On the Structure of Starch-Iodine

by

Robert C. Teitelbaum
Stanley L. Ruby
Tobin J. Marks

Prepared for Publication
in the
Journal of the American Chemical Society

Northwestern University
Department of Chemistry
Evanston, Illinois 60201

Reproduction in whole or in part is permitted for
any purpose of the United States Government

Approved for Public Release; Distribution Unlimited
On the Structure of Starch-Iodine

Authors:
R.C. Teitelbaum, S.L. Ruby, and T.J. Marks

Performing Organization:
Department of Chemistry
Northwestern University
Evanston IL 60201

Abstract:
(see page 1)
ON THE STRUCTURE OF STARCH-IODINE

Robert C. Teitelbaum, Stanley L. Ruby, and Tobin J. Marks

Department of Chemistry and the
Materials Research Center
Northwestern University
Evanston, Illinois 60201

and

the Physics Division
Argonne National Laboratory
Argonne, Illinois 60439

Abstract

The structure of the blue-black iodine complex of amylose (the linear, helical component of starch) has been studied by resonance Raman and iodine-129 Mössbauer spectroscopy. It is concluded from these studies and parallel work on selected model compounds that the predominant polyiodide present is I_5.
ON THE STRUCTURE OF STARCH-IODINE

Sir:

It has been known for many years that the linear, helical component of starch, amylose, forms an intensely blue-black adduct with iodine in the presence of iodide.\(^1\) The pioneering spectral and X-ray diffraction investigations of Rundle and co-workers\(^2\) established that the iodine atoms are present in a one-dimensional chain within the amylose helix (arrayed in a periodicity probably incommensurate with the pitch of the helix) and give rise to the intense optical absorption (\(\lambda_{\text{max}} \approx 600 \text{ nm}\)).\(^2\) The exact structural nature of the polyiodide chromophore has been the subject of considerable study and speculation. For example, it has been proposed that the iodine is present as discrete \(\text{I}_2\) units,\(^3a\) "dissolved" in the hydrophobic interior of the helix, and also that iodine is present as linear chains of \(\text{I}_3^{-1}\) (A) ions

\[\cdots\text{I-I-I-\cdotsI-I-I-\cdotsI-I-I-\cdots}\]

as in \((\text{benzamide})_2\text{H}_2\text{I}_2^-\).\(^4\) In addition, studies of related cyclohexaamylose complexes\(^5\) suggest the possibility of arrays of alternating \(\text{I}_2^+\) and \(\text{I}_3^-\) units (B) or symmetrical \(\text{I}_5^-\) species (C). Despite

\[\text{B} \quad \cdots\text{I-I-\cdotsI-I-\cdotsI-I-\cdotsI-I-I}\]
the application of a variety of physical techniques to this problem, it has not been possible to differentiate among these structures and to provide definitive information on the identity of the polyiodide species present in starch-iodine. We have recently shown that the combination of resonance Raman and iodine-129 Mössbauer spectroscopy, aided by studies of appropriately selected model compounds, is a powerful tool for elucidating polyiodide structure in low-dimensional mixed valence materials. In this communication we apply these techniques to the starch-iodine problem. We provide unambiguous evidence that the predominant polyiodide species within the amylose helix is I_5^-. In Figure 1 are presented resonance Raman scattering spectra (5145Å excitation, spinning samples) of the amylose iodine complex (prepared in deionized water from potato amylose, I_2 and KI, washed with deionized water, and freeze-dried) and several key model compounds of known structure. In general, only totally symmetric normal vibrational modes (and the corresponding overtones and combinations) exhibit appreciable intensity in polyiodide resonance Raman spectra. The observed I-I stretching frequencies reflect the tendency of I_2 to act as an electron acceptor and of electron donors (e.g. I^-) to lower the I-I bond order. Thus, coordination of I^- to I_2 producing I_5^-, lowers the I-I stretching frequency from 207 cm$^{-1}$ to 128 cm$^{-1}$ (the
average of the Raman-active totally symmetric stretch at 108 cm\(^{-1}\) and the infrared-active antisymmetric stretch at 148 cm\(^{-1}\). As can be seen in Figure 1A, starch-iodine exhibits strong scattering at 163 cm\(^{-1}\), and very weak scattering at 109 and 56 cm\(^{-1}\); overtones and combinations are also observed. This spectrum differs sharply from those of \(I_2\) in benzene (Figure 1C, \(\nu_{\text{fundamental}} = 207\) cm\(^{-1}\)) alcohols or ethers, \(^{14}\) (benzamide)\(_2\)H\(^+\)I\(_3^-\) (Figure 1D, \(\nu_{\text{sym}}\), fundamental = 108 cm\(^{-1}\)), which has structure \(A\), \(^{4}\) and either (phenacetin)\(_2\)H\(^+\)I\(_3^-\) \cdot I_2 \(^{15a}\) (Figure 1E \(\nu_{\text{fundamental}} = 187\) cm\(^{-1}\), \(\nu_{\text{sym}}\), \(\nu_{\text{asy}}\) = 120 cm\(^{-1}\)\(^{15b}\) or (\(2\)-cyclohexamylose)\(_2\) Li\(^+\)I\(_3^-\) \cdot I_2 \cdot 8H_2O \(^{15}\) (Figure 1F, \(\nu_{\text{fundamental}} = 173\) cm\(^{-1}\), \(\nu_{\text{sym}}\), \(\nu_{\text{asy}}\) = 110 cm\(^{-1}\)\(^{15b}\) which have structure \(B\). On the other hand, compounds with chains of \(I_5^-\) ions (structure \(C\)) exhibit a spectrum essentially identical to that of the starch compound. Thus, (trimesic acid \cdot H_2O)\(_x\)H\(^+\)I\(_3^-\) \(^{16}\) (Figure 1B) exhibits strong scattering at 162 cm\(^{-1}\) and weaker bands at 104 and 75 cm\(^{-1}\)\(^{15b}\) The 162 cm\(^{-1}\) transition is reasonably assigned to a fundamental normal mode involving the symmetrically coupled internal stretching of the two "I\(_2\)" units. \(^{17}\) That the force constant is perturbed less from free \(I_2\) than in \(I_3^-\) reflects the fact that the available electron density of the \(I^-\) donor must now be distributed between two \(I_2\) acceptors.

