The Morf-Kailath discrete square-root filtering algorithms are extended to incorporate sensitivity information with respect to the assumed model and statistics is available, considered to be the "actual" model. The sensitivity analysis is carried out by computing the so-called "variance ratios" that can be obtained by a second set of orthogonal transforms. These operations can be performed either in covariance or information filter form, as the actual filters. This leads to four basic variants for the propagation of the variance ratios, one of them has been obtained by Bierman.
These ideas can also be applied to other related areas such as smoothing and the dual control problems, where it is of interest to study the sensitivity of the total cost with respect to different models and weights of the cost.
SQUARE-ROOT ALGORITHMS FOR MODEL SENSITIVITY ANALYSIS

M. Morf, E. Verriest, J. Dobbins and T. Kailath
Information Systems Laboratory
Stanford University
Stanford, CA 94305

ABSTRACT

The Morf-Kailath discrete square-root filtering algorithms are extended to incorporate sensitivity information with respect to the assumed model and statistics. If the model and statistics are incorrect, we presume that another set of model parameters and statistics is available, considered to be the "actual" model. The sensitivity analysis is carried out by computing the so-called "variance ratios" that can be obtained by a second set of orthogonal transforms. These operations can be performed either in covariance or information filter form, as the actual filters. This leads to four basic variants for the propagation of the variance ratios, one of them has been obtained by Bierman.

These ideas can also be applied to other related areas such as smoothing and the dual control problems, where it is of interest to study the sensitivity of the total cost with respect to different models and weights of the cost.

I. Square-Root Filters Applied to Sensitivity Analysis

In this paper we consider the linear discrete-time dynamic model, where the superscript "a" denotes "actual" model parameters

\[x_{i+1} = a_i x_i + b_i u_i \]
\[y_i = h_i x_i + v_i \]

for simplicity, all random variables have zero mean and covariances

\[\text{cov} x_0 = P_0 \]
\[\text{cov} \begin{bmatrix} u_i \\ v_i \end{bmatrix} = \begin{bmatrix} Q_i & C_{i1} \\ C_{i1}^T & R_i \end{bmatrix} \]

The propagation of the square root array is based on the identity in [1]:

\[\begin{bmatrix} R_i + H_i P_i H_i^T \\ H_i P_i \end{bmatrix} \begin{bmatrix} H_i P_i + Q_i R_i^{-1} \\ H_i P_i \end{bmatrix} = C_i \]
\[\begin{bmatrix} a_i & b_i & c_i \\ b_i & d_i & e_i \end{bmatrix} \]

The following factorizations into triangular components are made:

\[M_{3x3} = C_{11}' = C_{22}' \]

where \(C \) is an upper triangular square-root of the LHS of (5) and \(C_2 \) a lower triangular square-root of the RHS matrix.

A geometrical interpretation accompanies this representation (cf. [1]). Indeed, letting

\[\xi_1 = [\xi_1', \xi_2', \xi_3'] \]

then:

\[C_1^{-1} \xi \]

are two orthonormal sets (\(\xi_1 \) and \(\xi_2 \) respectively) for the \((m+n+p)\)-dimensional space spanned by \(\xi \). In other words, geometrically an orthonormalization process (Gram-Schmidt) is going on, on \(\xi \). \(\xi_1 \) is obtained by orthonormalization of the set \(\{y_i', x_{i+1}', u_i'\} \), conditioned on the data \(y(0,1) \), sequentially from right to left.

\[[y_i', x_{i+1}, u_i'] = \xi_1 C_1' + \xi_2 \]

Similarly

\[\bar{\xi} = C_2 \bar{\xi} \]

is obtained by orthonormalizing from left to right

\[[y_i', x_{i+1}, u_i'] = \xi_2 C_2' + \xi_3 \]

and the \(\xi \) variables are (see [1] for more details)

\[\xi_1 = (y_i', \bar{x}_i, \bar{u}_i) \]
\[\xi_2 = (v_i, \bar{x}_i, \bar{u}_i) \]

In essence \(C_1 C_2' \) is the covariance of the random variables \(x(k = 1,2) \). Now we could also work with the inverse relations:
leading to the so-called information filter. These two representations are dual; we can distinguish two types: inversion duality versus the standard duality [1]. Note that this approach leads to one-step predicted estimates \(\hat{x}_{k|k-1} \) and errors (thus innovations). Alternatively, we could work with filtered estimates \(\hat{x}_k \) or with \(\lambda \) step predicted/smoothed estimate \(\hat{x}_{k|\lambda} \).

