Assessment of Perceptual, Decoding, and Lexical Skills and Their Relation to Reading Proficiency

John R. Frederiksen

January 1978

Prepared for: Office of Naval Research
Assessment of Perceptual, Decoding, and Lexical Skills and Their Relations to Reading Proficiency

Abstract

The goal of this research is to develop and validate techniques for measuring perceptual and cognitive skills that are related to reading proficiency. Studies are described representing three domains: the perceptual, decoding and lexical stages of processing.

At the perceptual level, we were concerned with visual scanning and the encoding of graphemic and supragraphemic units. Using a letter identification task, we found that subjects who were low in overall reading proficiency were more inclined to make use of visual scanning strategies. In contrast, subjects who were high in reading proficiency were more likely to use a more direct route to decoding.

In the lexical domain, we examined the relationship between vocabulary size and reading proficiency. Our results suggest that vocabulary size is a significant predictor of reading ability, and that this relationship is mediated by the speed and accuracy of word recognition.

The decoding stage of processing involves the transformation of graphemes into phonemes and their subsequent translation into speech. We studied the role of word frequency and letter frequency in the decoding process, finding that high-frequency words are decoded more rapidly and accurately than low-frequency words.

Finally, we examined the role of phonological processing in reading proficiency. Our findings indicate that individuals with strong phonological processing abilities are more likely to perform well on reading tasks, suggesting that these skills are important for reading success.

Key Words

- Reading Skills
- Assessment of Component Skills
- Individual Differences
- Information Processing
- Cognitive Processes
- Personnel Assessment
ability scan a visual image more slowly than do readers of high ability, and they are slower in identifying letters when they do not occur in a familiar sequence. Readers generally are able to exploit the sequential and positional redundancies characteristic of English orthography.

To study differences among readers in decoding skills, we selected an oral reading or pronunciation task. Readers differ in both the accuracy and efficiency with which they decode English spelling patterns, particularly when the patterns to be decoded are unfamiliar. A comparison of the effects of structural variations among words and pseudowords on decoding times led us to conclude that low ability readers rely on holistic properties of words — presumably their visual characteristics — in recognizing common words. High ability readers tend instead to use their well-developed decoding skills in recognizing words, whether they are common or uncommon.

At the lexical level, we explored the effects of visual familiarity on times for identifying words and pseudowords, using a lexical decision task. The results suggest that decoding proceeds more slowly when the stimulus item is visually unfamiliar. While low ability readers were more susceptible to the effects of visual familiarity, they did not differ from high ability readers in times for lexical access and retrieval.
Assessment of Perceptual, Decoding, and Lexical Skills and their Relation to Reading Proficiency

John R. Frederiksen

Technical Report No. 1
January 1978

This research was sponsored by the Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval Research, under Contract No. N00014-76-C-0461, Contract Authority Identification Number NR 154-386. This paper was presented at the NATO International Conference on Cognitive Psychology and Instruction in Amsterdam, the Netherlands, June 1977.

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Approved for public release: Distribution unlimited.
SUMMARY

The goal of this research is to develop and validate techniques for measuring perceptual and cognitive skills that are related to reading proficiency. Studies are described representing three domains: the perceptual, decoding and lexical stages of processing.

At the perceptual level, we were concerned with visual scanning and the encoding of graphemic and supragraphemic units. Using a letter identification task, we found that subjects who were low in overall reading ability scan a visual image more slowly than do readers of high ability, and they are slower in identifying letters when they do not occur in a familiar sequence. Readers generally are able to exploit the sequential and positional redundancies characteristic of English orthography.

To study differences among readers in decoding skills, we selected an oral reading or pronunciation task. Readers differ in both the accuracy and efficiency with which they decode English spelling patterns, particularly when the patterns to be decoded are unfamiliar. A comparison of the effects of structural variations among words and pseudowords on decoding times led us to conclude that low ability readers rely on holistic properties of words -- presumably their visual characteristics -- in recognizing common words. High ability readers tend instead to use their well-developed decoding skills in recognizing words, whether they are common or uncommon.
At the lexical level, we explored the effects of visual familiarity on times for identifying words and pseudowords, using a lexical decision task. The results suggest that decoding proceeds more slowly when the stimulus item is visually unfamiliar. While low ability readers were more susceptible to the effects of visual familiarity, they did not differ from high ability readers in times for lexical access and retrieval.
ACKNOWLEDGMENTS

This research was sponsored by ONR Contract N00014-76-C-0461. The support and encouragement of Marshall Farr and Henry Halff, and of Joseph L. Young are gratefully acknowledged. I would like to thank Marilyn Adams and Richard Pew for fruitful discussions during many phases of the work, and Barbara Freeman and Jessica Kurzon, who implemented the experimental design.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. EXPERIMENTAL STUDIES</td>
<td>5</td>
</tr>
<tr>
<td>The Perceptual Domain</td>
<td>5</td>
</tr>
<tr>
<td>Method and Subjects</td>
<td>5</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td>6</td>
</tr>
<tr>
<td>The Decoding or Word-Analysis Domain</td>
<td>10</td>
</tr>
<tr>
<td>Method and Subjects</td>
<td>10</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td>12</td>
</tr>
<tr>
<td>The Lexical Domain</td>
<td>18</td>
</tr>
<tr>
<td>Method and Subjects</td>
<td>21</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td>21</td>
</tr>
<tr>
<td>III. CONCLUSIONS</td>
<td>31</td>
</tr>
<tr>
<td>REFERENCE NOTE</td>
<td>33</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>34</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>35</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1. The general conceptual model underlying the experiments.. 2

Figure 2. Mean reaction times in letter identification plotted as a function of bigram location and reading level....... 8

Figure 3. Mean reaction times in letter identification plotted as a function of bigram probability and reading level.... 9

Figure 4. Mean reaction times in letter identification plotted as a function of bigram location and bigram probability.. 11

