CHARACTERIZATION OF THE DYNAMIC BEHAVIOR OF POROUS SOLIDS
Part 6—Dynamic Response of Porous Ceramics—Experiments

SRI International
333 Ravenswood Avenue
Menlo Park, California 94025

March 1976

CONTRACT No. DNA 001-74-C-0150

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

THIS WORK SPONSORED BY THE DEFENSE NUCLEAR AGENCY
UNDER RDT&E RMSS CODE B342076464 N99QAXXC30840 H25900.

Prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, D.C. 20305
Destroy this report when it is no longer needed. Do not return to sender.
CHARACTERIZATION OF THE DYNAMIC BEHAVIOR OF POROUS SOLIDS

Part 6: Dynamic Response of Porous Ceramics—Experiments

D. C. Erlich, Author
D. R. Curran, Supervisor

PERFORMING ORGANIZATION NAME AND ADDRESS
SRI International
333 Ravenswood Avenue
Menlo Park, California 94025

CONTROLLING OFFICE NAME AND ADDRESS
Director
Defense Nuclear Agency
Washington, D.C. 20305

DISTRIBUTION STATEMENT (of this report)
Approved for public release; distribution unlimited.

SUPPLEMENTARY NOTES
This work sponsored by the Defense Nuclear Agency under RDT&E RMSS Code B342076646 N99QAXAC30840 H2390D.

KEY WORDS
- Porous Ceramic
- Lagrangian Gage Technique
- Alumina
- Constitutive Paths
- Hafnium Titanate

ABSTRACT
High pressure dynamic stress wave experiments were performed on sintered alumina of several initial porosities and the multiple Lagrangian gage technique was used to record stress and particle velocity histories at several locations within the specimen in order to calculate the constitutive loading and unloading paths. We now have a family of such paths (shown in Figure 10) that can be used to construct an equation-of-state surface for a predictive hydrodynamic computer code.
The results show that sintered alumina with initial porosities ranging from 20% to 45% exhibit no significant time-dependence in their constitutive relations when shocked to peak pressure of hundreds of kbar (where the precursor is overdriven). When shocked to pressures slightly above the Hugoniot elastic limit, however, a time-dependent response does exist (see Figures A-9 and A-10). Further experiments would be needed to give us an accurate predictive capability in this region.

We performed a few experiments on flame-sprayed alumina and flame-sprayed hafnium titanate, which yield constitutive paths in the region below 7 kbar.
PREFACE

This report is Volume 6 in a seven-volume series on Characterization of the Dynamic Behavior of Porous Solids. The titles and authors of the individual reports in the series are:

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume 1 Summary of Results</td>
<td>D. R. Curran, R. E. Tokheim, M. J. Ginsberg, L. Seaman, A. B. Lutze, D. C. Erlich, J. T. Rosenberg, and D. A. Shockey</td>
</tr>
<tr>
<td>Volume 2 Computational Models for Predicting the Dynamic Stress Response of Some Porous Ceramics in a Radiation Environment</td>
<td>R. E. Tokheim</td>
</tr>
<tr>
<td>Volume 3 Computational Model for Predicting the Dynamic Stress Response of Porous Beryllium in a Radiation Environment</td>
<td>R. E. Tokheim</td>
</tr>
<tr>
<td>Volume 4 Electron Beam Studies of Porous Beryllium and Porous Ceramics</td>
<td>A. B. Lutze</td>
</tr>
<tr>
<td>Volume 5 Dynamic Response of Porous Beryllium—Experiments</td>
<td>J. T. Rosenberg</td>
</tr>
<tr>
<td>Volume 6 Dynamic Response of Porous Ceramics—Experiments</td>
<td>D. C. Erlich</td>
</tr>
<tr>
<td>Volume 7 Microstructural Characterization of Several Porous Ceramics and Porous Beryllium</td>
<td>D. A. Shockey and J. P. Wilhelm</td>
</tr>
</tbody>
</table>
Conversion factors for U.S. customary to metric (SI) units of measurement.