Suppose now that we do not know the actual covariances as given in (3) and (4); we use a model containing the estimated covariances:

\[
P_0 \quad \begin{bmatrix} Q_1 & C_1 \\ C_1 & R_1 \end{bmatrix}
\]

Similarly, the system parameters may be incorrectly known, so that we propagate the Kalman filter (and thus the array's \(C_1 \) and \(C_2 \)) as if the system model were:

\[
x_{k+1} = \Phi_{k} x_{k} + \Gamma_{k} u_{k} \quad \Phi_{k} \in \mathbb{R}^{n \times n}, \Gamma_{k} \in \mathbb{R}^{n \times p}
\]

\[
y_{k} = H_{1} x_{k} + v_{k} \quad H_{1} \in \mathbb{R}^{m \times n}
\]

Therefore, \(x \) as computed by the filter is not the minimum variance estimate, and there will be a discrepancy between the computed and the actual error covariances. This deterioration of filter accuracy can ultimately lead to filter divergence. As a measure for this discrepancy we define the variance-ratios \(\Sigma_{P} \):

\[
\Sigma_{P} = (p_{a})^{-1/2} \Sigma_{X}^{1/2} (p_{a} = \text{actual error covariance}).
\]

In our geometric picture, the variables \(C_{k}^{-1} \bar{x}_{k} \) for \(k = 1,2 \), (we reserve \(\bar{x} \) for truly orthonormal variables in this paper) will no longer be orthonormal:

\[
\bar{x}_{k} = x_{k} - \bar{x}_{k-1} \quad \text{will still equal } p_{1/2} x_{k},
\]

where \(p_{1/2} \) is the square root of the error covariance as calculated by the filter, but \(\bar{x}_{k} \) will not have unit covariance. The square root of \(\text{cov} \bar{x} \) will be the variance ratio:

\[
L_{k} = p_{1/2}^{-1/2} (p_{1/2}^{-1/2})
\]

We present algorithms in which \(L_{k} \) is propagated as an entry in arrays which express the \(n \)-random variables in terms of truly orthonormal sets,

\[
h_{k} = n \Sigma_{k} \quad k = 1,2
\]

Obviously, just as with the filter itself, we can implement this propagation in either the covariance from given in (13) or in information form:

\[
\Sigma_{k} = A_{k} h_{k} \quad k = 1,2
\]

in this case we propagate the \(\Sigma_{P} = L^{-1} \). Either filter implementation may be combined with either error analysis implementation, leading to four possibilities. Virtually, all square-root filter/error analysis algorithms proposed to date can be viewed as one of these four types. This is summarized in the following tableau:

<table>
<thead>
<tr>
<th>Filter Implementation</th>
<th>Covariance Form</th>
<th>Information Filter Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thornton (1976)</td>
<td>Information</td>
<td>Inversion</td>
</tr>
<tr>
<td>(Propagates (x_{k})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rather than</td>
<td></td>
<td></td>
</tr>
<tr>
<td>normalized (\hat{x})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and (\text{uses UDUP})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rather than</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{1/2}/T/2),</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The remainder of the paper is organized as follows: Section II examines in detail the filtering algorithm for the special case \(\{ \Phi_{1}, \Gamma_{1}, H_{1} \} = \{ \Phi_{a}, \Gamma_{a}, H_{a} \} \) and \(C = C_{a} = 0 \), as in the rest of the paper. The derivation is given in covariance-information form, and the covariance-covariance arrays are quoted (for \(C \) and \(C_{a} \neq 0 \), see [6]).

Section III extends these ideas to the general case of incorrect statistics, as well as model. Finally, Section IV mentions the fixed-interval smoothing problem.

