DESIGN AND FABRICATION OF TRANSPORT SPHERES FOR HIGH VACUUM USE

Martin McDonald

Wentworth Institute of Technology
550 Huntington Avenue
Boston, Massachusetts 02115

31 August 1976

Scientific Report #3

Approved for public release; distribution unlimited.

This research was sponsored by the Defense Nuclear Agency under Subtask K11BAXHX504, Work Unit 04, entitled "Ion Composition Measurements to Define the Physical Causes of Equatorial Ionospheric Irregularities."

AIR FORCE GEOPHYSICS LABORATORY
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
HANSCOM AFB, MASSACHUSETTS 01731
Qualified requestors may obtain additional copies from the Defense Documentation Center. All others should apply to the National Technical Information Service.
Title: Design and Fabrication of Transport Spheres for High Vacuum Use

Author(s): Martin McDonald

Performing Organization: Wentworth Institute of Technology, 550 Huntington Avenue, Boston, Massachusetts 02115

Controlling Office: Air Force Geophysics Laboratory, Hanscom AFB, Massachusetts 01731

Report Date: 31 August 1976

Number of Pages: 25

Security Class: Unclassified

Distribution Statement: Approved for public release. Distribution unlimited

Abstract: The material in this manuscript describes the design and development of an efficient cost effective method of transporting air samples obtained in high altitude balloon launched flights.

Keywords:
- Electropolish
- Hydro-forming
- Diversy Clean
- Hexamethydisilazane
- Electron Beam Weld
- Silation Process
- T.I.G. Weld
- Transport Sphere
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0</td>
<td>REQUIREMENTS</td>
<td>1</td>
</tr>
<tr>
<td>3.0</td>
<td>DESCRIPTION</td>
<td>1</td>
</tr>
<tr>
<td>3.1</td>
<td>Gas Transport Sphere - Model I</td>
<td>1</td>
</tr>
<tr>
<td>3.2</td>
<td>Gas Transport Sphere - Model II</td>
<td>5</td>
</tr>
<tr>
<td>3.3</td>
<td>Gas Transport Sphere - Model III</td>
<td>5</td>
</tr>
<tr>
<td>3.4</td>
<td>Silation Process</td>
<td>8</td>
</tr>
<tr>
<td>4.0</td>
<td>CONCLUSION</td>
<td>9</td>
</tr>
</tbody>
</table>

LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gas Transport Sphere (Mod I)</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Gas Transport Sphere (Mod II)</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Gas Transport Sphere (Mod III)</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Silation Process, Sphere</td>
<td>7</td>
</tr>
</tbody>
</table>
LIST OF CONTRIBUTORS

The following individuals have contributed in various phases to this report:

Otto Molter, Sr. Exp. Machinist
Amy Gaiennie, Secretary
1.0 INTRODUCTION

During this period, Wentworth Institute of Technology supported the efforts of the Whole Air Sample Lab of the Composition Branch, AFGL, in the design and fabrication of components, assemblies and related equipment used in the study of atmospheric composition. This included conducting the necessary engineering liaison with AFGL for the purpose of establishing design parameters of instruments; designing, in mechanical detail, components and assemblies; fabricating items resulting from this design; determining the needs for possible re-design, and making recommendations for further modifications.

2.0 REQUIREMENTS

A reliable method to hold and transport a whole air sample gathered after a balloon launch and recovery was required.

The initial transport units were spherical in design with a volumetric capacity of 1 mole of gas (22.4 liters at standard atmosphere and pressure). (See Figure 1 for configuration.) An ultra-high vacuum valve was attached to one end of the sphere. A cold finger was attached to the opposite end; and extended inside the sphere. All parts were 304 stainless steel; all weld joints were T.I.G. or Electron Beam welded. The internal surfaces were gold-plated to insure non-reactive surfaces exposed to gas sample. The maximum allowable leak rate of the container was 5×10^{-10} STD cc/sec.

3.0 DESCRIPTION

3.1 Gas Transport Sphere - Model I

The hemispheres were generated by spin forming and required a pickling process to remove the surface scale. After the required
machining of the hemispheres, the cold finger and valve were T.I.G. welded to their respective hemispheres. Due to the length of the cold finger, appropriate support braces were added, and T.I.G. welded in position.