<table>
<thead>
<tr>
<th>To Convert From</th>
<th>To Convert To</th>
<th>Multiply By</th>
</tr>
</thead>
<tbody>
<tr>
<td>angstrom</td>
<td>meters (m)</td>
<td>1.000 000 × 10^-10</td>
</tr>
<tr>
<td>atmosphere (normal)</td>
<td>kilo pascal (kPa)</td>
<td>1.013 25 × 10^-2</td>
</tr>
<tr>
<td>bar</td>
<td>kilo pascal (kPa)</td>
<td>1.000 000 × 10^-2</td>
</tr>
<tr>
<td>barn</td>
<td>meter (m)</td>
<td>1.000 000 × 10^-28</td>
</tr>
<tr>
<td>British thermal unit (thermochemical)</td>
<td>joule (J)</td>
<td>1.054 350 × 10^-3</td>
</tr>
<tr>
<td>joule (J)</td>
<td>joule (J)</td>
<td>4.184 000</td>
</tr>
<tr>
<td>calorie (thermochemical)</td>
<td>mega joule/m^2 (MJ/m^2)</td>
<td>4.184 000 × 10^-3</td>
</tr>
<tr>
<td>curie</td>
<td>radian (rad)</td>
<td>1.745 329 × 10^-2</td>
</tr>
<tr>
<td>degree (angle)</td>
<td>degree kelvin (K)</td>
<td>(t + 459.67)/1.8</td>
</tr>
<tr>
<td>erg</td>
<td>joule (J)</td>
<td>1.000 000 × 10^-7</td>
</tr>
<tr>
<td>erg/second</td>
<td>watt (W)</td>
<td>3.480 000 × 10^-1</td>
</tr>
<tr>
<td>foot</td>
<td>meter (m)</td>
<td>1.000 000 × 10^-1</td>
</tr>
<tr>
<td>foot-pound-force</td>
<td>joule (J)</td>
<td>1.355 818</td>
</tr>
<tr>
<td>gallon (U. S. liquid)</td>
<td>meter (m)</td>
<td>3.785 412 × 10^-3</td>
</tr>
<tr>
<td>inch</td>
<td>meter (m)</td>
<td>2.540 000 × 10^-2</td>
</tr>
<tr>
<td>joule/kg (J/kg) (radiation dose absorbed)</td>
<td>joule (J)</td>
<td>1.000 000</td>
</tr>
<tr>
<td>kiloton</td>
<td>terajoules</td>
<td>4.183</td>
</tr>
<tr>
<td>kip (1000 lbf)</td>
<td>newton (N)</td>
<td>4.448 222 × 10^-3</td>
</tr>
<tr>
<td>kip/inch^2 (ksi)</td>
<td>kilo pascal (kPa)</td>
<td>6.894 757 × 10^-3</td>
</tr>
<tr>
<td>kip/ft^2 (kips)</td>
<td>newton-second/m^2 (N·s/m^2)</td>
<td>1.000 000 × 10^-2</td>
</tr>
<tr>
<td>micron</td>
<td>meter (m)</td>
<td>1.000 000 × 10^-6</td>
</tr>
<tr>
<td>mil</td>
<td>meter (m)</td>
<td>2.540 000 × 10^-5</td>
</tr>
<tr>
<td>mile (international)</td>
<td>meter (m)</td>
<td>1.609 344 × 10^-3</td>
</tr>
<tr>
<td>ounce</td>
<td>kilogram (kg)</td>
<td>2.834 952 × 10^-2</td>
</tr>
<tr>
<td>pound-force (lbs avoirdupois)</td>
<td>newton (N)</td>
<td>4.448 222</td>
</tr>
<tr>
<td>pound-force inch</td>
<td>newton-meter (N·m)</td>
<td>1.129 848 × 10^-1</td>
</tr>
<tr>
<td>pound-force/inch</td>
<td>newton-meter (N/m)</td>
<td>1.751 268 × 10^-2</td>
</tr>
<tr>
<td>pound-force/ft^2 (psi)</td>
<td>kilo pascal (kPa)</td>
<td>4.788 026 × 10^-2</td>
</tr>
<tr>
<td>pound-force/inch^2 (ksi)</td>
<td>kilo pascal (kPa)</td>
<td>6.894 757</td>
</tr>
<tr>
<td>pound-mass (lbm avoirdupois)</td>
<td>kilogram (kg)</td>
<td>4.535 924 × 10^-1</td>
</tr>
<tr>
<td>pound-mass/ft^3 (moment of inertia)</td>
<td>kilogram-meter^2 (kg·m^2)</td>
<td>4.214 011 × 10^-2</td>
</tr>
<tr>
<td>rad (radiation dose absorbed)</td>
<td>*Gray (Gy)</td>
<td>1.000 000</td>
</tr>
<tr>
<td>roentgen</td>
<td>coulomb/kg (C/kg)</td>
<td>2.579 760 × 10^-4</td>
</tr>
<tr>
<td>shake</td>
<td>second (s)</td>
<td>1.000 000 × 10^-8</td>
</tr>
<tr>
<td>slug</td>
<td>kilogram (kg)</td>
<td>1.459 390 × 10^-1</td>
</tr>
<tr>
<td>torr (mm Hg, °C)</td>
<td>kilo pascal (kPa)</td>
<td>1.333 22 × 10^-1</td>
</tr>
</tbody>
</table>

*The becquerel (Bq) is the SI unit of radioactivity; 1 Bq = 1 event/s.
**The Gray (Gy) is the SI unit of absorbed radiation.

A more complete listing of conversions may be found in "Metric Practice Guide E380-74," American Society for Testing and Materials.
CONTENTS

PREFACE .. 1

LIST OF ILLUSTRATIONS .. 4

LIST OF TABLES .. 6

I IMPACT EXPERIMENTS .. 7

II EXPERIMENTAL PROCEDURES 9

III EXPERIMENTAL RESULTS AND ANALYSIS 21

IV REFERENCES .. 32

APPENDIX Experimental and Analytical Records and Discussion A-1
 of Experimental Problems Encountered
ILLUSTRATIONS

1. Schematic Depiction of Constitutive Paths Obtained by Loading Different Initial Porosities 12

2. Schematic Diagram of HE Experiments with Sintered Alumina ... 13

3. Typical Gage Plane in HE Alumina Experiments ... 15

4. Final Preparation of HE Alumina Experiments ... 17

5. Experimental Setup for Gas Gun Shots ... 19

6. Oscillographs from Shot No. 1 ... 23

7. Composite Particle Velocity and Stress Histories from Shot No. 1 ... 25

8. Stress-Volume Constitutive Paths Calculated for Shot No. 1 .. 27

9. Comparison of Constitutive Paths Calculated from Particle Velocity and Stress Gage Records for First Gage Plane of Shot No. 1 .. 28

10. Constitutive Paths Calculated from Sintered Alumina Experiments (Numbers Refer to Shot Number) 29

A-1 Composite (a) Particle Velocity Histories and (b) Stress Histories from Shot No. 2 A-3

A-2 Constitutive Paths Calculated from (a) Particle Velocity Gage and (b) Stress Gage Records for Shot No. 2 ... A-4

A-3 Composite (a) Particle Velocity Histories and (b) Stress Histories from Shot No. 3 A-5

A-4 Constitutive Paths Calculated from (a) Particle Velocity Gage and (b) Stress Gage Records for Shot No. 3 ... A-6

A-5 Composite (a) Particle Velocity Histories and (b) Stress Histories from Shot No. 4 A-7
A-6 Constitutive Paths Calculated from (a) Particle Velocity Gage and (b) Stress Gage Records for Shot No. 4 A-8