Figure 5. Mean onset latencies obtained in the pronunciation experiment for high and low frequency words and pseudowords.............................. 13

Figure 6. Percentage of correct responses obtained in the pronunciation experiment for high and low frequency words and pseudowords.............................. 14

Figure 7. Differences in onset latencies for the planned comparisons among orthographic forms as a function of stimulus type................................. 17

Figure 8. Hypothetical processing stages in decoding under single case and mixed case conditions............... 19
Figure 9. Mean response latencies for single and mixed case stimulus presentation obtained in the lexical decision experiment. 22

Figure 10. Mean lexical decision latencies for words belonging to four frequency classes, presented under single case and mixed case conditions. 24

Figure 11. Overall mean lexical decision latencies for words and pseudowords presented under single and mixed case conditions. ... 25

Figure 12. Magnitude of the word frequency effect obtained with words and pseudowords, using single and mixed case modes of presentation. ... 27

Figure 13. Percentage of correct lexical decisions for words varying in length, number of syllables, and frequency class. ... 28
ASSESSMENT OF PERCEPTUAL, DECODING, AND LEXICAL SKILLS
AND THEIR RELATION TO READING PROFICIENCY

I. INTRODUCTION

A central problem in evaluation research is the assessment of effects of instructional strategies on specific information-processing skills. The goal of the research project on which I shall report is to develop and validate techniques for measuring perceptual and cognitive skills that are related to reading proficiency, and to investigate how deficiencies in particular skills may limit an individual's ability to read with speed and comprehension. The measures to be developed are chosen to represent five skill domains or levels of processing as illustrated in Figure 1:

1. The **Perceptual Level** includes processes involved in the encoding of visual information, scanning a visual image, pattern recognition, encoding of graphemic or supragraphemic units, and storing the order of encoded visual units.

2. The **Decoding Level** includes skills involved in the translation of English orthographic patterns into derived phonemic patterns.

3. The **Lexical Level** includes skills involved in utilizing available evidence for accessing the lexicon, in retrieving
The general conceptual model underlying the experiments.
lexical information of either a semantic or articulatory nature, and in making semantic and lexical decisions on the basis of retrieved information.

4. The Phrasal Level includes skills involved in the use of propositional and syntactic structure to guide lexical search and retrieval, the construction of a running model of text, and the use of contextual information in making lexical identifications and semantic decisions.

5. Interactions among processes occurring at different levels constitute a fifth domain of interest. To take one example, the presence of phrase level constraints on a lexical item can influence the mode of lexical access and the use of decoding processes in lexical retrieval. Such interactions can be expected to contribute to a fluent, integrated approach to reading.

I shall review a set of experiments we have carried out which are aimed at the measurement of processing strategies and levels of processing accuracy and efficiency in a number of these domains. The following general approach has been taken: On the basis of pertinent existing theory, experimental tasks are chosen for each domain and variables selected that allow us to manipulate the degree to which the relevant processing skill contributes to task performance. Validation of the experimental
procedures is based upon the correspondence between theoretical predictions and experimental results, and on their relationship to an external measure of reading ability. Contrasts among the experimental conditions are then defined which (1) represent selected processing skills within the domain under investigation, and (2) are related to an individual's level of reading ability. Individual subject's scores on these contrasts serve as measures of processing skill.
II. EXPERIMENTAL STUDIES

The Perceptual Domain

Method and Subjects. In order to measure skills in the perceptual domain, a letter identification task was selected. Subjects were asked to report all of the letters they could identify in a masked, briefly-presented stimulus array. While a third of the stimulus items were four-letter English words, the remaining items were English-like four-letter arrays in which two letters were masked during the exposure so that only a single pair of adjacent letters was available for the subject to report. The critical (unmasked) letters were either the first 2 letters (e.g., KN--), the middle 2 letters (e.g., -NC-), or the final 2 letters (e.g., --RD). In addition to varying in their location, the critical bigrams were chosen to represent two sources of redundancy in English orthography: (1) redundancy due to sequential constraints which occur among letters, and (2) redundancy due to positional constraints on letter occurrence. Accordingly, the critical bigrams varied (1) in the overall frequency with which the letters occur together in English prose (e.g., TH [high], GA [middle], and LK [low]), and (2) in their likelihood of occurring in their presented position in a normal, four-letter English word (e.g., TH-- [high] vs. -TH- [low]).

1Bigrams were selected on the basis of frequencies of occurrence and positional likelihoods in four-letter words as
To make the task perceptually demanding, the stimulus array was preceded and followed by a 300 msec. masking field, and the stimulus duration chosen was the shortest duration that would still allow 95% of the stimulus letters to be correctly reported (generally 90-100 msec.). Finally, in order to relate performance to reading skill, the twenty subjects (high school students) were divided into 4 levels (quartiles) on the basis of Nelson-Denny reading test scores.

Results and Discussion. We found that our subjects were sensitive to the manipulations of sequential and spatial redundancy; bigrams having low, middle, and high probabilities of occurrence were reported correctly 88%, 92%, and 93% of the time, respectively, while bigrams occurring in unlikely and likely locations were reported correctly 90% and 92% of the time. These differences, while small in magnitude, were highly reliable (p<.001 and p<.005, respectively) and suggest that letters within an orthographically regular array are not processed independently, and that positional cues can facilitate encoding.

recorded in the Mayzner and Tresselt (1965) tables. Twelve bigrams were selected for each combination of location (positions 1 and 2, 2 and 3, and 3 and 4), bigram probability (low, middle, and high), and positional likelihood (low and high). There were no significant differences among these groups of bigrams in (a) the product of the probabilities of the individual letters, or (b) the product of the positional likelihoods of the individual letters.
In addition to these general results, we found that subjects who vary in reading ability differ reliably both in their rate of scanning a perceptual array, and in their sensitivity to redundancy built into the stimulus. In Figure 2, we have plotted mean identification latencies for bigrams occurring in each of three positions within a 4-letter array for subjects at each ability level. While overall letter identification latencies are longer only for the poorest group of readers, the slopes of the array-length functions decrease as reading ability increases. The high rate of scanning obtained with high ability readers (250 letters/sec.) is five times that obtained with the poorest readers (48 letters/sec.), and suggests that the strongest readers may be processing letters in parallel.

