One major impediment in the development of new alkali-metal battery systems with high energy density is the lack of suitable electrode materials. Dichalcogenides of the Group IV and V transition metals intercalated with lithium or sodium offer exciting possibilities as novel high-energy-density electrodes. These intercalated compounds have the chemical formula A\text{MX}_x, where A is lithium or sodium, x varies from 0 to 1.0, M is a Group IV or V transition metal, and X is sulfur or selenium. Electrochemical cell techniques...
DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST QUALITY AVAILABLE.
COPY FURNISHED CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
have been used to measure the variation of the chemical potential and diffusivity of lithium (sodium) with composition x in Li_xTaS_2 (Na_xTaS_2). Such thermodynamic and kinetic data are necessary not only to understand chemical bonding and transport mechanisms in these materials but also to quantitatively assess their specific applications as high energy-density electrodes in alkali-metal battery systems. The sodium diffusivity in Na_xTaS_2 is greater than 10^{-8} cm2/sec when x is between 0.1 and 0.7, which is extraordinarily high for a solid at room temperature. A model which explains the observed variation of sodium diffusivity with composition x in Na_xTaS_2 has been postulated.
The transition-metal disulfides have received considerable attention in recent years because of their potential applications as cathodes in alkali-metal secondary batteries. These disulfides (i.e., \(\text{TaS}_2 \)) have layered structures in which a van der Waals gap exists between adjacent sulfur layers. Alkali metals such as lithium and sodium are easily intercalated in this gap at ambient temperatures. These intercalated compounds have the chemical formula \(\text{Li}_x \text{TaS}_2 \) or \(\text{Na}_x \text{TaS}_2 \), where \(x \) can vary from 0 to 1.0.

The objective of our research program is to determine the fundamental thermodynamic and kinetic information necessary to assess the potential applications of these compounds as cathode materials in secondary batteries. For example, knowledge of the variation of the thermodynamic voltage and the diffusivity of lithium and sodium with composition, \(x \), in these compounds is required to calculate operating voltages and reversibility characteristics of real battery systems.

In our laboratory, techniques for preparing well-characterized intercalated \(\text{Li}_x \text{TaS}_2 \) and \(\text{Na}_x \text{TaS}_2 \) have been developed. Heating in excess
NOTICE OF TRANSMITTAL TO DDC

This technical report has been reviewed and is approved for public release TAR AFR 190-12 (7b). Distribution is unlimited.

A. D. BLOSE
Technical Information Officer
sulfur at ~ 500°C is essential to remove excess tantalum atoms in the van-der-Waals layers of the commercially prepared TaS$_2$. The excess tantalum atoms strongly inhibit the intercalation process by decreasing mobilities of the alkali metals in the van-der-Waals layers.

The thermodynamic and kinetic properties of these intercalated compounds have been determined using cell (I) in which a pure alkali metal A is the anode and the intercalated A$_x$TaS$_2$ compound is the cathode.

$$A/A^+ \text{ (electrolyte)}/A_x\text{TaS}_2$$ \hspace{1cm} (I)

Propylene carbonate electrolytes have been used in our ambient temperature studies. We have used Na$_x$TaS$_2$ and Li$_x$TaS$_2$ electrodes in our initial experiments, because the known structural and electrical properties of TaS$_2$ indicate that intercalated TaS$_2$ should be an excellent reversible cathode.

The open-circuit thermodynamic voltage of cells using a Li$_x$TaS$_2$ cathode and a pure lithium anode varies linearly with x at 27°C. The voltage decreases from 2.92 to 1.46 volts as x in Li$_x$TaS$_2$ increases from 0 to 1.0.

Similar electrochemical cell measurements have been made using Na$_x$TaS$_2$ cathodes. The thermodynamic cell voltage at 27°C is also a linear function of the sodium content, x, in Na$_x$TaS$_2$. The voltage decreases 2.72 to 0.94 volts as x increases from 0 to 1.0.

The chemical diffusivity of sodium in Na$_x$TaS$_2$ at 27°C has been measured using current-pulse techniques. A current pulse is applied
to cell (I) and a known excess of the alkali metal is deposited at the electrolyte
Na$_x$TaS$_2$ interface. With small changes in cell voltage, the diffusivity of the
alkali metal in Na$_x$TaS$_2$ can be determined from measurements of the
transient voltage. The diffusivity of sodium in Na$_x$TaS$_2$ is greater than
10$^{-8}$ cm2/sec when x is between 0.1 and 0.7, which is extraordinarily high
for a solid at room temperature. A model which explains the observed
variation of the sodium diffusivity with composition x in Na$_x$TaS$_2$ has been
postulated.

The experimental details and results of our studies are described in
detail in the two enclosed reprints which will be published in Electrode
Materials and Processes for Energy Conversion and Storage.
ELECTROCHEMICAL DETERMINATIONS OF THE
CHEMICAL POTENTIAL AND DIFFUSIVITY
OF SODIUM IN Na_xTaS_2 AT 300°K

Alan S. Nagelberg and Wayne L. Worrell
Department of Metallurgy and Materials Science
University of Pennsylvania
Philadelphia, Pennsylvania 19104

One major impediment in the development of secondary alkali-metal battery systems with high energy density is the lack of suitable electrode materials. Dichalcogenides of the Group IV and V transition metals intercalated with lithium or sodium offer exciting possibilities as novel electrodes. Electrochemical cell techniques have been used to measure the variation of the chemical potential and diffusivity of sodium with composition x in Na_xTaS_2 where x varies from 0 to 1.0. The measured cell voltage at 300°K is a linear function of sodium content. The chemical diffusivities of sodium measured by current pulse techniques are greater than 10^{-8} cm^2/sec.