A-7 Composite (a) Particle Velocity Histories and (b) Stress Histories from Shot No. 5 A-9

A-8 Constitutive Paths Calculated from (a) Particle Velocity Gage and (b) Stress Gage Records for Shot No. 5 A-10

A-9 Composite (a) Particle Velocity Histories from Shot No. 6 and (b) Stress Histories from Shot No. 9 A-11

A-10 Constitutive Paths Calculated from (a) Particle Velocity Gage for Shot No. 6 and (b) Stress Gage Records for Shot No. 9 A-12

A-11 Composite (a) Particle Velocity Histories and (b) Stress Histories from Shot No. 10 A-13

A-12 Constitutive Paths Calculated from (a) Particle Velocity Gage and (b) Stress Gage Records for Shot No. 10 A-14

A-13 Composite Particle Velocity Histories (a) and Calculated Constitutive Paths (b) from Shot No. 11 A-15

A-14 Composite Particle Velocity Histories (a) and Calculated Constitutive Paths (b) from Shot No. 51 A-16

A-15 Composite Stress Histories (a) and Calculated Constitutive Paths (b) from Shot No. 51 A-17

A-16 Composite Stress Histories (a) and Calculated Constitutive Paths (b) from Shot No. 152 A-18
TABLES

- Conversion Factors for U.S. Customary to Metric (SL) Units of Measurement .. 2

1. Dynamic Loading Experiments and Experimental Parameters ... 11

2. Configurations and Dimensions for Dynamic Loading Experiments ... 22
I IMPACT EXPERIMENTS

The main objective of this phase of the program was to perform a set of dynamic loading experiments on sintered alumina to generate equation-of-state paths that would be used to construct the stress-volume-energy equation-of-state surface. The stress and energy regions selected for study were those attainable with available techniques, namely, gas gun and high explosives (HE) loading, and those expected to yield the most valuable information for determination of parameters, such as yield strength, and the shape of the equation-of-state surface. The secondary objective was to perform a few experiments on several other porous ceramics, including flame-sprayed alumina and flame-sprayed hafnium titanate to obtain a first estimate of some of their equation-of-state characteristics.

We performed eleven dynamic loading experiments on sintered alumina and six on the flame-sprayed alumina and hafnium titanate. Our experimental method was the multiple embedded Lagrangian gage technique, which, together with the Lagrangian gage analysis, forms the most powerful technique currently available for determining the equation-of-state paths followed by any relatively homogeneous material (that is, a material in which the largest inhomogeneities are small with respect to the thickness in the direction of stress wave propagation) subject to high-pressure transient loading. The Lagrangian technique has been used successfully at SRI in the study of complex materials, such as rocks and soils, liquids, metals, and composites. The technique is based

* These materials are more fully described in Part 7 of this series.
on the simultaneous measurement of stress or particle velocity histories at several Lagrangian locations within the material of interest. These histories form a surface in stress—Lagrangian position—time or particle velocity—Lagrangian position—time 3-space, along which the differential equations of mass, momentum, and energy conservation can be integrated to calculate the specific volume, internal energy, or any other desired equation-of-state parameter at any point on this surface. Thus, the equation-of-state path that the material follows at any position within the region of stress or particle velocity measurement can be determined throughout the complete loading and unloading cycle in one experiment. This technique therefore substantially increases the amount of data obtained per shot over the standard Hugoniot experiments, which yield only a Hugoniot stress point, a shock velocity, and perhaps an initial unloading velocity.

Although the Lagrangian analysis was originally developed for use with materials exhibiting simple, time-independent flow, it has recently been extended to the point where no limitations at all are placed on the type of flow involved (except that the material undergoes one-dimensional strain in the region of measurement). Therefore, materials can now be studied that exhibit any complex or time-dependent constitutive behavior, and furthermore this study can be carried out in a region undergoing stress attenuation.
II EXPERIMENTAL PROCEDURES

To obtain simultaneous measurement of stress or particle velocity histories at several depths within a material undergoing transient loading, one needs to slice the material of interest into slabs perpendicular to the direction of stress wave propagation, and position stress or particle velocity gages in between each slab, making the gage package as thin as possible to reduce the perturbation of the flow by the gage. The loading may result either from the planar impact of a projectile launched by a gas gun, by high explosives, or by detonation of high explosives placed in contact with the material.

The two SRI gas guns are capable of reaching peak stresses of approximately 100 kbar in porous ceramics. In-contact explosives are capable of pressures up to ~ 400 kbar. Three different high explosives were used in this program: PBX 9404 and Comp B, to obtain peak stresses in the range from 250-400 kbar; and Baratol, to reach from 60-120 kbar.

Although several simultaneous stress histories or particle velocities alone would be sufficient to determine the equation-of-state paths, we decided to use both stress gages and particle velocity gages whenever possible to increase the probability of obtaining good data and to provide a means of cross-checking results.

Electromagnetic foil particle velocity gages were used to record particle velocity histories. They are based on the principle that a conductor moving at a right angle to a uniform magnetic field generates a voltage (V) across its length (l) that is directly proportional to its velocity (u), the constants of proportionality being simply the product of the magnetic field strength (B) and its length in the direction
mutually perpendicular to its velocity and the magnetic field, i.e., \(V = uB \).