The hemispheres were now electro-polished with particular care given to the internal surfaces. It should be stated here that due to the spin forming of the hemispheres, undesirable concentric lines or grooves were formed on the inner surfaces. Electro-polishing -- a smoothing, as well as a cleaning process -- leads to a reduction in surface area. This process therefore, significantly reduced if not eliminated these concentric grooves. The generation of this smooth, scratch-free surface insures a clean surface free from virtual leaks.

Buffing is another method of creating a smooth, scratch-free surface, but is unacceptable in vacuum work for several reasons. Buffing compounds may become imbedded in the surface pores of the metal, creating a cleaning problem. Also, metal peaks bent and smoothed over during the buffing operation can trap gas particles, and create virtual leaks resulting in long system pump down and consequently a dirty vacuum system.

After electro-polishing, the hemispheres were gold-plated on the interior surfaces. Next, the hemispheres were mated and welded around the circumference flange. This was the only weld which could not be accomplished on the vacuum side of the spheres. The completed spheres were leak tested and were now ready for lab tests prior to flight. Figure 1 describes the general configuration of these transport spheres.
3.2 Gas Transport Sphere - Model II

Prior to the next balloon flight, new transport spheres were designed and fabricated incorporating one modification. The cold finger was no longer a tube extending into the sphere, but an internal sphere with an external volume of 11 liters. This, of course, reduced the gas handle volume to slightly more than a half mole, or 12.4 liters. These new parameters were still within acceptable limits for effective sample gathering.

The external configuration remained the same as Mod I, but the inner sphere was fabricated from hydro-formed hemispheres. This method of forming left the inner and outer surfaces of the hemispheres in excellent condition. The hemispheres were electro-polished with particular attention given to surfaces exposed to the vacuum side (gas contact).

To restrict movement, the inner sphere was supported at four points around its circumference between inner and outer spheres. The outer hemispheres were welded around the circumference, and leak tested.

These spheres were not gold-plated, which allowed the comparison between a gold-plated and unplated surface. The Mod II configuration is shown in Figure 2.

3.3 Gas Transport Sphere - Model III

Due to a change in the gas handling mode, a new transport sphere design was initiated. The design was simplified by the elimination of the cold finger. The design incorporated the use of mixing bowls as hemispheres, as a means of reducing the cost of spin forming or hydro-forming hemispheres.
Four and eight quart bowls were used in the fabrication of these spheres. During vacuum testing, it was found that the flat surface base of the bowls was too flexible a surface on which to rigidly attach a nipple and valve. Therefore this portion was machined out and a reinforcing plate T.I.G. welded in position. Mounted on and T.I.G. welded to this plate was a nipple and flange assembly.

The bowls were diversely brightened with a non-electrolytic cleaning/polishing solution. This method was used because of the thin cross-sections of the bowls and the greater loss of surface area material experienced in electro-polishing. After cleaning, the bowls were T.I.G. welded together around the circumference. A Granville-Phillips gold seal valve was mounted on the flanged end of the sphere and the unit was leak checked on a vacuum system for vacuum integrity. A pictorial view of the Model II configuration is shown in Figure 3.

3.4 Silation Process

A method of rendering the vacuum surfaces of the Model III spheres impervious to any reactions that might occur between the stainless steel surface and the gas sample was devised. The surfaces were silated with hexamethyldisilazane, an organic compound.

The process of silation was as follows: The spheres were baked out to drive off residual gases and evacuated to 5×10^{-5} torr. The vacuum system was valved off and the silation fluid slowly admitted into the sphere. The sphere valve was closed and the unit allowed to set for 24 hours, after which the system and sphere
valves were reopened and the unit pumped down to \(5 \times 10^{-8}\) torr. The valves were closed and the unit removed from the system. The transport spheres were ready for lab test prior to flight. A pictorial view of this process is shown in Figure 4.

