho \delta_{ij}^S \right)_{,i} &= \rho \frac{dv_j}{dt}, \\
\frac{\partial \mu}{\partial t} + j_{i,i} &= 0, \\
E_i^e &= (\varphi + \varphi^e), \\
j_i &= \mu v_i + \mu^e (v_i^e - v_i), \\
q_i &= \mu_0 \theta d\Pi_i/\partial t,
\end{align*}
\]

where \( T_{ij}^S \) and \( T_{ij}^{ES} \) denote the symmetric parts of the usual mechanical and free-space Maxwell electrostatic stress tensors, respectively; \( v_i^e, v_j^e, E_i^e \), \( E_i, D_i, j_i \) and \( q_i \) denote the velocity of the free electronic fluid, velocity of the solid, local material electric field exerted on the free electronic fluid, Maxwell electric field, electric displacement, electric current and heat flux vector, respectively; \( \mu^e, \rho^e, \rho, \varphi, \varphi^e, \mu, \mu^r, \theta \) and \( \Pi_i \) denote the free electronic charge density, free electronic pressure, mass density, electric potential, free electronic chemical potential, net charge density, residual lattice charge density, temperature and entropy per unit mass, respectively; and \( \varepsilon_0 \) is the permittivity of free space. The motion of a point of the solid is described by the mapping

\[
y_i = y_i (X_L, t),
\]

where \( y_i \) denotes the present coordinates of material points and \( X_L \) the reference coordinates, and \( t \) denotes the time. Clearly, we have
In (2.1) - (2.8) we have used Cartesian tensor notation, the summation convention for repeated tensor indices, the convention that a comma followed by an index denotes partial differentiation with respect to a coordinate, and the convention that capital indices refer to reference coordinates and lower case indices to present coordinates of material points.

The associated constitutive equations take the form

\[ \tau_{ij}^S = \rho y_i, K y_j, L \frac{\partial \chi_{ij}}{\partial E_{KL}}, \quad D_i = \varepsilon \cdot E_i - \rho y_i, L \frac{\partial \chi}{\partial W_i}, \]  

\[ \nu_i^e - \nu_i = y_i, K^e, \quad \eta = \frac{\partial \chi}{\partial \theta}, \quad q_i = y_i, K^e, \]  

\[ p^e = (\mu^e)^2 \frac{\partial \varepsilon^e}{\partial \mu^e}, \quad \varphi^e = \frac{\partial (\mu^e \varepsilon^e)}{\partial \mu^e}, \]  

where

\[ \chi = \chi(E_{KL}, W_L, \theta), \quad \chi_{KL}^e = \Omega_{KL}^e (\mu^e, W_L, E_{KL}, W_L, \theta), \]  

\[ \varepsilon^e = \varepsilon(\mu^e), \quad L^e = L^e(\theta, \mu^e, W_L, E_L, W_L, \theta), \]  

and

\[ E_{KL} = \frac{1}{2} (y_i, K y_i, L - \delta_{KL}), \quad W_L = y_i, L E_i, w_L^e = y_i, L E_i. \]  

In addition, we have the conservation of mass, which may be written in the form

\[ \rho J = \rho_0, \]  

where \( \rho_0 \) is the reference mass density and

\[ J = \det y_i, K. \]  

At this point we note that the above system of equations is referred to the present coordinates, which are unknown, and, as a consequence, it is advantageous to refer them to the known reference coordinates. To this end, analogous to the Piola-Kirchhoff stress tensor \( F_{ij}^L \), which is defined by

\[ v_i = \frac{\partial y_i}{\partial t}. \]
we define the reference electric displacement vector \( \mathbf{E}_L \) by \(^4,5\)

\[
\mathbf{n}_L \cdot \mathbf{D}_L \, dS = N_L \mathbf{2}_L \, dS,
\]

where \( dS \) and \( N_L \) denote the magnitude of and unit normal to an element of area in the reference configuration, which has magnitude \( dS \) and unit normal \( n_L \) in the present configuration. By virtue of the well-known relation \(^6\)

\[
\mathbf{n}_L \cdot dS = \mathbf{JX}_L, n_L \, dS = \mathbf{JX}_L, n_L \, dS,
\]

from (2.16) and (2.17), in the usual way, we find

\[
\mathbf{F}_{Lj} = \mathbf{JX}_L, n_L \, \mathbf{i}_{Lj}, \quad \mathbf{f}_{Lj} = \mathbf{JX}_L, n_L \, \mathbf{D}_L.
\]