Manganin gages were used to record stress histories in the region above 40 kbar and ytterbium foil gages in the region below 40 kbar. These gages are piezoresistant transducers, whose resistance changes as a function of the applied stress in a more-or-less known way. Ytterbium has been calibrated extensively in both loading and unloading in the range from 0 to 33.4 kbar,\(^1\) while the piezoresistance coefficient of manganin is known to less accuracy, particularly at higher pressures and during unloading. The disadvantages of using stress gages as opposed to particle velocity gages are (1) the stress gage calibration is based on complex material properties of the gage itself which need to be determined, while the particle velocity gage output is based entirely on geometry; and (2) the stress gage is sensitive to changes in resistivity of the adjacent materials caused by high pressures and temperatures present in HE experiments, whereas the particle velocity gage is not. The main advantage of the stress gages is that the analysis seems to be less sensitive to the numerical approximation or the fitting procedures used.\(^1\)

Table 1 lists all the dynamic loading experiments performed in this phase of the program, along with some of the basic experimental parameters. In the first eleven shots, sintered alumina was used. Three differential initial porosities of this material were selected, nominally 20%, 30%, and 45%, to attain different internal energies on loading, as shown in Figure 1. The higher the initial porosity, the higher the internal energy achieved during compression to the same stress. Of the last six shots, five used flame-sprayed alumina, and one used flame-sprayed hafnium titanate.

Figure 2 shows a schematic diagram for all the HE experiments on the baseline material. The target consists of four sintered alumina
<table>
<thead>
<tr>
<th>Shot No.</th>
<th>Type of Loading</th>
<th>Material Used</th>
<th>Gage Planes & Vel. Gage Mat’l</th>
<th>No. of Stress</th>
<th>No. of Particle Planes</th>
<th>Approx. Peak Stress (kbar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HE</td>
<td>Sintered Al₂O₃ 20% porous</td>
<td>PBX 9404</td>
<td>3 Manganin</td>
<td>3</td>
<td>370</td>
</tr>
<tr>
<td>2</td>
<td>HE</td>
<td>Sintered Al₂O₃ 20% porous</td>
<td>Comp B</td>
<td>3 Manganin</td>
<td>3</td>
<td>350</td>
</tr>
<tr>
<td>3</td>
<td>HE</td>
<td>Sintered Al₂O₃ 20% porous</td>
<td>PBX 9404</td>
<td>3 Manganin</td>
<td>3</td>
<td>360</td>
</tr>
<tr>
<td>4</td>
<td>HE</td>
<td>Sintered Al₂O₃ 20% porous</td>
<td>Baratol</td>
<td>3 Manganin</td>
<td>3</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>HE</td>
<td>Sintered Al₂O₃ 35% porous</td>
<td>PBX 9404</td>
<td>3 Manganin</td>
<td>3</td>
<td>310</td>
</tr>
<tr>
<td>6</td>
<td>HE</td>
<td>Sintered Al₂O₃ 35% porous</td>
<td>Baratol</td>
<td>3 Manganin</td>
<td>*</td>
<td>90</td>
</tr>
<tr>
<td>8</td>
<td>HE</td>
<td>Sintered Al₂O₃ 45% porous</td>
<td>PBX 9404</td>
<td>3 Manganin</td>
<td>*</td>
<td>65</td>
</tr>
<tr>
<td>9</td>
<td>HE</td>
<td>Sintered Al₂O₃ 35% porous</td>
<td>Baratol</td>
<td>3 Manganin</td>
<td>*</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>HE</td>
<td>Sintered Al₂O₃ 45% porous</td>
<td>Baratol</td>
<td>3 Manganin</td>
<td>3</td>
<td>65</td>
</tr>
<tr>
<td>11</td>
<td>HE</td>
<td>Sintered Al₂O₃ 45% porous</td>
<td>PBX 9404</td>
<td>3 Manganin</td>
<td>*</td>
<td>270</td>
</tr>
<tr>
<td>51</td>
<td>4” Gas Gun</td>
<td>Sintered Al₂O₃ 20% porous</td>
<td>0.360 mm/μsec</td>
<td>3 Ytterbium*</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td>101</td>
<td>HE</td>
<td>Flame-sprayed Al₂O₃ 2</td>
<td>PBX 9404</td>
<td>2 Manganin</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>102</td>
<td>HE</td>
<td>Flame-sprayed Al₂O₃ 2</td>
<td>PBX 9404</td>
<td>2 Manganin</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>103</td>
<td>HE</td>
<td>Flame-sprayed Al₂O₃ 2</td>
<td>PBX 9404</td>
<td>0</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>104</td>
<td>HE</td>
<td>Flame-sprayed Al₂O₃ 2</td>
<td>Baratol</td>
<td>0</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>151</td>
<td>2½” Gas Gun</td>
<td>Flame-sprayed Al₂O₃ 2</td>
<td>0.163 mm/μsec</td>
<td>3 Ytterbium</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>152</td>
<td>2½” Gas Gun</td>
<td>Flame-sprayed Hafnium titanate</td>
<td>0.092 mm/μsec</td>
<td>3 Ytterbium</td>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>

* Indicates gage records are for one of a variety of reasons not amenable to a Lagrangian analysis (see Appendix).
Each point represents a Hugoniot point and initial unloading path obtained from high explosives and gas gun experiments.

FIGURE 1 SCHEMATIC DEPICTION OF CONSTITUTIVE PATHS OBTAINED BY LOADING DIFFERENT INITIAL POROSITIES
FIGURE 2 SCHEMATIC DIAGRAM OF H.E. EXPERIMENTS WITH SINTERED ALUMINA
slabs, with gage planes sandwiched in between slabs. A set of explosive pads 6 inches (15.24 cm) high and 6 inches (15.24 cm) in diameter are placed in contact with one face of the target and are initiated by an exploding-bridgewire detonator through a plane-wave generator to induce a planar stress pulse into the target in the region of the stress gages. The stress pulse is reflected from the opposite side of the target reducing the in-material stress to zero and accelerating the in-material particle velocity to the free surface velocity. The thickness of the target slabs is small enough (0/8-inch to 3/8-inch or .3175 cm to .9525 cm) so that the region of the gages remains in one-dimensional flow until nearly the end of the unloading.