The interaction between bigram frequency and reading ability is illustrated in Figure 3. The magnitude of the bigram effect decreases as reading ability increases. While high ability readers are capable of efficiently processing letters that occur together in English over a broad frequency band, low ability readers' efficiency in processing is limited to letter pairs that typically occur together, with high frequency.

For all subjects, the effect of bigram probability is most marked when the critical pair of letters is presented in the first 2 positions, and appears to decrease as the position of the letter pair is moved from left to right within the array (see
Fig. 2 Mean reaction times in letter identification plotted as a function of bigram location and reading level. The slopes of fitted lines are plotted at the bottom of the figure for each reading level.
Fig. 3 Mean reaction times in letter identification, plotted as a function of bigram probability and reading level. The size of the bigram effect (mean for low frequency bigrams minus the mean for middle and high frequency bigrams) is plotted at the bottom of the figure for each reading level.
Finally, positional redundancy was found to influence letter identifications only when the bigrams are of low frequency and in the first position. In that instance, bigrams having high positional likelihoods were identified an average of 14 msec faster than were those having low positional likelihoods.

To summarize, we found differences in processing efficiency at the perceptual level between subjects who are high or low in overall reading ability. Low ability readers scan a visual array more slowly than do high ability readers, and they are slower in identifying letters when they do not occur in a predictable sequence. The fact that readers in general are able to exploit sequential and positional redundancies characteristic of English orthography suggests that the processing of individual letters does not proceed independently from the processing of adjacent letters (cf. Landauer, Didner, & Fowlkes, Note 1).

The Decoding or Word-Analysis Domain

Method and Subjects. To study differences in decoding skills among readers, we selected an oral reading (or pronunciation) task. Our strategy here was to vary difficulty in decoding arrays of letters by manipulating the orthographic structure of our stimulus materials. We can determine the effect of orthographic variations on decoding latencies by studying subjects' responses in pronouncing pseudoword items. If the
Fig. 4. Mean reaction times in letter identification, plotted as a function of bigram location and bigram probability. The size of the bigram effect is plotted at the bottom of the figure for each location.
pattern of response times observed in the pronunciation of words is found to resemble that obtained in this pure decoding situation, we will have evidence for a decoding component in lexical retrieval. Absence of such a pattern of response times will indicate that some other form of code is utilized in gaining access to the lexicon.

The stimuli were words of high and low frequency, and pseudowords derived from the words by changing a single vowel. The words and pseudowords include 22 separate orthographic forms representing variations in length (4, 5, and 6 letters), number of syllables (1 and 2), length of first syllable (2 or 3 letters), type of vowel (primary or secondary; cf. Venezky, 1970), presence of a silent-e marker, and length of initial and terminal consonant clusters. These 22 forms were matched on initial letter (and phoneme). The stimulus array was exposed for 50 msec. without any masking stimuli. The subjects were the same ones who participated in the previous experiment.

Results and Discussion. In Figure 5 we see that there are significant differences in onset latencies for subjects having different reading levels, and the magnitude of these differences is greater for pseudowords than it is for low frequency words, which is in turn greater than that for high frequency words. Percentages of correct pronunciations are shown in Figure 6. Skilled readers make fewer errors in pronouncing pseudowords and
Fig. 5 Mean onset latencies obtained in the pronunciation experiment for high and low frequency words and pseudowords, plotted separately for subjects at four reading levels.
Fig. 6 Percentage of correct responses obtained in the pronunciation experiment for high and low frequency words and pseudowords, plotted separately for subjects at four reading levels.
low frequency words than do less skilled readers, but these differences in accuracy of pronunciation are not present when the stimuli are common words. In summary, readers appear to differ in both the accuracy and efficiency with which they decode English spelling patterns, and the differences in performance for high and low ability readers are most marked when the letter patterns to be decoded are unfamiliar.

Turning to the effects of variations in orthographic structure, within each of the classes of stimuli (words and pseudowords of high and low frequency), 22 separate orthographic forms were represented. Restricting our attention for the moment to pseudoword decoding, we find that the differences in mean onset latencies across these 22 forms are reliable, the average reliability across the four groups of readers being .72 (for levels One to Four, respectively: .69, .90, .57, and .73). Next, we can compare the effects of orthographic variables on mean onset latencies for words with those for pseudowords by computing the correlations (calculated over the 22 forms) between mean onset latencies for pronouncing high and low frequency words with those for pseudowords. These correlations, expressed as percentages of the reliable variance in pseudoword decoding times, are also given in Figure 5. For poor readers, latencies for naming high frequency words are not predictable from pseudoword decoding times (11% and 28%), while latencies for naming low frequency words...
words are closely related (61% and 72%) to those obtained for pseudowords having similar orthographic forms. However, in the case of high ability readers, latencies for naming words are predictable to the same degree for both high and low frequency words. For low ability readers, the identification of low frequency words utilizes word-analysis (decoding) skills similar to those that are required in pronouncing pseudowords, but the recognition of high-frequency words relies on more holistic properties of words -- presumably their visual characteristics, as Perfetti and Hogaboam (1975) have suggested. High ability readers, on the other hand, are efficient decoders and tend to employ those highly-developed skills in the recognition of high as well as low frequency words.