Introduction

In recent years, there has been an increased interest in the development of ambient temperature alkali-metal reversible batteries. Research has been directed toward solid electrodes that are compatible with the new or existing electrolytes. When considering a prospective electrode material, a list of desired characteristics can be tabulated:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>High electronic conductivity</td>
</tr>
<tr>
<td>2.</td>
<td>Wide compositional range</td>
</tr>
<tr>
<td>3.</td>
<td>Low H in cathode</td>
</tr>
<tr>
<td></td>
<td>High H_A in anode</td>
</tr>
<tr>
<td>4.</td>
<td>Minimal compositional variation of H_A</td>
</tr>
<tr>
<td>5.</td>
<td>High diffusivity of A</td>
</tr>
</tbody>
</table>

(A is the active species of the cell)

The Groups IV and V transition metal dichalcogenides have shown promise as cathode materials in alkali metal batteries. These transition metal dichalcogenides are extremely interesting.
due to their unusual layered crystal structure. Figure 1 shows a schematic picture of the stacking sequence of hexagonally arrayed layers of metal and chalcogen. The metal atoms are in either octahedral or trigonal prismatic coordination. The interesting property of this crystal structure is the existence of one sulfur layer immediately above another sulfur layer giving rise to weak van der Waals bonding between layers. This weak bonding in the dichalcogenides is demonstrated by their marked cleavage properties and the ease with which they are intercalated. The weak bonding between neighboring chalcogen layers manifests itself in numerous polytypic structures, which occur due to different stacking sequences of the hexagonal layers. Tantalum disulfide, for example, has been reported to form 5 polytypes (1T, 2H, 3R, 4H, 6H). Annealing below 450°C or slow cooling results in the formation of the 2H polytype.

The Groups IV and V dichalcogenides are small bandgap semiconductors or metallic conductors. For example, tantalum disulfide has a room temperature resistivity between 10^{-3} to 10^{-6} ohm-cm depending on crystallographic orientation.

Since Rudorff first demonstrated that alkali metals could be intercalated into the van der Waals gaps between layers, the physical and chemical properties of the transition-metal dichalcogenides have been studied by numerous investigators. These investigators have shown that the intercalation process is extremely rapid and that crystallographically only the c axis of the dichalcogenide is significantly increased by intercalation; thus indicating that the alkali metals reside in the van der Waals gap between sulfur layers and have a high mobility.

Omloo and Jellinek have studied the crystallography of alkali metal intercalated niobium and tantalum dichalcogenides. These authors proposed several models for the crystallographic structure but were unable to make an unequivocal decision as to which structure applied. They found a non-stoichiometry range for Na$_x$TaS$_2$ from $x = 0.4$ to $x = 0.7$, the upper limit being determined by the attack of the quartz capsules by sodium.

Sodium intercalated tantalum disulfide meets the first two criteria in Table I for a solid electrode. The applicability of the remaining three criteria for an ideal solid electrode are assessed. Cell A is used to measure the chemical potential and diffusivity.
Sodium was intercalated into tantalum disulfide lattice using sodium naphthalide dissolved in tetrahydrofuran. The sodium naphthalide solution was prepared by mixing equal molar amounts of sodium (ROC/RIC 99.95%) and naphthalene (Aldrich 99 + %) followed by addition of the tetrahydrofuran (THF) solvent to obtain a dark green solution. Weighed powder samples of TaS$_2$ were added to various concentrations of sodium naphthalide in THF to obtain samples of Na$_x$TaS$_2$ with various values of concentration x. Addition of the powder to the intercalating solutions resulted in a noticeable heating of the solutions. Intercalation was practically complete within 24 hrs, but powders were kept in the solutions three or four days before being filtered and washed with THF. Analysis of the sodium naphthalide solutions was performed before and after the intercalation of the TaS$_2$ powder. The sodium content of the intercalation solutions was determined using the method of Paul, Lipkin and Weissman, i.e. 50% dilution with water and subsequent titration with HCl. The sodium content of the intercalated disulfides was calculated from the sodium loss of the sodium naphthalide solutions. A small amount of the Na$_x$TaS$_2$ powders was sealed in glass capillaries and used for X-ray diffraction studies. The propylene carbonate (Aldrich 99%) used as electrolyte solvent was equilibrated with lithium chips to remove residual moisture and oxygen. Gas chromatographic analysis showed no detectable amounts of these impurities. Sodium salts, NaI (Alfa/Ventron, 99.9%) or NaPF$_6$ (Alfa Ventron 98%), were dried under vacuum at 150°C for 3 or 4 days and then added to the propylene carbonate to obtain a saturated solution.
Tantalum disulfide powder was compacted in a 1 cm cylindrical die at 30 ksi (thousand pounds per square inch) to form a cylindrical pellet. The pellet was springloaded between two 304 stainless steel discs, which were suspended in the electrolyte by a 1/8" 304 stainless steel rod which was also the electrical lead to the cathode. The anode was sodium metal compacted into a 304 stainless steel tube suspended into the electrolyte with a 304 stainless steel rod. All cell compartments were tested for leaks with a helium leak detector.