4.0 CONCLUSION

In the first two transport spheres, i.e. Models I and II, a liquid helium cold finger was required and both spin forming and hydro-forming were utilized in their construction. The Model III transport sphere required no cold finger due to the introduction of a cryogenic tri-sampler; and it was constructed from stainless steel salad bowls. With some reinforcement of these bowls, i.e. the addition of a plate on the bottom of the bowl supporting the valve, they have proved satisfactory and the cost savings over the previous designs were considerable. The process of diversity cleaning and silation of the vacuum surfaces seems to be a reliable method of rendering stainless steel surfaces non-reactive to the air samples. This method has a definite cost saving over gold plating, in addition to increased reliability.
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Director</th>
<th>Director</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defense Advanced Rsch Proj Agency</td>
<td>Joint Strat TGT Planning Staff JCS</td>
</tr>
<tr>
<td>Architect Building</td>
<td>OFFUTT AFB</td>
</tr>
<tr>
<td>1400 Wilson Blvd.</td>
<td>Omaha, NB 68113</td>
</tr>
<tr>
<td>Arlington, VA 22209</td>
<td>01CY Attn JPST Maj J S Green</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>01CY Attn Sto Kent Kresa</td>
<td></td>
</tr>
<tr>
<td>01CY Attn Lt C W A Whitaker</td>
<td></td>
</tr>
<tr>
<td>01CY Attn STO Capt J Justice</td>
<td></td>
</tr>
<tr>
<td>01CY Attn TTO Fred A Koether</td>
<td></td>
</tr>
<tr>
<td>Defense Documentation Center</td>
<td></td>
</tr>
<tr>
<td>Cameron Station</td>
<td></td>
</tr>
<tr>
<td>Alexandria, VA 22314</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY Attn TC</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(12 copies if open public)</td>
<td></td>
</tr>
<tr>
<td>2CY Attn TC</td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td></td>
</tr>
<tr>
<td>Defense Intelligence Agency</td>
<td></td>
</tr>
<tr>
<td>Washington, DC 20301</td>
<td></td>
</tr>
<tr>
<td>01CY Attn DT-1 Mr Knoll</td>
<td></td>
</tr>
<tr>
<td>01CY Attn DT-1C</td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td></td>
</tr>
<tr>
<td>Defense Nuclear Agency</td>
<td></td>
</tr>
<tr>
<td>Washington DC 20305</td>
<td></td>
</tr>
<tr>
<td>03CY Attn STTI Tech Library</td>
<td></td>
</tr>
<tr>
<td>01CY Attn RAAF P Fleming</td>
<td></td>
</tr>
<tr>
<td>03CY Attn RAAF Charles A Blank</td>
<td></td>
</tr>
<tr>
<td>01CY Attn STST Archives</td>
<td></td>
</tr>
<tr>
<td>01CY Attn STRA</td>
<td></td>
</tr>
<tr>
<td>01CY Attn RAAF Maj John Clark</td>
<td></td>
</tr>
<tr>
<td>01CY Attn RAAF Harold C Fitz Jr</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td></td>
</tr>
<tr>
<td>Field Command</td>
<td></td>
</tr>
<tr>
<td>Defense Nuclear Agency</td>
<td></td>
</tr>
<tr>
<td>Kirtland AFB, NM 87115</td>
<td></td>
</tr>
<tr>
<td>01CY Attn FCT William S Isengard</td>
<td></td>
</tr>
<tr>
<td>01CY Attn FCPR</td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td></td>
</tr>
<tr>
<td>Interservice Nuclear Weapons School</td>
<td></td>
</tr>
<tr>
<td>Kirtland AFB, NM 87115</td>
<td></td>
</tr>
<tr>
<td>01CY Attn Document Control</td>
<td></td>
</tr>
</tbody>
</table>
Commander
Naval Surface Weapons Center
White Oak, Silver Spring, MD 20910
01CY Attn Code WA501 Navy Nuc Prgms Off
01CY Attn L Rudlin
01CY Attn D J Land