Surrounding the target and explosive are 32-inch-diameter (81.28 cm) Helmholtz coils which create the uniform magnetic field (of approximately 500 G) needed by the particle velocity gages. The coils are simply copper wire wrapped around a wooden frame. A large capacitor is dumped through the coils, and when the current, which is monitored by an inductive probe, builds up to a maximum, the HE is detonated. The coils, of course, are destroyed in each shot.

Figure 3 shows a photograph of a typical gage plane. There are three types of gages. One is the 4-terminal manganin foil gage with a 1/4-inch square grid and copper-coated leads. The leads are parallel to the magnetic field, which ensures that no voltage from the field will be induced across the gage. The second is the copper foil electromagnetic particle velocity gage. The third gage is identical in operation to the particle velocity gage, except that it is connected in series with similar gages in the other gage planes and is used to correlate the times of arrival of the stress pulse at the different planes. All the gages were recorded on oscillographs using a differential mode, and the standard constant current pulsed-power supply recording system was used for the stress gages.
FIGURE 3 TYPICAL GAGE PLAN IN H.E. ALUMINA EXPERIMENTS
For most of the shots, no insulating material was used. The gages were simply glued to one of the slabs, and the adjacent slab was pressed on with a thin layer of vacuum grease to eliminate air pockets. The surfaces of the alumina slabs were first coated with a sealer so that nothing would seep into the pores. The total gage package thickness was approximately 0.004 inch (.01 cm). On two of the Shots (2 and 11), the gages were encapsulated between thin sheets of mica in an attempt to reduce the shunting of the stress gages by the decrease in resistivity of the various gage package materials. In these shots the gage package thickness varied from 0.006 inch (.015 cm) to 0.014 inch (.0356 cm).

Figure 4 presents a series of photographs depicting the experimental setup. Figure 4a shows the assembled target with all the cables attached, Figure 4b shows the target in place inside the Helmholtz coils (the two dark points on the face of the target are co-axial pins flush with the surface, which are used to trigger the oscilloscopes), Figure 4c shows the explosives positioned on top of the target, and Figure 4d, the complete assembly before firing.

The HE experiments on the flame-sprayed materials were similar to those on the baseline material, but scaled down in size because of the smaller size of target slabs available (from 3.81 to 4.45 cm squares and from 0.127 to 0.203 cm thick) and the need to maintain one-dimensional flow in the region of measurement. The explosive pads used were reduced to 2 inches (5.08 cm) high by 2 inches (5.08 cm) in diameter, the Helmholtz coils were reduced to 16 inches (40.64 cm) in diameter, only three slabs were used in each shot, so there were only two gage planes, and only one gage, a manganin stress gage or a particle velocity gage, could fit in each gage plane.

Figure 5 depicts a schematic diagram for the gas gun experiment on the baseline material (Shot 51). SRI's 4-inch (10.16 cm)-diameter helium
gas gun was used to launch a projectile with a thin head of sintered alumina into a target consisting of four 5-1/2-inch (13.97 cm)-diameter sintered alumina disks with three stress and particle velocity gage planes sandwiched in between the disks. On impact, compressional waves were sent into the target and into the projectile head; reflection of the latter wave at the rear surface of the projectile head produced a rarefaction which unloaded the target to zero stress (the plastic honeycomb projectile head backing has a negligibly small shock impedance compared with that of the alumina).

The stress and particle velocity gages are identical in operation to those used in the HE experiments. Ytterbium was used here in place of manganin as the piezoresistive element to obtain higher sensitivity. The uniform magnetic field was produced by an electromagnetic solenoid system, described in detail in Reference 4. A nonmagnetic stainless steel tube surrounded the target to protect the magnet from flying fragments.

The two gas gun shots on the flame-sprayed material (Shots 151 and 152) were similar except that the 2-1/2-inch (6.35 cm)-diameter gas gun and only stress gages were used.
SOLENOIDS
(PRODUCES MAGNETIC
FIELD IN DIRECTION
PERPENDICULAR TO PAPER)

RADIAL PIN
(TO TRIGGER SCOPE
AND POWER SUPPLIES)

STAINLESS STEEL ALUMINA DISKS

PLASTIC PROJECTILE EXTENSION
AND SUPPORT

PIEZORESISTANT STRESS GAGES

ALUMINUM DISKS

STAINLESS STEEL PROTECTIVE TUBE

PARTICLE VELOCITY GAGES

(a) SIDE VIEW
FIGURE 5 EXPERIMENTAL SETUP FOR GAS GUN SHOTS
Of the eleven dynamic experiments performed on sintered alumina, nine yielded particle velocity gage records and seven yielded stress gage records that were satisfactory for Lagrangian analysis. Of the six shots using the flame-sprayed alumina and flame-sprayed hafnium titanate, only the two gas-gun shots yielded analyzable stress gage records. For all the shots analyzed, Table 2 lists the measured ceramic densities and the distances from the impact plane or HE interface for each of the gage planes.

As an example of the raw data, Figure 6 shows oscillographs from the three particle velocity gages and three stress gages in Shot 1. In this shot, 20% porous alumina was shocked to a peak stress of approximately 370 kbar, and the gage results are typical of all the shots in this high-stress region. The blank spots on the gage records are 1 μsec apart.

The particle velocity gages exhibit a small precursor, a rapid rise to the peak particle velocity, a very slight decay owing to the Taylor wave (the gradual relief wave following the detonation of an explosive) and an acceleration to the free surface velocity when the relief wave from the back of the target arrives. For a porous material, the free surface velocity can be much less than twice the peak particle velocity.