It is known \(^2\) that the blue-black amylose complex can also be prepared from iodine vapor and amylose which has been crystallized from butanol. We find the resonance Raman spectrum of this material to be identical to that of the complex prepared in aqueous solution from
It has been previously suggested\(^{18}\) that hydrolysis of \(I_2\) produces \(I^-\) in the crystalline amylose.

In order to investigate the possible presence of Raman-inactive \(I^-\) and to add further weight to the \(I_5^-\) proposal, iodine -129 Mössbauer studies were undertaken. The amylose-iodine adduct was prepared by the aqueous procedure described above, using \(^{129}\text{I}\). The Mössbauer spectrum at 4°K is shown in Figure 2A, along with the best computer fit to the experimental data. Data analysis techniques are described elsewhere. The spectrum is best fit to a model with three inequivalent iodine sites in approximate relative populations of 2:2:1. Derived site population, isomer shift, and quadrupole splitting parameters are presented in Table I. Importantly, attempts to constrain the model to 1:1:1 site populations (as in CsI\(_3\)) or to two sites in a ratio of 2:1 (as in (benzamide)\(_2\)H\(^{+}\)I\(_5^-\)) produced a precipitous deterioration in the goodness of fit parameter.

There is no evidence of \(I^-\) (\(\delta = -0.51\) mm/sec, \(\epsilon\sigma Q = 0^8\)) in the spectrum and it is estimated that this species is present in less than 3 mole percent. For comparison to the amylose data, the Mössbauer spectrum of (trimesic acid · H\(_2\)O)\(_x\)H\(^{+}\)I\(_5^-\), enriched in \(^{129}\text{I}\), is shown in Figure 2B. The parameters obtained from the optimum fit are set out in Table I. The derived site populations give an indication of the accuracy of the analysis. These numbers as well as the isomer shift and quadrupole splitting parameters are in close agreement with the amylose-iodine data, and provide further support for the pentaiodide structure.
Besides providing information on a long-standing problem, this work further illustrates the power of the resonance Raman/iodine Mössbauer technique for elucidating the structures of unusual polyiodides. Application to a variety of disordered, noncrystalline, or microcrystalline electronic and optical materials is particularly promising.

Acknowledgments

This work was supported in part by the Office of Naval Research, the Energy Research and Development Administration, and by the Northwestern Materials Research Center (NSF DMR 72-0319A06). We thank Drs. B. Zabransky and D. R. Stojakovic for helpful discussions.

Robert C. Teitelbaum, Stanley L. Ruby, *20a 20b

and Tobin J. Marks

Department of Chemistry and the Materials Research Center Northwestern University Evanston, Illinois 60201

and

the Physics Division Argonne National Laboratory Argonne, Illinois 60439
References

 e. J. F. Foster in reference 1d, Chapt. XV.