The temperature was maintained within ± 0.2°C by a constant temperature bath, and temperature measurement was with a mercury thermometer readable to ± 0.05°C. The cell voltage was measured by either a Keithley 630 potentiometric electrometer or a Fluke 895A differential voltmeter. Current pulses of 3 to 22 mA/cm² and 2 to 45 seconds were generated using a Tacussel potentiostat.

The handling of all moisture and oxygen sensitive materials was performed in a Vacuum Atmospheres glove box (~ 1 ppm H₂O). X-ray diffraction studies were performed with either cylindrical Debye-Scherrer cameras or a Phillips diffractometer. All diffraction studies used CuKα radiation.

Results

The measured values of emf as a function of composition x of Na₇TaS₈ are shown in Fig. 3. The measured emf can be fitted by a linear function of composition,

\[E = b + mx = 2.72 - 1.78x \]

(1)

Application of the Gibbs-Duhem equation to Na₇TaS₈ solid solutions for a constant Ta:S ratio gives:

\[d\mu_{TaS_2} = -\frac{N_{Na}}{N_{TaS_2}} d\mu_{Na} = -x d\mu_{Na} \]

(2)

where x is the composition of Na₇TaS₈

or \[\mu_{TaS_2} = -\int_{x=0}^{x} x d\mu_{Na} = +nF \int_{x=0}^{x} x dE \]

(3)

Since \[\mu_{Na} = -nFE \]

It can also be shown that:
\[
\Delta G_{f}^f_{Na_xTaS_2} = x\mu_{Na} + \mu_{TaS_2} + \Delta G_{TaS_2}^f
\]

\[
= -nF \left[x E \left[x E \right] - \int_{0}^{x} dE \right] + \Delta G_{TaS_2}^f
\]

\[
= -nF \int_{0}^{x} E \, dx + \Delta G_{TaS_2}^f
\]

From thermodynamic equilibrium studies by Larson and Elliott23 of TaS\textsubscript{2} at elevated temperatures a value of \(-70.5 \pm 3\) kcal/mole for \(\Delta G_{TaS_2}^f\) at 300\(^\circ\text{K}\) is obtained. All free energy values quoted in this paper are using sulfur as the standard state. (The difference between solid sulfur and a gaseous sulfur standard state is \(+9.5\) kcal/g-atom of sulfur at 300\(^\circ\text{K}\)). Using \(-70.5\) kcal/mole for \(\Delta G_{TaS_2}^f\), the free energy of formation of NaTaS\textsubscript{2} is calculated from Eq. (5) with \(x=1\) to be \(-112.7 \pm 3\) kcal/mole.

The diffusivity of sodium in NaTaS\textsubscript{2} was measured using a current-pulse relaxation technique. In this method, a current pulse is used to approximate an instantaneous source or sink of sodium at the electrolyte-cathode interface. The solution of Fick's second law for an instantaneous planar source24 is

\[
C - C_0 = \frac{iT}{F(\pi Dt)^{1/2}} e^{-a^2/4Dt}
\]

where

- \(C\) is the composition at any point at any time
- \(C_0\) is the initial uniform composition
- \(i\) is the current of pulse
- \(T\) is the duration of the pulse
- \(a\) is the distance from instantaneous planar source
- \(D\) is the diffusivity
- \(t\) is the time
- \(F\) is Faraday's constant (\(=9.500\))

For sodium intercalated tantalum disulfide, the concentration is given by:

\[
C_{Na} = \frac{x}{V}
\]

where \(V\) is the molar volume

\(x\) is the composition parameter of Na\textsubscript{x}TaS\textsubscript{2}
Combining Eqs. (7), (6) and (1) for \(a = 0 \)

\[
\Delta E = \frac{mV_i \tau}{FA (\pi Dt)^2}
\]

The value of \(\tilde{D}_{Na} \) for a specific composition \(x \) is derived from the slope of the \(\Delta E \) vs \(t^{-2} \) curve obtained for a cathode of that composition. A typical plot of \(\Delta E \) vs \(t^{-2} \) is shown in Fig. 4. The compositional variation of the molar volume was obtained from experimentally determined X-ray lattice parameters. The molar volume was found to be between 41 and 42 cm\(^3\) for \(x \geq 0.05 \). The molar volume of pure TaS\(_2\) is 34.6 cm\(^3\).

The experimentally measured values of \(\tilde{D}_{Na} \) as a function of composition \(x \) are shown in Fig. 5. These diffusivity values were obtained using the geometric surface area of the compacted cathode directly in contact with the propylene carbonate electrolyte. The effects of surface roughness and the planar surfaces between the metal discs and cathode (Fig. 2) have not been considered. No variation of \(\tilde{D}_{Na} \) within experimental error was observed on changing the thickness of the cathode pellet (changing the cylindrical area but not the planar areas). The error introduced by using a planar diffusion solution for a cylindrical geometry was calculated using a finite differences solution for the cylindrical geometry. The error involved was found to be minimal for the times involved in the experiments and diffusivities measured. Tantalum disulfide crystals grown by vapor transport\(^{25}\) were \(\approx 1 \) mm x 1 mm platelets. These crystals were intercalated and used to make one cathode. The diffusivity measured with this cathode showed no difference within experimental error of the diffusivity of a cathode compacted from intercalated powder.

