A SERIES OF tert-BUTYLDIMETHYLSILOXANES OF INCREASING STERIC HINDRANCE.

by

George W. Ritter, II and Malcolm E. Kenney

Chemistry Department
Case Western Reserve University
Cleveland, Ohio 44106

December 1977

Reproduction in whole or in part is permitted for any purpose of the United States Government

Approved for Public Release; Distribution Unlimited
A SERIES OF tert-BUTYLDIMETHYLSILOXANES OF INCREASING STERIC HINDRANCE

George W. Ritter, II and Malcolm E. Kenney
Chemistry Department
Case Western Reserve University
Cleveland, Ohio 44106

SUMMARY

Reaction of bis(dimethylsilyl)acetamide with tert-butyl-dimethylsilanol has been found to give 1-tert-butyl-1,1,3,3-tetramethyldisiloxane while reaction of bis(trimethylsilyl)-acetamide or trimethylchlorosilane with this silanol has been found to give 1-tert-butyl-1,1,3,3,3-pentamethyldisiloxane. Similarly, reaction of tert-butyldimethylchlorosilane with this silanol has been found to produce 1,3-di-tert-butyl-1,1,3,3-tetramethyldisiloxane and reaction of tert-butyldimethylchlorosilane with phthalocyaninosalenediol has been found to produce 1,5-tert-butyl-1,1,5,5-tetramethyl-3-phthalocyaninotrisiloxane. This last siloxane is noteworthy because it is highly hindered.

INTRODUCTION

A number of years ago Sommer and Tyler reported tert-butyldimethylchlorosilane. Recently this compound has attracted considerable attention because, as Corey has shown, it is a very effective blocking agent for hydroxyl groups in organic intermediates.

The silanol corresponding to this chlorosilane, tert-butyldimethylsilanol, was also reported by Sommer and Tyler, but uses for it have not been found and it has attracted
This compound is an interesting one nevertheless. It reacts with water very readily to form a hemihydrate (as does the corresponding carbinol, tert-butyl-dimethylcarbinol⁴), and, more significantly, it does not self-condense on being heated to fairly high temperatures.

The symmetrical siloxane of this series, 1,3-di-tert-butyl-1,1,3,3-tetramethyldisiloxane, has not been reported although Sommer and Tyler attempted to prepare it from the silanol (i.e., tert-butyl(dimethyl)silanol) with the aid of sulfuric acid and with the aid of iodine. These workers did imply, however, that while hindered this compound could well be synthesizable.

Unsymmetrical siloxanes of this series also have not been reported, apparently.

Recently an interest in siloxanes of this general type in this laboratory has led to work on some of them. This has yielded a series of tert-butyl(dimethyl)disiloxanes having differing amounts of steric hindrance.

RESULTS AND DISCUSSION

Two of these siloxanes are 1-tert-butyl-1,1,3,3-tetramethyldisiloxane and 1-tert-butyl-1,1,3,3,3-pentamethyldisiloxane. The first of these has been prepared by the reaction of bis(dimethyl)silyl)acetamide with tert-butyl(dimethyl)silanol. The second has been prepared by the reaction of bis(trimethyl)silyl)acetamide with the silanol and also by the reaction of trimethylchlorosilane with the silanol. Since these compounds are relatively unhindered, the fact that they can be made is not surprising. Further, the fact that they can be made by the routes used is likewise not surprising because these are of standard types.

Another of these siloxanes is the already mentioned 1,3-di-tert-butyl-1,1,3,3-tetramethyldisiloxane. This has been
prepared by the reaction of tert-butyldimethylchlorosilane with tert-butyldimethyilsilanol. In keeping with its preparability, as already mentioned, is the viewpoint implied by Sommer and Tyler.

Still another is 1,5-tert-butyl-1,1,5,5-tetramethyl-3-phthalocyaninotrisiloxane. This compound has been prepared by the reaction of tert-butyldimethylchlorosilane with phthalocyaninodisilanediol. It is of interest because it is so highly hindered. Without doubt rotation about its terminal O-Si bonds is severely limited. The route used to prepare it is noteworthy only in that it is simple and straightforward.

From this it is clear that many tert-butyldimethylsiloxanes can be made. Further, it is clear that in general they will be stable and easy to handle.

