Final Scientific Report
Grant No. AFOSR-73-2493

Professor C. G. Fonstad

STANNIC OXIDE SEMICONDUCTOR STUDIES

Department of Electrical Engineering and
Computer Science and Center for Materials
Science and Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Solid State Device
Research Group

February 15, 1978

FINAL SCIENTIFIC REPORT

†This research was supported by the Air Force Office of Scientific
Research (AFSC) under Grant No. AFOSR-73-2493. The original title
of this program was "Device Physics of Stannic Oxide and of Integrated
Micro-Laser Optical Circuits".

*Approved for public release; distribution unlimited.
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)

NOTICE OF TRANSMITTAL TO DDC

This technical report has been reviewed and is approved for public release IAW AFR 190-12 (7b). Distribution is unlimited.

A. D. BLOSE
Technical Information Officer
I. Introduction

This final technical report summarizes the results of and activities under AFOSR Grant No. AFOSR-73-2493. This program began on March 15, 1973 and ran through December 31, 1976. However, work through January 31, 1978 is included in this report because work on this program is in fact still continuing, and will not really be complete until June 1978. The reason for this being that one of the graduate students who began his Ph.D. research ("Stannic Oxide Epitaxy and Field Effect Transistor Applications") under the original grant, was delayed by personal circumstances, and is now in the process of completing his research, research which will achieve the last of the original goals set for this program, the fabrication of high temperature stannic oxide FET's.

During the first two periods of this grant, the title was "Device Physics of Stannic Oxide and of Integrated Micro-Laser Optical Circuits". The latter half of this title referred to a small portion of the program which involved work on diode pumps at 0.96 μm for solid state lasers suitable for use as sources for integrated optical systems. Work concentrated on studying Si-doped GaAsSb light emitting diodes and the results were reported in the literature (see Publications, Section III). The Air Force decided that this work was not their primary concern, however; alternative funding was obtained and after March 15, 1975 it was removed from this grant.

The primary thrust of this program was on stannic oxide, its physics and its potential for device applications, particularly at elevated temperatures. The results of this work are summarized in the following section, Section II. This is followed by a list of publications in...
Section III, a list of personnel in Section IV, and a summary of coupling in Section V.

II. **Device Physics of Stannic Oxide**

There were five major divisions of the work done on stannic oxide: epitaxy; epilayer characterization and device application; thermoabsorption on the band edge; deep level spectroscopy; and electron emission from thin films. Each item will be discussed in turn below.

A. **SnO$_2$ Epitaxy**

The low pressure, chlorine transport chemical vapor deposition system originally developed under AFOSR sponsorship and used to grow the highest quality stannic oxide single crystals ever produced was substantially modified to incorporate a r-f heated, vertical epitaxy reactor and to permit epitaxy studies. The production of high quality epitaxial layers of stannic oxide is a key step in the development of high temperature active electronic devices in this wide band gap material.

Single crystal stannic oxide films up to 1.4 µm thick have been grown on $<110>$ TiO$_2$ substrates without any evidence of thermal mismatch problems such as cracking, shattering, or crazing. With $<110>$ TiO$_2$ established as a suitable substrate for SnO$_2$ epitaxy efforts are continuing to improve predeposition substrate surface properties, which it is hoped will in turn lead to improvements in epi-layer carrier mobilities (see following section). We have found that high temperature annealing in oxygen (5-30 hours at 1000-1100°C) significantly decreases the surface disorder of the polished substrates (LEED is used to make these observations). The crystallinity of the SnO$_2$ epi-layers is dramatically enhanced by this as well.
Both doped and undoped epi-layers have been grown. Antimony has been used as the dopant in the doped layers and these layers have, to date, been relatively heavily doped ($10^{18} - 10^{19}$ cm$^{-3}$). Efforts are presently being made to reduce these doping levels to the $10^{16} - 10^{17}$ cm$^{-3}$ range which is more suitable for device fabrication.

B. Epilayer Electrical Characterization and Device Application

Hall measurements of carrier concentration and electron mobilities on Sb-doped SnO$_2$ epitaxial layers confirm the high crystal quality of these layers. Electron mobilities of 80 cm2/V·sec are measured at room temperature in layers with 10^{18} cm$^{-3}$ carriers. This mobility value is approximately 60% of the mobility in comparably doped bulk single crystals, and is significantly better than previous epitaxial SnO$_2$. It is certainly adequate for device application.

We are preparing to fabricate Schottky barrier field effect transistors similar to those now so familiar in GaAs. Interestingly enough, our proposals to use SBFET's as active devices in SnO$_2$ predate the majority of the work on GaAs-FET's. Substantial work has already been done on Schottky barriers on SnO$_2$ bulk crystals.