Discussion

The measured linear dependence of emf on composition suggests that sodium and tantalum disulfide form a single phase solid solution over the entire composition range, even though X-ray analysis shows no apparent change in lattice parameter for \(x > 0.3 \). Evidently the lattice expansion required to accommodate intercalated sodium occurs rapidly with the insertion of the first few sodium atoms. Omloo and Jellinek\(^{18}\) did not observe a leveling off of the c parameter until \(x > 0.7 \).

Whittingham\(^2\) and Winn, Shemilt and Steele\(^5\) have investigated the thermodynamics of alkali-metal intercalated TiS\(_2\). When TiS\(_2\) is
intercalated with lithium the chemical potential of lithium is a smooth function of composition \(x \) in \(\text{Li}_x \text{TiS}_2 \) varying from \(-58.3 \text{ kcal/mole for } x \approx 0 \) to \(-43.12 \text{ kcal/mole for } x = 1 \), and can be easily fitted by a linear relationship \(^2\). Basu and Worrell \(^26\) investigated lithium intercalated tantalum disulfide and also found that the chemical potential of lithium is well fitted by a linear function of composition \(x \). Winn, et al. \(^5\) reported that the chemical potential of sodium is independent of disulfide non-stoichiometry in \(\text{Na}_x \text{TiS}_2 \) for values of \(x \) less than \(\approx 0.45 \). Above \(x = 0.45 \) the chemical potential of sodium is very dependent on the non-stoichiometry of \(\text{TiS}_2 \) and shows a large change in the slope of the chemical potential-composition curve in making the transition. Leblanc-Soreu, et al. \(^20\) reported that X-ray diffraction studies of \(\text{Na}_x \text{TiS}_2 \) showed 3 distinct phases as the composition changed. In comparison, the measurements of Winn, et al. do not lead to an unambiguous conclusion of the existence of a two phase region. The region around \(x = 0.425 \) could be interpreted as a two phase region. In comparison, the results of this study resemble those of Whittingham \(^2\) for \(\text{Li} \)-\(\text{TiS}_2 \), and Basu and Worrell for \(\text{Li} \)-\(\text{TaS}_2 \) in that \(\text{Li}_x \text{MS}_2 \) appears to be single phase for \(0 < x < 1 \) and the chemical potential of alkali metal is a linear function of composition \(x \).

The measured values of the chemical potential can be correlated with the stable phases in the \(\text{Na} \)-\(\text{Ta} \)-\(\text{S} \)-ternary system. At 300°K, \(\text{Na}_2\text{S} \) is the only stable phase in the \(\text{Na}-\text{S} \) binary, and no solid solubility or intermetallic phases are reported in the \(\text{Na} \)-\(\text{Ta} \) binary \(^27\). The \(\text{Ta} \)-\(\text{S} \) binary on the other hand has many reported phases, although some studies are in conflict \(^28\)-\(^31\). The major question is which of the reported phases are equilibrium phases at ambient temperature. The reported phases are \(\text{TaS}, \text{Ta}_2\text{S}, \text{TaS}, \text{Ta}_1+y\text{S}_2, \text{TaS}_3, \text{and TaS}_4 \) \(^28\)-\(^31\). The first two phases could only be formed at temperatures above 1600°C \(^28\),\(^29\) and are probably unstable at 300°K. Biltz and Kocher \(^31\) reported the existence of \(\text{TaS} \) but it was not found by Jellinek \(^30\). Tantalum monosulfide is a phase similar to niobium monosulfide which is stable at low temperatures and decomposes above 800°C \(^30\). Jellinek \(^30\) may not have observed \(\text{TaS} \) because his preparation temperatures were above 800°C. The phase \(\text{Ta}_1+y\text{S}_2 \) is similar to \(\text{TaS}_2 \) in structure with the excess metal atoms occupying positions in the van der Waals gaps between sulfur layers. We assume that the reported \(\text{Ta}_1+y\text{S}_2 \) phase \(^30\) is within the non-stoichiometry range of \(\text{TaS}_2 \).

Assuming \(\text{Na}_2\text{S}, \text{TaS}_3, \text{TaS}_4 \) and \(\text{TaS} \) are the only stable binary phases, the isothermal ternary section for \(\text{Na}-\text{Ta}-\text{S} \) shown in Fig. 6 has been constructed. The composition of \(\text{Na}_x\text{TaS}_2 \) in the upper
three phase triangle (I) \((\text{Na}_2\text{S}_2, \text{TaS}_3, \text{Na}_x\text{TaS}_2)\) can be determined by considering the following equilibrium:

\[
(2+x) \text{Na}_x + \text{TaS}_3 = \text{Na}_2\text{S} + \text{Na}_x\text{TaS}_2 \quad (9)
\]

where \((2+x) \mu_{\text{Na}} + \Delta G^f_{\text{TaS}_3} = \Delta G^f_{\text{Na}_2\text{S}} + \Delta G^f_{\text{Na}_x\text{TaS}_2} \quad (10)\)