The stress gages exhibit a practically negligible precursor, a rapid rise to the peak stress, a gradual but significant decay owing to the Taylor wave, and then a more rapid relief to zero stress. The stress gage records do not return to their original level after release to zero stress because of hysteresis—the permanent change in the gage resistance.
Table 2
CONFIGURATIONS AND DIMENSIONS FOR
DYNAMIC LOADING EXPERIMENTS

<table>
<thead>
<tr>
<th>Shot No.</th>
<th>Type</th>
<th>Ceramic Density (gm/cm³)</th>
<th>Shot Dimensions (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>HE</td>
<td>3.16</td>
<td>15.24</td>
</tr>
<tr>
<td>2</td>
<td>HE</td>
<td>3.17</td>
<td>15.24</td>
</tr>
<tr>
<td>3</td>
<td>HE</td>
<td>3.15</td>
<td>15.24</td>
</tr>
<tr>
<td>4</td>
<td>HE</td>
<td>3.16</td>
<td>15.24</td>
</tr>
<tr>
<td>5</td>
<td>HE</td>
<td>2.61</td>
<td>15.24</td>
</tr>
<tr>
<td>6</td>
<td>HE</td>
<td>2.59</td>
<td>15.24</td>
</tr>
<tr>
<td>9</td>
<td>HE</td>
<td>2.61</td>
<td>15.24</td>
</tr>
<tr>
<td>10</td>
<td>HE</td>
<td>2.21</td>
<td>15.24</td>
</tr>
<tr>
<td>11</td>
<td>HE</td>
<td>2.22</td>
<td>15.24</td>
</tr>
<tr>
<td>51</td>
<td>Gas gun</td>
<td>3.16</td>
<td>0.366</td>
</tr>
<tr>
<td>151</td>
<td>Gas gun</td>
<td>2.78</td>
<td>0.063</td>
</tr>
<tr>
<td>152</td>
<td>Gas gun</td>
<td>6.97</td>
<td>0.072</td>
</tr>
</tbody>
</table>
caused by stress loading. Also, the stress gages appear to be noisier than the particle velocity records—a common occurrence when used in porous materials.

The large blips that appear during the relatively flat portions of both the stress and the particle velocity records for gage planes 1 and 2 are not noise, but in fact are perturbations of the flow due to reflections from gage planes 2 and 3. Decreases in the gage package thickness reduced the magnitude of these perturbations in all subsequent shots.

To analyze the data, we must first digitize the records, using the appropriate calibration to transform from voltage to particle velocity or stress and then to correlate the times of arrival to yield the composite particle velocity and stress histories shown in Figure 7. The particle velocity gages are calibrated by knowing the gage length and magnetic field strength. The manganin gages are calibrated by using the piezoresistance coefficient for loading and a linear calibration from the peak resistance to the final resistance for unloading. Because of the wide range of accepted piezoresistance coefficients for manganin (between 0.0025 and 0.0029 ohms/ohm/kbar), the stress calibration is adjusted when possible by a simple Hugoniot-Rankine jump condition calculation using the shock velocity from the stress gage records and the peak particle velocity from the particle velocity records. The zero time in the composite histories is purely arbitrary. The composite histories are, in reality, two-dimensional representations of the curves in three-dimensional space, with the third dimension, the Lagrangian position, perpendicular to the plane of the paper.

The next step in the analysis is to form a series of paths in three-dimensional space, each path joining one point on each of the three curves. The paths are drawn joining similar features on each curve—for example, the peaks of the precursor, the peaks of the main wave, the beginning of the unloading wave, and so on. Along the paths, the
FIGURE 7 COMPOSITE PARTICLE VELOCITY AND STRESS HISTORIES FROM SHOT NO. 1
differential equations of mass, momentum, and energy conservation are integrated to calculate the specific volume, internal energy, and other constitutive parameters of interest. Details of this calculation are found in Reference 10.

When the Lagrangian analysis is completed, the constitutive paths are plotted in the stress-specific volume plane. Figure 8 is such a graph for Shot 1, showing the results from both the particle velocity and the stress gage calculations. For this shot, all three gage planes load up and down nearly identical paths except for slight differences in the position of the release path because of the slight decay in the peak stress from the first to the third gage planes. This indicates that time-dependent effects are not important in this material at this peak pressure (time-dependent yield effects are not noticeable here because the precursor is largely overdriven).

Figure 9 shows the constitutive paths calculated for the first gage plane from both the stress and the particle velocity gages on the same graph, to compare the results of the two independent measurements. The paths are quite similar except at the tail end of the unloading, where the particle velocity data appear to degenerate. This could be caused by either the arrival of lateral rarefaction waves or the arrival of a compressive wave caused by the reflection of the front of the rarefaction wave from the explosive gas interface. The differences between the paths give some indication of the precision of our experimental and analytical technique.

The digitized particle velocity and stress histories and the calculated constitutive paths for all those experiments that yielded analyzable records are given in the Appendix.

Figure 10 presents a composite of the constitutive paths calculated from all the analyzable sintered alumina experiments. The curve shown
FIGURE 8 STRESS-VOLUME CONSTITUTIVE PATHS CALCULATED FOR SHOT NO. 1
FIGURE 9 COMPARISON OF CONSTITUTIVE PATHS CALCULATED FROM PARTICLE VELOCITY AND STRESS GAGE RECORDS FOR FIRST GAGE PLANE OF SHOT NO. 1
FIGURE 10 CONSTITUTIVE PATHS CALCULATED FROM SINTERED ALUMINA EXPERIMENTS (NUMBERS REFER TO SHOT NUMBER)
for each shot is an average of the constitutive paths at the middle gage location calculated from the particle velocity and stress gage record (if both were available for analysis). The Hugoniot points of the higher pressure shots (Shots 1, 2, 3, 5, and 11), which involved full compaction of the porous alumina, are slightly offset from each other because of the higher Hugoniot point temperature and internal energies generated by compaction of a higher initial porosity material. Also in these shots, the elastic wave is overdriven by the plastic wave. Finally, the release paths are all very nearly parallel, indicating that the unloading modulus is not a strong function of the internal energy.