C. Thermo-Absorption on the Band Edge

Measurements of the thermoabsorption spectra of stannic oxide absorption edge between 20K and 115K have been made for both light polarizations, $E \parallel c$ and $E \perp c$. For $E \parallel c$ two series of peaks are seen. The first is associated with the known direct forbidden excitation series. The second is a series of relatively broader peaks and bumps above the absorption edge which has not previously been reported.
The new structure has been identified as being associated with absorption to the exciton levels accompanied by phonon emission. In order to correlate the known phonon energies with the excition positions, it is necessary to postulate the existence in SnO$_2$ of exciton-phonon quasi-bound states. We have shown that this is not unreasonable and that the SnO$_2$ lattice is sufficiently polar for this. With this interpretation, phonon "replicas" of the $n = 1$ line, $n = 2$ line, and continuum involving the three relevant LO phonons have been identified.

Little structure or temperature dependence is observed for $E\parallel c$. From the $E\parallel c$ observations, however, it was concluded that the onset of a direct-allowed transition was indicated at about 4.0 eV, or ~0.4 eV higher in energy than the lowest energy direct-allowed transition for $E\perp c$.

This work has appeared in the literature (see Publications, item 2).

D. Deep Level Spectroscopy

The existence and importance of deep, mid-gap levels in stannic oxide has been demonstrated by our previous observations of visible blue-green and red photoluminescence from SnO$_2$. They will undoubtedly also be important to the performance of the depletion mode SnO$_2$ FET's as well. We have, however, very little information on the nature, origin, density, or energy of these levels. To supply this information, we have completed a study to characterize deep levels in stannic oxide using transient capacitance-voltage measurements and thermally stimulated current measurements on Schottky barriers formed on bulk SnO$_2$ crystals.

Six energy levels have been identified; most were seen in both CV and TSC measurements. Their energies were 0.12, 0.17, 0.33, 0.47, 1.14 and
2.15 eV below the conduction band edge. In addition, capture cross-sections and trap densities were estimated, and tentative proposals were made of the identity of the defects producing the levels. These results have been presented in the thesis of J. Abrokwa and will be published shortly.

E. Electron Emission From Thin Films

In the course of investigating electron emission from SnO$_2$ films we have discovered intense emission from patterned In$_2$O$_3$/SnO$_2$ films. The pattern, etched in the films using standard photolithographic techniques, is an "H" or "dumbbell" shape with a narrow crossbar. With crossbars 0.1 mm wide we typically see in excess of 0.5 mA of emission current with a current of 15 mA through the sample and 300 V on the collector (2 cm from the sample).

This is the first work of this nature on SnO$_2$ films containing In$_2$O$_3$ and on sputtered films. Other work we are aware of on similar emitters has used pyrolytically deposited SnO$_2$ films (usually involving SnCl$_4$ and Sb doping) and the highest reported emission currents have been below 1 mA. In addition to the much higher emission, we have seen as high as 10 mA, we find that the parameters of the sputtered films are easier to control and that the high In concentration films are very easy to pattern.

In recent work on these emitters we have attempted to refine the emitter shape and the contacting procedure but these "improvements" have decreased rather than increased emission. The emission mechanism itself appears to be thermionic and the intense localized heating associated with the operation of the emitters then leads to eventual deterioration of the devices.

While the concept of a patterned, thin-film thermionic emitter has appeal for application in panel displays, it is clear that a much larger
effort will be required to fully understand all of the critical parameters in these or any similar emitters and to fully evaluate and realize their potential. We feel that a better approach to realizing a thin film emitter array is to not rely on a fortuitous but unpredictable "forming" process as is done in the In$_2$O$_3$/SnO$_2$ films but to instead try to fabricate an emitter directly using thin film materials and techniques. In our work a thin film thermionic emitter was designed which used a thin Mo film as the heater and (BaSrCa)O as the emitter. The structure has been analyzed and prototype units have been fabricated. Several microamperes of emission current have been obtained from these devices which is adequate for many display applications. The major problem remaining is the turn-on speed of the devices. This can perhaps be overcome by suspending the heater in the emitting region thereby thermally insulating it from the substrate.
III. Publications, Abstracts, Theses

A. Publications

B. Abstracts (papers presented at meetings)

C. Theses

IV. Coupling

Primary coupling activities throughout the program—and coupling which is continuing to date—involves supplying stannic oxide single crystal specimens to researchers requesting them. Samples have been supplied to numerous individuals both in the United States and abroad. Several examples and their specific applications are listed below:

Professor Laperey, Montana State University — for use in photo-emission studies.

Professor W. E. Spicer, University of Illinois -- for surface studies.

Mr. Chun Lim Lau, Bell Laboratories — for use in ESCA studies of SnO₂.
Title: Stannic Oxide Semiconductor Studies

Authors: Professor C. G. Fonstad

Performing Organization: Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

Contract or Grant Number(s): AFOSR-73-2493

Report Date: February 15, 1978

Number of Pages: 8

Security Classification: Unclassified

Distribution Statement: Approved for public release; distribution unlimited.

Key Words: Stannic oxide; wide bandgap semiconductors; device physics; electron emission; deep level spectroscopy; chemical vapor deposition; epilayer; FETs; thin films

Abstract:

High quality stannic oxide epilayers were grown in TiO₂ substrates without evidence of thermal mismatch. Electrical characterization was performed and device applications were studied. Stannic oxide appears to be suitable for high temperature microwave Schottky barrier field effect transistors.