In order to calculate \(x\) in \(\text{Na}_x\text{TaS}_2\) from Eq. (10) the free energy of formation of \(\text{TaS}_3\) must be estimated. Since \(\text{TaS}_3\) is a stable phase, the stability of \(\text{TaS}_3\) can be estimated from the following reactions at \(300^\circ\text{K}\):

\[
\text{TaS}_3 + \text{S} \rightarrow \text{TaS}_3 \quad (11)
\]

\[
\text{TaS}_3 + 1/2 \text{Ta} \rightarrow 3/2 \text{TaS}_2 \quad (12)
\]

Eqs. (11) and (12) require that \(\Delta G^f_{\text{TaS}_3}\) be between \(-70.5\) and \(-105.75\) kcal/mole. Assuming that \(\text{TaS}_3\) is only slightly more stable than \(\text{TaS}_3\), we estimate a value for \(\Delta G^f_{\text{TaS}_3}\) of \(-75\) kcal/mole.

Substituting this estimated value of \(\Delta G^f_{\text{TaS}_3}\), the literature value of \(\Delta G^f_{\text{Na}_2\text{S}}\) \((-86.5\) kcal/mole\)\(^{32}\) and Eqs. (1) and (5) for \(\mu_{\text{Na}}\) and \(\Delta G^f_{\text{Na}_x\text{TaS}_2}\) respectively, into Eq. (10), gives the following equation:

\[
20,530x^2 + 82,090x - 43,400 = 0 \quad (13)
\]

Using Eq. (13), one calculates the composition \(x\) in \(\text{Na}_x\text{TaS}_2\) which is in equilibrium with \(\text{Na}_2\text{S}\) and \(\text{TaS}_3\). As shown in the upper three-phase triangle of Fig. 6, this composition is \(\text{Na}_{0.47}\text{TaS}_2\).

The lower three phase triangle (II) in Fig. 6 is represented by

\[
\text{Na} + \text{Na}_{1.0}\text{TaS}_2 = \text{Na}_2\text{S} + \text{TaS} \quad (14)
\]

The free energy of formation of \(\text{TaS}\) calculated from Eq. (14) using the value of \(\Delta G^f_{\text{Na}_2\text{S}}\) given above and Eqs. (1) and (5) for \(x = 1\) is \(-47.9 \pm 3\) kcal/mole. This is close to the value of \(-50.2\) kcal/mole derived by Basu and Worrell\(^{28}\) from the Li-Ta-S ternary. As with \(\text{TaS}_3\), the binary phase diagram can be used to obtain limits on the stability of \(\text{TaS}\) as given by:

\[
\text{Ta} + \text{TaS}_2 \rightarrow 2 \text{TaS} \quad (15)
\]

\[
\text{TaS} + \text{S} \rightarrow \text{TaS}_2 \quad (16)
\]

Eqs. (15) and (16) require that \(\Delta G^f_{\text{TaS}}\) be between \(-35.25\) and \(-70.5\) kcal/mole. The calculated value for Eq. (14) is within these limits.
If it is assumed TaS is not stable, a three phase triangle between Na₂S₅, NaTaS₄ and Ta would exist. Such a three phase equilibrium results in a value of -4.74 kcal/mole for μ_{Ta}. Since the solubility of sulfur and sodium in solid tantalum is expected to be low, the chemical potential of tantalum should be essentially zero.

The measured values of δ_{Na} show a significant variation for a single composition. Even considering the experimental scatter the values of δ_{Na} exhibit a good fit to a curve of the form

$$\delta_{\text{Na}} = \text{const} \left[x (1-x)^2 \right]$$

as shown in Fig. 7.

The thermodynamic factor of sodium in the intercalated disulfides $\left(\frac{\text{d} \ln a_{\text{Na}}}{\text{d} \ln C_{\text{Na}}} \right)$ can be calculated from Eqs. (1) and (7) to give

$$\frac{\text{d} \ln a_{\text{Na}}}{\text{d} \ln C_{\text{Na}}} = \frac{F}{RT} \frac{\text{d} E}{\text{d} \ln x/V} = -\frac{F m}{RT} x$$

It is also expected that the diffusivity of sodium will decrease with increasing sodium content within a layer because the number of vacant sites decreases. As shown in Fig. 7, sodium atoms can occupy octahedral or tetrahedral sites in the van der Waals gap between sulfur layers. For a completely ionized sulfur, the octahedral site can accommodate an atom with a radius less than 1.18 Å. The tetrahedral site can only accommodate an atom with radius less than 0.85 Å. The ionic radius of sodium is 0.95 Å. Since the sulfur is not completely ionized the values calculated above are too small and sodium may occupy either site. However, the octahedral site is selected as the favored site because of its relatively larger size. Movement from one octahedral site to another octahedral site involves movement through a tetrahedral site. It is further assumed that a tetrahedral site can not be occupied if any one of the surrounding octahedral sites is filled. This assumption leads to a dependence of diffusivity on the probability of two octahedral sites being empty. Since there is one octahedral site per TaS₅ the probability of an octahedral site being empty is $(1-x)$. Combination of this dependence on site occupation and the thermodynamic factor calculated in Eq. 18 gives the observed variation of δ_{Na} with x shown in Eq. (17).