II. ERROR ANALYSIS OF FILTERING WITH INCORRECT STATISTICS ONLY

The Pre-Array \(C_{1} \)

Defining

\[
\bar{x} = [y_{1}^{-1}, \bar{u}_{1}, y_{[0,1-1]}], x_{1}^{-1} \bar{u}_{1}| u_{[0,1-1]}], y_{[0,1-1]}
\]

then it is readily shown that

\[
\bar{x}_{1} = \begin{bmatrix} 1 & H_{1} & 0 \\ 0 & \Phi_{a} & \Gamma_{a} \\ 0 & 0 & 1 \end{bmatrix} \bar{x}_{1} \quad (15)
\]

and

\[
\text{cov} \bar{x}_{1} = \text{Block diag}(R_{a}, R_{a}^{2}, Q_{a}) \quad (16)
\]
The "filter algorithm" rescales the \(\tilde{X}_1 \)-variables, setting
\[
\tilde{X}_1 = \text{Block diag}(K_{11}, P_{11}, Q_{11}) \eta_1 = \Phi^{1/2} \eta_1.
\]
This leads to:
\[
\tilde{X} = C_1 \eta_1
\]
(time index is suppressed), however, by virtue of (16), we see that cov \(\eta_1 \neq I \) in general. Let \(S, S' \) be a decomposition of cov \(\tilde{X}_1 \), then
\[
S^{-1} \tilde{X}_1 = S^{-1} \Phi^{1/2} \eta_1 = A_1 \eta_1
\]
is again an orthonormal set. Taking the upper triangular factor for \(S \) yields finally
\[
[\tilde{X}_1', \tilde{X}_2'] = \eta_1 [C_1', A_1']
\]
where
\[
A_1 = \text{Block diag}(R_{1}, P_{1}, Q_{1})
\]
\[
A_1' = \text{Block diag}(R_{1}', P_{1}', Q_{1}')
\]
Remarks
1. In case \(C_{11} \neq 0 \), and/or \(C' \neq 0 \), \(A_{11} \) contains off-diagonal blocks. The 2-2 block entry remains \(\tilde{P} \) however.
2. Having obtained \(P_1 \) (the computed covariance) and \(\tilde{E}_1 \), we are able to find the actual covariance \(\tilde{P}_1 \).
3. Effect of the propagation algorithm:
\[
[\tilde{X}_1', \tilde{X}_2'] = [\eta_1 T][T'C_1, T'A_1']
\]
Thus, in the process of making \(C_1 \) lower triangular, we perform the same operations to \(\Lambda_1 \).

The Post-Array \(C_2 \)
Similarly, defining \(\tilde{Y}_1 \) by:
\[
\tilde{Y}_1' = [c_1', \tilde{x}_1', \cdots, 1, \tilde{u}_1', 1, 0, 1, \tilde{u}_1', 1, \tilde{y}_1', 1, 1]
\]
where \(c_1 \) are the innovations, we can find:
\[
\text{cov} \tilde{Y} = \begin{bmatrix}
\Phi^a & \Phi^a (\Delta K) & & \Phi^a (\Delta K) P_{11} & Q_{11} \\
\Delta K & \Phi^a & & & \\
\Phi^a & & & & \\
Q_{11} & & & & \\
\end{bmatrix}
\]
then the \((2,2)\)-element of \(\Lambda_2 \) is exactly \((\tilde{E}_1')_{11} \) and can be obtained from \(S \) similarly to (18). Therefore, we do not need to perform the complete transformation \(T \) on the \((m+n+p)\)-size matrix \((E_1 T) \), but a reduced \(T \) of size \(n \) suffices to yield \((\tilde{E}_2 T)_{11} \).

Remark.
1. From the identity \(C_1 \) cov \(\eta_1 C_1' = C_2 \),

\[
\text{cov} \eta_2 C_2' = \text{cov} \tilde{X} \text{ we obtain the identities}
\]
\[
R_{11}^a = R_{11}^a + H_{11} \tilde{P}_{11} \tilde{P}_{11}^a \tilde{P}_{11}^a + \tilde{K}_{11} R_{11}^a \]
\[
R_{11}^a = (\Phi_{11} - K_{11} H_{11}) \tilde{P}_{11} (\Phi_{11} - K_{11} H_{11})' + \tilde{P}_{11}^a \tilde{P}_{11}^a + K_{11} R_{11}^a
\]

\[\tilde{X}_1 = \text{Block diag}(K_{11}', P_{11}', Q_{11}') \eta_1 \]

\[\Lambda = Q_{11}' P_{11}'^{-1} - Q_{11}' P_{11}'^{-1} - Q_{11}' P_{11}'^{-1} \]

The \(\Delta \)-terms in (22) vanish when correct statistics are used. Rescaling according to the assumed covariances yields
\[
\tilde{Y}_1 = \text{Block diag}(K_{11}', P_{11}', Q_{11}') \eta_2 \]

and finally
\[
\tilde{X}_1 = C_2 \eta_2.
\]
We could have started from these equations to get the array's without going to the geometrical description.