A detailed analysis of the effects of particular orthographic variables on word recognition latencies is shown in Figure 7. Here are shown the results of planned comparisons among orthographic forms, which yielded significant effects in the decoding of pseudoword items. Onset latencies are longer for items having longer initial consonant clusters. They are longer for pseudowords and low frequency words having secondary vowels (e.g., SAID) than for those having primary vowels (e.g., SONG), and these differences are larger for poor readers than for good readers. Onset latencies for 2-syllable items exceed those for 1-syllable items, and these effects are greater for poor readers.
Fig. 7 Differences in onset latencies for the planned comparisons among orthographic forms as a function of stimulus type (high frequency words, low frequency words, and pseudowords). Separate plots are given for readers at the top two and bottom two levels.
than for good readers. The syllable effects appear to be larger when the initial syllable is two letters long than when it has 3 letters. Finally, the increase in response time for each added letter is greater for poor readers than for good readers, and depends upon word frequency. Together, these results show that readers of varying ability differ substantially in their efficiency in decoding the more complex orthographic forms.

The Lexical Domain

The purpose of the lexical decision experiment was to investigate methods used for decoding and lexical access during silent reading, by subjects who vary in overall reading ability. In addition, we were interested in evaluating the effects of manipulating the visual familiarity of a letter array on subjects' performance in decoding and lexical retrieval. This was accomplished by altering the letter cases used in presenting stimulus words and pseudowords. Visually familiar stimuli were presented in a consistent letter case (e.g., WORDS or words), while visually unfamiliar stimuli were presented using a mixture of letter cases (e.g., WoRd).

The effects of case mixing on times for lexical decisions can be anticipated on the basis of an analysis of decoding presented in Figure 8. When stimuli are presented in a consistent case, multiletter units can be directly identified,
Decoding under Two Levels of Perceptual Encoding

<table>
<thead>
<tr>
<th>Process</th>
<th>Perceptual Units</th>
<th>Encoding Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single-Letter</td>
<td>Multi-Letter</td>
</tr>
<tr>
<td></td>
<td>Units</td>
<td>Units</td>
</tr>
<tr>
<td>Stimulus</td>
<td>SHOOTING</td>
<td>SHOOTING</td>
</tr>
<tr>
<td>Encoded Visual Units</td>
<td>S/H/O/O/T/I/N/G</td>
<td>SH/00/T/ING</td>
</tr>
<tr>
<td>Decoding: Parsing</td>
<td>SH/00/T/ING</td>
<td></td>
</tr>
<tr>
<td>Grapheme Array</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decoding: Phonemic Translation</td>
<td>ΣutInη</td>
<td>ΣutInη</td>
</tr>
<tr>
<td>Assignment of Stress and Intonation</td>
<td>Σut'Iη</td>
<td>Σut'Iη</td>
</tr>
</tbody>
</table>

Fig. 8 Hypothetical processing stages in decoding under single case and mixed case conditions.
leading to a simplification in the decoding process. Presenting items in mixed cases decreases the size of visually-encodeable units, and increases decoding demands, since decoding must begin with a larger number of initial units. Mixing letter cases should therefore increase the magnitude of array-length effects, which are attributable to letter encoding and processes of decoding; however mixing of letter cases should not lead to an increase in size of syllable effects, since syllabication is thought to take place after decoding of the letter array.\(^2\) We expect the effects of letter mixing to be greater for poor readers than for good readers, since any increase in the demands placed upon decoding skills will have a particularly strong impact on readers who are poor decoders.

The effects of mixing letter cases on word frequency effects should be minimal for high ability readers, since for these readers the coded phonemic representation accurately portrays the stimulus item which furnishes the basis for lexical retrieval. For poor readers, however, the picture is expected to be different. Poor readers are not only deficient in decoding skills; they tend to employ visual strategies for word recognition when a word is familiar to them. The effect of case mixing is simultaneously to eliminate the possibility of using a visual recognition strategy and to increase the difficulty of

\(^2\)Note that other theorists (e.g., Spoehr and Smith, 1973) have favored a theory of syllabication prior to decoding.
successful decoding, and thus obtaining an accurate phonemic representation of the stimulus. Since poor readers must base their lexical decisions on an imperfect representation of the stimulus, they can be expected to require additional time for lexical retrieval.

Method and Subjects. The stimulus items included in the experiment were words and pseudowords varying in length (4, 5, and 6 letters), syllabic structure (1 and 2 syllables), and frequency class (four equal logarithmic frequency intervals). The subject's task was to judge whether an item was a word or pseudoword, and to respond by depressing an appropriate response key. One group of subjects was presented with items in a consistent letter case while a second group was presented the items using a mixture of letter cases. There were 16 subjects in each treatment group, with 4 subjects representing each level of reading ability.

Results and Discussion. Reaction time changes obtained as a result of case mixing are shown in Figure 9. There was an increase in magnitude of array-length effects from an average of 17 msec. in the single-case condition to an average of 66 msec. in the mixed-case condition. The interaction between visual familiarity (single vs. mixed case presentation) and array

\[3\] In this and subsequent analyses reported, distinctions between upper and lower single-case presentations are ignored. In a prior analysis of variance of single case data, no significant effects of case were observed.
Fig. 9 Mean response latencies for single and mixed case stimuli presentation obtained in the lexical decision experiment. On the left, mean latencies are shown for words and pseudowords varying in length and number of syllables. On the right, the magnitude of syllable effects (difference between 2 and 1 syllable items) and the array-length effects (slopes) are shown for readers at each of 4 ability levels.
length was significant at the .005 level. At the same time, there was no significant interaction between syllabic length and visual familiarity (F[1,24] = .46, p = .50), although the main effect of syllabic length was significant (p<.05). Two-syllable items required an average of 27 msec. longer to process than did one-syllable items. The magnitudes of array-length and syllable effects under each mode of stimulus presentation are shown at the right of Figure 9 for subjects at each reading level. Several trends are apparent: First, the effect of case mixing on slopes of array-length functions is greater for low ability readers than for high ability readers. Second, syllable effects disappear in the case of high ability readers but are present in the case of low ability readers.