The only other reported study of the diffusivity of alkali-metals
in transition metal dichalcogenides is the work of Winn, et al. These authors report the diffusivity of sodium in TaS₂ to be approximately $10^{-9} \text{cm}^2/\text{sec}$ but their data suffers from an error in the analysis.

Summary

The existence of a wide compositional range for Na₉TaS₉ has been confirmed ($0 < x < 1$). The chemical potential of sodium in the Na₉TaS₉ solid solution changes significantly from -63.42 kcal/mole to -21.6 kcal/mole. The diffusivity of sodium in NaₓTaS₂ is greater than $10^{-9} \text{cm}^2/\text{sec}$ when x is between 0.05 and 0.9, which is extraordinarily high for a solid at room temperature.

Acknowledgement

The authors gratefully acknowledge the support of this work by the Advanced Research Projects Agency of the Department of Defense through the Laboratory for Research on the Structure of Matter at the University of Pennsylvania.

References

References (continued)

References (continued)

Figure 5: Measured dependence of $\log D_{\text{Na}}$ with composition x in Na_xTaS_3 at 300°K. Solid line is fitted curve of $\log D_{\text{Na}} = \log (\text{constant}) + \log [x(1-x)^2]$.

Figure 6: Proposed Isothermal ternary section for the Na-Ta-S system at 300°K.

Figure 7: Schematic picture of tetrahedral (Δ) and octahedral (\square) sites for sodium in the van der Waals gaps of Na_xTaS_3. The broken lines indicate the sulfur atoms below the gap; the solid lines indicate sulfur atoms above the gap. Arrows indicate the proposed diffusion path, i.e., octahedral \rightarrow tetrahedral \rightarrow octahedral.
Figure 1: Structural characteristics of 2H-TaS₂.

Figure 2: Experimental cell.

Figure 3: Measured cell voltage as a function of composition x in NaₓTaS₂ at 300°K.

Figure 4: Typical experimental curve of ΔE vs (time)^{-\frac{1}{2}}.
ELECTROCHEMICAL DETERMINATION OF THE CHEMICAL
POTENTIAL OF LITHIUM IN Li\textsubscript{x}TaS\textsubscript{2} AT 300\textdegree K

Samar Basu and Wayne L. Worrell

Department of Metallurgy and Materials Science
University of Pennsylvania, Philadelphia, PA 19104

ABSTRACT

Tantalum disulfide intercalated with lithium offers exciting possibilities as a novel electrode material. The thermodynamic properties of lithium in Li\textsubscript{x}TaS\textsubscript{2} where x varies from 0 to 1.0 have been determined using electrochemical cell techniques. The electrochemical cell is:

\[\text{Li}/\text{Li}^+ (\text{LiClO}_4 \text{ in propylene carbonate})/\text{Li}_x\text{TaS}_2 \]

Such thermodynamic data are necessary not only to understand chemical bonding in these intercalated materials but also to quantitatively assess their specific applications as cathodes in secondary alkali-metal battery systems.

INTRODUCTION

The dichalcogenides of transition metals have received considerable attention in recent years because of their unique properties. These dichalcogenides form layered compounds in which layers of metal, M, are sandwiched between layers of anion, X, in a hexagonal symmetry. A van der Waals gap exists between the anion layers as shown in Fig. 1 for TaS\textsubscript{2} in its 2H polymorph (1). Alkali metals like Li, Na, and K are known to intercalate readily within the van der Waals gaps in these structures (2,3,4).

For alkali-metal based battery systems, one needs a cathode material having a very low chemical potential of the alkali metal over a wide composition range. The chemical potential and diffusivity of lithium in Li\textsubscript{x}TaS\textsubscript{2}, where x varies between 0 to 1.0, are being determined over the entire range of composition. Such fundamental data are essential for the assessment of the suitability of Li\textsubscript{x}TaS\textsubscript{2} as a cathode material in lithium batteries. The electrochemical cell used for our investigation is:

\[\text{Li}/\text{Li}^+ (\text{LiClO}_4 \text{ in propylene carbonate})/\text{Li}_x\text{TaS}_2 \ldots (A) \]
This paper reports the electrochemical determination of chemical potential of lithium in Li_xTaS_2 as a function of composition.

EXPERIMENTAL

Tantalum disulfide (typically 99.8%) was obtained from CERAC. This material was found to consist of several other phases apart from the 2H-polytype. The Ta:S ratio of the material was more than 1:2. The 2H-polytype of TaS_2 was prepared by annealing the material at 580°C under a flow of purified argon and in presence of sulfur at 200-300°C for 7 days. X-ray investigation of the annealed tantalum disulfide revealed that conversion to 2H-polytype was complete. The 'a' and 'c' parameters of annealed 2H-TaS_2 were determined to be 3.312 and 12.08 respectively and were in fair agreement with literature values (2,3).

Solution of n-butyl lithium (2.2 molar) in hexane (from Ventron) was used after 1:3 dilution to intercalate 5 lithium in 2H-TaS_2 inside a controlled atmosphere box (~1ppm moisture) with argon-5% hydrogen environment. Powders of TaS_2 were immersed in a known volume of diluted n-butyl lithium solution for about 2-4 days, although the intercalation process is essentially completed within one day. The intercalating solutions were separated by filtration. The solids were washed repeatedly with hexane, vacuum dried and stored in stoppered bottles inside a controlled-atmosphere box. The composition of intercalated compounds, Li_xTaS_2, was determined by the analysis of initial and final lithium content of the intercalating solutions. The analysis was carried out by titration with standardized (10N) HCl.