2. For the covariance-covariance form we simply invert (18) and (26) to get:

\[
\mathbf{x} = C_2 \mathbf{r}_k + \mathbf{n}_k = A^-_k \mathbf{\xi}_k, \quad k = 1, 2.
\]

III. GENERAL MODELING ERRORS

We now consider errors in our assumption in the statistics and the model parameters. For simplicity however, we assume here that \(C = C^a = 0 \); non-zero case see [6]. In order to reduce the notational burden we omit the explicit time dependence of the model parameters. As a first step in obtaining a representation of \(\mathbf{n}_1 \) in terms of an orthonormal set, we invert the equation \(x = C_1 \mathbf{r}_1 \) to obtain

\[
\mathbf{y}_1 = R^a \sum_i \left[(A^H - H^a \Delta \mathbf{A}) \right] \mathbf{x}_i - H^a \Delta \mathbf{u}_i + v_1
\]

\[
\mathbf{\chi}_i^+ = \mathbf{P}_1^a \left[(I - \mathbf{G}_i \cdot \mathbf{H}) + \mathbf{G}_i \right] \mathbf{\chi}_i + \mathbf{P}_1^a \mathbf{D}_i \mathbf{u}_i
\]

\[
\mathbf{u}_i = (Q^a)^i \mathbf{\xi}_i, \quad i = 1, 2.
\]

Here

\[
\mathbf{\Delta}^a = \mathbf{\Delta}^a - \mathbf{\Delta}; \quad \mathbf{\Delta}^a = \mathbf{H}^a - \mathbf{H}; \quad \mathbf{\Delta}^a = \mathbf{r}^a - \mathbf{r}.
\]

A new subtle point arises, when the system matrices are mismodeled, \(\mathbf{\Delta}^a \), the pre-array variable above, is no longer equal to \(\mathbf{\Delta} \), the post-array variable of the previous time step.

Furthermore, we see that to obtain a self-contained recursion, we must augment the \(\mathbf{n}_1 \) variables with the actual state \(\mathbf{x}_1 \).

Suppose we have available a representation for the augmented state in terms of orthonormal variables \(\mathbf{\xi}_k \)

\[
\mathbf{\chi}_1 = \begin{bmatrix} I_\Lambda & 0 \\ I_{x\Lambda} & L_x \end{bmatrix} \mathbf{\xi}_1
\]

\[
\mathbf{x}_1 = \begin{bmatrix} I_\Lambda & 0 \\ I_{x\Lambda} & L_x \end{bmatrix} \mathbf{\xi}_2
\]

\[
\mathbf{u}_1 = (Q^a)^i \mathbf{\xi}_3, \quad i = 1, 2.
\]

are certainly orthogonal to the augmented state. Therefore using (28) and the equation

\[
\mathbf{x}_{i+1} = \mathbf{\phi}^a \mathbf{x}_i + \mathbf{\Gamma}^a \mathbf{u}_i
\]

we can set up the following representation

\[
\mathbf{y}_1 = R^a \sum_i \left[(A^H - H^a \Delta \mathbf{A}) \right] \mathbf{x}_i - H^a \Delta \mathbf{u}_i + v_1
\]

\[
\mathbf{\chi}_1 = \begin{bmatrix} I_\Lambda & 0 \\ I_{x\Lambda} & L_x \end{bmatrix} \mathbf{\xi}_1
\]

\[
\mathbf{\Delta}^a = \begin{bmatrix} I_\Lambda & 0 \\ I_{x\Lambda} & L_x \end{bmatrix} \mathbf{\xi}_2
\]

\[
\mathbf{u}_1 = (Q^a)^i \mathbf{\xi}_3, \quad i = 1, 2.
\]

This yields \(L_\Lambda \), the square-root covariance of \(\mathbf{x}_{i+1} \) and updates (28) to time \(i + 1 \). We can easily initialize (28) at time 0, when

\[
\mathbf{x}_0 = \mathbf{\xi}_0 = \mathbf{x}_0^a = \mathbf{x}_0^\mathbf{\Gamma}.
\]

Remark.