By defining the reference free-space Maxwell electrostatic stress tensor \( \mathbf{M}_{Lj} \) and free electronic pressure tensor \( \mathbf{p}_e \) in a similar way we find

\[
\mathbf{M}_{Lj} = \mathbf{JX}_L, n_L \, \mathbf{t}_{Lj}^{\text{ES}}, \quad \mathbf{p}_e = \mathbf{JX}_L, n_L \, \mathbf{p}_e.
\]

Now, using (2.19) and (2.20) with (2.1) and (2.2) \(^2\) and employing (2.14) along with the well-known identity \(^7\)

\[
(\mathbf{JX}_L, n_L, L) = 0,
\]

we obtain

\[
(F_{Lj} + M_{Lj} - \mathbf{p}_e) \cdot L = \rho_0 \frac{dv_j}{dt},
\]

\[
\mathbf{f}_{Lj} = \mathbf{t}_{Lj},
\]

where

\[
\mathbf{t}_{Lj} = n_L \mathbf{p}_e.
\]

Equation (2.22) is the Piola-Kirchhoff form of the stress equations of motion for the combined deformable semiconducting continuum and Eq. (2.23) is the
reference form of the charge equation of electrostatics. From (2.3), the
chain rule of differentiation and (2.13), we obtain

\[ \omega^e_L = (\varphi + \varphi^e),_L \]  \hspace{1cm} (2.25)

which is the reference form of the equation of the conservation of linear
momentum for the free electronic charge continuum.

In order to refer the conservation of total electric charge to the known
reference configuration \( X_L \) instead of the unknown present configuration \( y \),
to which it is referred in (2.2), we write

\[ j_i' = j_i - \mu_v_i, \hspace{1cm} (2.26) \]

the substitution of which in (2.2) along with the aid of (2.24) and the
well-known relations

\[ \frac{d}{dt} = \left( \frac{\partial}{\partial t} \right) + v_k \frac{\partial}{\partial y_k}, \hspace{0.5cm} v_{k,k} = \mathcal{J}^{-1} \mathcal{J}_k \]

yields

\[ j_i',_i + \mathcal{J}^{-1} \mathcal{J}_i \frac{d}{dt} = 0. \hspace{1cm} (2.28) \]

Now, we define the reference electric current vector \( \mathcal{J}_L \) by

\[ n_i j_i' dS = N_L \mathcal{J}_L dS, \hspace{1cm} (2.29) \]

which with (2.18) yields

\[ \mathcal{J}_L = JX_L, j_i', \hspace{1cm} (2.30) \]

from which with (2.28) and (2.21) we obtain

\[ \mathcal{J}_L, L + \mathcal{J}_I \frac{d}{dt} = 0, \hspace{1cm} (2.31) \]

which is the reference form of the conservation of total electric charge.
Analogous to the foregoing, we now define the reference heat flux vector \( \mathbf{q}_L \) by

\[
\mathbf{n}_i \mathbf{q}_i \, dS = N_i \mathbf{Q}_L \, dS,
\]

which with (2.18) yields

\[
\mathbf{Q}_L = J \mathbf{X}_L \mathbf{q}_i.
\]

Substituting from (2.10), (2.13) and (2.33) into (2.6) and employing (2.14) and (2.21) we obtain

\[
-\mu^e_{e \mathbf{e} e} \mathbf{e} - \mathbf{Q}_{L, L} = \rho_0 \theta \frac{d\eta}{dt},
\]

where

\[
\mu^e = J \mu^e.
\]

Equation (2.34) is the reference form of the dissipation equation. The associated reference form of the Clausius-Duhem inequality takes the form

\[
\rho \frac{d\eta}{dt} + (\mathbf{Q}_L / \theta),_L = -\frac{1}{\theta} \left[ \mathbf{Q}_{L, L} + \mathbf{e} \mathbf{e} \mathbf{e} \right] = \rho_0 \Gamma \geq 0,
\]

where \( \Gamma \) is the (positive) rate of entropy production.