6. a. A previous Raman study, unaided by appropriate model compounds, reached the conclusion of I5: M. Tasumi, Chem. Letters, 75 (1972).
 b. An earlier iodine Mössbauer study was unaided by appropriate model compounds and optimum data acquisition/analysis procedures; it was concluded that I5 was present since inequivalent iodine sites were detected: B. S. Ehrlich and M. Kaplan, J. Chem. Phys., 51, 603 (1969).
6. c. For intrinsic viscosity studies see reference 3b.

d. D. W. Kalina, D. R. Stojakovic, R. C. Teitelbaum, and T. J. Marks, manuscript in preparation. The dependence of the observed scattering pattern upon exciting wavelength (4880-6471 Å) is generally rather small. Correlation field splitting effects also appear to be small (< ca. 10 cm⁻¹).

10. Prolonged pumping under high vacuum at room temperature leads to I_0 depletion. An enhanced I_0^- band is observed in the Raman.

13. Overtones are assigned at 322 (2 x 163) and 214 (2 x 109) cm$^{-1}$; the band at 272 (163 + 109) cm$^{-1}$ is assigned to a combination. The presence of a combination transition can be taken as evidence that the contributing species are not in separate lattices (i.e. that the spectrum is not due to a mixture of compounds).

14. a. Coordination of oxygen donors such as are present near the interior of the amylose helix produces only a small shift in the I-I stretching frequency, viz., ν fundamental (diethyl ether) = 204 cm$^{-1}$ and ν fundamental (n-butanol) = 197 cm$^{-1}$.

b. Bands assignable to overtones and combinations are also visible in the Raman spectrum.

b. F. H. Herbstein, private communication to T. J. M.

17. One of the other bands presumably involves symmetrically coupled $I_0^-I^-I_0^+$ stretching. Under D_{4h} symmetry I_0^- has two τ_g^+ stretching modes; a π_g bending mode is also predicted to be active for a normal Raman transition.

b. This question is under further investigation.

20. a. Northwestern University

b. Argonne National Laboratory

21. Camille and Henry Dreyfus Teacher-Scholar
Table I

Iodine -129 Mössbauer Parameters

<table>
<thead>
<tr>
<th>Compound</th>
<th>Amylose - Iodine</th>
<th>(Trimesic Acid·H₂O)ₙH⁺I⁻⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ(mm/sec)</td>
<td>1.22(2)</td>
<td>1.15(3)</td>
</tr>
<tr>
<td>e²qQ(MHz.)</td>
<td>-1743(3)</td>
<td>-1777(5)</td>
</tr>
<tr>
<td>Π(mm/sec)</td>
<td>1.14(4)</td>
<td>1.15(5)</td>
</tr>
<tr>
<td>Relative population</td>
<td>1.90(10)</td>
<td>1.96(10)</td>
</tr>
<tr>
<td>Site 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ(mm/sec)</td>
<td>0.53(3)</td>
<td>0.53(5)</td>
</tr>
<tr>
<td>e²qQ(MHz.)</td>
<td>-1187(8)</td>
<td>-1404(8)</td>
</tr>
<tr>
<td>Π(mm/sec)</td>
<td>2.13(8)</td>
<td>1.75(5)</td>
</tr>
<tr>
<td>Relative population</td>
<td>1.82(10)</td>
<td>1.78(10)</td>
</tr>
<tr>
<td>Site 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ(mm/sec)</td>
<td>0.14(2)</td>
<td>0.13(5)</td>
</tr>
<tr>
<td>e²qQ(MHz.)</td>
<td>-842(5)</td>
<td>-965(5)</td>
</tr>
<tr>
<td>Π(mm/sec)</td>
<td>1.08(5)</td>
<td>1.04(4)</td>
</tr>
<tr>
<td>Relative population</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

*a Versus ZnTe
*b For *₂I
*c Linewidth
Figure Captions

Figure 1. Resonance Raman spectra (5145 Å excitation) of A. Starch (amylose) iodine, B. Polycrystalline (trimesic acid · H₂O)₁₀H⁺I₅⁻, C. I₂ dissolved in benzene, D. Polycrystalline (benzamide)₂H⁺I₅⁻, E. Polycrystalline (phenacetin)₂H⁺I₅⁻ · I₂, F. Polycrystalline (α-cyclohexaamylose)₂ · Li⁺I₅⁻ · I₂ · 8H₂O.