The effects of case mixing on mean response latencies for words in each frequency class are shown in Figure 10. There are no significant differences among subjects at the four reading levels when the single case mode of presentation is employed. However, when visually unfamiliar stimuli are used, we find an increase in the height and slope of the reaction time functions. The overall mean response latencies for words and pseudowords presented in single and mixed case modes are shown in Figure 11, for subjects at each reading level. Mean reaction times for the poorest group of readers jumped from 866 msec. in the single case condition to 1281 msec. in the mixed case condition when words
Fig. 10 Mean lexical decision latencies are shown for words belonging to four frequency classes, presented under single case and mixed case conditions. Data are plotted separately for subjects at each reading level. The frequency classes represent the following intervals: 1 = 1/M (Million) or fewer, 2 = 2/M to 5/N, 3 = 6/M to 29/N, and 4 = 30/M or greater.
Fig. 11 Overall mean lexical decision latencies for words and pseudowords presented under single and mixed case conditions, plotted as a function of the subjects' reading level.
were judged, and from 831 msec. to 1629 msec. when pseudowords were judged. However, only small effects of visual familiarity on response latency were found for the two strong groups of readers. The magnitude of the frequency effect is plotted in Figure 12 as a function of reading level. For the two poorest groups of readers, there is an increase in size of frequency effects when visually unfamiliar stimuli are employed. No such increase is found for high ability readers. This suggests that the adequacy of a phonemic translation, as a cue for lexical retrieval, depends upon the reading level of the subjects. The types of errors made by good and poor readers lend additional support to this interpretation.

In Figure 13, we see that the major source of errors was a failure of subjects to correctly identify low frequency words. While the error rates in recognizing low frequency words are not affected by the mixing of letter cases to produce visually unfamiliar stimuli, error rates in decoding and categorizing pseudowords are influenced substantially by visual familiarity. There were more errors when the pseudowords were presented in a mixture of letter cases than when they were presented in a single letter case. The overall error rates for poor readers were higher than those for good readers. This was due to two sources: Poor readers were less able to recognize low frequency words than were good readers (39% correct compared with 58% correct), and were less able to accurately decode linguistically regular
Fig. 12 Magnitude of the word frequency effect obtained with words and pseudowords, using single and mixed case modes of presentation. The ordinate values are magnitudes of negative fitted slopes, and represent decreases in reaction time for unit increases in frequency class. Frequency effects are plotted as a function of subjects' reading ability.
Fig. 13 Percentage of correct lexical decisions for words varying in length, number of syllables, and frequency class (shown on the left), and for pseudowords and words varying in frequency class (shown on the right).
pseudowords (82% correct compared with 93% correct for good readers).

In summary, the strong effects of case mixing on reaction times and errors in making lexical decisions demonstrate that the visual familiarity and integrity of multiletter units is essential to the process of word recognition. The interaction between array-length and visual familiarity supports the conclusion that decoding processes—dependent as they are on the number of units to be decoded—proceed at a slower pace when the units to be decoded are individual letters. On the other hand, the minimal influence of case mixing on the magnitude of syllable effects suggests that syllabication and stress assignment occur after a phonemic representation has been built which is independent of the visual familiarity of the stimulus. Poor readers were found to be particularly susceptible to stimulus manipulations that increase demands placed on the decoding system—in the present case, by reducing visual familiarity. This deficiency in decoding ability may be due to an imperfect mastering of rules for phonic analysis, to deficits in more basic processing subsystems (e.g., immediate memory) which are utilized in decoding, or to both of these sources. That subjects of varying reading ability do not differ in times for retrieving low and high frequency words that are visually familiar suggests that their skill deficiencies may be localized at the perceptual and decoding levels; however, the effect of case mixing on word
frequency effects for poor readers shows that times for lexical retrieval can be elevated if the stimulus representation used in accessing the lexicon is of uncertain accuracy and quality.
III. CONCLUSIONS

We have demonstrated that there are striking differences among readers in perceptual and decoding skills, and in their use of such skills in making lexical identifications. We have not, however, so far found any substantial differences among readers in times for lexical retrieval beyond those that are attributable to skill differences at the perceptual and decoding levels. Differences among readers at the lexical level are those dealing with variations in the extent of vocabulary.

The question can be asked, why do readers who differ in skills at the perceptual and decoding levels also differ in their ability to comprehend written discourse, as required in the Nelson-Denny Reading Test. Two possibilities come to mind:

1. Processing Capacity and Automaticity of Decoding. Perfetti and Hogaboam (1975) have suggested that decoding and phrase-level processes compete for limited processing resources. Thus, a reader who must constantly shift his attention from phrase-level processing (e.g., building semantic representations, drawing inferences, solving problems of reference, etc.) to individual word decoding will have greater difficulty in comprehension of a text than will a reader who decodes swiftly and automatically, and who can concentrate processing resources on the problem of text understanding.
2. Covariance of Skill Deficiencies across Levels of Processing.

Another possibility is that, due to educational and cultural factors, readers who differ in perceptual and decoding skills are also likely to differ in higher-level skills involved in understanding text. These phrase-level skills, apart from the conditions under which they are learned, may be functionally independent of lower-level decoding skills. If this is the case, tests of reading comprehension that have been matched to a reader's level of proficiency in decoding should continue to show reliable differences in readers' responses to comprehension items. Whatever the resolution of this issue, I feel on the basis of our results that it is feasible to measure differences among subjects in processing efficiency and accuracy within specified domains, through the use of experimental methods of analysis. Hopefully, the results of this effort will provide measures that can be used to evaluate the effects of instruction and to suggest alternative strategies for improving reading ability.
REFERENCE NOTE