The as-received propylene carbonate (99% Aldrich) was found to contain ~200 ppm moisture when analyzed in a Perkin-Elmer gas chromatograph. In order to remove this moisture, propylene carbonate was mixed with small chips of freshly cut lithium metal (Ventron, 99.9%) in a bottle, and the mixture was agitated in a laboratory shaker for about 7 days. The mixture turned grey and clear moisture-free propylene carbonate was separated from solids by filtration inside the controlled atmosphere box.

Anhydrous LiClO_4 (Ventron, 99.5%) was dried under vacuum (10\mu) at 150°C for one day. The dried LiClO_4 was dissolved in propylene carbonate in concentrations around 1.0 molar to prepare the electrolyte.

Fig. 2 shows schematically the experimental cell. Cathode pellets of Li_xTaS_2 were prepared by isostatically pressing powders at ~85,000 psi. Initial attempts to compact
Li$_x$TaS$_2$ powders in an ordinary die press produced preferentially oriented pellets, where the c-axis of the Li$_x$TaS$_2$ lattice was aligned along the axis of loading. These preferentially oriented pellets disintegrated easily when a current was passed through the cell. The lithium content of the Li$_x$TaS$_2$ cathode changes with current flow. This variation can develop internal stresses in the Li$_x$TaS$_2$ lattice due to changes in the c-parameter of the lattice. Isostatically pressed pellets of Li$_x$TaS$_2$ required grinding and polishing in order to fit into the cathode holder. The typical weight of a cathode pellet was 0.3 g. The anode was freshly cut lithium. Argon, which was purified by passing successively through dryrite, molecular sieve and a titanium-chip getter at 550°C, passed over the cell. If the cell voltage was stable (\pm 0.5mv) for 2-3 days, then it was recorded using a Keithley model 630 electrometer. In some cases the composition of Li$_x$TaS$_2$ was changed by passing a constant current of 50μA through the cell using a Tacussel PIT 20-2X potentiostat. Most of the cells were operated at ~ 30°C and two were operated ~ 70°C. Cells were not operated at temperatures higher than 70°C because of the possibility of dissociation of propylene carbonate of the cell electrolyte (6,7).

RESULTS AND DISCUSSION

Fig. 3 shows the voltage of the cell (A) as a function of composition, x, of Li$_x$TaS$_2$ for various cells. The variation of cell voltage (E) with composition, x, of Li$_x$TaS$_2$ can be described by a straight line of equation:

$$E = 2.92 - 1.46x$$ \hspace{1cm} \ldots (1)

The chemical potential of lithium, $\mu$$_{Li}$, at any composition is given by:

$$\mu$$_{Li} = -nF \cdot E = -F(2.92-1.46x)$$ \hspace{1cm} \ldots (2)

As shown in Fig. 3, temperature does not have a pronounced influence on cell voltage. The linear variation of cell voltage with composition in alkali-metal intercalated transition metal disulfide has also been observed in Na$_x$TaS$_2$ (8). However, non-linear variations of cell voltage in Na$_x$TiS$_2$ (9) and Li$_x$TiS$_2$ (19) have been observed. The linear variation of cell voltage observed in our system indicates that the cathode remained single phase throughout the composition range. The chemical potential of lithium in Li$_x$TaS$_2$ calculated from Eq. (2) varied from -64.0 to -33.61K-cal/g atom corresponding to a value of $x = 0.1$ and $x = 1.0$ respectively.
The free energy of formation of the compound Li_xTaS_2 may be represented (8) as:

$$\Delta G^0_f(Li_xTaS_2) = \Delta G^0_f(TaS_2) - nF \int_0^x (2-92-1.46x)dx \ldots (3)$$

Larson and Elliott (11) determined the free energy of formation of TaS, in 850-1100°C temperature range. Extrapolation of their data to 300K gives $\Delta G^0_f(TaS_2) = -70.5 \pm 3$ K-cal per mole with reference to pure solid sulfur as standard state. Using this value, and setting $x = 1$ in Eq. (3) a value of -121.0 ± 3.0 K-cal/mole is obtained for $\Delta G^0_f(LiTaS_2)$.

All free energy values quoted in this paper are based on solid sulfur as the standard state. The difference between solid sulfur and gaseous sulfur standard state is $+9.5$ K-cal/g-atom of sulfur at 300K. The free energy values determined by the present investigation for Li_xTaS$_2$ can be correlated with known phase relationships in the ternary Ta-S-Li system. Fig. 4 shows the isothermal section of ternary Ta-S-Li system at 300K considering only Li$_2$S, TaS, TaS$_2$, and TaS as the stable binary phases. The point A represents the saturated intercalation compound LiTaS$_2$.

Although there is no thermodynamic data for TaS$_3$, its thermodynamic stability must be between $\Delta G^0_{TaS_2}$ and 1.5 ΔG^0_{TaS} (8,10). If we assume TaS$_3$ to be slightly more stable than TaS$_2$, a value of -75 K-cal/mole is reasonable for $\Delta G^0_{TaS_3}$ (8).