The Hugoniot points for the lower pressure shots (Shots 4, 6, 9, and 10), which also probably involve complete compaction, are very nearly colinear, which is not surprising, since the Hugoniot point internal energy differences between the different initial porosities are not very large. Both the yield strength and the elastic modulus decrease as a function of initial porosity. The Hugoniot elastic limit drops from approximately 43 kbar in the 20% porous alumina to approximately 30 kbar in the 35% porous alumina. The elastic modulus for the 45% porous alumina is so close to that of the plastic modulus that the Hugoniot elastic limit for that material cannot be perceived from the data.

It is not apparent in Figure 10, but it can be seen in Figures A-5, A-6, A-9, and A-10 in the Appendix that the constitutive relation in the yield region shows some time-dependence, resulting in a decrease in peak precursor stress and increase in peak precursor particle velocity as a function of distance into the alumina, and a decrease in stress and particle velocity immediately after the precursor. This quite complex behavior appears in Shots 4, 6, and 9 (it is beyond the scope of this paper to explain its phenomenology).

The results of the two gas gun shots (Shots 151 and 152) using
flame-sprayed alumina and flame-sprayed hafnium titanate are also presented in the Appendix. The calculated constitutive paths show the loading and unloading behavior in the region below 10 kbar.
IV REFERENCES

Appendix

EXPERIMENTAL AND ANALYTICAL RECORDS AND DISCUSSION OF EXPERIMENTAL PROBLEMS ENCOUNTERED

In this section are presented the experimental and analytical records for all the analyzable shots except for those for Shot 1, which were included in the main part of the report. Figures A-1—A-16 present the digitized composite particle velocity or stress gage records and the stress-volume constitutive paths calculated from these records. In each figure, the solid line represents the first gage plane, the short-dashed line represents the second gage plane, and the long-dashed line represents the third gage plane. The distances between the various gage planes and other shot parameters are shown in Tables 1 and 2 in the report.

Shots 2, 3, 4, 5, and 10 include data from both particle velocity and stress records, Shots 11 and 151 include only particle velocity data, and Shots 151 and 152 include only stress gage data. Finally, the particle velocity data from Shot 6 are shown together with the stress data from Shot 9, because these shots are identical as to type of explosive used and peak pressure attained.

In some cases, only the loading portion of the particle velocity or stress records and the calculated constitutive path during loading are shown, because the unloading portion of the gage records was not amenable to Lagrangian analysis. Some records or portions of records were not analyzable, for several reasons:

(1) The stress gages partially shorted out at high pressures because of increased conductivity of the encapsulants. This was particularly true with the higher porosity aluminas, which reached higher temperatures on loading. (Shots 8 and 11)
(2) The signal-to-noise ratio was too small. This was the case with the HE shots on the flame-sprayed alumina, although the cause of the excessive noise is not clearly known.

(3) In Shot 8, the particle velocity records appeared to be excellent, but because of a short through one or more of the adjoining wires in the Helmholtz coils, the current through the coils and hence, the magnetic field, was unknown.

(4) In the gas gun shot with sintered alumina (Shot 51), the peak stress was apparently above that of the phase change of ytterbium, so the ytterbium gage records were meaningless.

(5) The features of the unloading portions of the records at the different gage planes were dissimilar enough so that it was difficult to draw paths through the different records joining points along which the differential equations could be integrated. Gage planes could be placed closer together to alleviate this problem.
FIGURE A-1 COMPOSITE (a) PARTICLE VELOCITY HISTORIES AND (b) STRESS HISTORIES FROM SHOT NO. 2
FIGURE A-2 CONSTITUTIVE PATHS CALCULATED FROM
(a) PARTICLE VELOCITY GAGE AND
(b) STRESS GAGE RECORDS FOR SHOT NO. 2
FIGURE A-3 COMPOSITE (a) PARTICLE VELOCITY HISTORIES AND
(b) STRESS HISTORIES FROM SHOT NO. 3
FIGURE A-4 CONSTITUTIVE PATHS CALCULATED FROM
(a) PARTICLE VELOCITY GAGE AND
(b) STRESS GAGE RECORDS FOR SHOT NO. 3
FIGURE A-5 COMPOSITE (a) PARTICLE VELOCITY HISTORIES AND (b) STRESS HISTORIES FROM SHOT NO. 4
FIGURE A-6 CONSTITUTIVE PATHS CALCULATED FROM
(a) PARTICLE VELOCITY GAGE AND
(b) STRESS GAGE RECORDS FOR SHOT NO. 4
FIGURE A-7 COMPOSITE (a) PARTICLE VELOCITY HISTORIES AND (b) STRESS HISTORIES FROM SHOT NO. 5

MA-3163-75
FIGURE A-8 CONSTITUTIVE PATHS CALCULATED FROM
(a) PARTICLE VELOCITY GAGE AND
(b) STRESS GAGE RECORDS FOR SHOT NO. 5
FIGURE A-9 COMPOSITE (a) PARTICLE VELOCITY HISTORIES FROM SHOT NO. 6 AND (b) STRESS HISTORIES FROM SHOT NO. 9
FIGURE A-10
CONSTITUTIVE PATHS CALCULATED FROM
(a) PARTICLE VELOCITY GAGE FOR SHOT NO. 6 AND
(b) STRESS GAGE RECORDS FOR SHOT NO. 9
FIGURE A-11 COMPOSITE (a) PARTICLE VELOCITY HISTORIES AND (b) STRESS HISTORIES FROM SHOT NO. 10
FIGURE A-12 CONSTITUTIVE PATHS CALCULATED FROM
(a) PARTICLE VELOCITY GAGE AND
(b) STRESS GAGE RECORDS FOR SHOT NO. 10
FIGURE A-13 COMPOSITE PARTICLE VELOCITY HISTORIES (a) AND CALCULATED CONSTITUTIVE PATHS (b) FROM SHOT NO. 11