REFERENCES

<table>
<thead>
<tr>
<th>DISTRIBUTION LIST</th>
<th>Navy</th>
<th>Navy</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 DR. JACK ADAMS</td>
<td></td>
<td>1 Dr. Dexter Fletcher</td>
</tr>
<tr>
<td>OFFICE OF NAVAL</td>
<td></td>
<td>Navy Personnel Res. and Dev.</td>
</tr>
<tr>
<td>RESEARCH BRANCH</td>
<td></td>
<td>San Diego CA 92152</td>
</tr>
<tr>
<td>223 OLD MARYLEBONE</td>
<td></td>
<td>1 Dr. John Ford</td>
</tr>
<tr>
<td>ROAD</td>
<td></td>
<td>Navy Personnel R&D Center</td>
</tr>
<tr>
<td>LONDON, NW, 15TH</td>
<td></td>
<td>San Diego, CA 92152</td>
</tr>
<tr>
<td>ENGLAND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Dr. Jack R. Borsting</td>
<td></td>
<td>1 Dr. Eugene E. Gloye</td>
</tr>
<tr>
<td>Provost & Academic</td>
<td></td>
<td>ONR Branch Office</td>
</tr>
<tr>
<td>Dean</td>
<td></td>
<td>1030 East Green Street</td>
</tr>
<tr>
<td>U.S. Naval Postgraduate</td>
<td></td>
<td>Pasadena, CA 91101</td>
</tr>
<tr>
<td>School</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monterey, CA 93940</td>
<td></td>
<td>1 Dr. Norman J. Kerr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chief of Naval Technical Training</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Naval Air Station Memphis (75)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Millington, TN 38054</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Dr. Leonard Kroeker</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Navy Personnel R&D Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Diego, CA 92152</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 CHAIRMAN, LEADERSHIP & LAW DEPT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIV. OF PROFESSIONAL DEVELOPMENT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U.S. NAVAL ACADEMY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ANNAPOlis, MD 21402</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Dr. James Lester</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ONR Branch Office</td>
</tr>
<tr>
<td></td>
<td></td>
<td>495 Summer Street</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boston, MA 02210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Dr. William L. Maloy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Principal Civilian Advisor for</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Education and Training</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Naval Training Command, Code 00A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pensacola, FL 32508</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Dr. James McBride</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Code 301</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Navy Personnel R&D Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Diego, CA 92152</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 DR. WILLIAM MONTAGUE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAVY PERSONNEL R&D CENTER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAN DIEGO, CA 92152</td>
</tr>
</tbody>
</table>

Mr. James S. Duva		1 Mr. James S. Duva
Chief, Human Factors		Chief, Human Factors Laboratory
Laboratory		Naval Training Equipment Center
		(Code N-215)
		Orlando, Florida 32813
4 Dr. Marshall J. Farr, Director		4 Dr. Marshall J. Farr, Director
Personnel & Training Research Prog.		Personnel & Training Research Prog.
Office of Naval Research (Code 458)		Office of Naval Research (Code 458)
Arlington, VA 22217		Arlington, VA 22217
1 DR. PAT FEDERICO		1 DR. PAT FEDERICO
NAVY PERSONNEL		NAVY PERSONNEL
R&D CENTER		R&D CENTER
SAN DIEGO, CA 92152		SAN DIEGO, CA 92152
1 CDR John Ferguson, MSC, USN		1 CDR John Ferguson, MSC, USN
Naval Medical R&D Command (Code 44)		Naval Medical R&D Command (Code 44)
National Naval Medical Center		National Naval Medical Center
Bethesda, MD 20814		Bethesda, MD 20814

-35-
Army

1 DR. JAMES BAKER
U.S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

1 DR. RALPH CANTER
U.S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

1 DR. RALPH DUSEK
U.S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

1 Dr. Milton S. Katz
Individual Training & Skill Evaluation Technical Area
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Director, Training Development
U.S. Army Administration Center
ATTN: Dr. Sherrill
Ft. Benjamin Harrison, IN 46218