1. There is some redundancy in considering \(\mathbf{\Delta}^a \neq 0 \) and \(Q^a \neq 0 \) together, because \(\mathbf{\Delta}^a \) and \(Q^a \) only arrive in the combination \(\mathbf{\Gamma}^a \). So, we can always define a \(\mathbf{Q}^{equiv} = \mathbf{I}, \mathbf{R}^{equiv} = \mathbf{\Gamma}^a \). In this case, \(\mathbf{\Delta}^a \neq 0 \), but \(\mathbf{Q}^{equiv} = \mathbf{Q}^{equiv} \).

Alternatively, if \((\mathbf{\phi}, \mathbf{\Gamma}^a) \) forms a controllable pair, then we can set \(\mathbf{Q}^{equiv} = \mathbf{\Gamma}^a \) and \(\mathbf{R}^{equiv} = \mathbf{I} \) thus \(\mathbf{\Delta}^a = 0 \) if both \(\mathbf{\Delta}^a, \mathbf{\Gamma}^a \) are controllable.

2. Choosing \(\mathbf{\phi}^a \mathbf{x}_1 \) as the "augmenting" state to \(\mathbf{\chi}_1 \), and expressing \(\mathbf{x} = (\mathbf{\phi}^a \mathbf{x}_1)^i \) in terms of \(\mathbf{\xi}_i \) gives an augmented pre-array \(\mathbf{C}_1 \) which contains \(\mathbf{C}_1 \), and is itself in upper triangular form (note that \(\mathbf{x}_1 = \mathbf{x}_1^\mathbf{\Delta}_1^{-1} \mathbf{x}_1^{\mathbf{\xi}_i} \) with correct model and statistics). Similarly, we express \(\mathbf{x} \) in terms of \(\mathbf{\xi}_i \) which yields a lower triangular \(\mathbf{C}_i^a \) with \(\mathbf{C}_2 \) contained in it.
The augmented Λ-arrays are quite involved however, see [6].

IV. SMOOTHING

We now briefly describe how to extend the algorithm of Section III to the square-root form of the two-filter fixed-interval smoother. Each filter will have an error analysis addendum propagated according to the idea of Section III. Here we will just point out the modifications needed in the separate filters to facilitate a smoothing solution and demonstrate how to combine information from the two filters to obtain an L_Δ for the smoothed estimate.

The backward filter is implemented in information form since it is initialized with infinite a priori covariance. Therefore, when the only modeling error is in the statistics, the error analysis algorithm is unchanged from Section II. When there are mismodeled system matrices and the n_η are augmented by x_1, it must be remembered that u_1 is not orthogonal to x_{1+1}. Probably the most straightforward way to obtain a representation for $(n_\eta,x')'$ in terms of an orthonormal set (that is to obtain the array analogous to the inverse of (18),(26) is to decompose u_1 as

$$u_1 = Q_1^{a} u_1 x_{1+1} + \tilde{u}_1 x_{1+1}, \quad \Pi_{1+1} = \text{cov}(x_{1+1})$$

(31)

where $\tilde{u}_1 x_{1+1}$ is orthogonal to u_{1+1} and has covariance

$$Q_1^{b} = (Q_1^{a} - Q_1^{a} \Pi_{1+1} x_{1+1}^T)$$

When there are mismodeled system matrices, the augmented state in both forward and backward error analysis arrays should be represented in the form

$$x_1 = \begin{bmatrix} \eta_1^b \\ x_{1+1} \end{bmatrix}, \quad \tilde{x}_1 = \begin{bmatrix} L_\Delta \\ x_{1+1} \end{bmatrix}$$

(32)

Decomposing each x_1 into a component correlated with and a component orthogonal to the actual state enables us to get a joint representation for \tilde{x}^f (from forward filter) and \tilde{x}^b (from backward filter). We have the separate representations

$$x_1^f = \begin{bmatrix} \Pi^b_1 \\ 0 \end{bmatrix} \xi^f_1, \quad x_1^b = \begin{bmatrix} \eta_1^b \\ x_{1+1} \end{bmatrix}$$