AF Geophysics Laboratory, AFSC
Hanscom AFB, MA 01731
01CY Attn LKB A Fair
01CY Attn OPR Alva T Stair
01CY Attn OPR J Rodgers
01CY Attn LKD Rocco S Narcisi
01CY Attn LKB John Paulson
01CY Attn LKB L Weeks
01CY Attn OPR James C Ulwick
01CY Attn LKB Edmond Murad
01CY Attn LKC D Golomb
01CY Attn LKB Kenneth S W Champion
01CY Attn LKB T J Keneshea
01CY Attn LKB William Swider Jr
01CY Attn LKD C R Philbrick
01CY Attn OP John S Garing
01CY Attn LKS F R Innes
01CY Attn LKS R A Van Tassel
01CY Attn LKO Robert E Huffman
01CY Attn OPR J Kennealy
01CY Attn OPR F Delgreco
01CY Attn OPR Harold Gardner
01CY Attn OPR J H Schummers
01CY Attn OPR R O'Neill
01CY Attn OPR R E Murphy
01CY Attn SUDL AFGL Rach LIB

AF Weapons Laboratory, AFSC
Kirtland AFB, NM 87117
01CY Attn DYT Capt Richard A Harris
01CY Attn 01DYT Lt John Lillis
01CY Attn DYT Capt Daniel A Matusk
01CY Attn DYT Capt Gary D Cable
01CY Attn DYT Capt David W Goetz
01CY Attn DYT Capt Hollars
01CY Attn DYT Joseph Janni
01CY Attn Sul

APTAC
Patrick AFB, FL 32925
01CY Attn TF/Maj Wiley
01CY Attn TF/Maj E Hines
01CY Attn TN

Headquarters
Air Force Systems Command
Andrews AFB
Washington, DC 20331
01CY Attn SDR

Headquarters
Electronic Systems Division, (AFSC)
Hanscom AFB, MA 01731
01CY Attn FSTI

Commander
Foreign Technology Division, AFSC
Wright-Patterson AFB, OH 45433
01CY Attn TD-RTA Library
01CY Attn Maj E Frey

HQ USAF/IN
Washington, DC 20330
01CY Attn INS

HQ USAF/RD
Washington, DC 20330
01CY Attn RDQ H F Kerr
01CY Attn RD DCS D Rand
01CY Attn RDQP

Commander
Rome Air Development Center, AFSC
Griffiss AFB, NY 13440
01CY Attn V Coyne
01CY Attn EMTLD Doc Library
01CY Attn OCSF J J Simons
01CY Attn TDR

Samso/SZ
Post Office Box 92960
Worldway Postal Center
Los Angeles, CA 90009
(Space Defense Systems)
01CY Attn SZJ Major Lawrence Doan

Commander in Chief
Strategic Air Command
OFFUTT AFB, NB 68113
01CY Attn XFFS Maj Brian G Stephan
Ecometrics
716 Willow Glen Road
Santa Barbara, CA 93105
01CY Attn Nyle G Otterback

Epsilon Laboratories, Inc.
Preston Court
Bedford, MA 01730
01CY Attn John Calchines
01CY Attn Henry Miranda
01CY Attn Carl Accardo

FSL, Inc.
495 Java Drive
Sunnyvale, CA 94086
01CY Attn James Marshall
01CY Attn W R Bell

General Electric Company
Space Division
Valley Forge Space Center
Goddard Blvd King of Prussia
P.O. Box 8555
Philadelphia, PA 19101
01CY Attn T Baurer
01CY Attn Robert H Edsall
01CY Attn P Zavitsanos
01CY Attn M H Bortner Space Sci Lab
01CY Attn E Alyfa
01CY Attn J Burns
01CY Attn M Linevsky

General Electric Company
Tempo-Center for Advanced Studies
816 State Street (P.O. Drawer QQ)
Santa Barbara, CA 93102
01CY Attn Dasic Art Faryok
01CY Attn Tim Stephens
01CY Attn Don Chandler
01CY Attn Warren S Knapp
01CY Attn B Gambill
01CY Attn Dasic

General Motors Corporation
Delco Electronics Division
Santa Barbara Operations
6767 Hollister Avenue
Goleta, CA 93107
01CY Attn Robin I Prfmich