1 Dr. J. E. Uhlaner
Chief Psychologist, US Army
Army Research Institute
6933 Hector Road
McLean, VA 22101

1 Dr. Joseph Ward
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Air Force

1 Air Force Human Resources Lab
AFHRL/PE
Brooks AFB, TX 78235

1 Air University Library
AUL/LSE 76/443
Maxwell AFB, AL 36112

1 DR. G. A. ECKSTRAND
AFHRL/AS
WRIGHT-PATTERSON AFB, OH 45433

1 Dr. Alfred R. Fregly
AFOSR/NL, Bldg. 410
Bolling AFB, DC 20332

1 CDR. MERCER
CNET LIAISON OFFICER
AFHRL/FLYING TRAINING DIV.
WILLIAMS AFB, AZ 85224

1 Dr. Ross L. Morgan (AFHRL/ASR)
Wright -Patterson APF
Ohio 45433

1 Personnel Analysis Division
HQ USAF/DPXXA
Washington, DC 20330

1 Research Branch
AFMPC/DPMYP
Randolph AFB, TX 78148

1 Dr. Marty Rockway (AFHRL/TT)
Lowry AFB
Colorado 80230

1 Major Wayne S. Sellman
Chief, Personnel Testing
AFMPC/DPMYPT
Randolph AFB, TX 78148

1 Brian K. Waters, Maj., USAF
Chief, Instructional Tech. Branch
AFHRL
Lowry AFB, CO 80230

-37-
<table>
<thead>
<tr>
<th>Marines</th>
<th>CoastGuard</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Director, Office of Manpower Util.</td>
<td>1 Mr. Joseph J. Cowan, Chief</td>
</tr>
<tr>
<td>HQ, Marine Corps (MPU)</td>
<td>Psychological Research (G-P-1/62)</td>
</tr>
<tr>
<td>BCB, Bldg. 2009</td>
<td>U.S. COAST GUARD HQ</td>
</tr>
<tr>
<td>Quantico, VA 22134</td>
<td>WASHINGTON, DC 20590</td>
</tr>
<tr>
<td>1 DR. A.L. Slapkosky</td>
<td>Civil Govt</td>
</tr>
<tr>
<td>Scientific Advisor (Code RD-1)</td>
<td>1 Dr. William Gorham, Director</td>
</tr>
<tr>
<td>HQ, U.S. Marine Corps</td>
<td>Personnel R&D Center</td>
</tr>
<tr>
<td>Washington, DC 20380</td>
<td>U.S. Civil Service Commission</td>
</tr>
<tr>
<td></td>
<td>1900 E Street NW</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20415</td>
</tr>
<tr>
<td>Other DoD</td>
<td>1 Dr. Andrew R. Molnar</td>
</tr>
<tr>
<td></td>
<td>Science Education Dev.</td>
</tr>
<tr>
<td></td>
<td>and Research</td>
</tr>
<tr>
<td></td>
<td>National Science Foundation</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20550</td>
</tr>
<tr>
<td>12 Defense Documentation Center</td>
<td>1 Dr. H. Wallace Sinaiko, Director</td>
</tr>
<tr>
<td>Cameron Station, Bldg. 5</td>
<td>Manpower Research & Advisory Service</td>
</tr>
<tr>
<td>Alexandria, VA 22314</td>
<td>Smithsonian Institution</td>
</tr>
<tr>
<td>Attn: TC</td>
<td>801 N. Pitt Street</td>
</tr>
<tr>
<td></td>
<td>Alexandria, VA 22314</td>
</tr>
<tr>
<td>1 Military Assistant for Human Res.</td>
<td>1 Dr. Thomas G. Sticht</td>
</tr>
<tr>
<td>Office of the Director of Defense</td>
<td>Basic Skills Program</td>
</tr>
<tr>
<td>Research & Engineering</td>
<td>National Institute of Education</td>
</tr>
<tr>
<td>Room 3D129, the Pentagon</td>
<td>1200 19th Street NW</td>
</tr>
<tr>
<td>Washington, DC 20301</td>
<td>Washington, DC 20208</td>
</tr>
<tr>
<td>1 Dr. Harold F. O'Neil, Jr.</td>
<td>1 Dr. Joseph L. Young, Director</td>
</tr>
<tr>
<td>Advanced Research Projects Agency</td>
<td>Memory & Cognitive Processes</td>
</tr>
<tr>
<td>Cybernetics Technology, Rm. 623</td>
<td>National Science Foundation</td>
</tr>
<tr>
<td>1400 Wilson Blvd.</td>
<td>Washington, DC 20550</td>
</tr>
<tr>
<td>Arlington, VA 22209</td>
<td></td>
</tr>
</tbody>
</table>
Non Govt