(33)

ξ^f_1 must be related to ξ^b_1 by an orthogonal transformation. $\xi^f_1 = \xi^b_1$ if we insist on a unique form for Π^f_1, say lower triangular with positive diagonal elements. Some study reveals (6) that f_1 is a function of $(\eta_0^b,\ldots,\eta_{1-1}^b)$ and f_1^b is a function of $(\eta_0^f,\ldots,\eta_{1-1}^f)$ and we may write

$$\tilde{x}^b_1 = \begin{bmatrix} \eta_1^b \\ x_{1+1} \end{bmatrix}, \quad \tilde{x}^f_1 = \begin{bmatrix} \eta_1^f \\ x_{1+1} \end{bmatrix}$$

(34)

When we have only incorrect modeling of statistics this simplifies to

$$\tilde{x}^b_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \xi^b_1, \quad \tilde{x}^f_1 = \begin{bmatrix} 1 \\ L_\Delta \end{bmatrix} \xi^f_1$$

The forward filter may be implemented in either covariance or information form. For purposes of illustration, let us assume a covariance forward filter and an information backward filter. To combine the estimates of the two filters to obtain a smoothed estimate we may interpret

$$(P_1^{b},L_1^{b},L^{b}_\Delta) \quad (P_1^{f},L_1^{f},L^{f}_\Delta)$$

as an additional measurement with output matrix $(P_1^{b})^{-1}$ which is to be used to update $x_{1|1-1}$ [5]. This interpretation is illustrated below with corresponding quantities one under the other

$$y_1 = H x_1 + v_1$$

(35)

$$d_1^{b} = (P_1^{b})^{-1} x_1 + x_1^{b}$$

The "measurement noise" x_1^{b} is assumed by the filter to have unit covariance; so, the appropriate measurement update is given by the following arrays:

$$d_1^{b} - (P_1^{b})^{-1} x_{1|1-1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} (P_1^{b})^{-1} x_{1|1-1}$$

(36)

Lower triangularizing (36) with orthogonal transformations on the right gives the post-array

$$x_4 = x_{1|1-1}$$

(37)
The smoothed estimate of x_1 is

$$\tilde{x}^s_1 = a_{1-1}^s + K_1^s v_1^s = \left(I_{1-1}^b - P_1^s_{1-1} \right) x_1^f = \left(h_{1-1}^s \right) x_1^f$$

(37)

and

$$x_1^f = \tilde{x}^s_1 = \left(P_1^s \right)^{1/2} x_1^s$$

The set $\{x_1^F, v_1^F\}$ is obtained from the set $\{x_1^F, x_1^F\}$ through the array update transformation. Applying the same transformation to the representation (34) for $\{x_1^F, x_1^F\}$ yields

$$
\begin{bmatrix}
 x_1^F \\
 v_1^F \\
 \tilde{x}_1^s \\
 \tilde{v}_1^s
\end{bmatrix} =
\begin{bmatrix}
 X & X & X \\
 S_{21} & S_{22} & S_{23} \\
 S_{21} & S_{22} & S_{23} \\
 S_{21} & S_{22} & S_{23}
\end{bmatrix}
\begin{bmatrix}
 \xi_1 \\
 \xi_2 \\
 \xi_2 \\
 \xi_2
\end{bmatrix}
$$

An additional orthogonal transformation applied on the right will give

$$
\begin{bmatrix}
 \xi_1 \\
 \xi_2 \\
 \xi_3
\end{bmatrix} =
\begin{bmatrix}
 L_\Lambda \\
 0 \\
 0
\end{bmatrix}
\begin{bmatrix}
 \xi'_1 \\
 \xi'_2 \\
 \xi'_2
\end{bmatrix}
$$

(38)

$$\left(P_1^s \right)^{1/2} = \left(P_1^s \right)^{1/2} L_\Lambda$$

V. CONCLUSION

By viewing the square-root arrays as representations of the estimate residuals in terms of orthonormal sets of random variables we have expressed a framework for the known square-root error analysis algorithm. This framework led us to a new algorithm presented herein which is compatible with either the covariance or information implementations of the filter.

REFERENCES