In the upper portion of the ternary diagram, Li$_x$TaS$_2$ is expected to be in equilibrium with Li$_2$S and TaS$_2$. We can estimate the exact composition of Li$_x$TaS$_2$ in equilibrium with TaS$_2$ and Li$_2$S by considering the following equilibrium:

$$TaS_2 + (2+x)Li = Li_xTaS_2 + Li_2S \ldots (4)$$

Thus

$$(2+x)\mu_{Li} + \Delta G^0_f(TaS_2) = \Delta G^0_f(Li_xTaS_2) + \Delta G^0_f(Li_2S) \ldots (5)$$

Where, μ_{Li} is given by Eq. (2), $\Delta G^0_f(Li_xTaS_2)$ is given by Eq. (3) and $\Delta G^0_f(TaS_2) = -75$ K-cal/mole. Juza and Uphoff (12) reported the heat of formation of Li$_2$S at 298K as -106.7 K-cal/mole. Freeman (13) estimated the standard entropy, S^0_{298} for Li$_2$S = 1473 cal/K/mole. Using the standard entropy values (14) of 6.954 and 7.631 cal/mole/K for lithium and sulfur, $\Delta G^0_f(Li_2S)$ is calculated to be -104.45 K-cal/mole at 298K. Substitution of all these free energy values in Eq. (5) yields a quadratic equation in composition x:
Eq. (6) yields a value of 0.46 for \(x \) as shown in the upper three phase triangle indicated in Fig. 4. Of course, the calculated equilibrium composition of \(\text{Li}_x\text{TaS}_2 \) in this three phase triangle depends on the selected value for the free energy formation of \(\text{TaS}_2 \).

Jellinek (15,16) did not observe a \(\text{TaS} \) phase in the phase identification work on Ta-S binary system in the 600-1000\(^\circ\)C temperature range. However, Biltz and Köcher (17) reported a subsulfide \(\text{TaS}_{1-x} \) (where \(0 < x < 0.7 \)). In the analogous Nb-S system, monosulfide \(\text{NbS} \) is a stable phase below 800\(^\circ\)C (18). Assuming that \(\text{TaS} \) is a stable phase at 300\(^\circ\)K, we can estimate its thermodynamic stability by considering the following equilibrium in the Ta-S-Li system:

\[
\text{TaS} + \text{Li}_2\text{S} = \text{Li} + \text{LiTaS}_2 \quad \ldots (7)
\]

Thus

\[
\Delta G^o f(\text{TaS}) = \Delta G^o f(\text{LiTaS}_2) + \mu_L - \Delta G^o f(\text{Li}_2\text{S}) \ldots (8)
\]

Where \(\mu_L \) is given by Eq. (2), \(\Delta G^o f(\text{Li}_2\text{S}) \) and \(\Delta G^o f(\text{LiTaS}_2) \) are \(-104.45K\text{-cal/mole} \) and \(-121.0K\text{-cal/mole} \) respectively. We obtain \(\Delta G^o f(\text{TaS}) = -50.2 \pm 3K\text{-cal/mole} \) at 300\(^\circ\)K. In a thermodynamic analysis of the Ta-S-Na system, Nagelberg and Worrell (8) calculated \(\Delta G^o f(\text{TaS}) = -47.9 \pm 3K\text{-cal/mole} \), which is in good agreement with the value obtained from Eq. (8).

If \(\text{TaS} \) is assumed to be unstable, then the three phase equilibrium on the lower side of \(\text{Li}_x\text{TaS}_2 \) would involve \(\text{Li}_2\text{S} \), \(\text{LiTaS}_2 \) and tantalum. The solid solubility of sulfur and lithium in tantalum is negligible and the chemical potential of tantalum \(\mu_Ta \) should essentially be zero. However, the \(\text{Li}_2\text{S}-\text{LiTaS}_2-\text{Ta} \) equilibrium requires that the \(\mu_Ta \) be \(-13.3K\text{-cal/g.atom} \). Thus the three phase thermodynamic analysis leads to an unacceptable value for \(\mu_Ta \).

In our current experiments the diffusivity of lithium in \(\text{Li}_x\text{TaS}_2 \) is being determined as a function of composition \(x \). Studies of the behavior of \(\text{Li}_x\text{TaS}_2 \) with other electrolytes like \(\text{Li}^+-\text{Na}^+ \) beta aluminas and \(\text{LiCl}-\text{KCl} \) fused salts are also under way.

SUMMARY

Lithium intercalates in \(2H-\text{TaS}_2 \) as \(\text{Li}_x\text{TaS}_2 \) over a wide range of composition \(0 < x < 1 \). The voltage of the cell using \(\text{Li}_x\text{TaS}_2 \) as cathode against pure lithium anode varies between 2.92 to 1.46 volts depending on the composition \(x \).
The measured values of the chemical potentials of lithium in Li_xTaS_2 have been used in a thermodynamic analysis of the equilibrium-phase relationship in Ta-S-Li system at 300 K.

ACKNOWLEDGEMENT

The author gratefully acknowledge the support of the work by the Advanced Research Projects Agency of the Department of Defense through the Laboratory for Research on the Structure of Matter of the University of Pennsylvania.

REFERENCES