From (2.4), (2.9), (2.10), (2.19), (2.26), (2.30), (2.33) and (2.35) the pertinent constitutive equations can be written in the form

\[
F_{Lj} = \rho_0 \mathbf{y}_j, \mathbf{M}, \frac{\partial \chi}{\partial \mathbf{E}}, \mathbf{L}_L = \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} - \rho_0 \frac{\partial \chi}{\partial \mathbf{E}} L_L,
\]

\[
\delta_L = \mu^e e_L, \mathbf{Q}_K = J \mathbf{X}_K,
\]

where

\[
\delta_L = J \mathbf{X}_L, \mathbf{q}_1,
\]

and the constitutive equations in (2.11) and (2.10) remain unchanged along with the expressions for \( \chi, \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \) and \( L_K \) in (2.12) and, of course, (2.5) and (2.20) are to be employed. From (2.3) and (2.13) we note that
The integral forms of Eqs. (2.22), (2.23), (2.25), (2.31) and (2.43) referred to the known reference coordinates of material points, which is of prime interest to us here, clearly may be written

\[
\int_{S_0} N_L (F_L j + M_L j - \varphi_L^e) dS_0 = \frac{d}{dt} \int_{V_0} \rho_0 v_j dV_0,
\]

\[
\int_{S_0} N_L \varphi_L^e dS_0 = \int_{V_0} \mu^e dV_0,
\]

\[
\int_{V_0} \omega_L dV_0 = \int_{S_0} N_L (\varphi + \varphi^e) dS_0,
\]

\[
\int_{S_0} N_L \omega_L^e dS_0 = -\frac{d}{dt} \int_{V_0} \mu^e dV_0,
\]

\[
\frac{d}{dt} \int_{V_0} \rho_0 \eta dV_0 + \int_{S_0} \frac{N_L \omega_L}{\theta} dS_0 = -\int_{V_0} \frac{1}{\theta} \left[ \frac{\varphi_L^e}{\theta} + \omega_L^e \right] dV_0 = 0.
\]

The integral form in (2.43) is different than the equivalent equation that has been employed heretofore \(^2,3,8\). Equation (2.43) is a better form for obtaining the jump condition for the free-electronic charge continuity across both material and nonmaterial surfaces of discontinuity. Since Eq. (2.43) does not contain the free electronic charge density \(\mu^e\) explicitly, no assumption on the boundedness of \(\mu^e\) need be made in obtaining jump conditions and, as a consequence, the resulting jump conditions are independent of the Maxwell tensor and the associated assumptions that have been used previously. From the integral forms in (2.41) - (2.45), jump conditions across material and nonmaterial surfaces of discontinuity can readily be obtained with suitable assumptions. For example, at a nonmaterial surface of discontinuity, we have

\[
W_k = -\varphi_k.
\]
we assume that all volumetric density terms remain bounded and in the usual way obtain

\[ N_{L\rightarrow L} \left[ \dot{\varphi} \right] = - U_{N} \phi_{O_{L}} \left[ v_{j} \right] , \quad N_{L\rightarrow L} \left[ \rho_{L} \right] = 0 , \quad \left[ \varphi + \varphi^{e} \right] = 0 , \quad (2.46) \]

\[ \rho_{L\rightarrow L} \left[ \rho_{L} \right] = U_{N} \left[ \mathcal{E} \right] , \quad N_{L\rightarrow L} \left[ \partial_{\rho} \right] - U_{N} \phi_{O_{L}} \left[ \mathcal{E} \right] \geq 0 , \quad (2.47) \]

where \( U_{N} \) is the intrinsic velocity of the singular surface, we have introduced the conventional notation \( \left[ a \right] \) for \( a^{-} - a^{+} \) and

\[ \left[ \dot{\varphi} \right] = F_{Lj} + M_{Lj} - \varphi^{e}_{Lj} . \quad (2.48) \]

Since \( E_{i} \) remains bounded, we have

\[ \left[ \varphi^{e} \right] = 0 , \quad (2.49) \]

and, hence, from (2.46), we obtain

\[ \left[ \varphi^{e} \right] = 0 . \quad (2.50) \]

The integral form of the equation of the conservation of energy and associated jump condition has not been discussed here because the existing integral form has to be revised in accordance with the detailed discussion presented in the next section.