MA-3163-81
FIGURE A-14 COMPOSITE PARTICLE VELOCITY HISTORIES (a)
AND CALCULATED CONSTITUTIVE PATHS (b)
FROM SHOT NO. 51

MA-3163-82
FIGURE A-15 COMPOSITE STRESS HISTORIES (a) AND CALCULATED CONSTITUTIVE PATHS (b) FROM SHOT NO. 151
FIGURE A-16 COMPOSITE STRESS HISTORIES (a) AND CALCULATED CONSTITUTIVE PATHS (b) FROM SHOT NO. 152

MA-3163-84
DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

Director
Defense Advanced Rsch. Proj. Agency
ATTN: Strategic Tech. Office

Director
Defense Communications Agency
ATTN: NMCSC-G, Code 510

Director
Defense Documentation Center
Cameron Station
12 cy
ATTN: TC

Director
Defense Intelligence Agency
ATTN: D1-IC, Nuc. Eng. Branch
ATTN: D1-70

Director
Defense Nuclear Agency
ATTN: SPAS
ATTN: STSP
ATTN: DOST
ATTN: T111, Archives
3 cy
ATTN: T111, Tech. Library

Under Secretary of Def. for Rsch. & Engrg.
ATTN: SS&SS (OS)

Secretary of Def.
Field Command
Defense Nuclear Agency
ATTN: FCPRL
ATTN: FCTMO

Joint Staff Tgt. Planning Staff, JCS
ATTN: JPTP
ATTN: JLTW-2
ATTN: JPTM

Chief
Livermore Division Fld. Command, DNA
Lawrence Livermore Laboratory
ATTN: FCPRL

CMC/J-5

Defense Communication Engr. Ctr.
ATTN: Code 720, John Worthington

DEPARTMENT OF THE ARMY

Commander
BMD System Command
ATTN: BDMSC-TEA, Noah J. Hurst

Deputy Chief of Staff for Ops. & Plans
ATTN: Dir. of Nuc. Plans & Policy

Commander
Harry Diamond Laboratories
ATTN: DRXX-RRH, James H. Gaultney
ATTN: DRXX-TF, Robert B. Oswald, Jr.
ATTN: DRXX-NP

Commander
Picatinny Arsenal
ATTN: SARPA-FR-E, Louis Avrami
ATTN: SARPA-MD-C-T, Donald Miller

Under Secretary of Army
ATTN: R. E. DeKinder, Jr.

Commander
U.S. Army Ballistic Research Labs.
ATTN: DRXX-BVL, William J. Schuman, Jr.
ATTN: DRXX-TP, J. T. Frasier
ATTN: Robert E. Eichelberger

Commander
ATTN: DRCDE-HH, John F. Dignam

Commander
U.S. Army Materiel Dev. & Readiness Cmd.
ATTN: DRCDE-D, Lawrence Flynn

Commander
U.S. Army Missile Command
ATTN: DRSMI-MRR, Bud Gibson
ATTN: DRSMI-RKP, W. B. Thomas
ATTN: DRSMI-KS, Chief Scientist
ATTN: DRCFM-PE-IA, Wallace O. Wagner

Commander
U.S. Army Nuclear Agency
ATTN: ATCA-NAV

DEPARTMENT OF THE NAVY

Chief of Naval Material
ATTN: MAT 0323, Irving Jaffe

Chief of Naval Operations
ATTN: OP 62
ATTN: OP 981

Chief of Naval Research
ATTN: Code 464, Thomas P. Quinn

Director
Naval Research Laboratory
ATTN: Gerald Cooperstein, Code 7770
ATTN: Mario A. Perschino, Code 5180
ATTN: Tech. Library, Code 2600

Dist-1
DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

ION Physics Corporation
ATTN: Robert D. Evans

Kaman Avionics
Division of Kaman Sciences Corp.
ATTN: Norman P. Hobbs

Kaman Sciences Corporation
ATTN: Thomas Meagher
ATTN: Frank H. Shelton
ATTN: John R. Hoffman
ATTN: Albert P. Bridges
ATTN: Jerry L. Harper

Lockheed Missiles and Space Co., Inc.
ATTN: F. G. Borgardt
ATTN: Raymond P. Capiaux
ATTN: Lloyd F. Chase
ATTN: S. P. Hardt

Martin Marietta Aerospace
Orlando Division
ATTN: Laird Kinnaird

McDonnell Douglas Corporation
ATTN: J. F. Garibotti
ATTN: L. Cohen
ATTN: R. J. Reck
ATTN: J. Kirby

National Academy of Sciences
ATTN: National Materials Advisory Board for Donald C. Groves

Northrop Corporation
ATTN: Don Hicks

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Physics International Company
ATTN: Doc. Control for James Shea

Prototype Development Associates, Inc.
ATTN: John Slaughter

R & D Associates
ATTN: Albert L. Latter
ATTN: Jerry Carpenter
ATTN: F. A. Field
ATTN: Harold L. Brode

Sciences Applications, Inc.
ATTN: G. Ray
ATTN: R. Fisher

Southern Research Institute
ATTN: C. D. Pears

SRI International
ATTN: Donald Curran
ATTN: George R. Abrahamson
ATTN: Herbert E. Lindberg
ATTN: D. C. Erlich

Systems, Science and Software, Inc.
ATTN: Russell E. Duff
ATTN: G. A. Gurtman

Terra Tek, Inc.
ATTN: Sidney Green

Aeronautical Rsch. Assoc. of Princeton, Inc.
ATTN: Coleman Donaldson

SRI International
ATTN: Harold Carey