1 PROF. EARL A. ALLUISI
DEPT. OF PSYCHOLOGY
CODE 287
OLD DOMINION UNIVERSITY
NORFOLK, VA 23508

1 Dr. John R. Anderson
Dept. of Psychology
Yale University
New Haven, CT 06520

1 MR. SAMUEL BALL
EDUCATIONAL TESTING SERVICE
PRINCETON, NJ 08540

1 Dr. Nicholas A. Bond
Dept. of Psychology
Sacramento State College
600 Jay Street
Sacramento, CA 95819

1 Dr. John Seeley Brown
Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

1 Dr. John Carroll
Psychometric Lab
Univ. of No. Carolina
Davie Hall 013A
Chapel Hill, NC 27514

1 Dr. Kenneth E. Clark
College of Arts & Sciences
University of Rochester
River Campus Station
Rochester, NY 14627

1 Dr. Norman Cliff
Dept. of Psychology
Univ. of So. California
University Park
Los Angeles, CA 90007

1 Dr. Allan M. Collins
Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

1 Dr. John J. Collins
Essex Corporation
201 N. Fairfax Street
Alexandria, VA 22314

1 Dr. Meredith Crawford
5605 Montgomery Street
Chevy Chase, MD 20015

1 DR. RENE V. DAVIS
DEPT. OF PSYCHOLOGY
UNIV. OF MINNESOTA
75 E. RIVER RD.
MINNEAPOLIS, MN 55455

1 Dr. Ruth Day
Center for Advanced Study in Behavioral Sciences
202 Junipero Serra Blvd.
Stanford, CA 94305

1 ERIC Facility—Acquisitions
4833 Rugby Avenue
Bethesda, MD 20014

1 MAJOR I. N. EVONIC
CANADIAN FORCES PERS. APPLIED RES.
1107 AVENUE ROAD
TORONTO, ONTARIO, CANADA

1 Dr. Richard L. Ferguson
The American College Testing Program
P.O. Box 168
Iowa City, IA 52240

1 Dr. Victor Fields
Dept. of Psychology
Montgomery College
Rockville, MD 20850

1 Dr. Edwin A. Fleishman
Advanced Research Resources Organ.
8555 Sixteenth Street
Silver Spring, MD 20910

-39-
Non Govt

1 DR. ROBERT GLASER
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213

1 DR. JAMES G. GREENO
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213

1 Dr. Barbara Hayes-Roth
The Rand Corporation
1700 Main Street
Santa Monica, CA 90406

1 Library
HumRRO/Western Division
27857 Berwick Drive
Carmel, CA 93921

1 Dr. Earl Hunt
Dept. of Psychology
University of Washington
Seattle, WA 98105

1 DR. LAWRENCE B. JOHNSON
LAWRENCE JOHNSON & ASSOC., INC.
SUITE 502
2001 S STREET NW
WASHINGTON, DC 20009

1 Dr. Arnold F. Kanarick
Honeywell, Inc.
2600 Ridgeway Pkwy
Minneapolis, MN 55413

1 Dr. Roger A. Kaufman
203 Dodd Hall
Florida State Univ.
Tallahassee, FL 32306

1 Dr. Steven W. Keele
Dept. of Psychology
University of Oregon
Eugene, OR 97403

Non Govt

1 LCOL. C.R.J. LAFLEUR
PERSONNEL APPLIED RESEARCH
NATIONAL DEFENSE HQS
101 COLONEL BY DRIVE
OTTAWA, CANADA K1A 0K2

1 Dr. Frederick M. Lord
Educational Testing Service
Princeton, NJ 08540

1 Dr. Robert R. Mackie
Human Factors Research, Inc.
6780 Cortona Drive
Santa Barbara Research Pk.
Goleta, CA 93017

1 Dr. William C. Mann
USC-Information Sciences Inst.
4676 Admiralty Way
Marina del Rey, CA 90291

1 Mr. Edmond Marks
304 Grange Bldg.
Pennsylvania State Univ.
University Park, PA 16802

1 Dr. Richard B. Millward
Dept. of Psychology
Hunter Lab.
Brown University
Providence, RI 82912

1 Richard T. Mowday
College of Business Administration
University of Oregon
Eugene, OR 97403

1 Dr. Donald A Norman
Dept. of Psychology C-009
Univ. of California, San Diego
La Jolla, CA 92093

1 Dr. Melvin R. Novick
Iowa Testing Programs
University of Iowa
Iowa City, IA 52242
Dr. Jesse Orllansky
Institute for Defense Analysis
400 Army Navy Drive
Arlington, VA 22202

Mr. A. J. Pesch, President
Eclectech Associates, Inc.
P. O. Box 178
N. Stonington, CT 06359

MR. LUIGI PETRULLO
2431 N. EDGEWOOD STREET
ARLINGTON, VA 22207

Dr. Steven M. Pine
N660 ELLIOTT HALL
UNIVERSITY OF MINNESOTA
75 E. RIVER ROAD
MINNEAPOLIS, MN 55455

Dr. Peter Polson
DEPT. OF PSYCHOLOGY
UNIVERSITY OF COLORADO
BOULDER, CO 80302

Dr. Frank Pratzner
Center for Vocational Education
Ohio State University
1960 Kenny Road
Columbus, OH 43210

Dr. Diane M. Ramsey-Klee
R-K RESEARCH & SYSTEM DESIGN
3947 RIDGEMONT DRIVE
MALIBU, CA 90265

MIN. RET. M. RAUCH
P II 4
BUNDESMINISTERIUM DER VERTEIDIGUNG
POSTFACH 161
53 BONN 1, GERMANY

Dr. Mark D. Reckase
Educational Psychology Dept.
University of Missouri-Columbia
12 Hill Hall
Columbia, MO 65201

Dr. Joseph W. Rigney
Univ. of So. California
Behavioral Technology Labs
3717 South Hope Street
Los Angeles, CA 90007

Dr. Andrew M. Rose
American Institutes for Research
1055 Thomas Jefferson St. NW
Washington, DC 20007

Dr. Leonard L. Rosenbaum, Chairman
Department of Psychology
Montgomery College
Rockville, MD 20850

Prof. Fumiko Samejima
DEPT. OF PSYCHOLOGY
UNIVERSITY OF TENNESSEE
KNOXVILLE, TN 37916

Dr. Benjamin Schneider
Dept. of Psychology
Univ. of Maryland
College Park, MD 20742

Dr. Walter Schneider
DEPT. OF PSYCHOLOGY
UNIVERSITY OF ILLINOIS
CHAMPAIGN, IL 61820

Dr. Lyle Schoenfeldt
School of Management
Rensselaer Polytechnic Institute
Troy, NY 12181

Dr. Robert J. Seidel
INSTRUCTIONAL TECHNOLOGY GROUP
HUMRO
300 N. WASHINGTON ST.
ALEXANDRIA, VA 22314

Dr. Richard Snow
School of Education
Stanford University
Stanford, CA 94305
1 Dr. Robert Sternberg
Dept. of Psychology
Yale University
Box 11A, Yale Station
New Haven, CT 06520

1 DR. ALBERT STEVENS
BOLT BERANEK & NEWMAN, INC.
50 MOULTON STREET
CAMBRIDGE, MA 02138

1 Cr. C. Harold Stone
1428 Virginia Avenue
Glendale, CA 91202

1 Mr. D. J. Sullivan
c/o Canyon Research Group, Inc.
741 Lakefield Road
Westlake Village, CA 91361

1 Dr. Patrick Suppes
INSTITUTE FOR MATHEMATICAL STUDIES
IN THE SOCIAL SCIENCES
STANFORD UNIVERSITY
STANFORD, CA 94305

1 Dr. Kikumi Tatsuoka
Computer Based Education Research Laboratory
252 Engineering Research Laboratory
University of Illinois
Urbana, IL 61801

1 Dr. Perry Thorndyke
THE RAND CORPORATION
1700 MAIN STREET
SANTA MONICA, CA 90406

1 Dr. Benton J. Underwood
Dept. of Psychology
Northwestern University
Evanston, IL 60201

1 Dr. Robert Vineberg
HumRRO/Western Division
27857 Berwick Drive
Carmel, CA 93921

1 DR. THOMAS WALLSTEN
PSYCHOMETRIC LABORATORY
DAVIE HALL 013A
UNIVERSITY OF NORTH CAROLINA
CHAPEL HILL, NC 27514

1 Dr. John Wannous
Department of Management
Michigan University
East Lansing, MI 48824

1 Dr. Claire E. Weinstein
Educational Psychology Dept.
Univ. of Texas at Austin
Austin, TX 78712

1 Dr. David J. Weiss
N660 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455

1 DR. KEITH WESCOURT
INSTITUTE FOR MATHEMATICAL STUDIES
IN THE SOCIAL SCIENCES
STANFORD UNIVERSITY
STANFORD, CA 94305

1 Dr. Anita West
Denver Research Institute
University of Denver
Denver, CO 80201

1 DR. SUSAN E. WHITELY
PSYCHOLOGY DEPARTMENT
UNIVERSITY OF KANSAS
LAWRENCE, KANSAS 66044