3. Integral Form of the Balance of Energy

In this section we consider the equation of the conservation of energy for the deformable intrinsic n-type semiconductor, the integral form of which may be written

\[ \frac{d}{dt} \int_{V} \left[ \frac{1}{2} \rho v_{k} v_{k} + \rho e + \mu_{D} e e + \frac{1}{2} e_{0} E_{k} E_{k} \right] dV = \int_{S} \left[ n_{1} \Gamma_{ij} v_{j} - p_{i} v_{i} - h_{i} - q_{i} - (v_{i} e - v_{i}^{e}) \mu_{D} e e + v_{i} p_{E} E_{i} + v_{i} \frac{1}{2} e_{0} E_{k} E_{k} \right] dS . \quad (3.1) \]

where \( P_{k} \) denotes the electric polarization per unit volume and for the quasi-static electric field\(^{10}\)
\[ h_i = \varphi \left( \mathcal{G} D_i / \mathcal{O} t \right) + j_i, \] (3.2)

in MKS units. Equation (3.1) is the extension of Eq. (5.4) of Ref. 1 for the deformable insulator to the deformable intrinsic n-type semiconductor and is also Eq. (4.14) of Ref. 2 when reduced to the special case of the intrinsic n-type semiconductor in a quasi-static electric field. Since the total stress tensor \( S_{ij} \) appears in the equation of the conservation of linear momentum for the combined continuum, i.e., (2.1), (2.22) and (2.41), we write

\[ S_{ij} = \tau_{ij} + T_{ij}^E - \rho_0 \delta_{ij}, \] (3.3)

where

\[ T_{ij}^E = \left[ D_i E_j - \frac{1}{2} \varepsilon_{iklj} \right], \quad \tau_{ij} = \tau_{ij}^S - \rho_0 E_j; \] (3.4)

and since

\[ D_i = \varepsilon E_i + \rho_0. \] (3.5)

from (3.3) - (3.5) and (2.5) we note that in addition

\[ S_{ij} = \tau_{ij} + T_{ij}^{ES} - \rho_0 \delta_{ij}. \] (3.6)

We now substitute from (3.3) with (3.4), (2.4), (2.11), (2.26), (3.2) and (3.5) into (3.1) to obtain

\[ \frac{d}{dt} \int_V \left[ \frac{1}{2} \rho \phi E_i E_j + \rho B_0 + \mu \varepsilon E_i E_j + \frac{1}{2} \varepsilon_{iklj} \right] dV = \int_S \left[ n_i \left( S_{ij} \right)_i \right] dS - \int_S \left[ D_i E_j v_j - E_j D_i v_i - \frac{d}{dt} \left( \rho_0 E_j \right) \right] dS. \] (3.7)

Now, consider the term

\[ \int_S \left[ n_i \left( E_j D_j \right)_i - D_i E_j v_j \right] dS = t, \] (3.8)

the application of the divergence theorem to which yields

\[ t = \int_V \left[ E_j D_j v_j - D_i E_i v_i \right] dV. \] (3.9)
Moreover, appropriate differentiation and the substitution of \((2.3)_2\) enables the integrand in \((3.9)\) to be written

\[
(E_{j}D_{j}v_{i} - D_{i}E_{j}v_{j}),_{i} = - \left[ \psi (D_{j}v_{i} - D_{i}v_{j}),_{i} \right] ,_{j},
\]

(3.10)
since

\[
(D_{j}v_{i} - D_{i}v_{j}),_{ij} = 0.
\]

(3.11)