Figure 2. Iodine-129 Mössbauer spectra of the indicated compounds at 40 K. The solid lines represent the best computer fit to the experimental data points.
RESONANCE RAMAN SPECTRA

STARCH-IODINE

A

B

I₂ in benzene

C

D

E

F

WAVENUMBER (cm⁻¹)
129I MOSSBAUER SPECTRA

A. STARCH \cdot IODINE

B. (TRIMESIC ACID\cdotH$_2$O)$_{10}$\cdotHI_5$
TECHNICAL REPORT DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>Arlington, Virginia 22217</th>
<th>Attn: Code 472</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>Arlington, Virginia 22217</td>
<td>Attn: Code 1021P</td>
<td>6</td>
</tr>
<tr>
<td>ONR Branch Office</td>
<td>536 S. Clark Street</td>
<td>Attn: Dr. Jerry Smith</td>
<td>1</td>
</tr>
<tr>
<td>ONR Branch Office</td>
<td>715 Broadway</td>
<td>Attn: Scientific Dept.</td>
<td>1</td>
</tr>
<tr>
<td>ONR Branch Office</td>
<td>1030 East Green Street</td>
<td>Attn: Dr. R. J. Marcus</td>
<td>1</td>
</tr>
<tr>
<td>ONR Branch Office</td>
<td>760 Market Street, Rm. 447</td>
<td>Attn: Dr. P. A. Miller</td>
<td>1</td>
</tr>
<tr>
<td>Director, Naval Research Laboratory</td>
<td>Washington, D.C. 20390</td>
<td>Attn: Dr. L. H. Peebles</td>
<td>1</td>
</tr>
<tr>
<td>The Asst. Secretary of the Navy (R&D)</td>
<td>Department of the Navy</td>
<td>Room 4E736, Pentagon</td>
<td>Washington, D.C. 20350</td>
</tr>
<tr>
<td>Commander, Naval Air Systems Command</td>
<td>Department of the Navy</td>
<td>Washington, D.C. 20360</td>
<td>Attn: Code 310C (H. Rosenwasser)</td>
</tr>
</tbody>
</table>

Defense Documentation Center	Building 5, Cameron Station	Attn: Alexandria, Virginia 22314	12	
U.S. Army Research Office	P.O. Box 12211	Research Triangle Park, N.C. 27709	1	
Naval Ocean Systems Center	San Diego, California 92152	Attn: Mr. Joe McCartney	1	
Naval Weapons Center	China Lake, California 93555	Attn: Head, Chemistry Division	1	
Naval Civil Engineering Laboratory	Port Hueneme, California 93041	Attn: Mr. W. S. Haynes	1	
Professor O. Heinz	Department of Physics & Chemistry	Naval Postgraduate School	Monterey, California 93940	1
Dr. A. L. Slafofsky	Scientific Advisor	Commandant of the Marine Corps (Code RD-1)	Washington, D.C. 20380	1
Office of Naval Research	Arlington, Virginia 22217	Attn: Dr. Richard S. Miller	1	
No. Copies	Dr. R. M. Grimes			
University of Virginia				
Department of Chemistry				
Charlottesville, Virginia 22901	1			
---	---			
No. Copies	Dr. W. Hatfield			
University of North Carolina				
Department of Chemistry				
Chapel Hill, North Carolina 27514	1			
No. Copies	Dr. M. Tsutsui			
Texas A&M University				
Department of Chemistry				
College Station, Texas 77843	1			
No. Copies	Dr. D. Seyferth			
Massachusetts Institute of Technology				
Department of Chemistry				
Cambridge, Massachusetts 02139	1			
No. Copies	Dr. C. Quicksall			
Georgetown University				
Department of Chemistry				
37th & O Streets				
Washington, D.C. 20007	1			
No. Copies	Dr. M. H. Chisholm			
Princeton University				
Department of Chemistry				
Princeton, New Jersey 08540	1			
No. Copies	Dr. M. F. Hawthorne			
University of California				
Department of Chemistry				
Los Angeles, California 90024	1			
No. Copies	Dr. B. Foxman			
Brandeis University				
Department of Chemistry				
Waltham, Massachusetts 02154	1			
No. Copies	Dr. D. B. Brown			
University of Vermont				
Department of Chemistry				
Burlington, Vermont 05401	1			
No. Copies	Dr. T. Marks			
Northwestern University				
Department of Chemistry				
Evanston, Illinois 60201	1			
No. Copies	Dr. W. B. Fox			
Naval Research Laboratory				
Chemistry Division				
Code 6130				
Washington, D.C. 20375	1			
No. Copies	Dr. G. Geoffrey			
Pennsylvania State University				
Department of Chemistry				
University Park, Pennsylvania 16802	1			
No. Copies	Dr. J. Adcock			
University of Tennessee				
Department of Chemistry				
Knoxville, Tennessee 37916	1			
No. Copies	Dr. J. Zuckerman			
University of Oklahoma				
Department of Chemistry				
Norman, Oklahoma 73019	1			
No. Copies	Dr. A. Cowley			
University of Texas
Department of Chemistry
Austin, Texas 78712 | 1 |