EXPERIMENTAL
Spectra

The nmr spectra were taken with the aid of a Varian HA-100 instrument operating in FT mode. Tetramethylsilane was used as an internal standard for the phthalocyaninodisiloxane. Chloroform was used as an internal standard for the remaining compounds.

\[\text{Spectra} \]

A mixture of bis(dimethylsilyl)acetamide (0.7 ml), tert-butyldimethyilsilanol (1.0 ml), and dry pyridine (20 ml) was refluxed with stirring and protection from atmospheric moisture for 3 hr. The product was distilled and nearly all of the 108-115°C fraction was set aside for 3 weeks (during this time it separated into two fractions). It was then mixed with water (20 ml) and the resultant was extracted once with hexane (15 ml). After being dried (CaCl₂) and filtered, the hexane layer
was distilled to a head temperature of 120°C. The liquid remaining (\~ 0.7 ml) was retained and a portion of it was chromatographed at 100°C on a 10% SE-30 Chromosorb W column. The major component, which was a colorless liquid and constituted about 75% of the total, was the siloxane. NMR (CDCl₃): δ 0.02 (s, SiMe₂-t-Bu), 0.15 (d, SiMe₂H), 0.86 (s, SiMe₂-t-Bu), and 4.69 ppm (m, SiMe₂H).

t-BuMe₂SiOSiMe₃

Trimethylchlorosilane (1.5 ml) was added with stirring to a dry solution of tri-n-butylamine (3 ml) and dimethylformamide (15 ml). t-Bu-Butyldimethylsilanol (1.0 ml) was added after a minute and the mixture was refluxed with stirring and protection from atmospheric moisture for 3 hr. The product when cool was mixed with water (20 ml) and extracted once with hexane (15 ml). After being dried (CaCl₂) and filtered, the hexane layer was distilled. The 130-135°C fraction (\~ 1 ml) was retained and a portion of it was chromatographed at 125°C as above. The major component, about 65% of the total, was the siloxane. It was a colorless liquid. NMR (CDCl₃): δ 0.03 (s, SiMe₂-t-Bu), 0.09 (s, SiMe₃), and 0.88 ppm (s, SiMe₂-t-Bu).

Anal. Calcd. for C₉H₂₄OSi₂: C, 52.87; H, 11.83; Si, 27.47. Found: C, 52.84; H, 11.89; Si, 27.20.

The siloxane was also prepared by reacting bis(trimethylsilyl)acetamide with t-Bu-Butyldimethylsilanol in refluxing pyridine.

t-BuMe₂O.SiMe₂-t-Bu

A solution of imidazole (1 g) and pyridine (25 ml) was dried by distilling off a small amount of it (\~ 5 ml) and cooled. t-Bu-Butyldimethylchlorosilane (1.2 g) and t-Bu-butyldimethylsilanol (1.0 ml) were added and the mixture was...
refluxed with stirring and protection from atmospheric moisture for 3 hr. and cooled. The product was mixed with water (20 ml) and the resultant was extracted once with hexane (15 ml). After being dried (CaCl₂) the hexane layer was filtered and distilled to a head temperature of 148°C. The liquid remaining (~0.4 ml) was retained and a portion of it was chromatographed at 175°C. The major component, a colorless fairly mobile liquid constituting about 85% of the total, proved to be the siloxane. NMR (CDCl₃): δ 0.01 (s, Me), and 0.87 ppm (s, t-Bu).

Anal. Calcd. for C₁₂H₃₀OSi₂: C, 58.46; H, 12.26; Si, 22.78. Found: C, 58.70; H, 12.05; Si, 22.64.

The siloxane was also synthesized both by refluxing the chlorosilane in wet pyridine and by refluxing it in pyridine exposed to moist air.

(t-BuMe₂SiO)₂SiPc

A mixture of tert-butylidimethylchlorosilane (1.0 g), phthalocyaninosilanedioi (prepared by Douglass' procedure⁵) (0.43 g), dry tri-n-butylamine (15 ml), and distilled, dry, nitrogen-purged quinoline (30 ml) was refluxed with stirring and protection from atmospheric moisture for 1 hr. The resultant was cooled slowly and filtered. The solid, beautiful red-reflecting, blue-transmitting needles, was washed with water, acetone, and hexane, and dried (0.48 g). A portion of it was recrystallized from dry tetrahydronaphthalene, washed with hexane and acetone, and dried at 140°C in the air and 110°C under vacuum. This gave the siloxane as tiny red-reflecting blue-transmitting crystals. NMR (CDCl₃): δ -2.98 (s, Me), -1.44 (s, t-Bu), 8.32 (m, 4,5 Pc), and 9.61 ppm (m, 3,6 Pc).

