A SIMPLE WATER TRAP FOR USE IN A FLUE GAS SAMPLING SYSTEM.

OCT 77 F W SKIDMORE, D DYETT

ARL/MECH-ENG-TM-386
A SIMPLE WATER TRAP FOR USE IN A FLUE GAS SAMPLING SYSTEM.

F.W. Skidmore and D. Dyett

© COMMONWEALTH OF AUSTRALIA 1977

UNCLASSIFIED
This memorandum describes a simple water trap designed to remove condensed water from a flue gas sampling system prior to drying. The water trap was used during Naval boiler trials and found to operate satisfactorily.
A Simple Water Trap for Use in a Flue Gas Analysis Sampling System.

T.W. Skidmore and D. Dyett

Aeronautical Research Laboratories.

43 2760

Aeronautical Research Laboratories.

Approved for Public Release.

No Limitations

Flue Gases
Gas Sampling
Gas Analysis
Water Trap

This memorandum describes a simple water trap designed to remove condensed water from a flue gas sampling system prior to drying. The water trap was used during Naval boiler trials and found to operate satisfactorily.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. THE WATER TRAP</td>
<td>2</td>
</tr>
<tr>
<td>3. WATER TRAP TESTS</td>
<td></td>
</tr>
<tr>
<td>4. MODIFICATIONS</td>
<td>2</td>
</tr>
<tr>
<td>5. CONCLUSIONS</td>
<td>2</td>
</tr>
<tr>
<td>FIGURES 1 and 2</td>
<td></td>
</tr>
<tr>
<td>DISTRIBUTION</td>
<td></td>
</tr>
<tr>
<td>DOCUMENT CONTROL DATA</td>
<td></td>
</tr>
</tbody>
</table>
1. INTRODUCTION

Following conversion of boiler systems of some RAN ships to burn Diesel fuel in place of Furnace Fuel Oil, A.R.L. has assisted by measuring the performance of boilers and propulsion machinery. To enable the determination of the percentage of excess air and carbon monoxide in the flue gas from the boilers it is necessary to extract a gas sample from the stack and pass it to several gas analysers. It became obvious after early trials that one of the main problems in the gas sampling system was the large amount of condensed water in the sample. As the gas analysers demand a dry gas input, small calcium chloride dryers are fitted before each instrument; these however were found to be unable to cope with the quantity of water in the raw flue gas sample.

To help overcome this problem a simple self purging water trap has been designed and built to extract the bulk of the condensed water in the sample. The water trap was subjected to bench tests and then fitted to a gas sampling system during steaming trials on a naval vessel.

This memorandum describes the principles and operation of the device.

2. THE WATER TRAP

The water trap, shown in cross-section in figure 1 and photographed in figure 2, consists of a glass cylinder with a brass top and bottom held by tie bolts. A cork float, waterproofed with an epoxy adhesive, is connected to a stainless steel release valve.

The gas sample enters a hole in the float via a droptube and exhausts through a tube located at the top of the trap. Water which accumulates in the bottom of the trap periodically raises the float and lifts the release valve to vent the water. A stop is provided to prevent the release valve from falling out of its recess during transportation; a manual valve is provided to drain the trap completely.
3. WATER TRAP TESTS

The trap was bench tested at angles of tilt of up to 30 degrees, using a simulated raw gas sample at a flow rate of approximately 27 litres per minute. The presence of condensed water was simulated by injecting water upstream of the trap; at these conditions the device was found to operate correctly. The trap was then connected to an exhaust gas sampling system on a naval vessel and was found to operate satisfactorily during a two day period of trials.

4. MODIFICATIONS

It is suggested that for future traps the following modifications be carried out to make the device most robust.

a) Replace the glass cylinders with a metal cylinder and provide a sight glass for water level checks.

b) Replace the cork float with either a plastic or corrosion resistant hollow metal float.

5. CONCLUSIONS

The water trap described in this memorandum satisfactorily removed most of the condensed water in the sampling system tested. Modifications to improve robustness would be desirable. As nearly all liquid water is removed from the gas sample, greatly improved life of the dessicant tubes required to remove water vapour has been achieved.
FIG. 1. CROSS SECTION OF WATER TRAP
FIG. 2. ASSEMBLED WATER TRAP
DEPARTMENT OF DEFENCE

Central Office
Chief Defence Scientist 1
Executive Controller, ADSS 2
Superintendent, Defence Science Administration 3
Defence Library 4
J.I.O. 5
Assistant Secretary, DISB 6-20

Aeronautical Research Laboratories
Chief Superintendent 21
Superintendent, Mechanical Engineering 22
Mechanical Engineering Divisional File 23
P.W. Skidmore, D. Dyett, R.E. Pavia 24-25
Library 26-27

Materials Research Laboratories
Library 28

Weapons Research Establishment
Library 29

Central Studies Establishment
Library 30

RAN Research Laboratory
Superintendent 31

NAVY OFFICE
Navy Scientific Adviser 32
Mr. W. Hibbert, D.MED Canberra 33
Williamstown Naval Dockyards, Mr. P. Siccita 34
Garden Island Dockyard, Senior Engineer, Mechanical, (Mr. P. Murdie) 35
Cockatoo Island Dockyard, General Overseer and Superintendent of Inspection (Mr. I. Jenkins) 36

SPARES 37-44