General Research Corporation
P.O. Box 3587
Santa Barbara, CA 93105
01CY Attn H H Lewis
01CY Attn John Ise Jr

General Research Corporation
Washington Operations
Westgate Research Park
7655 Old Springhouse Road, Suite 700
McLean, VA 22101
01CY Attn Thomas M Zakrzewski

Geophysical Institute
University of Alaska
Fairbanks, AK 99701
(All Class Attn: Security Officer)
01CY Attn Henry Cole
01CY Attn R Parthasarathy
01CY Attn Neal Brown (Unc only)
01CY Attn B J Watkins
01CY Attn I N Davis (Unc only)
01CY Attn J S Wagner Physics Dept
01CY Attn D J Henderson

Govt Fiscal Relations & Patent Off
275 Admin Building AG-70
University of Washington
Seattle, WA 98195
01CY Attn Kenneth C Clark
01CY Attn R Geballe

Harvard University
Department of Atmospheric Sciences
Pierce Hall
Cambridge, MA 02138
01CY Attn Michael B McElroy

Howard University
Department of Chemistry
Washington, DC 20059
01CY Attn: William Jackson

HSS, Inc.
2 Alfred Circle
Bedford, MA 01730
01CY Attn H Stewart
01CY Attn M P Shuler
01CY Attn Donald Hansen
Minnesota, University of
Morris Campus
Morris, MN 56267
01CY Attn Merle Hirsch

Photometrics, Inc.
442 Marrett Road
Lexington, MA 02173
01CY Attn Irving L Kofsky

Mission Research Corporation
735 State Street
Santa Barbara, CA 93101
01CY Attn Dave Sowle
01CY Attn Ralph Kilb
01CY Attn W F Crevier
01CY Attn Conrad L Longmire
01CY Attn Neal J Carron
01CY Attn R Hendrick
01CY Attn R N Wilson
01CY Attn R Bogusch
01CY Attn M Scheibe
01CY Attn D Archer
01CY Attn D Sappenfield
01CY Attn P Fischer

Physical Dynamics Inc.
P.O. Box 1069
Berkeley, CA 94701
01CY Attn A Thompson
01CY Attn Joseph B Workman

Mitre Corporation, The
P.O. Box 208
Bedford, MA 01730
01CY Attn S A Morin M/S
01CY Attn J N Freedman

Physical Sciences, Inc.
30 Commerce Way
Woburn, MA 01801
01CY Attn Kurt Wray
01CY Attn R L Taylor

National Academy of Sciences
Attn: National Materials Advisory
2101 Constitution Avenue
Washington, DC 20418
02CY Attn Edward R Dyer
01CY Attn J R Stevers
01CY Attn William C Bartley

Physics International Company
2700 Merced Street
San Leandro, CA 94577
01CY Attn Doc Con for Tech Lib

New York at Buffalo, State Univ of
Buffalo, NY 14214
01CY Attn Gilbert O Brink

Pittsburgh, University of
the Commonwealth System of Higher Educ
Cathedral of Learning
Pittsburgh, PA 15213
01CY Attn Wade L Fite
01CY Attn Manfred A Biondi
01CY Attn Frederick Kaufman
01CY Attn Edward Gerjudy

Pacific-Sierra Research Corp.
1456 Cloverfield Blvd.
Santa Monica, CA 90404
01CY Attn F C Field Jr

Princeton Univ., The Trustees of
Forrestal Campus Library
Box 710
Princeton University
Princeton, NJ 08540
01CY Attn Arnold J Kelly
(Use P.O. Box 36 for Unclass only)

Pennsylvania State University
Industrial Security Office
Room 5, Old Main Building
University Park, PA 16802
01CY Attn L Hale
01CY Attn J S Nisret

R & D Associates
P.O. Box 9695
Marina Del Rey, CA 90291
01CY Attn R P Turco
01CY Attn Richard Latter
01CY Attn Robert F Lelevier
01CY Attn D Dee
01CY Attn R G Lindgren
01CY Attn Charles H Humphrey
01CY Attn Bryan Gabbard
01CY Attn H A Dry
01CY Attn Forrest Gilmore
01CY Attn Albert I Latter