Anal. Calcd. for C₄₄H₄₆N₈O₂Si₃: C, 65.80; H, 5.77; Si, 10.49. Found: C, 66.05; H, 5.51; Si, 10.19.

The solubility of this compound in common organic solvents is very low.
ACKNOWLEDGMENTS

The authors thank the Office of Naval Research for support of this work.

REFERENCES

<table>
<thead>
<tr>
<th>Office of Naval Research Arlington, Virginia 22217</th>
<th>Defense Documentation Center Building 5, Cameron Station Alexandria, Virginia 22314</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 472</td>
<td>No. Copies 2</td>
</tr>
<tr>
<td>Office of Naval Research Arlington, Virginia 22217</td>
<td>U.S. Army Research Office P.O. Box 12211</td>
</tr>
<tr>
<td>Attn: Code 102IP</td>
<td>Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>Attn: Code 472</td>
<td>No. Copies 12</td>
</tr>
<tr>
<td>ONR Branch Office 536 S. Clark Street Chicago, Illinois 60605</td>
<td>Commander Naval Undersea Research & Development Center San Diego, California 92132</td>
</tr>
<tr>
<td>Attn: Dr. George Sandoz</td>
<td>Attn: Technical Library, Code 133 No. Copies 1</td>
</tr>
<tr>
<td>ONR Branch Office 715 Broadway New York, New York 10003</td>
<td>Naval Weapons Center China Lake, California 93555</td>
</tr>
<tr>
<td>Attn: Scientific Dept.</td>
<td>Attn: Head, Chemistry Division No. Copies 1</td>
</tr>
<tr>
<td>ONR Branch Office 1030 East Green Street Pasadena, California 91106</td>
<td>Naval Civil Engineering Laboratory Port Hueneme, California 93041</td>
</tr>
<tr>
<td>Attn: Dr. R. J. Marcus</td>
<td>Attn: Mr. W. S. Yanes No. Copies 1</td>
</tr>
<tr>
<td>ONR Branch Office 760 Market Street, Rm. 447 San Francisco, California 94102</td>
<td>Professor O. Heinz Department of Physics & Chemistry Naval Postgraduate School Monterey, California 93940</td>
</tr>
<tr>
<td>Attn: Dr. P. A. Miller</td>
<td>Attn: No. Copies 1</td>
</tr>
<tr>
<td>ONR Branch Office 495 Summer Street Boston, Massachusetts 02210</td>
<td>Dr. A. L. Slafkosky Scientific Adviser Commandant of the Marine Corps (Code RD-1) Washington, D.C. 20380</td>
</tr>
<tr>
<td>Attn: Dr. L. H. Peebles</td>
<td>Attn: No. Copies 1</td>
</tr>
<tr>
<td>Director, Naval Research Laboratory Washington, D.C. 20390</td>
<td>The Asst. Secretary of the Navy (R&D) Department of the Navy Room 4E736, Pentagon Washington, D.C. 20350</td>
</tr>
<tr>
<td>Code 6100, 6170</td>
<td>Dr. T. C. Williams Union Carbide Corp. Chemicals & Plastics Tarrytown Technical Center Tarrytown, New York 10591</td>
</tr>
<tr>
<td>Dr. H. Good Department of Chemistry University of New Orleans Lakefront New Orleans, Louisiana 70122</td>
<td>Attn: No. Copies 1</td>
</tr>
<tr>
<td>Commander, Naval Air Systems Command Department of the Navy Washington, D.C. 20360</td>
<td>Dr. K. A. Reynard Horizons Inc. 23800 Mercantile Road Cleveland, Ohio 44122</td>
</tr>
</tbody>
</table>
Reaction of bis(dimethylsilyl)acetamide with tert-butyldimethylsilanol has been found to give 1-tert-butyl-1,1,3,3-tetramethyldisiloxane while reaction of bis(trimethylsilyl)acetamide or trimethylchlorosilane with this silanol has been found to give 1-tert-butyl-1,1,3,3,3-pentamethyldisiloxane. Likewise reaction of tert-butyldimethylchlorosilane with this silanol has been found to produce 1,3-di-tert-butyl-1,1,3,3,3-pentamethyldisiloxane and reaction of tert-butyldimethylchlorosilane with phthalocyaninaisolanediol has been found to produce...
1,5-tert-butyl-1,1,5,5-tetramethyl-3-phthalocyaninotrisiloxane. This last siloxane is noteworthy because it is highly hindered.