Substituting from \((3.10)\) into \((3.9)\), employing the divergence theorem and \((2.2)_2\), we obtain

\[
t = - \int_{S} n_{i} \omega (D_{i},_{j}v_{j} + D_{j}v_{i},_{j} - D_{j}v_{i},_{j} - \mu v_{i}) dS, \quad (3.12)
\]

the substitution of which into \((3.7)\) yields

\[
\frac{d}{dt} \int_{V} \left[ \frac{1}{2} \rho v_{k}v_{k} + \rho \varepsilon + \mu e + e E_{k}E_{k} \right] dV = \int_{S} n_{i} \left[ S_{ij}v_{j} - \psi (D_{i},_{j}v_{j}) + D_{i}v_{j},_{j} - D_{j}v_{i},_{j} - \mu v_{i} + \frac{\partial D_{i}}{\partial t} + j_{i} \right] - \psi',_{j} - q_{j}, dS, \quad (3.13)
\]

in place of \((3.7)\). Equation \((3.13)\) is another integral form of the equation of the balance of energy referred to present coordinates, which is entirely equivalent to \((3.7)\) when the field variables are differentiable. However, when the field variables are not differentiable, the two integral forms obviously are not equivalent.

Equation \((3.13)\) is the appropriate form for obtaining the energetic jump condition in the reference coordinate description while Eq. \((3.7)\) is not.

To see this note that the material time derivative of the reference electric displacement vector \(\tilde{D}_{L}\) defined in \((2.19)_{2}\) may be written

\[
\frac{d}{dt} \tilde{D}_{L} = J X_{L},_{i} \left[ \frac{\partial D_{i}}{\partial t} + v_{j}D_{i},_{j} - D_{j}v_{i},_{j} + v_{j},_{j}D_{i} \right], \quad (3.14)
\]

where \((2.7)_{2}\) and the well-known relation

\[
(d/dt)X_{K},_{j} = X_{K},_{i}v_{i},_{j}, \quad (3.15)
\]
have been employed in obtaining (3.14) from (2.19) \textsuperscript{2}. Now, substituting from (3.14), (3.6), (2.14), (2.16), (2.18), (2.20), (2.26), (2.29), (2.32), (2.35) and (2.48) into (3.13), we obtain

\[
\begin{align*}
\frac{d}{dt} \int_{V_0} \left[ \frac{1}{2} \rho \nabla \cdot (\mathbf{v} \mathbf{k} \mathbf{k}) + \rho \epsilon + \mu \epsilon \mathbf{e} + \frac{1}{2} \epsilon \mathbf{e} \mathbf{E} \mathbf{E} \mathbf{J} \right] dV = \int_{S_0} N_L \left[ \phi \mathbf{v}_j \mathbf{j} \right] dS_o
\end{align*}
\]

which is the integral form of the balance of energy in the reference coordinate description we have been after. An examination of (3.16) reveals that the quasi-static electric Poynting vector referred to the known reference coordinates takes the form

\[
h_L = \phi \left( \frac{d}{dt} \mathbf{J}_L + \mathbf{J}_L \right),
\]

in MKS units. The energetic jump condition across moving non-material surfaces of discontinuity may readily be obtained from (3.16) by assuming that all volumetric density terms remain bounded with the result

\[
N_L \left[ \left( \phi \mathbf{v}_j \mathbf{j} \right) - h_L - \dot{\phi} \mathbf{J}_L - \Omega_L \right] = - \nabla \cdot N_L \left( \nabla \mathbf{v}_j \right),
\]

where \(h_L\) is given in (3.17) and

\[
\Omega = \frac{1}{2} \nabla \cdot \mathbf{v} \mathbf{k} + \epsilon + \frac{\mu \epsilon \mathbf{e}}{\rho} + \frac{1}{2} \frac{\epsilon}{\rho} \mathbf{E} \mathbf{E} \mathbf{F} \mathbf{F} \mathbf{k}.
\]

It should be noted that the jump condition in (3.18) is consistent with all the other jump conditions appearing in Sec. 2, while the jump condition obtained from (3.1) [or (3.7)] would be inconsistent with the jump condition in (2.46) in most cases.
Acknowledgements

This work was supported in part by the Office of Naval Research under Contract No. N00014-76-C-0368 and the National Science Foundation under Grant No. ENG 72-04223.
REFERENCES


7. Ref.6, Secs.17 and 18, Eq. (18.2).


